xref: /netbsd-src/sys/uvm/uvm_km.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: uvm_km.c,v 1.160 2021/03/13 15:29:55 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_km.c: handle kernel memory allocation and management
66  */
67 
68 /*
69  * overview of kernel memory management:
70  *
71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74  *
75  * the kernel_map has several "submaps."   submaps can only appear in
76  * the kernel_map (user processes can't use them).   submaps "take over"
77  * the management of a sub-range of the kernel's address space.  submaps
78  * are typically allocated at boot time and are never released.   kernel
79  * virtual address space that is mapped by a submap is locked by the
80  * submap's lock -- not the kernel_map's lock.
81  *
82  * thus, the useful feature of submaps is that they allow us to break
83  * up the locking and protection of the kernel address space into smaller
84  * chunks.
85  *
86  * the vm system has several standard kernel submaps/arenas, including:
87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
88  *   pager_map => used to map "buf" structures into kernel space
89  *   exec_map => used during exec to handle exec args
90  *   etc...
91  *
92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
93  * within the kernel_map and is controlled by vmem(9).
94  *
95  * the kernel allocates its private memory out of special uvm_objects whose
96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97  * are "special" and never die).   all kernel objects should be thought of
98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99  * object is equal to the size of kernel virtual address space (i.e. the
100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101  *
102  * note that just because a kernel object spans the entire kernel virtual
103  * address space doesn't mean that it has to be mapped into the entire space.
104  * large chunks of a kernel object's space go unused either because
105  * that area of kernel VM is unmapped, or there is some other type of
106  * object mapped into that range (e.g. a vnode).    for submap's kernel
107  * objects, the only part of the object that can ever be populated is the
108  * offsets that are managed by the submap.
109  *
110  * note that the "offset" in a kernel object is always the kernel virtual
111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112  * example:
113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116  *   then that means that the page at offset 0x235000 in kernel_object is
117  *   mapped at 0xf8235000.
118  *
119  * kernel object have one other special property: when the kernel virtual
120  * memory mapping them is unmapped, the backing memory in the object is
121  * freed right away.   this is done with the uvm_km_pgremove() function.
122  * this has to be done because there is no backing store for kernel pages
123  * and no need to save them after they are no longer referenced.
124  *
125  * Generic arenas:
126  *
127  * kmem_arena:
128  *	Main arena controlling the kernel KVA used by other arenas.
129  *
130  * kmem_va_arena:
131  *	Implements quantum caching in order to speedup allocations and
132  *	reduce fragmentation.  The pool(9), unless created with a custom
133  *	meta-data allocator, and kmem(9) subsystems use this arena.
134  *
135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
137  * compensates this by importing larger chunks from kmem_arena.
138  *
139  * kmem_va_meta_arena:
140  *	Space for meta-data.
141  *
142  * kmem_meta_arena:
143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
144  *	backed with the pages.
145  *
146  * Arena stacking:
147  *
148  *	kmem_arena
149  *		kmem_va_arena
150  *		kmem_va_meta_arena
151  *			kmem_meta_arena
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.160 2021/03/13 15:29:55 skrll Exp $");
156 
157 #include "opt_uvmhist.h"
158 
159 #include "opt_kmempages.h"
160 
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164 
165 /*
166  * Defaults for lower and upper-bounds for the kmem_arena page count.
167  * Can be overridden by kernel config options.
168  */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172 
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176 
177 
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/atomic.h>
181 #include <sys/proc.h>
182 #include <sys/pool.h>
183 #include <sys/vmem.h>
184 #include <sys/vmem_impl.h>
185 #include <sys/kmem.h>
186 #include <sys/msan.h>
187 
188 #include <uvm/uvm.h>
189 
190 /*
191  * global data structures
192  */
193 
194 struct vm_map *kernel_map = NULL;
195 
196 /*
197  * local data structues
198  */
199 
200 static struct vm_map		kernel_map_store;
201 static struct vm_map_entry	kernel_image_mapent_store;
202 static struct vm_map_entry	kernel_kmem_mapent_store;
203 
204 int nkmempages = 0;
205 vaddr_t kmembase;
206 vsize_t kmemsize;
207 
208 static struct vmem kmem_arena_store;
209 vmem_t *kmem_arena = NULL;
210 static struct vmem kmem_va_arena_store;
211 vmem_t *kmem_va_arena;
212 
213 /*
214  * kmeminit_nkmempages: calculate the size of kmem_arena.
