1 /* $NetBSD: uvm_glue.c,v 1.113 2007/11/06 00:42:46 ad Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * Copyright (c) 1991, 1993, The Regents of the University of California. 6 * 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * The Mach Operating System project at Carnegie-Mellon University. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by Charles D. Cranor, 23 * Washington University, the University of California, Berkeley and 24 * its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Permission to use, copy, modify and distribute this software and 49 * its documentation is hereby granted, provided that both the copyright 50 * notice and this permission notice appear in all copies of the 51 * software, derivative works or modified versions, and any portions 52 * thereof, and that both notices appear in supporting documentation. 53 * 54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 57 * 58 * Carnegie Mellon requests users of this software to return to 59 * 60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 61 * School of Computer Science 62 * Carnegie Mellon University 63 * Pittsburgh PA 15213-3890 64 * 65 * any improvements or extensions that they make and grant Carnegie the 66 * rights to redistribute these changes. 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.113 2007/11/06 00:42:46 ad Exp $"); 71 72 #include "opt_coredump.h" 73 #include "opt_kgdb.h" 74 #include "opt_kstack.h" 75 #include "opt_uvmhist.h" 76 77 /* 78 * uvm_glue.c: glue functions 79 */ 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/proc.h> 84 #include <sys/resourcevar.h> 85 #include <sys/buf.h> 86 #include <sys/user.h> 87 #include <sys/syncobj.h> 88 #include <sys/cpu.h> 89 90 #include <uvm/uvm.h> 91 92 /* 93 * local prototypes 94 */ 95 96 static void uvm_swapout(struct lwp *); 97 98 #define UVM_NUAREA_HIWAT 20 99 #define UVM_NUAREA_LOWAT 16 100 101 #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea))) 102 103 /* 104 * XXXCDC: do these really belong here? 105 */ 106 107 /* 108 * uvm_kernacc: can the kernel access a region of memory 109 * 110 * - used only by /dev/kmem driver (mem.c) 111 */ 112 113 bool 114 uvm_kernacc(void *addr, size_t len, int rw) 115 { 116 bool rv; 117 vaddr_t saddr, eaddr; 118 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE; 119 120 saddr = trunc_page((vaddr_t)addr); 121 eaddr = round_page((vaddr_t)addr + len); 122 vm_map_lock_read(kernel_map); 123 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot); 124 vm_map_unlock_read(kernel_map); 125 126 return(rv); 127 } 128 129 #ifdef KGDB 130 /* 131 * Change protections on kernel pages from addr to addr+len 132 * (presumably so debugger can plant a breakpoint). 133 * 134 * We force the protection change at the pmap level. If we were 135 * to use vm_map_protect a change to allow writing would be lazily- 136 * applied meaning we would still take a protection fault, something 137 * we really don't want to do. It would also fragment the kernel 138 * map unnecessarily. We cannot use pmap_protect since it also won't 139 * enforce a write-enable request. Using pmap_enter is the only way 140 * we can ensure the change takes place properly. 