xref: /netbsd-src/sys/uvm/uvm_km.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: uvm_km.c,v 1.103 2008/12/13 11:34:43 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_km.c: handle kernel memory allocation and management
71  */
72 
73 /*
74  * overview of kernel memory management:
75  *
76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79  *
80  * the kernel_map has several "submaps."   submaps can only appear in
81  * the kernel_map (user processes can't use them).   submaps "take over"
82  * the management of a sub-range of the kernel's address space.  submaps
83  * are typically allocated at boot time and are never released.   kernel
84  * virtual address space that is mapped by a submap is locked by the
85  * submap's lock -- not the kernel_map's lock.
86  *
87  * thus, the useful feature of submaps is that they allow us to break
88  * up the locking and protection of the kernel address space into smaller
89  * chunks.
90  *
91  * the vm system has several standard kernel submaps, including:
92  *   kmem_map => contains only wired kernel memory for the kernel
93  *		malloc.
94  *   mb_map => memory for large mbufs,
95  *   pager_map => used to map "buf" structures into kernel space
96  *   exec_map => used during exec to handle exec args
97  *   etc...
98  *
99  * the kernel allocates its private memory out of special uvm_objects whose
100  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
101  * are "special" and never die).   all kernel objects should be thought of
102  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
103  * object is equal to the size of kernel virtual address space (i.e. the
104  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
105  *
106  * note that just because a kernel object spans the entire kernel virtual
107  * address space doesn't mean that it has to be mapped into the entire space.
108  * large chunks of a kernel object's space go unused either because
109  * that area of kernel VM is unmapped, or there is some other type of
110  * object mapped into that range (e.g. a vnode).    for submap's kernel
111  * objects, the only part of the object that can ever be populated is the
112  * offsets that are managed by the submap.
113  *
114  * note that the "offset" in a kernel object is always the kernel virtual
115  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
116  * example:
117  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
118  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
119  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
120  *   then that means that the page at offset 0x235000 in kernel_object is
121  *   mapped at 0xf8235000.
122  *
123  * kernel object have one other special property: when the kernel virtual
124  * memory mapping them is unmapped, the backing memory in the object is
125  * freed right away.   this is done with the uvm_km_pgremove() function.
126  * this has to be done because there is no backing store for kernel pages
127  * and no need to save them after they are no longer referenced.
128  */
129 
130 #include <sys/cdefs.h>
131 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.103 2008/12/13 11:34:43 ad Exp $");
132 
133 #include "opt_uvmhist.h"
134 
135 #include <sys/param.h>
136 #include <sys/malloc.h>
137 #include <sys/systm.h>
138 #include <sys/proc.h>
139 #include <sys/pool.h>
140 
141 #include <uvm/uvm.h>
142 
143 /*
144  * global data structures
145  */
146 
147 struct vm_map *kernel_map = NULL;
148 
149 /*
150  * local data structues
151  */
152 
153 static struct vm_map_kernel	kernel_map_store;
154 static struct vm_map_entry	kernel_first_mapent_store;
155 
156 #if !defined(PMAP_MAP_POOLPAGE)
157 
158 /*
159  * kva cache
160  *
161  * XXX maybe it's better to do this at the uvm_map layer.
162  */
163 
164 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
165 
166 static void *km_vacache_alloc(struct pool *, int);
167 static void km_vacache_free(struct pool *, void *);
168 static void km_vacache_init(struct vm_map *, const char *, size_t);
169 
170 /* XXX */
171 #define	KM_VACACHE_POOL_TO_MAP(pp) \
172 	((struct vm_map *)((char *)(pp) - \
173 	    offsetof(struct vm_map_kernel, vmk_vacache)))
174 
175 static void *
176 km_vacache_alloc(struct pool *pp, int flags)
177 {
178 	vaddr_t va;
179 	size_t size;
180 	struct vm_map *map;
181 	size = pp->pr_alloc->pa_pagesz;
182 
183 	map = KM_VACACHE_POOL_TO_MAP(pp);
184 
185 	va = vm_map_min(map); /* hint */
186 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
187 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
188 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
189 	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
190 	    UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
191 		return NULL;
192 
193 	return (void *)va;
194 }
195 
196 static void
197 km_vacache_free(struct pool *pp, void *v)
198 {
199 	vaddr_t va = (vaddr_t)v;
200 	size_t size = pp->pr_alloc->pa_pagesz;
201 	struct vm_map *map;
202 
203 	map = KM_VACACHE_POOL_TO_MAP(pp);
204 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
205 }
206 
207 /*
208  * km_vacache_init: initialize kva cache.