215  */
216 void
217 kmeminit_nkmempages(void)
218 {
219 	int npages;
220 
221 	if (nkmempages != 0) {
222 		/*
223 		 * It's already been set (by us being here before)
224 		 * bail out now;
225 		 */
226 		return;
227 	}
228 
229 #if defined(KMSAN)
230 	npages = (physmem / 8);
231 #elif defined(PMAP_MAP_POOLPAGE)
232 	npages = (physmem / 4);
233 #else
234 	npages = (physmem / 3) * 2;
235 #endif /* defined(PMAP_MAP_POOLPAGE) */
236 
237 #ifndef NKMEMPAGES_MAX_UNLIMITED
238 	if (npages > NKMEMPAGES_MAX)
239 		npages = NKMEMPAGES_MAX;
240 #endif
241 
242 	if (npages < NKMEMPAGES_MIN)
243 		npages = NKMEMPAGES_MIN;
244 
245 	nkmempages = npages;
246 }
247 
248 /*
249  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
250  * KVM already allocated for text, data, bss, and static data structures).
251  *
252  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
253  *    we assume that [vmin -> start] has already been allocated and that
254  *    "end" is the end.
255  */
256 
257 void
258 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
259 {
260 	bool kmem_arena_small;
261 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
262 	struct uvm_map_args args;
263 	int error;
264 
265 	UVMHIST_FUNC(__func__);
266 	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
267 
268 	kmeminit_nkmempages();
269 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
270 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
271 
272 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
273 
274 	/*
275 	 * next, init kernel memory objects.
276 	 */
277 
278 	/* kernel_object: for pageable anonymous kernel memory */
279 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
280 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
281 
282 	/*
283 	 * init the map and reserve any space that might already
284 	 * have been allocated kernel space before installing.
285 	 */
286 
287 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
288 	kernel_map_store.pmap = pmap_kernel();
289 	if (start != base) {
290 		error = uvm_map_prepare(&kernel_map_store,
291 		    base, start - base,
292 		    NULL, UVM_UNKNOWN_OFFSET, 0,
293 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
294 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
295 		if (!error) {
296 			kernel_image_mapent_store.flags =
297 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
298 			error = uvm_map_enter(&kernel_map_store, &args,
299 			    &kernel_image_mapent_store);
300 		}
301 
302 		if (error)
303 			panic(
304 			    "uvm_km_bootstrap: could not reserve space for kernel");
305 
306 		kmembase = args.uma_start + args.uma_size;
307 	} else {
308 		kmembase = base;
309 	}
310 
311 	error = uvm_map_prepare(&kernel_map_store,
312 	    kmembase, kmemsize,
313 	    NULL, UVM_UNKNOWN_OFFSET, 0,
314 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
315 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
316 	if (!error) {
317 		kernel_kmem_mapent_store.flags =
318 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
319 		error = uvm_map_enter(&kernel_map_store, &args,
320 		    &kernel_kmem_mapent_store);
321 	}
322 
323 	if (error)
324 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
325 
326 	/*
327 	 * install!
328 	 */
329 
330 	kernel_map = &kernel_map_store;
331 
332 	pool_subsystem_init();
333 
334 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
335 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
336 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
337 #ifdef PMAP_GROWKERNEL
338 	/*
339 	 * kmem_arena VA allocations happen independently of uvm_map.
340 	 * grow kernel to accommodate the kmem_arena.
