xref: /netbsd-src/sys/uvm/uvm_glue.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: uvm_glue.c,v 1.113 2007/11/06 00:42:46 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.113 2007/11/06 00:42:46 ad Exp $");
71 
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76 
77 /*
78  * uvm_glue.c: glue functions
79  */
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 #include <sys/syncobj.h>
88 #include <sys/cpu.h>
89 
90 #include <uvm/uvm.h>
91 
92 /*
93  * local prototypes
94  */
95 
96 static void uvm_swapout(struct lwp *);
97 
98 #define UVM_NUAREA_HIWAT	20
99 #define	UVM_NUAREA_LOWAT	16
100 
101 #define	UAREA_NEXTFREE(uarea)	(*(vaddr_t *)(UAREA_TO_USER(uarea)))
102 
103 /*
104  * XXXCDC: do these really belong here?
105  */
106 
107 /*
108  * uvm_kernacc: can the kernel access a region of memory
109  *
110  * - used only by /dev/kmem driver (mem.c)
111  */
112 
113 bool
114 uvm_kernacc(void *addr, size_t len, int rw)
115 {
116 	bool rv;
117 	vaddr_t saddr, eaddr;
118 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
119 
120 	saddr = trunc_page((vaddr_t)addr);
121 	eaddr = round_page((vaddr_t)addr + len);
122 	vm_map_lock_read(kernel_map);
123 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
124 	vm_map_unlock_read(kernel_map);
125 
126 	return(rv);
127 }
128 
129 #ifdef KGDB
130 /*
131  * Change protections on kernel pages from addr to addr+len
132  * (presumably so debugger can plant a breakpoint).
133  *
134  * We force the protection change at the pmap level.  If we were
135  * to use vm_map_protect a change to allow writing would be lazily-
136  * applied meaning we would still take a protection fault, something
137  * we really don't want to do.  It would also fragment the kernel
138  * map unnecessarily.  We cannot use pmap_protect since it also won't
139  * enforce a write-enable request.  Using pmap_enter is the only way
140  * we can ensure the change takes place properly.
141  */
142 void
143 uvm_chgkprot(void *addr, size_t len, int rw)
144 {
145 	vm_prot_t prot;
146 	paddr_t pa;
147 	vaddr_t sva, eva;
148 
149 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
150 	eva = round_page((vaddr_t)addr + len);
151 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
152 		/*
153 		 * Extract physical address for the page.
154 		 */
155 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
156 			panic("chgkprot: invalid page");
157 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
158 	}
159 	pmap_update(pmap_kernel());
160 }
161 #endif
162 
163 /*
164  * uvm_vslock: wire user memory for I/O
165  *
166  * - called from physio and sys___sysctl
167  * - XXXCDC: consider nuking this (or making it a macro?)
168  */
169 
170 int
171 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
172 {
173 	struct vm_map *map;
174 	vaddr_t start, end;
175 	int error;
176 
177 	map = &vs->vm_map;
178 	start = trunc_page((vaddr_t)addr);
179 	end = round_page((vaddr_t)addr + len);
180 	error = uvm_fault_wire(map, start, end, access_type, 0);
181 	return error;
182 }
183 
184 /*
185  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
186  *
187  * - called from physio and sys___sysctl
188  * - XXXCDC: consider nuking this (or making it a macro?)
189  */
190 
191 void
192 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
193 {
194 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
195 		round_page((vaddr_t)addr + len));
196 }
197 
198 /*
199  * uvm_proc_fork: fork a virtual address space
200  *
201  * - the address space is copied as per parent map's inherit values
202  */
203 void
204 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
205 {
206 
207 	if (shared == true) {
208 		p2->p_vmspace = NULL;
209 		uvmspace_share(p1, p2);
210 	} else {
211 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
212 	}
213 
214 	cpu_proc_fork(p1, p2);
215 }
216 
217 
218 /*
219  * uvm_lwp_fork: fork a thread
220  *
221  * - a new "user" structure is allocated for the child process
222  *	[filled in by MD layer...]
223  * - if specified, the child gets a new user stack described by
224  *	stack and stacksize
225  * - NOTE: the kernel stack may be at a different location in the child
226  *	process, and thus addresses of automatic variables may be invalid
227  *	after cpu_lwp_fork returns in the child process.  We do nothing here
228  *	after cpu_lwp_fork returns.