209  */
210 
211 static void
212 km_vacache_init(struct vm_map *map, const char *name, size_t size)
213 {
214 	struct vm_map_kernel *vmk;
215 	struct pool *pp;
216 	struct pool_allocator *pa;
217 	int ipl;
218 
219 	KASSERT(VM_MAP_IS_KERNEL(map));
220 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
221 
222 
223 	vmk = vm_map_to_kernel(map);
224 	pp = &vmk->vmk_vacache;
225 	pa = &vmk->vmk_vacache_allocator;
226 	memset(pa, 0, sizeof(*pa));
227 	pa->pa_alloc = km_vacache_alloc;
228 	pa->pa_free = km_vacache_free;
229 	pa->pa_pagesz = (unsigned int)size;
230 	pa->pa_backingmap = map;
231 	pa->pa_backingmapptr = NULL;
232 
233 	if ((map->flags & VM_MAP_INTRSAFE) != 0)
234 		ipl = IPL_VM;
235 	else
236 		ipl = IPL_NONE;
237 
238 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
239 	    ipl);
240 }
241 
242 void
243 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
244 {
245 
246 	map->flags |= VM_MAP_VACACHE;
247 	if (size == 0)
248 		size = KM_VACACHE_SIZE;
249 	km_vacache_init(map, name, size);
250 }
251 
252 #else /* !defined(PMAP_MAP_POOLPAGE) */
253 
254 void
255 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
256 {
257 
258 	/* nothing */
259 }
260 
261 #endif /* !defined(PMAP_MAP_POOLPAGE) */
262 
263 void
264 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
265 {
266 	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
267 
268 	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
269 }
270 
271 /*
272  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
273  * KVM already allocated for text, data, bss, and static data structures).
274  *
275  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
276  *    we assume that [vmin -> start] has already been allocated and that
277  *    "end" is the end.
278  */
279 
280 void
281 uvm_km_init(vaddr_t start, vaddr_t end)
282 {
283 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
284 
285 	/*
286 	 * next, init kernel memory objects.
287 	 */
288 
289 	/* kernel_object: for pageable anonymous kernel memory */
290 	uao_init();
291 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
292 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
293 
294 	/*
295 	 * init the map and reserve any space that might already
296 	 * have been allocated kernel space before installing.
297 	 */
298 
299 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
300 	kernel_map_store.vmk_map.pmap = pmap_kernel();
301 	if (start != base) {
302 		int error;
303 		struct uvm_map_args args;
304 
305 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
306 		    base, start - base,
307 		    NULL, UVM_UNKNOWN_OFFSET, 0,
308 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
309 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
310 		if (!error) {
311 			kernel_first_mapent_store.flags =
312 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
313 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
314 			    &kernel_first_mapent_store);
315 		}
316 
317 		if (error)
318 			panic(
319 			    "uvm_km_init: could not reserve space for kernel");
320 	}
321 
322 	/*
323 	 * install!
324 	 */
325 
326 	kernel_map = &kernel_map_store.vmk_map;
327 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
328 }
329 
330 /*
331  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
332  * is allocated all references to that area of VM must go through it.  this
333  * allows the locking of VAs in kernel_map to be broken up into regions.