141 */ 142 void 143 uvm_chgkprot(void *addr, size_t len, int rw) 144 { 145 vm_prot_t prot; 146 paddr_t pa; 147 vaddr_t sva, eva; 148 149 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE; 150 eva = round_page((vaddr_t)addr + len); 151 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) { 152 /* 153 * Extract physical address for the page. 154 */ 155 if (pmap_extract(pmap_kernel(), sva, &pa) == false) 156 panic("chgkprot: invalid page"); 157 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED); 158 } 159 pmap_update(pmap_kernel()); 160 } 161 #endif 162 163 /* 164 * uvm_vslock: wire user memory for I/O 165 * 166 * - called from physio and sys___sysctl 167 * - XXXCDC: consider nuking this (or making it a macro?) 168 */ 169 170 int 171 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type) 172 { 173 struct vm_map *map; 174 vaddr_t start, end; 175 int error; 176 177 map = &vs->vm_map; 178 start = trunc_page((vaddr_t)addr); 179 end = round_page((vaddr_t)addr + len); 180 error = uvm_fault_wire(map, start, end, access_type, 0); 181 return error; 182 } 183 184 /* 185 * uvm_vsunlock: unwire user memory wired by uvm_vslock() 186 * 187 * - called from physio and sys___sysctl 188 * - XXXCDC: consider nuking this (or making it a macro?) 189 */ 190 191 void 192 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len) 193 { 194 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr), 195 round_page((vaddr_t)addr + len)); 196 } 197 198 /* 199 * uvm_proc_fork: fork a virtual address space 200 * 201 * - the address space is copied as per parent map's inherit values 202 */ 203 void 204 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared) 205 { 206 207 if (shared == true) { 208 p2->p_vmspace = NULL; 209 uvmspace_share(p1, p2); 210 } else { 211 p2->p_vmspace = uvmspace_fork(p1->p_vmspace); 212 } 213 214 cpu_proc_fork(p1, p2); 215 } 216 217 218 /* 219 * uvm_lwp_fork: fork a thread 220 * 221 * - a new "user" structure is allocated for the child process 222 * [filled in by MD layer...] 223 * - if specified, the child gets a new user stack described by 224 * stack and stacksize 225 * - NOTE: the kernel stack may be at a different location in the child 226 * process, and thus addresses of automatic variables may be invalid 227 * after cpu_lwp_fork returns in the child process. We do nothing here 228 * after cpu_lwp_fork returns. 229 * - XXXCDC: we need a way for this to return a failure value rather 230 * than just hang 231 */ 232 void 233 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize, 234 void (*func)(void *), void *arg) 235 { 236 int error; 237 238 /* 239 * Wire down the U-area for the process, which contains the PCB 240 * and the kernel stack. Wired state is stored in l->l_flag's 241 * L_INMEM bit rather than in the vm_map_entry's wired count 242 * to prevent kernel_map fragmentation. If we reused a cached U-area, 243 * L_INMEM will already be set and we don't need to do anything. 244 * 245 * Note the kernel stack gets read/write accesses right off the bat. 246 */ 247 248 if ((l2->l_flag & LW_INMEM) == 0) { 249 vaddr_t uarea = USER_TO_UAREA(l2->l_addr); 250 251 error = uvm_fault_wire(kernel_map, uarea, 252 uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0); 253 if (error) 254 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error); 255 #ifdef PMAP_UAREA 256 /* Tell the pmap this is a u-area mapping */ 257 PMAP_UAREA(uarea); 258 #endif 259 l2->l_flag |= LW_INMEM; 260 } 261 262 #ifdef KSTACK_CHECK_MAGIC 263 /* 264 * fill stack with magic number 265 */ 266 kstack_setup_magic(l2); 267 #endif 268 269 /* 270 * cpu_lwp_fork() copy and update the pcb, and make the child ready 271 * to run. If this is a normal user fork, the child will exit 272 * directly to user mode via child_return() on its first time 273 * slice and will not return here. If this is a kernel thread, 274 * the specified entry point will be executed. 