229  * - XXXCDC: we need a way for this to return a failure value rather
230  *   than just hang
231  */
232 void
233 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
234     void (*func)(void *), void *arg)
235 {
236 	int error;
237 
238 	/*
239 	 * Wire down the U-area for the process, which contains the PCB
240 	 * and the kernel stack.  Wired state is stored in l->l_flag's
241 	 * L_INMEM bit rather than in the vm_map_entry's wired count
242 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
243 	 * L_INMEM will already be set and we don't need to do anything.
244 	 *
245 	 * Note the kernel stack gets read/write accesses right off the bat.
246 	 */
247 
248 	if ((l2->l_flag & LW_INMEM) == 0) {
249 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
250 
251 		error = uvm_fault_wire(kernel_map, uarea,
252 		    uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
253 		if (error)
254 			panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
255 #ifdef PMAP_UAREA
256 		/* Tell the pmap this is a u-area mapping */
257 		PMAP_UAREA(uarea);
258 #endif
259 		l2->l_flag |= LW_INMEM;
260 	}
261 
262 #ifdef KSTACK_CHECK_MAGIC
263 	/*
264 	 * fill stack with magic number
265 	 */
266 	kstack_setup_magic(l2);
267 #endif
268 
269 	/*
270 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
271  	 * to run.  If this is a normal user fork, the child will exit
272 	 * directly to user mode via child_return() on its first time
273 	 * slice and will not return here.  If this is a kernel thread,
274 	 * the specified entry point will be executed.
275 	 */
276 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
277 }
278 
279 /*
280  * uvm_cpu_attach: initialize per-CPU data structures.
281  */
282 
283 void
284 uvm_cpu_attach(struct cpu_info *ci)
285 {
286 
287 	mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
288 	ci->ci_data.cpu_uarea_cnt = 0;
289 	ci->ci_data.cpu_uarea_list = 0;
290 }
291 
292 /*
293  * uvm_uarea_alloc: allocate a u-area
294  */
295 
296 bool
297 uvm_uarea_alloc(vaddr_t *uaddrp)
298 {
299 	struct cpu_info *ci;
300 	vaddr_t uaddr;
301 
302 #ifndef USPACE_ALIGN
303 #define USPACE_ALIGN    0
304 #endif
305 
306 	ci = curcpu();
307 
308 	if (ci->ci_data.cpu_uarea_cnt > 0) {
309 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
310 		if (ci->ci_data.cpu_uarea_cnt == 0) {
311 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
312 		} else {
313 			uaddr = ci->ci_data.cpu_uarea_list;
314 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
315 			ci->ci_data.cpu_uarea_cnt--;
316 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
317 			*uaddrp = uaddr;
318 			return true;
319 		}
320 	}
321 
322 	*uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
323 	    UVM_KMF_PAGEABLE);
324 	return false;
325 }
326 
327 /*
328  * uvm_uarea_free: free a u-area
329  */
330 
331 void
332 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
333 {
334 
335 	mutex_enter(&ci->ci_data.cpu_uarea_lock);
336 	UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
337 	ci->ci_data.cpu_uarea_list = uaddr;
338 	ci->ci_data.cpu_uarea_cnt++;
339 	mutex_exit(&ci->ci_data.cpu_uarea_lock);
340 }
341 
342 /*
343  * uvm_uarea_drain: return memory of u-areas over limit
344  * back to system
345  *
346  * => if asked to drain as much as possible, drain all cpus.
347  * => if asked to drain to low water mark, drain local cpu only.
348  */
349 
350 void
351 uvm_uarea_drain(bool empty)
352 {
353 	CPU_INFO_ITERATOR cii;
354 	struct cpu_info *ci;
355 	vaddr_t uaddr, nuaddr;
356 	int count;
357 
358 	if (empty) {
359 		for (CPU_INFO_FOREACH(cii, ci)) {
360 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
361 			count = ci->ci_data.cpu_uarea_cnt;
362 			uaddr = ci->ci_data.cpu_uarea_list;
363 			ci->ci_data.cpu_uarea_cnt = 0;
364 			ci->ci_data.cpu_uarea_list = 0;
365 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
366 
367 			while (count != 0) {
368 				nuaddr = UAREA_NEXTFREE(uaddr);
369 				uvm_km_free(kernel_map, uaddr, USPACE,
370 				    UVM_KMF_PAGEABLE);
371 				uaddr = nuaddr;
372 				count--;
373 			}
374 		}
375 		return;
376 	}
377 
378 	ci = curcpu();
379 	if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
380 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
381 		while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
382 			uaddr = ci->ci_data.cpu_uarea_list;
383 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
384 			ci->ci_data.cpu_uarea_cnt--;
385 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
386 			uvm_km_free(kernel_map, uaddr, USPACE,
387 			    UVM_KMF_PAGEABLE);
388 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
389 		}
390 		mutex_exit(&ci->ci_data.cpu_uarea_lock);
391 	}
392 }
393 
394 /*
395  * uvm_exit: exit a virtual address space
396  *
397  * - the process passed to us is a dead (pre-zombie) process; we
398  *   are running on a different context now (the reaper).