334  *
335  * => if `fixed' is true, *vmin specifies where the region described
336  *      by the submap must start
337  * => if submap is non NULL we use that as the submap, otherwise we
338  *	alloc a new map
339  */
340 
341 struct vm_map *
342 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
343     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
344     struct vm_map_kernel *submap)
345 {
346 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
347 
348 	KASSERT(vm_map_pmap(map) == pmap_kernel());
349 
350 	size = round_page(size);	/* round up to pagesize */
351 	size += uvm_mapent_overhead(size, flags);
352 
353 	/*
354 	 * first allocate a blank spot in the parent map
355 	 */
356 
357 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
358 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
359 	    UVM_ADV_RANDOM, mapflags)) != 0) {
360 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
361 	}
362 
363 	/*
364 	 * set VM bounds (vmin is filled in by uvm_map)
365 	 */
366 
367 	*vmax = *vmin + size;
368 
369 	/*
370 	 * add references to pmap and create or init the submap
371 	 */
372 
373 	pmap_reference(vm_map_pmap(map));
374 	if (submap == NULL) {
375 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
376 		if (submap == NULL)
377 			panic("uvm_km_suballoc: unable to create submap");
378 	}
379 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
380 	submap->vmk_map.pmap = vm_map_pmap(map);
381 
382 	/*
383 	 * now let uvm_map_submap plug in it...
384 	 */
385 
386 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
387 		panic("uvm_km_suballoc: submap allocation failed");
388 
389 	return(&submap->vmk_map);
390 }
391 
392 /*
393  * uvm_km_pgremove: remove pages from a kernel uvm_object.
394  *
395  * => when you unmap a part of anonymous kernel memory you want to toss
396  *    the pages right away.    (this gets called from uvm_unmap_...).
397  */
398 
399 void
400 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
401 {
402 	struct uvm_object * const uobj = uvm_kernel_object;
403 	const voff_t start = startva - vm_map_min(kernel_map);
404 	const voff_t end = endva - vm_map_min(kernel_map);
405 	struct vm_page *pg;
406 	voff_t curoff, nextoff;
407 	int swpgonlydelta = 0;
408 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
409 
410 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
411 	KASSERT(startva < endva);
412 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
413 
414 	mutex_enter(&uobj->vmobjlock);
415 
416 	for (curoff = start; curoff < end; curoff = nextoff) {
417 		nextoff = curoff + PAGE_SIZE;
418 		pg = uvm_pagelookup(uobj, curoff);
419 		if (pg != NULL && pg->flags & PG_BUSY) {
420 			pg->flags |= PG_WANTED;
421 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
422 				    "km_pgrm", 0);
423 			mutex_enter(&uobj->vmobjlock);
424 			nextoff = curoff;
425 			continue;
426 		}
427 
428 		/*
429 		 * free the swap slot, then the page.
430 		 */
431 
432 		if (pg == NULL &&
433 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
434 			swpgonlydelta++;
435 		}
436 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
437 		if (pg != NULL) {
438 			mutex_enter(&uvm_pageqlock);
439 			uvm_pagefree(pg);
440 			mutex_exit(&uvm_pageqlock);
441 		}
442 	}
443 	mutex_exit(&uobj->vmobjlock);
444 
445 	if (swpgonlydelta > 0) {
446 		mutex_enter(&uvm_swap_data_lock);
447 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
448 		uvmexp.swpgonly -= swpgonlydelta;
449 		mutex_exit(&uvm_swap_data_lock);
450 	}
451 }
452 
453 
454 /*
455  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
456  *    regions.
457  *
458  * => when you unmap a part of anonymous kernel memory you want to toss
459  *    the pages right away.    (this is called from uvm_unmap_...).
460  * => none of the pages will ever be busy, and none of them will ever
461  *    be on the active or inactive queues (because they have no object).
