xref: /netbsd-src/sys/uvm/uvm_km.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: uvm_km.c,v 1.69 2004/03/24 07:47:32 junyoung Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_km.c: handle kernel memory allocation and management
71  */
72 
73 /*
74  * overview of kernel memory management:
75  *
76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79  *
80  * the kernel_map has several "submaps."   submaps can only appear in
81  * the kernel_map (user processes can't use them).   submaps "take over"
82  * the management of a sub-range of the kernel's address space.  submaps
83  * are typically allocated at boot time and are never released.   kernel
84  * virtual address space that is mapped by a submap is locked by the
85  * submap's lock -- not the kernel_map's lock.
86  *
87  * thus, the useful feature of submaps is that they allow us to break
88  * up the locking and protection of the kernel address space into smaller
89  * chunks.
90  *
91  * the vm system has several standard kernel submaps, including:
92  *   kmem_map => contains only wired kernel memory for the kernel
93  *		malloc.   *** access to kmem_map must be protected
94  *		by splvm() because we are allowed to call malloc()
95  *		at interrupt time ***
96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
97  *   pager_map => used to map "buf" structures into kernel space
98  *   exec_map => used during exec to handle exec args
99  *   etc...
100  *
101  * the kernel allocates its private memory out of special uvm_objects whose
102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103  * are "special" and never die).   all kernel objects should be thought of
104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105  * object is equal to the size of kernel virtual address space (i.e. the
106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107  *
108  * most kernel private memory lives in kernel_object.   the only exception
109  * to this is for memory that belongs to submaps that must be protected
110  * by splvm().  pages in these submaps are not assigned to an object.
111  *
112  * note that just because a kernel object spans the entire kernel virutal
113  * address space doesn't mean that it has to be mapped into the entire space.
114  * large chunks of a kernel object's space go unused either because
115  * that area of kernel VM is unmapped, or there is some other type of
116  * object mapped into that range (e.g. a vnode).    for submap's kernel
117  * objects, the only part of the object that can ever be populated is the
118  * offsets that are managed by the submap.
119  *
120  * note that the "offset" in a kernel object is always the kernel virtual
121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122  * example:
123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
126  *   then that means that the page at offset 0x235000 in kernel_object is
127  *   mapped at 0xf8235000.
128  *
129  * kernel object have one other special property: when the kernel virtual
130  * memory mapping them is unmapped, the backing memory in the object is
131  * freed right away.   this is done with the uvm_km_pgremove() function.
132  * this has to be done because there is no backing store for kernel pages
133  * and no need to save them after they are no longer referenced.
134  */
135 
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.69 2004/03/24 07:47:32 junyoung Exp $");
138 
139 #include "opt_uvmhist.h"
140 
141 #include <sys/param.h>
142 #include <sys/systm.h>
143 #include <sys/proc.h>
144 
145 #include <uvm/uvm.h>
146 
147 /*
148  * global data structures
149  */
150 
151 struct vm_map *kernel_map = NULL;
152 
153 /*
154  * local data structues
155  */
156 
157 static struct vm_map		kernel_map_store;
158 
159 /*
160  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
161  * KVM already allocated for text, data, bss, and static data structures).
162  *
163  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
164  *    we assume that [min -> start] has already been allocated and that
165  *    "end" is the end.
166  */
167 
168 void
169 uvm_km_init(start, end)
170 	vaddr_t start, end;
171 {
172 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
173 
174 	/*
175 	 * next, init kernel memory objects.
176 	 */
177 
178 	/* kernel_object: for pageable anonymous kernel memory */
179 	uao_init();
180 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
181 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
182 
183 	/*
184 	 * init the map and reserve any space that might already
185 	 * have been allocated kernel space before installing.
186 	 */
187 
188 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
189 	kernel_map_store.pmap = pmap_kernel();
190 	if (start != base &&
191 	    uvm_map(&kernel_map_store, &base, start - base, NULL,
192 		    UVM_UNKNOWN_OFFSET, 0,
193 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
194 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED)) != 0)
195 		panic("uvm_km_init: could not reserve space for kernel");
196 
197 	/*
198 	 * install!