341 	 */
342 	if (uvm_maxkaddr < kmembase + kmemsize) {
343 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
344 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
345 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
346 		    uvm_maxkaddr, kmembase, kmemsize);
347 	}
348 #endif
349 
350 	vmem_subsystem_init(kmem_arena);
351 
352 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
353 	    kmembase, kmemsize, 0,0);
354 
355 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
356 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
357 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
358 	    VM_NOSLEEP, IPL_VM);
359 
360 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
361 }
362 
363 /*
364  * uvm_km_init: init the kernel maps virtual memory caches
365  * and start the pool/kmem allocator.
366  */
367 void
368 uvm_km_init(void)
369 {
370 	kmem_init();
371 }
372 
373 /*
374  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
375  * is allocated all references to that area of VM must go through it.  this
376  * allows the locking of VAs in kernel_map to be broken up into regions.
377  *
378  * => if `fixed' is true, *vmin specifies where the region described
379  *   pager_map => used to map "buf" structures into kernel space
380  *      by the submap must start
381  * => if submap is non NULL we use that as the submap, otherwise we
382  *	alloc a new map
383  */
384 
385 struct vm_map *
386 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
387     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
388     struct vm_map *submap)
389 {
390 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
391 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
392 
393 	KASSERT(vm_map_pmap(map) == pmap_kernel());
394 
395 	size = round_page(size);	/* round up to pagesize */
396 
397 	/*
398 	 * first allocate a blank spot in the parent map
399 	 */
400 
401 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
402 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
403 	    UVM_ADV_RANDOM, mapflags)) != 0) {
404 		panic("%s: unable to allocate space in parent map", __func__);
405 	}
406 
407 	/*
408 	 * set VM bounds (vmin is filled in by uvm_map)
409 	 */
410 
411 	*vmax = *vmin + size;
412 
413 	/*
414 	 * add references to pmap and create or init the submap
415 	 */
416 
417 	pmap_reference(vm_map_pmap(map));
418 	if (submap == NULL) {
419 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
420 	}
421 	uvm_map_setup(submap, *vmin, *vmax, flags);
422 	submap->pmap = vm_map_pmap(map);
423 
424 	/*
425 	 * now let uvm_map_submap plug in it...
426 	 */
427 
428 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
429 		panic("uvm_km_suballoc: submap allocation failed");
430 
431 	return(submap);
432 }
433 
434 /*
435  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
436  */
437 
438 void
439 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
440 {
441 	struct uvm_object * const uobj = uvm_kernel_object;
442 	const voff_t start = startva - vm_map_min(kernel_map);
443 	const voff_t end = endva - vm_map_min(kernel_map);
444 	struct vm_page *pg;
445 	voff_t curoff, nextoff;
446 	int swpgonlydelta = 0;
447 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
448 
449 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
450 	KASSERT(startva < endva);
451 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
452 
453 	rw_enter(uobj->vmobjlock, RW_WRITER);
454 	pmap_remove(pmap_kernel(), startva, endva);
455 	for (curoff = start; curoff < end; curoff = nextoff) {
456 		nextoff = curoff + PAGE_SIZE;
457 		pg = uvm_pagelookup(uobj, curoff);
458 		if (pg != NULL && pg->flags & PG_BUSY) {
459 			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
460 			rw_enter(uobj->vmobjlock, RW_WRITER);
461 			nextoff = curoff;
462 			continue;
463 		}
464 
465 		/*
466 		 * free the swap slot, then the page.
467 		 */
468 
469 		if (pg == NULL &&
470 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
471 			swpgonlydelta++;
472 		}
473 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
474 		if (pg != NULL) {
475 			uvm_pagefree(pg);
476 		}
477 	}
478 	rw_exit(uobj->vmobjlock);
479 
480 	if (swpgonlydelta > 0) {
481 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
482 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
483 	}
484 }
485 
486 
487 /*
488  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
489  *    regions.