462  */
463 
464 void
465 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
466 {
467 	struct vm_page *pg;
468 	paddr_t pa;
469 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
470 
471 	KASSERT(VM_MAP_IS_KERNEL(map));
472 	KASSERT(vm_map_min(map) <= start);
473 	KASSERT(start < end);
474 	KASSERT(end <= vm_map_max(map));
475 
476 	for (; start < end; start += PAGE_SIZE) {
477 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
478 			continue;
479 		}
480 		pg = PHYS_TO_VM_PAGE(pa);
481 		KASSERT(pg);
482 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
483 		uvm_pagefree(pg);
484 	}
485 }
486 
487 #if defined(DEBUG)
488 void
489 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
490 {
491 	struct vm_page *pg;
492 	vaddr_t va;
493 	paddr_t pa;
494 
495 	KDASSERT(VM_MAP_IS_KERNEL(map));
496 	KDASSERT(vm_map_min(map) <= start);
497 	KDASSERT(start < end);
498 	KDASSERT(end <= vm_map_max(map));
499 
500 	for (va = start; va < end; va += PAGE_SIZE) {
501 		if (pmap_extract(pmap_kernel(), va, &pa)) {
502 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
503 			    (void *)va, (long long)pa);
504 		}
505 		if ((map->flags & VM_MAP_INTRSAFE) == 0) {
506 			mutex_enter(&uvm_kernel_object->vmobjlock);
507 			pg = uvm_pagelookup(uvm_kernel_object,
508 			    va - vm_map_min(kernel_map));
509 			mutex_exit(&uvm_kernel_object->vmobjlock);
510 			if (pg) {
511 				panic("uvm_km_check_empty: "
512 				    "has page hashed at %p", (const void *)va);
513 			}
514 		}
515 	}
516 }
517 #endif /* defined(DEBUG) */
518 
519 /*
520  * uvm_km_alloc: allocate an area of kernel memory.
521  *
522  * => NOTE: we can return 0 even if we can wait if there is not enough
523  *	free VM space in the map... caller should be prepared to handle
524  *	this case.
525  * => we return KVA of memory allocated
526  */
527 
528 vaddr_t
529 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
530 {
531 	vaddr_t kva, loopva;
532 	vaddr_t offset;
533 	vsize_t loopsize;
534 	struct vm_page *pg;
535 	struct uvm_object *obj;
536 	int pgaflags;
537 	vm_prot_t prot;
538 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
539 
540 	KASSERT(vm_map_pmap(map) == pmap_kernel());
541 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
542 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
543 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
544 
545 	/*
546 	 * setup for call
547 	 */
548 
549 	kva = vm_map_min(map);	/* hint */
550 	size = round_page(size);
551 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
552 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
553 		    map, obj, size, flags);
554 
555 	/*
556 	 * allocate some virtual space
557 	 */
558 
559 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
560 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
561 	    UVM_ADV_RANDOM,
562 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
563 	    | UVM_FLAG_QUANTUM)) != 0)) {
564 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
565 		return(0);
566 	}
567 
568 	/*
569 	 * if all we wanted was VA, return now
570 	 */
571 
572 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
573 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
574 		return(kva);
575 	}
576 
577 	/*
578 	 * recover object offset from virtual address
579 	 */
580 
581 	offset = kva - vm_map_min(kernel_map);
582 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
583 
584 	/*
585 	 * now allocate and map in the memory... note that we are the only ones
586 	 * whom should ever get a handle on this area of VM.
587 	 */
588 
589 	loopva = kva;
590 	loopsize = size;
591 
592 	pgaflags = 0;
593 	if (flags & UVM_KMF_NOWAIT)
594 		pgaflags |= UVM_PGA_USERESERVE;
595 	if (flags & UVM_KMF_ZERO)
596 		pgaflags |= UVM_PGA_ZERO;
597 	prot = VM_PROT_READ | VM_PROT_WRITE;
598 	if (flags & UVM_KMF_EXEC)
599 		prot |= VM_PROT_EXECUTE;
600 	while (loopsize) {
601 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
602 
603 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
604 
605 		/*
606 		 * out of memory?
