xref: /netbsd-src/sys/uvm/uvm_glue.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: uvm_glue.c,v 1.97 2006/10/05 14:48:33 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.97 2006/10/05 14:48:33 chs Exp $");
71 
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76 
77 /*
78  * uvm_glue.c: glue functions
79  */
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 
88 #include <uvm/uvm.h>
89 
90 #include <machine/cpu.h>
91 
92 /*
93  * local prototypes
94  */
95 
96 static void uvm_swapout(struct lwp *);
97 
98 #define UVM_NUAREA_MAX 16
99 static vaddr_t uvm_uareas;
100 static int uvm_nuarea;
101 static struct simplelock uvm_uareas_slock = SIMPLELOCK_INITIALIZER;
102 #define	UAREA_NEXTFREE(uarea)	(*(vaddr_t *)(UAREA_TO_USER(uarea)))
103 
104 static void uvm_uarea_free(vaddr_t);
105 
106 /*
107  * XXXCDC: do these really belong here?
108  */
109 
110 /*
111  * uvm_kernacc: can the kernel access a region of memory
112  *
113  * - used only by /dev/kmem driver (mem.c)
114  */
115 
116 boolean_t
117 uvm_kernacc(caddr_t addr, size_t len, int rw)
118 {
119 	boolean_t rv;
120 	vaddr_t saddr, eaddr;
121 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
122 
123 	saddr = trunc_page((vaddr_t)addr);
124 	eaddr = round_page((vaddr_t)addr + len);
125 	vm_map_lock_read(kernel_map);
126 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
127 	vm_map_unlock_read(kernel_map);
128 
129 	return(rv);
130 }
131 
132 #ifdef KGDB
133 /*
134  * Change protections on kernel pages from addr to addr+len
135  * (presumably so debugger can plant a breakpoint).
136  *
137  * We force the protection change at the pmap level.  If we were
138  * to use vm_map_protect a change to allow writing would be lazily-
139  * applied meaning we would still take a protection fault, something
140  * we really don't want to do.  It would also fragment the kernel
141  * map unnecessarily.  We cannot use pmap_protect since it also won't
142  * enforce a write-enable request.  Using pmap_enter is the only way
143  * we can ensure the change takes place properly.
144  */
145 void
146 uvm_chgkprot(caddr_t addr, size_t len, int rw)
147 {
148 	vm_prot_t prot;
149 	paddr_t pa;
150 	vaddr_t sva, eva;
151 
152 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
153 	eva = round_page((vaddr_t)addr + len);
154 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
155 		/*
156 		 * Extract physical address for the page.
157 		 */
158 		if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
159 			panic("chgkprot: invalid page");
160 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
161 	}
162 	pmap_update(pmap_kernel());
163 }
164 #endif
165 
166 /*
167  * uvm_vslock: wire user memory for I/O
168  *
169  * - called from physio and sys___sysctl
170  * - XXXCDC: consider nuking this (or making it a macro?)
171  */
172 
173 int
174 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
175 {
176 	struct vm_map *map;
177 	vaddr_t start, end;
178 	int error;
179 
180 	map = &vs->vm_map;
181 	start = trunc_page((vaddr_t)addr);
182 	end = round_page((vaddr_t)addr + len);
183 	error = uvm_fault_wire(map, start, end, access_type, 0);
184 	return error;
185 }
186 
187 /*
188  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
189  *
190  * - called from physio and sys___sysctl
191  * - XXXCDC: consider nuking this (or making it a macro?)
192  */
193 
194 void
195 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
196 {
197 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
198 		round_page((vaddr_t)addr + len));
199 }
200 
201 /*
202  * uvm_proc_fork: fork a virtual address space
203  *
204  * - the address space is copied as per parent map's inherit values
205  */
206 void
207 uvm_proc_fork(struct proc *p1, struct proc *p2, boolean_t shared)
208 {
209 
210 	if (shared == TRUE) {
211 		p2->p_vmspace = NULL;
212 		uvmspace_share(p1, p2);
213 	} else {
214 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
215 	}
216 
217 	cpu_proc_fork(p1, p2);
218 }
219 
220 
221 /*
222  * uvm_lwp_fork: fork a thread
223  *
224  * - a new "user" structure is allocated for the child process
225  *	[filled in by MD layer...]