275 */ 276 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg); 277 } 278 279 /* 280 * uvm_cpu_attach: initialize per-CPU data structures. 281 */ 282 283 void 284 uvm_cpu_attach(struct cpu_info *ci) 285 { 286 287 mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE); 288 ci->ci_data.cpu_uarea_cnt = 0; 289 ci->ci_data.cpu_uarea_list = 0; 290 } 291 292 /* 293 * uvm_uarea_alloc: allocate a u-area 294 */ 295 296 bool 297 uvm_uarea_alloc(vaddr_t *uaddrp) 298 { 299 struct cpu_info *ci; 300 vaddr_t uaddr; 301 302 #ifndef USPACE_ALIGN 303 #define USPACE_ALIGN 0 304 #endif 305 306 ci = curcpu(); 307 308 if (ci->ci_data.cpu_uarea_cnt > 0) { 309 mutex_enter(&ci->ci_data.cpu_uarea_lock); 310 if (ci->ci_data.cpu_uarea_cnt == 0) { 311 mutex_exit(&ci->ci_data.cpu_uarea_lock); 312 } else { 313 uaddr = ci->ci_data.cpu_uarea_list; 314 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr); 315 ci->ci_data.cpu_uarea_cnt--; 316 mutex_exit(&ci->ci_data.cpu_uarea_lock); 317 *uaddrp = uaddr; 318 return true; 319 } 320 } 321 322 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN, 323 UVM_KMF_PAGEABLE); 324 return false; 325 } 326 327 /* 328 * uvm_uarea_free: free a u-area 329 */ 330 331 void 332 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci) 333 { 334 335 mutex_enter(&ci->ci_data.cpu_uarea_lock); 336 UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list; 337 ci->ci_data.cpu_uarea_list = uaddr; 338 ci->ci_data.cpu_uarea_cnt++; 339 mutex_exit(&ci->ci_data.cpu_uarea_lock); 340 } 341 342 /* 343 * uvm_uarea_drain: return memory of u-areas over limit 344 * back to system 345 * 346 * => if asked to drain as much as possible, drain all cpus. 347 * => if asked to drain to low water mark, drain local cpu only. 348 */ 349 350 void 351 uvm_uarea_drain(bool empty) 352 { 353 CPU_INFO_ITERATOR cii; 354 struct cpu_info *ci; 355 vaddr_t uaddr, nuaddr; 356 int count; 357 358 if (empty) { 359 for (CPU_INFO_FOREACH(cii, ci)) { 360 mutex_enter(&ci->ci_data.cpu_uarea_lock); 361 count = ci->ci_data.cpu_uarea_cnt; 362 uaddr = ci->ci_data.cpu_uarea_list; 363 ci->ci_data.cpu_uarea_cnt = 0; 364 ci->ci_data.cpu_uarea_list = 0; 365 mutex_exit(&ci->ci_data.cpu_uarea_lock); 366 367 while (count != 0) { 368 nuaddr = UAREA_NEXTFREE(uaddr); 369 uvm_km_free(kernel_map, uaddr, USPACE, 370 UVM_KMF_PAGEABLE); 371 uaddr = nuaddr; 372 count--; 373 } 374 } 375 return; 376 } 377 378 ci = curcpu(); 379 if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) { 380 mutex_enter(&ci->ci_data.cpu_uarea_lock); 381 while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) { 382 uaddr = ci->ci_data.cpu_uarea_list; 383 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr); 384 ci->ci_data.cpu_uarea_cnt--; 385 mutex_exit(&ci->ci_data.cpu_uarea_lock); 386 uvm_km_free(kernel_map, uaddr, USPACE, 387 UVM_KMF_PAGEABLE); 388 mutex_enter(&ci->ci_data.cpu_uarea_lock); 389 } 390 mutex_exit(&ci->ci_data.cpu_uarea_lock); 391 } 392 } 393 394 /* 395 * uvm_exit: exit a virtual address space 396 * 397 * - the process passed to us is a dead (pre-zombie) process; we 398 * are running on a different context now (the reaper). 