399  * - borrow proc0's address space because freeing the vmspace
400  *   of the dead process may block.
401  */
402 
403 void
404 uvm_proc_exit(struct proc *p)
405 {
406 	struct lwp *l = curlwp; /* XXX */
407 	struct vmspace *ovm;
408 
409 	KASSERT(p == l->l_proc);
410 	ovm = p->p_vmspace;
411 
412 	/*
413 	 * borrow proc0's address space.
414 	 */
415 	pmap_deactivate(l);
416 	p->p_vmspace = proc0.p_vmspace;
417 	pmap_activate(l);
418 
419 	uvmspace_free(ovm);
420 }
421 
422 void
423 uvm_lwp_exit(struct lwp *l)
424 {
425 	vaddr_t va = USER_TO_UAREA(l->l_addr);
426 
427 	l->l_flag &= ~LW_INMEM;
428 	uvm_uarea_free(va, l->l_cpu);
429 	l->l_addr = NULL;
430 }
431 
432 /*
433  * uvm_init_limit: init per-process VM limits
434  *
435  * - called for process 0 and then inherited by all others.
436  */
437 
438 void
439 uvm_init_limits(struct proc *p)
440 {
441 
442 	/*
443 	 * Set up the initial limits on process VM.  Set the maximum
444 	 * resident set size to be all of (reasonably) available memory.
445 	 * This causes any single, large process to start random page
446 	 * replacement once it fills memory.
447 	 */
448 
449 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
450 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
451 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
452 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
453 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
454 }
455 
456 #ifdef DEBUG
457 int	enableswap = 1;
458 int	swapdebug = 0;
459 #define	SDB_FOLLOW	1
460 #define SDB_SWAPIN	2
461 #define SDB_SWAPOUT	4
462 #endif
463 
464 /*
465  * uvm_swapin: swap in an lwp's u-area.
466  *
467  * - must be called with the LWP's swap lock held.
468  * - naturally, must not be called with l == curlwp
469  */
470 
471 void
472 uvm_swapin(struct lwp *l)
473 {
474 	vaddr_t addr;
475 	int error;
476 
477 	/* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
478 	KASSERT(l != curlwp);
479 
480 	addr = USER_TO_UAREA(l->l_addr);
481 	/* make L_INMEM true */
482 	error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
483 	    VM_PROT_READ | VM_PROT_WRITE, 0);
484 	if (error) {
485 		panic("uvm_swapin: rewiring stack failed: %d", error);
486 	}
487 
488 	/*
489 	 * Some architectures need to be notified when the user area has
490 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
491 	 */
492 	cpu_swapin(l);
493 	lwp_lock(l);
494 	if (l->l_stat == LSRUN)
495 		sched_enqueue(l, false);
496 	l->l_flag |= LW_INMEM;
497 	l->l_swtime = 0;
498 	lwp_unlock(l);
499 	++uvmexp.swapins;
500 }
501 
502 /*
503  * uvm_kick_scheduler: kick the scheduler into action if not running.
504  *
505  * - called when swapped out processes have been awoken.
506  */
507 
508 void
509 uvm_kick_scheduler(void)
510 {
511 
512 	if (uvm.swap_running == false)
513 		return;
514 
515 	mutex_enter(&uvm_scheduler_mutex);
516 	uvm.scheduler_kicked = true;
517 	cv_signal(&uvm.scheduler_cv);
518 	mutex_exit(&uvm_scheduler_mutex);
519 }
520 
521 /*
522  * uvm_scheduler: process zero main loop
523  *
524  * - attempt to swapin every swaped-out, runnable process in order of
525  *	priority.
526  * - if not enough memory, wake the pagedaemon and let it clear space.
