xref: /netbsd-src/sys/uvm/uvm_glue.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: uvm_glue.c,v 1.161 2014/11/27 14:25:01 uebayasi Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.161 2014/11/27 14:25:01 uebayasi Exp $");
66 
67 #include "opt_kgdb.h"
68 #include "opt_kstack.h"
69 #include "opt_uvmhist.h"
70 
71 /*
72  * uvm_glue.c: glue functions
73  */
74 
75 #include <sys/param.h>
76 #include <sys/kernel.h>
77 
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/syncobj.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/lwp.h>
86 
87 #include <uvm/uvm.h>
88 
89 /*
90  * uvm_kernacc: test if kernel can access a memory region.
91  *
92  * => Currently used only by /dev/kmem driver (dev/mm.c).
93  */
94 bool
95 uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
96 {
97 	vaddr_t saddr = trunc_page((vaddr_t)addr);
98 	vaddr_t eaddr = round_page(saddr + len);
99 	bool rv;
100 
101 	vm_map_lock_read(kernel_map);
102 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
103 	vm_map_unlock_read(kernel_map);
104 
105 	return rv;
106 }
107 
108 #ifdef KGDB
109 /*
110  * Change protections on kernel pages from addr to addr+len
111  * (presumably so debugger can plant a breakpoint).
112  *
113  * We force the protection change at the pmap level.  If we were
114  * to use vm_map_protect a change to allow writing would be lazily-
115  * applied meaning we would still take a protection fault, something
116  * we really don't want to do.  It would also fragment the kernel
117  * map unnecessarily.  We cannot use pmap_protect since it also won't
118  * enforce a write-enable request.  Using pmap_enter is the only way
119  * we can ensure the change takes place properly.
120  */
121 void
122 uvm_chgkprot(void *addr, size_t len, int rw)
123 {
124 	vm_prot_t prot;
125 	paddr_t pa;
126 	vaddr_t sva, eva;
127 
128 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
129 	eva = round_page((vaddr_t)addr + len);
130 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
131 		/*
132 		 * Extract physical address for the page.
133 		 */
134 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
135 			panic("%s: invalid page", __func__);
136 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
137 	}
138 	pmap_update(pmap_kernel());
139 }
140 #endif
141 
142 /*
143  * uvm_vslock: wire user memory for I/O
144  *
145  * - called from physio and sys___sysctl
146  * - XXXCDC: consider nuking this (or making it a macro?)
147  */
148 
149 int
150 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
151 {
152 	struct vm_map *map;
153 	vaddr_t start, end;
154 	int error;
155 
156 	map = &vs->vm_map;
157 	start = trunc_page((vaddr_t)addr);
158 	end = round_page((vaddr_t)addr + len);
159 	error = uvm_fault_wire(map, start, end, access_type, 0);
160 	return error;
161 }
162 
163 /*
164  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
165  *
166  * - called from physio and sys___sysctl
167  * - XXXCDC: consider nuking this (or making it a macro?)
168  */
169 
170 void
171 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
172 {
173 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
174 		round_page((vaddr_t)addr + len));
175 }
176 
177 /*
178  * uvm_proc_fork: fork a virtual address space
179  *
180  * - the address space is copied as per parent map's inherit values
181  */
182 void
183 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
184 {
185 
186 	if (shared == true) {
187 		p2->p_vmspace = NULL;
188 		uvmspace_share(p1, p2);
189 	} else {
190 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
191 	}
192 
193 	cpu_proc_fork(p1, p2);
194 }
195 
196 /*
197  * uvm_lwp_fork: fork a thread
198  *
199  * - a new PCB structure is allocated for the child process,
200  *	and filled in by MD layer
201  * - if specified, the child gets a new user stack described by
202  *	stack and stacksize
203  * - NOTE: the kernel stack may be at a different location in the child
204  *	process, and thus addresses of automatic variables may be invalid
205  *	after cpu_lwp_fork returns in the child process.  We do nothing here
206  *	after cpu_lwp_fork returns.