399 * - borrow proc0's address space because freeing the vmspace 400 * of the dead process may block. 401 */ 402 403 void 404 uvm_proc_exit(struct proc *p) 405 { 406 struct lwp *l = curlwp; /* XXX */ 407 struct vmspace *ovm; 408 409 KASSERT(p == l->l_proc); 410 ovm = p->p_vmspace; 411 412 /* 413 * borrow proc0's address space. 414 */ 415 pmap_deactivate(l); 416 p->p_vmspace = proc0.p_vmspace; 417 pmap_activate(l); 418 419 uvmspace_free(ovm); 420 } 421 422 void 423 uvm_lwp_exit(struct lwp *l) 424 { 425 vaddr_t va = USER_TO_UAREA(l->l_addr); 426 427 l->l_flag &= ~LW_INMEM; 428 uvm_uarea_free(va, l->l_cpu); 429 l->l_addr = NULL; 430 } 431 432 /* 433 * uvm_init_limit: init per-process VM limits 434 * 435 * - called for process 0 and then inherited by all others. 436 */ 437 438 void 439 uvm_init_limits(struct proc *p) 440 { 441 442 /* 443 * Set up the initial limits on process VM. Set the maximum 444 * resident set size to be all of (reasonably) available memory. 445 * This causes any single, large process to start random page 446 * replacement once it fills memory. 447 */ 448 449 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ; 450 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap; 451 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ; 452 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap; 453 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free); 454 } 455 456 #ifdef DEBUG 457 int enableswap = 1; 458 int swapdebug = 0; 459 #define SDB_FOLLOW 1 460 #define SDB_SWAPIN 2 461 #define SDB_SWAPOUT 4 462 #endif 463 464 /* 465 * uvm_swapin: swap in an lwp's u-area. 466 * 467 * - must be called with the LWP's swap lock held. 468 * - naturally, must not be called with l == curlwp 469 */ 470 471 void 472 uvm_swapin(struct lwp *l) 473 { 474 vaddr_t addr; 475 int error; 476 477 /* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */ 478 KASSERT(l != curlwp); 479 480 addr = USER_TO_UAREA(l->l_addr); 481 /* make L_INMEM true */ 482 error = uvm_fault_wire(kernel_map, addr, addr + USPACE, 483 VM_PROT_READ | VM_PROT_WRITE, 0); 484 if (error) { 485 panic("uvm_swapin: rewiring stack failed: %d", error); 486 } 487 488 /* 489 * Some architectures need to be notified when the user area has 490 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c). 491 */ 492 cpu_swapin(l); 493 lwp_lock(l); 494 if (l->l_stat == LSRUN) 495 sched_enqueue(l, false); 496 l->l_flag |= LW_INMEM; 497 l->l_swtime = 0; 498 lwp_unlock(l); 499 ++uvmexp.swapins; 500 } 501 502 /* 503 * uvm_kick_scheduler: kick the scheduler into action if not running. 504 * 505 * - called when swapped out processes have been awoken. 506 */ 507 508 void 509 uvm_kick_scheduler(void) 510 { 511 512 if (uvm.swap_running == false) 513 return; 514 515 mutex_enter(&uvm_scheduler_mutex); 516 uvm.scheduler_kicked = true; 517 cv_signal(&uvm.scheduler_cv); 518 mutex_exit(&uvm_scheduler_mutex); 519 } 520 521 /* 522 * uvm_scheduler: process zero main loop 523 * 524 * - attempt to swapin every swaped-out, runnable process in order of 525 * priority. 526 * - if not enough memory, wake the pagedaemon and let it clear space. 