226  * - if specified, the child gets a new user stack described by
227  *	stack and stacksize
228  * - NOTE: the kernel stack may be at a different location in the child
229  *	process, and thus addresses of automatic variables may be invalid
230  *	after cpu_lwp_fork returns in the child process.  We do nothing here
231  *	after cpu_lwp_fork returns.
232  * - XXXCDC: we need a way for this to return a failure value rather
233  *   than just hang
234  */
235 void
236 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
237     void (*func)(void *), void *arg)
238 {
239 	int error;
240 
241 	/*
242 	 * Wire down the U-area for the process, which contains the PCB
243 	 * and the kernel stack.  Wired state is stored in l->l_flag's
244 	 * L_INMEM bit rather than in the vm_map_entry's wired count
245 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
246 	 * L_INMEM will already be set and we don't need to do anything.
247 	 *
248 	 * Note the kernel stack gets read/write accesses right off the bat.
249 	 */
250 
251 	if ((l2->l_flag & L_INMEM) == 0) {
252 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
253 
254 		error = uvm_fault_wire(kernel_map, uarea,
255 		    uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
256 		if (error)
257 			panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
258 #ifdef PMAP_UAREA
259 		/* Tell the pmap this is a u-area mapping */
260 		PMAP_UAREA(uarea);
261 #endif
262 		l2->l_flag |= L_INMEM;
263 	}
264 
265 #ifdef KSTACK_CHECK_MAGIC
266 	/*
267 	 * fill stack with magic number
268 	 */
269 	kstack_setup_magic(l2);
270 #endif
271 
272 	/*
273 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
274  	 * to run.  If this is a normal user fork, the child will exit
275 	 * directly to user mode via child_return() on its first time
276 	 * slice and will not return here.  If this is a kernel thread,
277 	 * the specified entry point will be executed.
278 	 */
279 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
280 }
281 
282 /*
283  * uvm_uarea_alloc: allocate a u-area
284  */
285 
286 boolean_t
287 uvm_uarea_alloc(vaddr_t *uaddrp)
288 {
289 	vaddr_t uaddr;
290 
291 #ifndef USPACE_ALIGN
292 #define USPACE_ALIGN    0
293 #endif
294 
295 	simple_lock(&uvm_uareas_slock);
296 	if (uvm_nuarea > 0) {
297 		uaddr = uvm_uareas;
298 		uvm_uareas = UAREA_NEXTFREE(uaddr);
299 		uvm_nuarea--;
300 		simple_unlock(&uvm_uareas_slock);
301 		*uaddrp = uaddr;
302 		return TRUE;
303 	} else {
304 		simple_unlock(&uvm_uareas_slock);
305 		*uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
306 		    UVM_KMF_PAGEABLE);
307 		return FALSE;
308 	}
309 }
310 
311 /*
312  * uvm_uarea_free: free a u-area; never blocks
313  */
314 
315 static inline void
316 uvm_uarea_free(vaddr_t uaddr)
317 {
318 	simple_lock(&uvm_uareas_slock);
319 	UAREA_NEXTFREE(uaddr) = uvm_uareas;
320 	uvm_uareas = uaddr;
321 	uvm_nuarea++;
322 	simple_unlock(&uvm_uareas_slock);
323 }
324 
325 /*
326  * uvm_uarea_drain: return memory of u-areas over limit
327  * back to system
328  */
329 
330 void
331 uvm_uarea_drain(boolean_t empty)
332 {
333 	int leave = empty ? 0 : UVM_NUAREA_MAX;
334 	vaddr_t uaddr;
335 
336 	if (uvm_nuarea <= leave)
337 		return;
338 
339 	simple_lock(&uvm_uareas_slock);
340 	while(uvm_nuarea > leave) {
341 		uaddr = uvm_uareas;
342 		uvm_uareas = UAREA_NEXTFREE(uaddr);
343 		uvm_nuarea--;
344 		simple_unlock(&uvm_uareas_slock);
345 		uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE);
346 		simple_lock(&uvm_uareas_slock);
347 	}
348 	simple_unlock(&uvm_uareas_slock);
349 }
350 
351 /*
352  * uvm_exit: exit a virtual address space
353  *
354  * - the process passed to us is a dead (pre-zombie) process; we
355  *   are running on a different context now (the reaper).
356  * - borrow proc0's address space because freeing the vmspace
357  *   of the dead process may block.