490  *
491  * => when you unmap a part of anonymous kernel memory you want to toss
492  *    the pages right away.    (this is called from uvm_unmap_...).
493  * => none of the pages will ever be busy, and none of them will ever
494  *    be on the active or inactive queues (because they have no object).
495  */
496 
497 void
498 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
499 {
500 #define __PGRM_BATCH 16
501 	struct vm_page *pg;
502 	paddr_t pa[__PGRM_BATCH];
503 	int npgrm, i;
504 	vaddr_t va, batch_vastart;
505 
506 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
507 
508 	KASSERT(VM_MAP_IS_KERNEL(map));
509 	KASSERTMSG(vm_map_min(map) <= start,
510 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
511 	    " (size=%#"PRIxVSIZE")",
512 	    vm_map_min(map), start, end - start);
513 	KASSERT(start < end);
514 	KASSERT(end <= vm_map_max(map));
515 
516 	for (va = start; va < end;) {
517 		batch_vastart = va;
518 		/* create a batch of at most __PGRM_BATCH pages to free */
519 		for (i = 0;
520 		     i < __PGRM_BATCH && va < end;
521 		     va += PAGE_SIZE) {
522 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
523 				continue;
524 			}
525 			i++;
526 		}
527 		npgrm = i;
528 		/* now remove the mappings */
529 		pmap_kremove(batch_vastart, va - batch_vastart);
530 		/* and free the pages */
531 		for (i = 0; i < npgrm; i++) {
532 			pg = PHYS_TO_VM_PAGE(pa[i]);
533 			KASSERT(pg);
534 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
535 			KASSERT((pg->flags & PG_BUSY) == 0);
536 			uvm_pagefree(pg);
537 		}
538 	}
539 #undef __PGRM_BATCH
540 }
541 
542 #if defined(DEBUG)
543 void
544 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
545 {
546 	vaddr_t va;
547 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
548 
549 	KDASSERT(VM_MAP_IS_KERNEL(map));
550 	KDASSERT(vm_map_min(map) <= start);
551 	KDASSERT(start < end);
552 	KDASSERT(end <= vm_map_max(map));
553 
554 	for (va = start; va < end; va += PAGE_SIZE) {
555 		paddr_t pa;
556 
557 		if (pmap_extract(pmap_kernel(), va, &pa)) {
558 			panic("uvm_km_check_empty: va %p has pa %#llx",
559 			    (void *)va, (long long)pa);
560 		}
561 		/*
562 		 * kernel_object should not have pages for the corresponding
563 		 * region.  check it.
564 		 *
565 		 * why trylock?  because:
566 		 * - caller might not want to block.
567 		 * - we can recurse when allocating radix_node for
568 		 *   kernel_object.
569 		 */
570 		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
571 			struct vm_page *pg;
572 
573 			pg = uvm_pagelookup(uvm_kernel_object,
574 			    va - vm_map_min(kernel_map));
575 			rw_exit(uvm_kernel_object->vmobjlock);
576 			if (pg) {
577 				panic("uvm_km_check_empty: "
578 				    "has page hashed at %p",
579 				    (const void *)va);
580 			}
581 		}
582 	}
583 }
584 #endif /* defined(DEBUG) */
585 
586 /*
587  * uvm_km_alloc: allocate an area of kernel memory.
588  *
589  * => NOTE: we can return 0 even if we can wait if there is not enough
590  *	free VM space in the map... caller should be prepared to handle
591  *	this case.