527 */ 528 529 void 530 uvm_scheduler(void) 531 { 532 struct lwp *l, *ll; 533 int pri; 534 int ppri; 535 536 l = curlwp; 537 lwp_lock(l); 538 l->l_priority = PRI_VM; 539 l->l_class = SCHED_FIFO; 540 lwp_unlock(l); 541 542 for (;;) { 543 #ifdef DEBUG 544 mutex_enter(&uvm_scheduler_mutex); 545 while (!enableswap) 546 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex); 547 mutex_exit(&uvm_scheduler_mutex); 548 #endif 549 ll = NULL; /* process to choose */ 550 ppri = INT_MIN; /* its priority */ 551 552 mutex_enter(&proclist_lock); 553 LIST_FOREACH(l, &alllwp, l_list) { 554 /* is it a runnable swapped out process? */ 555 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) { 556 pri = l->l_swtime + l->l_slptime - 557 (l->l_proc->p_nice - NZERO) * 8; 558 if (pri > ppri) { /* higher priority? */ 559 ll = l; 560 ppri = pri; 561 } 562 } 563 } 564 #ifdef DEBUG 565 if (swapdebug & SDB_FOLLOW) 566 printf("scheduler: running, procp %p pri %d\n", ll, 567 ppri); 568 #endif 569 /* 570 * Nothing to do, back to sleep 571 */ 572 if ((l = ll) == NULL) { 573 mutex_exit(&proclist_lock); 574 mutex_enter(&uvm_scheduler_mutex); 575 if (uvm.scheduler_kicked == false) 576 cv_wait(&uvm.scheduler_cv, 577 &uvm_scheduler_mutex); 578 uvm.scheduler_kicked = false; 579 mutex_exit(&uvm_scheduler_mutex); 580 continue; 581 } 582 583 /* 584 * we have found swapped out process which we would like 585 * to bring back in. 586 * 587 * XXX: this part is really bogus cuz we could deadlock 588 * on memory despite our feeble check 589 */ 590 if (uvmexp.free > atop(USPACE)) { 591 #ifdef DEBUG 592 if (swapdebug & SDB_SWAPIN) 593 printf("swapin: pid %d(%s)@%p, pri %d " 594 "free %d\n", l->l_proc->p_pid, 595 l->l_proc->p_comm, l->l_addr, ppri, 596 uvmexp.free); 597 #endif 598 mutex_enter(&l->l_swaplock); 599 mutex_exit(&proclist_lock); 600 uvm_swapin(l); 601 mutex_exit(&l->l_swaplock); 602 continue; 603 } else { 604 /* 605 * not enough memory, jab the pageout daemon and 606 * wait til the coast is clear 607 */ 608 mutex_exit(&proclist_lock); 609 #ifdef DEBUG 610 if (swapdebug & SDB_FOLLOW) 611 printf("scheduler: no room for pid %d(%s)," 612 " free %d\n", l->l_proc->p_pid, 613 l->l_proc->p_comm, uvmexp.free); 614 #endif 615 uvm_wait("schedpwait"); 616 #ifdef DEBUG 617 if (swapdebug & SDB_FOLLOW) 618 printf("scheduler: room again, free %d\n", 619 uvmexp.free); 620 #endif 621 } 622 } 623 } 624 625 /* 626 * swappable: is LWP "l" swappable? 627 */ 628 629 static bool 630 swappable(struct lwp *l) 631 { 632 633 if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM) 634 return false; 635 if (l->l_holdcnt != 0) 636 return false; 637 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj) 638 return false; 639 return true; 640 } 641 642 /* 643 * swapout_threads: find threads that can be swapped and unwire their 644 * u-areas. 645 * 646 * - called by the pagedaemon 647 * - try and swap at least one processs 648 * - processes that are sleeping or stopped for maxslp or more seconds 649 * are swapped... otherwise the longest-sleeping or stopped process 650 * is swapped, otherwise the longest resident process... 651 */ 652 653 void 654 uvm_swapout_threads(void) 655 { 656 struct lwp *l; 657 struct lwp *outl, *outl2; 658 int outpri, outpri2; 659 int didswap = 0; 660 extern int maxslp; 661 bool gotit; 662 663 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */ 664 665 #ifdef DEBUG 666 if (!enableswap) 667 return; 668 #endif 669 670 /* 671 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp 672 * outl2/outpri2: the longest resident thread (its swap time) 673 */ 674 outl = outl2 = NULL; 675 outpri = outpri2 = 0; 676 677 restart: 678 mutex_enter(&proclist_lock); 679 LIST_FOREACH(l, &alllwp, l_list) { 