199 	 */
200 
201 	kernel_map = &kernel_map_store;
202 }
203 
204 /*
205  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
206  * is allocated all references to that area of VM must go through it.  this
207  * allows the locking of VAs in kernel_map to be broken up into regions.
208  *
209  * => if `fixed' is true, *min specifies where the region described
210  *      by the submap must start
211  * => if submap is non NULL we use that as the submap, otherwise we
212  *	alloc a new map
213  */
214 struct vm_map *
215 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
216 	struct vm_map *map;
217 	vaddr_t *min, *max;		/* IN/OUT, OUT */
218 	vsize_t size;
219 	int flags;
220 	boolean_t fixed;
221 	struct vm_map *submap;
222 {
223 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
224 
225 	size = round_page(size);	/* round up to pagesize */
226 
227 	/*
228 	 * first allocate a blank spot in the parent map
229 	 */
230 
231 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
232 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
233 	    UVM_ADV_RANDOM, mapflags)) != 0) {
234 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
235 	}
236 
237 	/*
238 	 * set VM bounds (min is filled in by uvm_map)
239 	 */
240 
241 	*max = *min + size;
242 
243 	/*
244 	 * add references to pmap and create or init the submap
245 	 */
246 
247 	pmap_reference(vm_map_pmap(map));
248 	if (submap == NULL) {
249 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
250 		if (submap == NULL)
251 			panic("uvm_km_suballoc: unable to create submap");
252 	} else {
253 		uvm_map_setup(submap, *min, *max, flags);
254 		submap->pmap = vm_map_pmap(map);
255 	}
256 
257 	/*
258 	 * now let uvm_map_submap plug in it...
259 	 */
260 
261 	if (uvm_map_submap(map, *min, *max, submap) != 0)
262 		panic("uvm_km_suballoc: submap allocation failed");
263 
264 	return(submap);
265 }
266 
267 /*
268  * uvm_km_pgremove: remove pages from a kernel uvm_object.
269  *
270  * => when you unmap a part of anonymous kernel memory you want to toss
271  *    the pages right away.    (this gets called from uvm_unmap_...).
272  */
273 
274 void
275 uvm_km_pgremove(uobj, start, end)
276 	struct uvm_object *uobj;
277 	vaddr_t start, end;
278 {
279 	struct vm_page *pg;
280 	voff_t curoff, nextoff;
281 	int swpgonlydelta = 0;
282 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
283 
284 	KASSERT(uobj->pgops == &aobj_pager);
285 	simple_lock(&uobj->vmobjlock);
286 
287 	for (curoff = start; curoff < end; curoff = nextoff) {
288 		nextoff = curoff + PAGE_SIZE;
289 		pg = uvm_pagelookup(uobj, curoff);
290 		if (pg != NULL && pg->flags & PG_BUSY) {
291 			pg->flags |= PG_WANTED;
292 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
293 				    "km_pgrm", 0);
294 			simple_lock(&uobj->vmobjlock);
295 			nextoff = curoff;
296 			continue;
297 		}
298 
299 		/*
300 		 * free the swap slot, then the page.
301 		 */
302 
303 		if (pg == NULL &&
304 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
305 			swpgonlydelta++;
306 		}
307 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
308 		if (pg != NULL) {
309 			uvm_lock_pageq();
310 			uvm_pagefree(pg);
311 			uvm_unlock_pageq();
312 		}
313 	}
314 	simple_unlock(&uobj->vmobjlock);
315 
316 	if (swpgonlydelta > 0) {
317 		simple_lock(&uvm.swap_data_lock);
318 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
319 		uvmexp.swpgonly -= swpgonlydelta;
320 		simple_unlock(&uvm.swap_data_lock);
321 	}
322 }
323 
324 
325 /*
326  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
327  *    maps
328  *
329  * => when you unmap a part of anonymous kernel memory you want to toss
330  *    the pages right away.    (this is called from uvm_unmap_...).