592  * => we return KVA of memory allocated
593  */
594 
595 vaddr_t
596 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
597 {
598 	vaddr_t kva, loopva;
599 	vaddr_t offset;
600 	vsize_t loopsize;
601 	struct vm_page *pg;
602 	struct uvm_object *obj;
603 	int pgaflags;
604 	vm_prot_t prot, vaprot;
605 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
606 
607 	KASSERT(vm_map_pmap(map) == pmap_kernel());
608 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
609 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
610 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
611 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
612 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
613 
614 	/*
615 	 * setup for call
616 	 */
617 
618 	kva = vm_map_min(map);	/* hint */
619 	size = round_page(size);
620 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
621 	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
622 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
623 
624 	/*
625 	 * allocate some virtual space
626 	 */
627 
628 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
629 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
630 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
631 	    UVM_ADV_RANDOM,
632 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
633 	     | UVM_KMF_COLORMATCH)))) != 0)) {
634 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
635 		return(0);
636 	}
637 
638 	/*
639 	 * if all we wanted was VA, return now
640 	 */
641 
642 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
643 		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
644 		return(kva);
645 	}
646 
647 	/*
648 	 * recover object offset from virtual address
649 	 */
650 
651 	offset = kva - vm_map_min(kernel_map);
652 	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
653 
654 	/*
655 	 * now allocate and map in the memory... note that we are the only ones
656 	 * whom should ever get a handle on this area of VM.
657 	 */
658 
659 	loopva = kva;
660 	loopsize = size;
661 
662 	pgaflags = UVM_FLAG_COLORMATCH;
663 	if (flags & UVM_KMF_NOWAIT)
664 		pgaflags |= UVM_PGA_USERESERVE;
665 	if (flags & UVM_KMF_ZERO)
666 		pgaflags |= UVM_PGA_ZERO;
667 	prot = VM_PROT_READ | VM_PROT_WRITE;
668 	if (flags & UVM_KMF_EXEC)
669 		prot |= VM_PROT_EXECUTE;
670 	while (loopsize) {
671 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
672 		    "loopva=%#"PRIxVADDR, loopva);
673 
674 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
675 #ifdef UVM_KM_VMFREELIST
676 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
677 #else
678 		   UVM_PGA_STRAT_NORMAL, 0
679 #endif
680 		   );
681 
682 		/*
683 		 * out of memory?
684 		 */
685 
686 		if (__predict_false(pg == NULL)) {
687 			if ((flags & UVM_KMF_NOWAIT) ||
688 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
689 				/* free everything! */
690 				uvm_km_free(map, kva, size,
691 				    flags & UVM_KMF_TYPEMASK);
692 				return (0);
693 			} else {
694 				uvm_wait("km_getwait2");	/* sleep here */
695 				continue;
696 			}
697 		}
698 
699 		pg->flags &= ~PG_BUSY;	/* new page */
700 		UVM_PAGE_OWN(pg, NULL);
701 
702 		/*
703 		 * map it in
704 		 */
705 
706 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
707 		    prot, PMAP_KMPAGE);
708 		loopva += PAGE_SIZE;
709 		offset += PAGE_SIZE;
710 		loopsize -= PAGE_SIZE;
711 	}
712 
713 	pmap_update(pmap_kernel());
714 
715 	if ((flags & UVM_KMF_ZERO) == 0) {
716 		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
717 		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
718 	}
719 
720 	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
721 	return(kva);
722 }
723 
724 /*
725  * uvm_km_protect: change the protection of an allocated area
726  */
727 
728 int
729 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
730 {
731 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
732 }
733 
734 /*
735  * uvm_km_free: free an area of kernel memory
736  */
737 
738 void
739 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
740 {
741 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
742 
743 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
744 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
745 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
746 	KASSERT((addr & PAGE_MASK) == 0);
747 	KASSERT(vm_map_pmap(map) == pmap_kernel());
748 
749 	size = round_page(size);
750 
751 	if (flags & UVM_KMF_PAGEABLE) {
752 		uvm_km_pgremove(addr, addr + size);
753 	} else if (flags & UVM_KMF_WIRED) {
754 		/*
755 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
756 		 * remove it after.  See comment below about KVA visibility.
757 		 */
758 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
759 	}
760 
761 	/*
762 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
763 	 * KVA becomes globally available.