680 KASSERT(l->l_proc != NULL); 681 if (!mutex_tryenter(&l->l_swaplock)) 682 continue; 683 if (!swappable(l)) { 684 mutex_exit(&l->l_swaplock); 685 continue; 686 } 687 switch (l->l_stat) { 688 case LSONPROC: 689 break; 690 691 case LSRUN: 692 if (l->l_swtime > outpri2) { 693 outl2 = l; 694 outpri2 = l->l_swtime; 695 } 696 break; 697 698 case LSSLEEP: 699 case LSSTOP: 700 if (l->l_slptime >= maxslp) { 701 mutex_exit(&proclist_lock); 702 uvm_swapout(l); 703 /* 704 * Locking in the wrong direction - 705 * try to prevent the LWP from exiting. 706 */ 707 gotit = mutex_tryenter(&proclist_lock); 708 mutex_exit(&l->l_swaplock); 709 didswap++; 710 if (!gotit) 711 goto restart; 712 continue; 713 } else if (l->l_slptime > outpri) { 714 outl = l; 715 outpri = l->l_slptime; 716 } 717 break; 718 } 719 mutex_exit(&l->l_swaplock); 720 } 721 722 /* 723 * If we didn't get rid of any real duds, toss out the next most 724 * likely sleeping/stopped or running candidate. We only do this 725 * if we are real low on memory since we don't gain much by doing 726 * it (USPACE bytes). 727 */ 728 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) { 729 if ((l = outl) == NULL) 730 l = outl2; 731 #ifdef DEBUG 732 if (swapdebug & SDB_SWAPOUT) 733 printf("swapout_threads: no duds, try procp %p\n", l); 734 #endif 735 if (l) { 736 mutex_enter(&l->l_swaplock); 737 mutex_exit(&proclist_lock); 738 if (swappable(l)) 739 uvm_swapout(l); 740 mutex_exit(&l->l_swaplock); 741 return; 742 } 743 } 744 745 mutex_exit(&proclist_lock); 746 } 747 748 /* 749 * uvm_swapout: swap out lwp "l" 750 * 751 * - currently "swapout" means "unwire U-area" and "pmap_collect()" 752 * the pmap. 753 * - must be called with l->l_swaplock held. 754 * - XXXCDC: should deactivate all process' private anonymous memory 755 */ 756 757 static void 758 uvm_swapout(struct lwp *l) 759 { 760 vaddr_t addr; 761 struct proc *p = l->l_proc; 762 763 KASSERT(mutex_owned(&l->l_swaplock)); 764 765 #ifdef DEBUG 766 if (swapdebug & SDB_SWAPOUT) 767 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n", 768 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat, 769 l->l_slptime, uvmexp.free); 770 #endif 771 772 /* 773 * Mark it as (potentially) swapped out. 774 */ 775 lwp_lock(l); 776 if (!swappable(l)) { 777 KDASSERT(l->l_cpu != curcpu()); 778 lwp_unlock(l); 779 return; 780 } 781 l->l_flag &= ~LW_INMEM; 782 l->l_swtime = 0; 783 if (l->l_stat == LSRUN) 784 sched_dequeue(l); 785 lwp_unlock(l); 786 p->p_stats->p_ru.ru_nswap++; /* XXXSMP */ 787 ++uvmexp.swapouts; 788 789 /* 790 * Do any machine-specific actions necessary before swapout. 791 * This can include saving floating point state, etc. 792 */ 793 cpu_swapout(l); 794 795 /* 796 * Unwire the to-be-swapped process's user struct and kernel stack. 797 */ 798 addr = USER_TO_UAREA(l->l_addr); 799 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */ 800 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map)); 801 } 802 803 /* 804 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring 805 * back into memory if it is currently swapped. 806 */ 807 808 void 809 uvm_lwp_hold(struct lwp *l) 810 { 811 812 /* XXXSMP mutex_enter(&l->l_swaplock); */ 813 if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0) 814 uvm_swapin(l); 815 /* XXXSMP mutex_exit(&l->l_swaplock); */ 816 } 817 818 /* 819 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount 820 * drops to zero, it's eligable to be swapped. 