331  * => none of the pages will ever be busy, and none of them will ever
332  *    be on the active or inactive queues (because they have no object).
333  */
334 
335 void
336 uvm_km_pgremove_intrsafe(start, end)
337 	vaddr_t start, end;
338 {
339 	struct vm_page *pg;
340 	paddr_t pa;
341 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
342 
343 	for (; start < end; start += PAGE_SIZE) {
344 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
345 			continue;
346 		}
347 		pg = PHYS_TO_VM_PAGE(pa);
348 		KASSERT(pg);
349 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
350 		uvm_pagefree(pg);
351 	}
352 }
353 
354 
355 /*
356  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
357  *
358  * => we map wired memory into the specified map using the obj passed in
359  * => NOTE: we can return NULL even if we can wait if there is not enough
360  *	free VM space in the map... caller should be prepared to handle
361  *	this case.
362  * => we return KVA of memory allocated
363  * => align,prefer - passed on to uvm_map()
364  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
365  *	lock the map
366  */
367 
368 vaddr_t
369 uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
370 	struct vm_map *map;
371 	struct uvm_object *obj;
372 	vsize_t size;
373 	vsize_t align;
374 	voff_t prefer;
375 	int flags;
376 {
377 	vaddr_t kva, loopva;
378 	vaddr_t offset;
379 	vsize_t loopsize;
380 	struct vm_page *pg;
381 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
382 
383 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
384 		    map, obj, size, flags);
385 	KASSERT(vm_map_pmap(map) == pmap_kernel());
386 
387 	/*
388 	 * setup for call
389 	 */
390 
391 	size = round_page(size);
392 	kva = vm_map_min(map);	/* hint */
393 
394 	/*
395 	 * allocate some virtual space
396 	 */
397 
398 	if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
399 		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
400 			    UVM_ADV_RANDOM,
401 			    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
402 			!= 0)) {
403 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
404 		return(0);
405 	}
406 
407 	/*
408 	 * if all we wanted was VA, return now
409 	 */
410 
411 	if (flags & UVM_KMF_VALLOC) {
412 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
413 		return(kva);
414 	}
415 
416 	/*
417 	 * recover object offset from virtual address
418 	 */
419 
420 	offset = kva - vm_map_min(kernel_map);
421 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
422 
423 	/*
424 	 * now allocate and map in the memory... note that we are the only ones
425 	 * whom should ever get a handle on this area of VM.
426 	 */
427 
428 	loopva = kva;
429 	loopsize = size;
430 	while (loopsize) {
431 		if (obj) {
432 			simple_lock(&obj->vmobjlock);
433 		}
434 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
435 		if (__predict_true(pg != NULL)) {
436 			pg->flags &= ~PG_BUSY;	/* new page */
437 			UVM_PAGE_OWN(pg, NULL);
438 		}
439 		if (obj) {
440 			simple_unlock(&obj->vmobjlock);
441 		}
442 
443 		/*
444 		 * out of memory?
445 		 */
446 
447 		if (__predict_false(pg == NULL)) {
448 			if ((flags & UVM_KMF_NOWAIT) ||
449 			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
450 				/* free everything! */
451 				uvm_unmap(map, kva, kva + size);
452 				return (0);
453 			} else {
454 				uvm_wait("km_getwait2");	/* sleep here */
455 				continue;
456 			}
457 		}
458 
459 		/*
460 		 * map it in
461 		 */
462 
463 		if (obj == NULL) {
464 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
465 			    VM_PROT_READ | VM_PROT_WRITE);
466 		} else {
467 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
468 			    UVM_PROT_ALL,
469 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
470 		}
471 		loopva += PAGE_SIZE;
472 		offset += PAGE_SIZE;
473 		loopsize -= PAGE_SIZE;
474 	}
475 
476        	pmap_update(pmap_kernel());
477 
478 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
479 	return(kva);
480 }
481 
482 /*
483  * uvm_km_free: free an area of kernel memory
484  */
485 
486 void
487 uvm_km_free(map, addr, size)
488 	struct vm_map *map;
489 	vaddr_t addr;
490 	vsize_t size;
491 {
492 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
493 }
494 
495 /*
496  * uvm_km_free_wakeup: free an area of kernel memory and wake up
497  * anyone waiting for vm space.