358  */
359 
360 void
361 uvm_proc_exit(struct proc *p)
362 {
363 	struct lwp *l = curlwp; /* XXX */
364 	struct vmspace *ovm;
365 
366 	KASSERT(p == l->l_proc);
367 	ovm = p->p_vmspace;
368 
369 	/*
370 	 * borrow proc0's address space.
371 	 */
372 	pmap_deactivate(l);
373 	p->p_vmspace = proc0.p_vmspace;
374 	pmap_activate(l);
375 
376 	uvmspace_free(ovm);
377 }
378 
379 void
380 uvm_lwp_exit(struct lwp *l)
381 {
382 	vaddr_t va = USER_TO_UAREA(l->l_addr);
383 
384 	l->l_flag &= ~L_INMEM;
385 	uvm_uarea_free(va);
386 	l->l_addr = NULL;
387 }
388 
389 /*
390  * uvm_init_limit: init per-process VM limits
391  *
392  * - called for process 0 and then inherited by all others.
393  */
394 
395 void
396 uvm_init_limits(struct proc *p)
397 {
398 
399 	/*
400 	 * Set up the initial limits on process VM.  Set the maximum
401 	 * resident set size to be all of (reasonably) available memory.
402 	 * This causes any single, large process to start random page
403 	 * replacement once it fills memory.
404 	 */
405 
406 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
407 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
408 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
409 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
410 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
411 }
412 
413 #ifdef DEBUG
414 int	enableswap = 1;
415 int	swapdebug = 0;
416 #define	SDB_FOLLOW	1
417 #define SDB_SWAPIN	2
418 #define SDB_SWAPOUT	4
419 #endif
420 
421 /*
422  * uvm_swapin: swap in an lwp's u-area.
423  */
424 
425 void
426 uvm_swapin(struct lwp *l)
427 {
428 	vaddr_t addr;
429 	int s, error;
430 
431 	addr = USER_TO_UAREA(l->l_addr);
432 	/* make L_INMEM true */
433 	error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
434 	    VM_PROT_READ | VM_PROT_WRITE, 0);
435 	if (error) {
436 		panic("uvm_swapin: rewiring stack failed: %d", error);
437 	}
438 
439 	/*
440 	 * Some architectures need to be notified when the user area has
441 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
442 	 */
443 	cpu_swapin(l);
444 	SCHED_LOCK(s);
445 	if (l->l_stat == LSRUN)
446 		setrunqueue(l);
447 	l->l_flag |= L_INMEM;
448 	SCHED_UNLOCK(s);
449 	l->l_swtime = 0;
450 	++uvmexp.swapins;
451 }
452 
453 /*
454  * uvm_scheduler: process zero main loop
455  *
456  * - attempt to swapin every swaped-out, runnable process in order of
457  *	priority.
458  * - if not enough memory, wake the pagedaemon and let it clear space.
459  */
460 
461 void
462 uvm_scheduler(void)
463 {
464 	struct lwp *l, *ll;
465 	int pri;
466 	int ppri;
467 
468 loop:
469 #ifdef DEBUG
470 	while (!enableswap)
471 		tsleep(&proc0, PVM, "noswap", 0);
472 #endif
473 	ll = NULL;		/* process to choose */
474 	ppri = INT_MIN;	/* its priority */
475 	proclist_lock_read();
476 
477 	LIST_FOREACH(l, &alllwp, l_list) {
478 		/* is it a runnable swapped out process? */
479 		if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
480 			pri = l->l_swtime + l->l_slptime -
481 			    (l->l_proc->p_nice - NZERO) * 8;
482 			if (pri > ppri) {   /* higher priority?  remember it. */
483 				ll = l;
484 				ppri = pri;
485 			}
486 		}
487 	}
488 	/*
489 	 * XXXSMP: possible unlock/sleep race between here and the
490 	 * "scheduler" tsleep below..
491 	 */
492 	proclist_unlock_read();
493 
494 #ifdef DEBUG
495 	if (swapdebug & SDB_FOLLOW)
496 		printf("scheduler: running, procp %p pri %d\n", ll, ppri);
497 #endif
498 	/*
499 	 * Nothing to do, back to sleep
500 	 */
501 	if ((l = ll) == NULL) {
502 		tsleep(&proc0, PVM, "scheduler", 0);
503 		goto loop;
504 	}
505 
506 	/*
507 	 * we have found swapped out process which we would like to bring
508 	 * back in.