527  */
528 
529 void
530 uvm_scheduler(void)
531 {
532 	struct lwp *l, *ll;
533 	int pri;
534 	int ppri;
535 
536 	l = curlwp;
537 	lwp_lock(l);
538 	l->l_priority = PRI_VM;
539 	l->l_class = SCHED_FIFO;
540 	lwp_unlock(l);
541 
542 	for (;;) {
543 #ifdef DEBUG
544 		mutex_enter(&uvm_scheduler_mutex);
545 		while (!enableswap)
546 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
547 		mutex_exit(&uvm_scheduler_mutex);
548 #endif
549 		ll = NULL;		/* process to choose */
550 		ppri = INT_MIN;		/* its priority */
551 
552 		mutex_enter(&proclist_lock);
553 		LIST_FOREACH(l, &alllwp, l_list) {
554 			/* is it a runnable swapped out process? */
555 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
556 				pri = l->l_swtime + l->l_slptime -
557 				    (l->l_proc->p_nice - NZERO) * 8;
558 				if (pri > ppri) {   /* higher priority? */
559 					ll = l;
560 					ppri = pri;
561 				}
562 			}
563 		}
564 #ifdef DEBUG
565 		if (swapdebug & SDB_FOLLOW)
566 			printf("scheduler: running, procp %p pri %d\n", ll,
567 			    ppri);
568 #endif
569 		/*
570 		 * Nothing to do, back to sleep
571 		 */
572 		if ((l = ll) == NULL) {
573 			mutex_exit(&proclist_lock);
574 			mutex_enter(&uvm_scheduler_mutex);
575 			if (uvm.scheduler_kicked == false)
576 				cv_wait(&uvm.scheduler_cv,
577 				    &uvm_scheduler_mutex);
578 			uvm.scheduler_kicked = false;
579 			mutex_exit(&uvm_scheduler_mutex);
580 			continue;
581 		}
582 
583 		/*
584 		 * we have found swapped out process which we would like
585 		 * to bring back in.
586 		 *
587 		 * XXX: this part is really bogus cuz we could deadlock
588 		 * on memory despite our feeble check
589 		 */
590 		if (uvmexp.free > atop(USPACE)) {
591 #ifdef DEBUG
592 			if (swapdebug & SDB_SWAPIN)
593 				printf("swapin: pid %d(%s)@%p, pri %d "
594 				    "free %d\n", l->l_proc->p_pid,
595 				    l->l_proc->p_comm, l->l_addr, ppri,
596 				    uvmexp.free);
597 #endif
598 			mutex_enter(&l->l_swaplock);
599 			mutex_exit(&proclist_lock);
600 			uvm_swapin(l);
601 			mutex_exit(&l->l_swaplock);
602 			continue;
603 		} else {
604 			/*
605 			 * not enough memory, jab the pageout daemon and
606 			 * wait til the coast is clear
607 			 */
608 			mutex_exit(&proclist_lock);
609 #ifdef DEBUG
610 			if (swapdebug & SDB_FOLLOW)
611 				printf("scheduler: no room for pid %d(%s),"
612 				    " free %d\n", l->l_proc->p_pid,
613 				    l->l_proc->p_comm, uvmexp.free);
614 #endif
615 			uvm_wait("schedpwait");
616 #ifdef DEBUG
617 			if (swapdebug & SDB_FOLLOW)
618 				printf("scheduler: room again, free %d\n",
619 				    uvmexp.free);
620 #endif
621 		}
622 	}
623 }
624 
625 /*
626  * swappable: is LWP "l" swappable?
627  */
628 
629 static bool
630 swappable(struct lwp *l)
631 {
632 
633 	if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
634 		return false;
635 	if (l->l_holdcnt != 0)
636 		return false;
637 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
638 		return false;
639 	return true;
640 }
641 
642 /*
643  * swapout_threads: find threads that can be swapped and unwire their
644  *	u-areas.
645  *
646  * - called by the pagedaemon
647  * - try and swap at least one processs
648  * - processes that are sleeping or stopped for maxslp or more seconds
649  *   are swapped... otherwise the longest-sleeping or stopped process
650  *   is swapped, otherwise the longest resident process...