607 		 */
608 
609 		if (__predict_false(pg == NULL)) {
610 			if ((flags & UVM_KMF_NOWAIT) ||
611 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
612 				/* free everything! */
613 				uvm_km_free(map, kva, size,
614 				    flags & UVM_KMF_TYPEMASK);
615 				return (0);
616 			} else {
617 				uvm_wait("km_getwait2");	/* sleep here */
618 				continue;
619 			}
620 		}
621 
622 		pg->flags &= ~PG_BUSY;	/* new page */
623 		UVM_PAGE_OWN(pg, NULL);
624 
625 		/*
626 		 * map it in
627 		 */
628 
629 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot|PMAP_KMPAGE);
630 		loopva += PAGE_SIZE;
631 		offset += PAGE_SIZE;
632 		loopsize -= PAGE_SIZE;
633 	}
634 
635        	pmap_update(pmap_kernel());
636 
637 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
638 	return(kva);
639 }
640 
641 /*
642  * uvm_km_free: free an area of kernel memory
643  */
644 
645 void
646 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
647 {
648 
649 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
650 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
651 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
652 	KASSERT((addr & PAGE_MASK) == 0);
653 	KASSERT(vm_map_pmap(map) == pmap_kernel());
654 
655 	size = round_page(size);
656 
657 	if (flags & UVM_KMF_PAGEABLE) {
658 		uvm_km_pgremove(addr, addr + size);
659 		pmap_remove(pmap_kernel(), addr, addr + size);
660 	} else if (flags & UVM_KMF_WIRED) {
661 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
662 		pmap_kremove(addr, size);
663 	}
664 
665 	/*
666 	 * uvm_unmap_remove calls pmap_update for us.
667 	 */
668 
669 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
670 }
671 
672 /* Sanity; must specify both or none. */
673 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
674     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
675 #error Must specify MAP and UNMAP together.
676 #endif
677 
678 /*
679  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
680  *
681  * => if the pmap specifies an alternate mapping method, we use it.
682  */
683 
684 /* ARGSUSED */
685 vaddr_t
686 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
687 {
688 #if defined(PMAP_MAP_POOLPAGE)
689 	return uvm_km_alloc_poolpage(map, waitok);
690 #else
691 	struct vm_page *pg;
692 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
693 	vaddr_t va;
694 
695 	if ((map->flags & VM_MAP_VACACHE) == 0)
696 		return uvm_km_alloc_poolpage(map, waitok);
697 
698 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
699 	if (va == 0)
700 		return 0;
701 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
702 again:
703 	pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
704 	if (__predict_false(pg == NULL)) {
705 		if (waitok) {
706 			uvm_wait("plpg");
707 			goto again;
708 		} else {
709 			pool_put(pp, (void *)va);
710 			return 0;
711 		}
712 	}
713 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
714 	    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
715 	pmap_update(pmap_kernel());
716 
717 	return va;
718 #endif /* PMAP_MAP_POOLPAGE */
719 }
720 
721 vaddr_t
722 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
723 {
724 #if defined(PMAP_MAP_POOLPAGE)
725 	struct vm_page *pg;
726 	vaddr_t va;
727 
728  again:
729 	pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
730 	if (__predict_false(pg == NULL)) {
731 		if (waitok) {
732 			uvm_wait("plpg");
733 			goto again;
734 		} else
735 			return (0);
736 	}
737 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
738 	if (__predict_false(va == 0))
739 		uvm_pagefree(pg);
740 	return (va);
741 #else
742 	vaddr_t va;
743 
744 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
745 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
746 	return (va);
747 #endif /* PMAP_MAP_POOLPAGE */
748 }
749 
750 /*
751  * uvm_km_free_poolpage: free a previously allocated pool page
752  *
753  * => if the pmap specifies an alternate unmapping method, we use it.
754  */
755 
756 /* ARGSUSED */
757 void
758 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
759 {
760 #if defined(PMAP_UNMAP_POOLPAGE)
761 	uvm_km_free_poolpage(map, addr);
762 #else
763 	struct pool *pp;
764 
765 	if ((map->flags & VM_MAP_VACACHE) == 0) {
766 		uvm_km_free_poolpage(map, addr);
767 		return;
768 	}
769 
770 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
771 	uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
772 	pmap_kremove(addr, PAGE_SIZE);
773 #if defined(DEBUG)
774 	pmap_update(pmap_kernel());
775 #endif
776 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
777 	pp = &vm_map_to_kernel(map)->vmk_vacache;
778 	pool_put(pp, (void *)addr);
779 #endif
780 }
781 
782 /* ARGSUSED */
783 void
784 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
785 {
786 #if defined(PMAP_UNMAP_POOLPAGE)
787 	paddr_t pa;
788 
789 	pa = PMAP_UNMAP_POOLPAGE(addr);
790 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
791 #else
792 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
793 #endif /* PMAP_UNMAP_POOLPAGE */
794 }
795