509 	 *
510 	 * XXX: this part is really bogus cuz we could deadlock on memory
511 	 * despite our feeble check
512 	 */
513 	if (uvmexp.free > atop(USPACE)) {
514 #ifdef DEBUG
515 		if (swapdebug & SDB_SWAPIN)
516 			printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
517 	     l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free);
518 #endif
519 		uvm_swapin(l);
520 		goto loop;
521 	}
522 	/*
523 	 * not enough memory, jab the pageout daemon and wait til the coast
524 	 * is clear
525 	 */
526 #ifdef DEBUG
527 	if (swapdebug & SDB_FOLLOW)
528 		printf("scheduler: no room for pid %d(%s), free %d\n",
529 	   l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free);
530 #endif
531 	uvm_wait("schedpwait");
532 #ifdef DEBUG
533 	if (swapdebug & SDB_FOLLOW)
534 		printf("scheduler: room again, free %d\n", uvmexp.free);
535 #endif
536 	goto loop;
537 }
538 
539 /*
540  * swappable: is LWP "l" swappable?
541  */
542 
543 #define	swappable(l)							\
544 	(((l)->l_flag & (L_INMEM)) &&					\
545 	 ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) &&	\
546 	 (l)->l_holdcnt == 0)
547 
548 /*
549  * swapout_threads: find threads that can be swapped and unwire their
550  *	u-areas.
551  *
552  * - called by the pagedaemon
553  * - try and swap at least one processs
554  * - processes that are sleeping or stopped for maxslp or more seconds
555  *   are swapped... otherwise the longest-sleeping or stopped process
556  *   is swapped, otherwise the longest resident process...
557  */
558 
559 void
560 uvm_swapout_threads(void)
561 {
562 	struct lwp *l;
563 	struct lwp *outl, *outl2;
564 	int outpri, outpri2;
565 	int didswap = 0;
566 	extern int maxslp;
567 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
568 
569 #ifdef DEBUG
570 	if (!enableswap)
571 		return;
572 #endif
573 
574 	/*
575 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
576 	 * outl2/outpri2: the longest resident thread (its swap time)
577 	 */
578 	outl = outl2 = NULL;
579 	outpri = outpri2 = 0;
580 	proclist_lock_read();
581 	LIST_FOREACH(l, &alllwp, l_list) {
582 		KASSERT(l->l_proc != NULL);
583 		if (!swappable(l))
584 			continue;
585 		switch (l->l_stat) {
586 		case LSONPROC:
587 			continue;
588 
589 		case LSRUN:
590 			if (l->l_swtime > outpri2) {
591 				outl2 = l;
592 				outpri2 = l->l_swtime;
593 			}
594 			continue;
595 
596 		case LSSLEEP:
597 		case LSSTOP:
598 			if (l->l_slptime >= maxslp) {
599 				uvm_swapout(l);
600 				didswap++;
601 			} else if (l->l_slptime > outpri) {
602 				outl = l;
603 				outpri = l->l_slptime;
604 			}
605 			continue;
606 		}
607 	}
608 	proclist_unlock_read();
609 
610 	/*
611 	 * If we didn't get rid of any real duds, toss out the next most
612 	 * likely sleeping/stopped or running candidate.  We only do this
613 	 * if we are real low on memory since we don't gain much by doing
614 	 * it (USPACE bytes).
615 	 */
616 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
617 		if ((l = outl) == NULL)
618 			l = outl2;
619 #ifdef DEBUG
620 		if (swapdebug & SDB_SWAPOUT)
621 			printf("swapout_threads: no duds, try procp %p\n", l);
622 #endif
623 		if (l)
624 			uvm_swapout(l);
625 	}
626 }
627 
628 /*
629  * uvm_swapout: swap out lwp "l"
630  *
631  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
632  *   the pmap.
633  * - XXXCDC: should deactivate all process' private anonymous memory
634  */
635 
636 static void
637 uvm_swapout(struct lwp *l)
638 {
639 	vaddr_t addr;
640 	int s;
641 	struct proc *p = l->l_proc;
642 
643 #ifdef DEBUG
644 	if (swapdebug & SDB_SWAPOUT)
645 		printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
646 	   p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
647 	   l->l_slptime, uvmexp.free);
648 #endif
649 
650 	/*
651 	 * Mark it as (potentially) swapped out.