651  */
652 
653 void
654 uvm_swapout_threads(void)
655 {
656 	struct lwp *l;
657 	struct lwp *outl, *outl2;
658 	int outpri, outpri2;
659 	int didswap = 0;
660 	extern int maxslp;
661 	bool gotit;
662 
663 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
664 
665 #ifdef DEBUG
666 	if (!enableswap)
667 		return;
668 #endif
669 
670 	/*
671 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
672 	 * outl2/outpri2: the longest resident thread (its swap time)
673 	 */
674 	outl = outl2 = NULL;
675 	outpri = outpri2 = 0;
676 
677  restart:
678 	mutex_enter(&proclist_lock);
679 	LIST_FOREACH(l, &alllwp, l_list) {
680 		KASSERT(l->l_proc != NULL);
681 		if (!mutex_tryenter(&l->l_swaplock))
682 			continue;
683 		if (!swappable(l)) {
684 			mutex_exit(&l->l_swaplock);
685 			continue;
686 		}
687 		switch (l->l_stat) {
688 		case LSONPROC:
689 			break;
690 
691 		case LSRUN:
692 			if (l->l_swtime > outpri2) {
693 				outl2 = l;
694 				outpri2 = l->l_swtime;
695 			}
696 			break;
697 
698 		case LSSLEEP:
699 		case LSSTOP:
700 			if (l->l_slptime >= maxslp) {
701 				mutex_exit(&proclist_lock);
702 				uvm_swapout(l);
703 				/*
704 				 * Locking in the wrong direction -
705 				 * try to prevent the LWP from exiting.
706 				 */
707 				gotit = mutex_tryenter(&proclist_lock);
708 				mutex_exit(&l->l_swaplock);
709 				didswap++;
710 				if (!gotit)
711 					goto restart;
712 				continue;
713 			} else if (l->l_slptime > outpri) {
714 				outl = l;
715 				outpri = l->l_slptime;
716 			}
717 			break;
718 		}
719 		mutex_exit(&l->l_swaplock);
720 	}
721 
722 	/*
723 	 * If we didn't get rid of any real duds, toss out the next most
724 	 * likely sleeping/stopped or running candidate.  We only do this
725 	 * if we are real low on memory since we don't gain much by doing
726 	 * it (USPACE bytes).
727 	 */
728 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
729 		if ((l = outl) == NULL)
730 			l = outl2;
731 #ifdef DEBUG
732 		if (swapdebug & SDB_SWAPOUT)
733 			printf("swapout_threads: no duds, try procp %p\n", l);
734 #endif
735 		if (l) {
736 			mutex_enter(&l->l_swaplock);
737 			mutex_exit(&proclist_lock);
738 			if (swappable(l))
739 				uvm_swapout(l);
740 			mutex_exit(&l->l_swaplock);
741 			return;
742 		}
743 	}
744 
745 	mutex_exit(&proclist_lock);
746 }
747 
748 /*
749  * uvm_swapout: swap out lwp "l"
750  *
751  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
752  *   the pmap.
753  * - must be called with l->l_swaplock held.
754  * - XXXCDC: should deactivate all process' private anonymous memory
755  */
756 
757 static void
758 uvm_swapout(struct lwp *l)
759 {
760 	vaddr_t addr;
761 	struct proc *p = l->l_proc;
762 
763 	KASSERT(mutex_owned(&l->l_swaplock));
764 
765 #ifdef DEBUG
766 	if (swapdebug & SDB_SWAPOUT)
767 		printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
768 	   p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
769 	   l->l_slptime, uvmexp.free);
770 #endif
771 
772 	/*
773 	 * Mark it as (potentially) swapped out.
774 	 */
775 	lwp_lock(l);
776 	if (!swappable(l)) {
777 		KDASSERT(l->l_cpu != curcpu());
778 		lwp_unlock(l);
779 		return;
780 	}
781 	l->l_flag &= ~LW_INMEM;
782 	l->l_swtime = 0;
783 	if (l->l_stat == LSRUN)
784 		sched_dequeue(l);
785 	lwp_unlock(l);
786 	p->p_stats->p_ru.ru_nswap++;	/* XXXSMP */
787 	++uvmexp.swapouts;
788 
789 	/*
790 	 * Do any machine-specific actions necessary before swapout.
791 	 * This can include saving floating point state, etc.
792 	 */
793 	cpu_swapout(l);
794 
795 	/*
796 	 * Unwire the to-be-swapped process's user struct and kernel stack.
797 	 */
798 	addr = USER_TO_UAREA(l->l_addr);
799 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
800 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
801 }
802 
803 /*
804  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
805  * back into memory if it is currently swapped.