498  *
499  * => XXX: "wanted" bit + unlock&wait on other end?
500  */
501 
502 void
503 uvm_km_free_wakeup(map, addr, size)
504 	struct vm_map *map;
505 	vaddr_t addr;
506 	vsize_t size;
507 {
508 	struct vm_map_entry *dead_entries;
509 
510 	vm_map_lock(map);
511 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
512 	    &dead_entries);
513 	wakeup(map);
514 	vm_map_unlock(map);
515 	if (dead_entries != NULL)
516 		uvm_unmap_detach(dead_entries, 0);
517 }
518 
519 /*
520  * uvm_km_alloc1: allocate wired down memory in the kernel map.
521  *
522  * => we can sleep if needed
523  */
524 
525 vaddr_t
526 uvm_km_alloc1(map, size, zeroit)
527 	struct vm_map *map;
528 	vsize_t size;
529 	boolean_t zeroit;
530 {
531 	vaddr_t kva, loopva, offset;
532 	struct vm_page *pg;
533 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
534 
535 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
536 	KASSERT(vm_map_pmap(map) == pmap_kernel());
537 
538 	size = round_page(size);
539 	kva = vm_map_min(map);		/* hint */
540 
541 	/*
542 	 * allocate some virtual space
543 	 */
544 
545 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
546 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
547 					      UVM_INH_NONE, UVM_ADV_RANDOM,
548 					      0)) != 0)) {
549 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
550 		return(0);
551 	}
552 
553 	/*
554 	 * recover object offset from virtual address
555 	 */
556 
557 	offset = kva - vm_map_min(kernel_map);
558 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
559 
560 	/*
561 	 * now allocate the memory.
562 	 */
563 
564 	loopva = kva;
565 	while (size) {
566 		simple_lock(&uvm.kernel_object->vmobjlock);
567 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
568 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
569 		if (pg) {
570 			pg->flags &= ~PG_BUSY;
571 			UVM_PAGE_OWN(pg, NULL);
572 		}
573 		simple_unlock(&uvm.kernel_object->vmobjlock);
574 		if (pg == NULL) {
575 			uvm_wait("km_alloc1w");
576 			continue;
577 		}
578 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
579 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
580 		loopva += PAGE_SIZE;
581 		offset += PAGE_SIZE;
582 		size -= PAGE_SIZE;
583 	}
584 	pmap_update(map->pmap);
585 
586 	/*
587 	 * zero on request (note that "size" is now zero due to the above loop
588 	 * so we need to subtract kva from loopva to reconstruct the size).
589 	 */
590 
591 	if (zeroit)
592 		memset((caddr_t)kva, 0, loopva - kva);
593 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
594 	return(kva);
595 }
596 
597 /*
598  * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
599  *
600  * => memory is not allocated until fault time
601  * => the align, prefer and flags parameters are passed on to uvm_map().
602  *
603  * Note: this function is also the backend for these macros:
604  *	uvm_km_valloc
605  *	uvm_km_valloc_wait
606  *	uvm_km_valloc_prefer
607  *	uvm_km_valloc_prefer_wait
608  *	uvm_km_valloc_align
609  */
610 
611 vaddr_t
612 uvm_km_valloc1(map, size, align, prefer, flags)
613 	struct vm_map *map;
614 	vsize_t size;
615 	vsize_t align;
616 	voff_t prefer;
617 	uvm_flag_t flags;
618 {
619 	vaddr_t kva;
620 	UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
621 
622 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
623 		    map, size, align, prefer);
624 
625 	KASSERT(vm_map_pmap(map) == pmap_kernel());
626 
627 	size = round_page(size);
628 	/*
629 	 * Check if requested size is larger than the map, in which
630 	 * case we can't succeed.