821 */ 822 823 void 824 uvm_lwp_rele(struct lwp *l) 825 { 826 827 KASSERT(l->l_holdcnt != 0); 828 829 /* XXXSMP mutex_enter(&l->l_swaplock); */ 830 l->l_holdcnt--; 831 /* XXXSMP mutex_exit(&l->l_swaplock); */ 832 } 833 834 #ifdef COREDUMP 835 /* 836 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping 837 * a core file. 838 */ 839 840 int 841 uvm_coredump_walkmap(struct proc *p, void *iocookie, 842 int (*func)(struct proc *, void *, struct uvm_coredump_state *), 843 void *cookie) 844 { 845 struct uvm_coredump_state state; 846 struct vmspace *vm = p->p_vmspace; 847 struct vm_map *map = &vm->vm_map; 848 struct vm_map_entry *entry; 849 int error; 850 851 entry = NULL; 852 vm_map_lock_read(map); 853 state.end = 0; 854 for (;;) { 855 if (entry == NULL) 856 entry = map->header.next; 857 else if (!uvm_map_lookup_entry(map, state.end, &entry)) 858 entry = entry->next; 859 if (entry == &map->header) 860 break; 861 862 state.cookie = cookie; 863 if (state.end > entry->start) { 864 state.start = state.end; 865 } else { 866 state.start = entry->start; 867 } 868 state.realend = entry->end; 869 state.end = entry->end; 870 state.prot = entry->protection; 871 state.flags = 0; 872 873 /* 874 * Dump the region unless one of the following is true: 875 * 876 * (1) the region has neither object nor amap behind it 877 * (ie. it has never been accessed). 878 * 879 * (2) the region has no amap and is read-only 880 * (eg. an executable text section). 881 * 882 * (3) the region's object is a device. 883 * 884 * (4) the region is unreadable by the process. 885 */ 886 887 KASSERT(!UVM_ET_ISSUBMAP(entry)); 888 KASSERT(state.start < VM_MAXUSER_ADDRESS); 889 KASSERT(state.end <= VM_MAXUSER_ADDRESS); 890 if (entry->object.uvm_obj == NULL && 891 entry->aref.ar_amap == NULL) { 892 state.realend = state.start; 893 } else if ((entry->protection & VM_PROT_WRITE) == 0 && 894 entry->aref.ar_amap == NULL) { 895 state.realend = state.start; 896 } else if (entry->object.uvm_obj != NULL && 897 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) { 898 state.realend = state.start; 899 } else if ((entry->protection & VM_PROT_READ) == 0) { 900 state.realend = state.start; 901 } else { 902 if (state.start >= (vaddr_t)vm->vm_maxsaddr) 903 state.flags |= UVM_COREDUMP_STACK; 904 905 /* 906 * If this an anonymous entry, only dump instantiated 907 * pages. 908 */ 909 if (entry->object.uvm_obj == NULL) { 910 vaddr_t end; 911 912 amap_lock(entry->aref.ar_amap); 913 for (end = state.start; 914 end < state.end; end += PAGE_SIZE) { 915 struct vm_anon *anon; 916 anon = amap_lookup(&entry->aref, 917 end - entry->start); 918 /* 919 * If we have already encountered an 920 * uninstantiated page, stop at the 921 * first instantied page. 922 */ 923 if (anon != NULL && 924 state.realend != state.end) { 925 state.end = end; 926 break; 927 } 928 929 /* 930 * If this page is the first 931 * uninstantiated page, mark this as 932 * the real ending point. Continue to 933 * counting uninstantiated pages. 934 */ 935 if (anon == NULL && 936 state.realend == state.end) { 937 state.realend = end; 938 } 939 } 940 amap_unlock(entry->aref.ar_amap); 941 } 942 } 943 944 945 vm_map_unlock_read(map); 946 error = (*func)(p, iocookie, &state); 947 if (error) 948 return (error); 949 vm_map_lock_read(map); 950 } 951 vm_map_unlock_read(map); 952 953 return (0); 954 } 955 #endif /* COREDUMP */ 956