806  */
807 
808 void
809 uvm_lwp_hold(struct lwp *l)
810 {
811 
812 	/* XXXSMP mutex_enter(&l->l_swaplock); */
813 	if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0)
814 		uvm_swapin(l);
815 	/* XXXSMP mutex_exit(&l->l_swaplock); */
816 }
817 
818 /*
819  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
820  * drops to zero, it's eligable to be swapped.
821  */
822 
823 void
824 uvm_lwp_rele(struct lwp *l)
825 {
826 
827 	KASSERT(l->l_holdcnt != 0);
828 
829 	/* XXXSMP mutex_enter(&l->l_swaplock); */
830 	l->l_holdcnt--;
831 	/* XXXSMP mutex_exit(&l->l_swaplock); */
832 }
833 
834 #ifdef COREDUMP
835 /*
836  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
837  * a core file.
838  */
839 
840 int
841 uvm_coredump_walkmap(struct proc *p, void *iocookie,
842     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
843     void *cookie)
844 {
845 	struct uvm_coredump_state state;
846 	struct vmspace *vm = p->p_vmspace;
847 	struct vm_map *map = &vm->vm_map;
848 	struct vm_map_entry *entry;
849 	int error;
850 
851 	entry = NULL;
852 	vm_map_lock_read(map);
853 	state.end = 0;
854 	for (;;) {
855 		if (entry == NULL)
856 			entry = map->header.next;
857 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
858 			entry = entry->next;
859 		if (entry == &map->header)
860 			break;
861 
862 		state.cookie = cookie;
863 		if (state.end > entry->start) {
864 			state.start = state.end;
865 		} else {
866 			state.start = entry->start;
867 		}
868 		state.realend = entry->end;
869 		state.end = entry->end;
870 		state.prot = entry->protection;
871 		state.flags = 0;
872 
873 		/*
874 		 * Dump the region unless one of the following is true:
875 		 *
876 		 * (1) the region has neither object nor amap behind it
877 		 *     (ie. it has never been accessed).
878 		 *
879 		 * (2) the region has no amap and is read-only
880 		 *     (eg. an executable text section).
881 		 *
882 		 * (3) the region's object is a device.
883 		 *
884 		 * (4) the region is unreadable by the process.
885 		 */
886 
887 		KASSERT(!UVM_ET_ISSUBMAP(entry));
888 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
889 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
890 		if (entry->object.uvm_obj == NULL &&
891 		    entry->aref.ar_amap == NULL) {
892 			state.realend = state.start;
893 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
894 		    entry->aref.ar_amap == NULL) {
895 			state.realend = state.start;
896 		} else if (entry->object.uvm_obj != NULL &&
897 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
898 			state.realend = state.start;
899 		} else if ((entry->protection & VM_PROT_READ) == 0) {
900 			state.realend = state.start;
901 		} else {
902 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
903 				state.flags |= UVM_COREDUMP_STACK;
904 
905 			/*
906 			 * If this an anonymous entry, only dump instantiated
907 			 * pages.
908 			 */
909 			if (entry->object.uvm_obj == NULL) {
910 				vaddr_t end;
911 
912 				amap_lock(entry->aref.ar_amap);
913 				for (end = state.start;
914 				     end < state.end; end += PAGE_SIZE) {
915 					struct vm_anon *anon;
916 					anon = amap_lookup(&entry->aref,
917 					    end - entry->start);
918 					/*
919 					 * If we have already encountered an
920 					 * uninstantiated page, stop at the
921 					 * first instantied page.
922 					 */
923 					if (anon != NULL &&
924 					    state.realend != state.end) {
925 						state.end = end;
926 						break;
927 					}
928 
929 					/*
930 					 * If this page is the first
931 					 * uninstantiated page, mark this as
932 					 * the real ending point.  Continue to
933 					 * counting uninstantiated pages.
934 					 */
935 					if (anon == NULL &&
936 					    state.realend == state.end) {
937 						state.realend = end;
938 					}
939 				}
940 				amap_unlock(entry->aref.ar_amap);
941 			}
942 		}
943 
944 
945 		vm_map_unlock_read(map);
946 		error = (*func)(p, iocookie, &state);
947 		if (error)
948 			return (error);
949 		vm_map_lock_read(map);
950 	}
951 	vm_map_unlock_read(map);
952 
953 	return (0);
954 }
955 #endif /* COREDUMP */
956