207  */
208 void
209 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
210     void (*func)(void *), void *arg)
211 {
212 
213 	/* Fill stack with magic number. */
214 	kstack_setup_magic(l2);
215 
216 	/*
217 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
218  	 * to run.  If this is a normal user fork, the child will exit
219 	 * directly to user mode via child_return() on its first time
220 	 * slice and will not return here.  If this is a kernel thread,
221 	 * the specified entry point will be executed.
222 	 */
223 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
224 
225 	/* Inactive emap for new LWP. */
226 	l2->l_emap_gen = UVM_EMAP_INACTIVE;
227 }
228 
229 #ifndef USPACE_ALIGN
230 #define	USPACE_ALIGN	0
231 #endif
232 
233 static pool_cache_t uvm_uarea_cache;
234 #if defined(__HAVE_CPU_UAREA_ROUTINES)
235 static pool_cache_t uvm_uarea_system_cache;
236 #else
237 #define uvm_uarea_system_cache uvm_uarea_cache
238 #endif
239 
240 static void *
241 uarea_poolpage_alloc(struct pool *pp, int flags)
242 {
243 #if defined(PMAP_MAP_POOLPAGE)
244 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
245 		struct vm_page *pg;
246 		vaddr_t va;
247 
248 #if defined(PMAP_ALLOC_POOLPAGE)
249 		pg = PMAP_ALLOC_POOLPAGE(
250 		   ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
251 #else
252 		pg = uvm_pagealloc(NULL, 0, NULL,
253 		   ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
254 #endif
255 		if (pg == NULL)
256 			return NULL;
257 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
258 		if (va == 0)
259 			uvm_pagefree(pg);
260 		return (void *)va;
261 	}
262 #endif
263 #if defined(__HAVE_CPU_UAREA_ROUTINES)
264 	void *va = cpu_uarea_alloc(false);
265 	if (va)
266 		return (void *)va;
267 #endif
268 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
269 	    USPACE_ALIGN, UVM_KMF_WIRED |
270 	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
271 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
272 }
273 
274 static void
275 uarea_poolpage_free(struct pool *pp, void *addr)
276 {
277 #if defined(PMAP_MAP_POOLPAGE)
278 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
279 		paddr_t pa;
280 
281 		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
282 		KASSERT(pa != 0);
283 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
284 		return;
285 	}
286 #endif
287 #if defined(__HAVE_CPU_UAREA_ROUTINES)
288 	if (cpu_uarea_free(addr))
289 		return;
290 #endif
291 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
292 	    UVM_KMF_WIRED);
293 }
294 
295 static struct pool_allocator uvm_uarea_allocator = {
296 	.pa_alloc = uarea_poolpage_alloc,
297 	.pa_free = uarea_poolpage_free,
298 	.pa_pagesz = USPACE,
299 };
300 
301 #if defined(__HAVE_CPU_UAREA_ROUTINES)
302 static void *
303 uarea_system_poolpage_alloc(struct pool *pp, int flags)
304 {
305 	void * const va = cpu_uarea_alloc(true);
306 	if (va != NULL)
307 		return va;
308 
309 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
310 	    USPACE_ALIGN, UVM_KMF_WIRED |
311 	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
312 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
313 }
314 
315 static void
316 uarea_system_poolpage_free(struct pool *pp, void *addr)
317 {
318 	if (cpu_uarea_free(addr))
319 		return;
320 
321 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
322 	    UVM_KMF_WIRED);
323 }
324 
325 static struct pool_allocator uvm_uarea_system_allocator = {
326 	.pa_alloc = uarea_system_poolpage_alloc,
327 	.pa_free = uarea_system_poolpage_free,
328 	.pa_pagesz = USPACE,
329 };
330 #endif /* __HAVE_CPU_UAREA_ROUTINES */
331 
332 void
333 uvm_uarea_init(void)
334 {
335 	int flags = PR_NOTOUCH;
336 
337 	/*
338 	 * specify PR_NOALIGN unless the alignment provided by
339 	 * the backend (USPACE_ALIGN) is sufficient to provide
340 	 * pool page size (UPSACE) alignment.