631 	 */
632 	if (size > vm_map_max(map) - vm_map_min(map))
633 		return (0);
634 
635 	for (;;) {
636 		kva = vm_map_min(map);		/* hint */
637 
638 		/*
639 		 * allocate some virtual space.   will be demand filled
640 		 * by kernel_object.
641 		 */
642 
643 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
644 		    prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
645 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
646 		    == 0)) {
647 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
648 			return (kva);
649 		}
650 
651 		/*
652 		 * failed.  sleep for a while (on map)
653 		 */
654 		if ((flags & UVM_KMF_NOWAIT) != 0)
655 			return (0);
656 
657 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
658 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
659 	}
660 	/*NOTREACHED*/
661 }
662 
663 /* Function definitions for binary compatibility */
664 vaddr_t
665 uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
666 		 vsize_t sz, int flags)
667 {
668 	return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
669 }
670 
671 vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
672 {
673 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
674 }
675 
676 vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
677 {
678 	return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
679 }
680 
681 vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
682 {
683 	return uvm_km_valloc1(map, sz, 0, prefer, 0);
684 }
685 
686 vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
687 {
688 	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
689 }
690 
691 /* Sanity; must specify both or none. */
692 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
693     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
694 #error Must specify MAP and UNMAP together.
695 #endif
696 
697 /*
698  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
699  *
700  * => if the pmap specifies an alternate mapping method, we use it.
701  */
702 
703 /* ARGSUSED */
704 vaddr_t
705 uvm_km_alloc_poolpage1(map, obj, waitok)
706 	struct vm_map *map;
707 	struct uvm_object *obj;
708 	boolean_t waitok;
709 {
710 #if defined(PMAP_MAP_POOLPAGE)
711 	struct vm_page *pg;
712 	vaddr_t va;
713 
714  again:
715 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
716 	if (__predict_false(pg == NULL)) {
717 		if (waitok) {
718 			uvm_wait("plpg");
719 			goto again;
720 		} else
721 			return (0);
722 	}
723 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
724 	if (__predict_false(va == 0))
725 		uvm_pagefree(pg);
726 	return (va);
727 #else
728 	vaddr_t va;
729 	int s;
730 
731 	/*
732 	 * NOTE: We may be called with a map that doens't require splvm
733 	 * protection (e.g. kernel_map).  However, it does not hurt to
734 	 * go to splvm in this case (since unprocted maps will never be
735 	 * accessed in interrupt context).
736 	 *
737 	 * XXX We may want to consider changing the interface to this
738 	 * XXX function.
739 	 */
740 
741 	s = splvm();
742 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
743 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
744 	splx(s);
745 	return (va);
746 #endif /* PMAP_MAP_POOLPAGE */
747 }
748 
749 /*
750  * uvm_km_free_poolpage: free a previously allocated pool page
751  *
752  * => if the pmap specifies an alternate unmapping method, we use it.
753  */
754 
755 /* ARGSUSED */
756 void
757 uvm_km_free_poolpage1(map, addr)
758 	struct vm_map *map;
759 	vaddr_t addr;
760 {
761 #if defined(PMAP_UNMAP_POOLPAGE)
762 	paddr_t pa;
763 
764 	pa = PMAP_UNMAP_POOLPAGE(addr);
765 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
766 #else
767 	int s;
768 
769 	/*
770 	 * NOTE: We may be called with a map that doens't require splvm
771 	 * protection (e.g. kernel_map).  However, it does not hurt to
772 	 * go to splvm in this case (since unprocted maps will never be
773 	 * accessed in interrupt context).
774 	 *
775 	 * XXX We may want to consider changing the interface to this
776 	 * XXX function.
777 	 */
778 
779 	s = splvm();
780 	uvm_km_free(map, addr, PAGE_SIZE);
781 	splx(s);
782 #endif /* PMAP_UNMAP_POOLPAGE */
783 }
784