764 	 */
765 
766 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
767 }
768 
769 /* Sanity; must specify both or none. */
770 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
771     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
772 #error Must specify MAP and UNMAP together.
773 #endif
774 
775 #if defined(PMAP_ALLOC_POOLPAGE) && \
776     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
777 #error Must specify ALLOC with MAP and UNMAP
778 #endif
779 
780 int
781 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
782     vmem_addr_t *addr)
783 {
784 	struct vm_page *pg;
785 	vmem_addr_t va;
786 	int rc;
787 	vaddr_t loopva;
788 	vsize_t loopsize;
789 
790 	size = round_page(size);
791 
792 #if defined(PMAP_MAP_POOLPAGE)
793 	if (size == PAGE_SIZE) {
794 again:
795 #ifdef PMAP_ALLOC_POOLPAGE
796 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
797 		   0 : UVM_PGA_USERESERVE);
798 #else
799 		pg = uvm_pagealloc(NULL, 0, NULL,
800 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
801 #endif /* PMAP_ALLOC_POOLPAGE */
802 		if (__predict_false(pg == NULL)) {
803 			if (flags & VM_SLEEP) {
804 				uvm_wait("plpg");
805 				goto again;
806 			}
807 			return ENOMEM;
808 		}
809 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
810 		KASSERT(va != 0);
811 		*addr = va;
812 		return 0;
813 	}
814 #endif /* PMAP_MAP_POOLPAGE */
815 
816 	rc = vmem_alloc(vm, size, flags, &va);
817 	if (rc != 0)
818 		return rc;
819 
820 #ifdef PMAP_GROWKERNEL
821 	/*
822 	 * These VA allocations happen independently of uvm_map
823 	 * so this allocation must not extend beyond the current limit.
824 	 */
825 	KASSERTMSG(uvm_maxkaddr >= va + size,
826 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
827 	    uvm_maxkaddr, va, size);
828 #endif
829 
830 	loopva = va;
831 	loopsize = size;
832 
833 	while (loopsize) {
834 		paddr_t pa __diagused;
835 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
836 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
837 		    " pa=%#"PRIxPADDR" vmem=%p",
838 		    loopva, loopsize, pa, vm);
839 
840 		pg = uvm_pagealloc(NULL, loopva, NULL,
841 		    UVM_FLAG_COLORMATCH
842 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
843 		if (__predict_false(pg == NULL)) {
844 			if (flags & VM_SLEEP) {
845 				uvm_wait("plpg");
846 				continue;
847 			} else {
848 				uvm_km_pgremove_intrsafe(kernel_map, va,
849 				    va + size);
850 				vmem_free(vm, va, size);
851 				return ENOMEM;
852 			}
853 		}
854 
855 		pg->flags &= ~PG_BUSY;	/* new page */
856 		UVM_PAGE_OWN(pg, NULL);
857 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
858 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
859 
860 		loopva += PAGE_SIZE;
861 		loopsize -= PAGE_SIZE;
862 	}
863 	pmap_update(pmap_kernel());
864 
865 	*addr = va;
866 
867 	return 0;
868 }
869 
870 void
871 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
872 {
873 
874 	size = round_page(size);
875 #if defined(PMAP_UNMAP_POOLPAGE)
876 	if (size == PAGE_SIZE) {
877 		paddr_t pa;
878 
879 		pa = PMAP_UNMAP_POOLPAGE(addr);
880 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
881 		return;
882 	}
883 #endif /* PMAP_UNMAP_POOLPAGE */
884 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
885 	pmap_update(pmap_kernel());
886 
887 	vmem_free(vm, addr, size);
888 }
889 
890 bool
891 uvm_km_va_starved_p(void)
892 {
893 	vmem_size_t total;
894 	vmem_size_t free;
895 
896 	if (kmem_arena == NULL)
897 		return false;
898 
899 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
900 	free = vmem_size(kmem_arena, VMEM_FREE);
901 
902 	return (free < (total / 10));
903 }
904