652 	 */
653 	SCHED_LOCK(s);
654 	if (l->l_stat == LSONPROC) {
655 		KDASSERT(l->l_cpu != curcpu());
656 		SCHED_UNLOCK(s);
657 		return;
658 	}
659 	l->l_flag &= ~L_INMEM;
660 	if (l->l_stat == LSRUN)
661 		remrunqueue(l);
662 	SCHED_UNLOCK(s);
663 	l->l_swtime = 0;
664 	p->p_stats->p_ru.ru_nswap++;
665 	++uvmexp.swapouts;
666 
667 	/*
668 	 * Do any machine-specific actions necessary before swapout.
669 	 * This can include saving floating point state, etc.
670 	 */
671 	cpu_swapout(l);
672 
673 	/*
674 	 * Unwire the to-be-swapped process's user struct and kernel stack.
675 	 */
676 	addr = USER_TO_UAREA(l->l_addr);
677 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
678 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
679 }
680 
681 #ifdef COREDUMP
682 /*
683  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
684  * a core file.
685  */
686 
687 int
688 uvm_coredump_walkmap(struct proc *p, void *iocookie,
689     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
690     void *cookie)
691 {
692 	struct uvm_coredump_state state;
693 	struct vmspace *vm = p->p_vmspace;
694 	struct vm_map *map = &vm->vm_map;
695 	struct vm_map_entry *entry;
696 	int error;
697 
698 	entry = NULL;
699 	vm_map_lock_read(map);
700 	state.end = 0;
701 	for (;;) {
702 		if (entry == NULL)
703 			entry = map->header.next;
704 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
705 			entry = entry->next;
706 		if (entry == &map->header)
707 			break;
708 
709 		state.cookie = cookie;
710 		if (state.end > entry->start) {
711 			state.start = state.end;
712 		} else {
713 			state.start = entry->start;
714 		}
715 		state.realend = entry->end;
716 		state.end = entry->end;
717 		state.prot = entry->protection;
718 		state.flags = 0;
719 
720 		/*
721 		 * Dump the region unless one of the following is true:
722 		 *
723 		 * (1) the region has neither object nor amap behind it
724 		 *     (ie. it has never been accessed).
725 		 *
726 		 * (2) the region has no amap and is read-only
727 		 *     (eg. an executable text section).
728 		 *
729 		 * (3) the region's object is a device.
730 		 *
731 		 * (4) the region is unreadable by the process.
732 		 */
733 
734 		KASSERT(!UVM_ET_ISSUBMAP(entry));
735 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
736 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
737 		if (entry->object.uvm_obj == NULL &&
738 		    entry->aref.ar_amap == NULL) {
739 			state.realend = state.start;
740 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
741 		    entry->aref.ar_amap == NULL) {
742 			state.realend = state.start;
743 		} else if (entry->object.uvm_obj != NULL &&
744 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
745 			state.realend = state.start;
746 		} else if ((entry->protection & VM_PROT_READ) == 0) {
747 			state.realend = state.start;
748 		} else {
749 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
750 				state.flags |= UVM_COREDUMP_STACK;
751 
752 			/*
753 			 * If this an anonymous entry, only dump instantiated
754 			 * pages.
755 			 */
756 			if (entry->object.uvm_obj == NULL) {
757 				vaddr_t end;
758 
759 				amap_lock(entry->aref.ar_amap);
760 				for (end = state.start;
761 				     end < state.end; end += PAGE_SIZE) {
762 					struct vm_anon *anon;
763 					anon = amap_lookup(&entry->aref,
764 					    end - entry->start);
765 					/*
766 					 * If we have already encountered an
767 					 * uninstantiated page, stop at the
768 					 * first instantied page.
769 					 */
770 					if (anon != NULL &&
771 					    state.realend != state.end) {
772 						state.end = end;
773 						break;
774 					}
775 
776 					/*
777 					 * If this page is the first
778 					 * uninstantiated page, mark this as
779 					 * the real ending point.  Continue to
780 					 * counting uninstantiated pages.
781 					 */
782 					if (anon == NULL &&
783 					    state.realend == state.end) {
784 						state.realend = end;
785 					}
786 				}
787 				amap_unlock(entry->aref.ar_amap);
788 			}
789 		}
790 
791 
792 		vm_map_unlock_read(map);
793 		error = (*func)(p, iocookie, &state);
794 		if (error)
795 			return (error);
796 		vm_map_lock_read(map);
797 	}
798 	vm_map_unlock_read(map);
799 
800 	return (0);
801 }
802 #endif /* COREDUMP */
803