341 	 */
342 
343 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
344 	    (USPACE_ALIGN % USPACE) != 0) {
345 		flags |= PR_NOALIGN;
346 	}
347 
348 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
349 	    "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
350 #if defined(__HAVE_CPU_UAREA_ROUTINES)
351 	uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
352 	    0, flags, "uareasys", &uvm_uarea_system_allocator,
353 	    IPL_NONE, NULL, NULL, NULL);
354 #endif
355 }
356 
357 /*
358  * uvm_uarea_alloc: allocate a u-area
359  */
360 
361 vaddr_t
362 uvm_uarea_alloc(void)
363 {
364 
365 	return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
366 }
367 
368 vaddr_t
369 uvm_uarea_system_alloc(struct cpu_info *ci)
370 {
371 #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
372 	if (__predict_false(ci != NULL))
373 		return cpu_uarea_alloc_idlelwp(ci);
374 #endif
375 
376 	return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
377 }
378 
379 /*
380  * uvm_uarea_free: free a u-area
381  */
382 
383 void
384 uvm_uarea_free(vaddr_t uaddr)
385 {
386 
387 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
388 }
389 
390 void
391 uvm_uarea_system_free(vaddr_t uaddr)
392 {
393 
394 	pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
395 }
396 
397 vaddr_t
398 uvm_lwp_getuarea(lwp_t *l)
399 {
400 
401 	return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
402 }
403 
404 void
405 uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
406 {
407 
408 	l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
409 }
410 
411 /*
412  * uvm_proc_exit: exit a virtual address space
413  *
414  * - borrow proc0's address space because freeing the vmspace
415  *   of the dead process may block.
416  */
417 
418 void
419 uvm_proc_exit(struct proc *p)
420 {
421 	struct lwp *l = curlwp; /* XXX */
422 	struct vmspace *ovm;
423 
424 	KASSERT(p == l->l_proc);
425 	ovm = p->p_vmspace;
426 	KASSERT(ovm != NULL);
427 
428 	if (__predict_false(ovm == proc0.p_vmspace))
429 		return;
430 
431 	/*
432 	 * borrow proc0's address space.
433 	 */
434 	kpreempt_disable();
435 	pmap_deactivate(l);
436 	p->p_vmspace = proc0.p_vmspace;
437 	pmap_activate(l);
438 	kpreempt_enable();
439 
440 	uvmspace_free(ovm);
441 }
442 
443 void
444 uvm_lwp_exit(struct lwp *l)
445 {
446 	vaddr_t va = uvm_lwp_getuarea(l);
447 	bool system = (l->l_flag & LW_SYSTEM) != 0;
448 
449 	if (system)
450 		uvm_uarea_system_free(va);
451 	else
452 		uvm_uarea_free(va);
453 #ifdef DIAGNOSTIC
454 	uvm_lwp_setuarea(l, (vaddr_t)NULL);
455 #endif
456 }
457 
458 /*
459  * uvm_init_limit: init per-process VM limits
460  *
461  * - called for process 0 and then inherited by all others.
462  */
463 
464 void
465 uvm_init_limits(struct proc *p)
466 {
467 
468 	/*
469 	 * Set up the initial limits on process VM.  Set the maximum
470 	 * resident set size to be all of (reasonably) available memory.
471 	 * This causes any single, large process to start random page
472 	 * replacement once it fills memory.
473 	 */
474 
475 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
476 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
477 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
478 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
479 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
480 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
481 	p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
482 	    VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
483 }
484 
485 /*
486  * uvm_scheduler: process zero main loop.
487  */
488 
489 extern struct loadavg averunnable;
490 
491 void
492 uvm_scheduler(void)
493 {
494 	lwp_t *l = curlwp;
495 
496 	lwp_lock(l);
497 	l->l_priority = PRI_VM;
498 	l->l_class = SCHED_FIFO;
499 	lwp_unlock(l);
500 
501 	for (;;) {
502 		sched_pstats();
503 		(void)kpause("uvm", false, hz, NULL);
504 	}
505 }
506