1 /* $NetBSD: uvm_glue.c,v 1.84 2005/04/01 11:59:38 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * Copyright (c) 1991, 1993, The Regents of the University of California. 6 * 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * The Mach Operating System project at Carnegie-Mellon University. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by Charles D. Cranor, 23 * Washington University, the University of California, Berkeley and 24 * its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Permission to use, copy, modify and distribute this software and 49 * its documentation is hereby granted, provided that both the copyright 50 * notice and this permission notice appear in all copies of the 51 * software, derivative works or modified versions, and any portions 52 * thereof, and that both notices appear in supporting documentation. 53 * 54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 57 * 58 * Carnegie Mellon requests users of this software to return to 59 * 60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 61 * School of Computer Science 62 * Carnegie Mellon University 63 * Pittsburgh PA 15213-3890 64 * 65 * any improvements or extensions that they make and grant Carnegie the 66 * rights to redistribute these changes. 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.84 2005/04/01 11:59:38 yamt Exp $"); 71 72 #include "opt_kgdb.h" 73 #include "opt_kstack.h" 74 #include "opt_uvmhist.h" 75 76 /* 77 * uvm_glue.c: glue functions 78 */ 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/proc.h> 83 #include <sys/resourcevar.h> 84 #include <sys/buf.h> 85 #include <sys/user.h> 86 87 #include <uvm/uvm.h> 88 89 #include <machine/cpu.h> 90 91 /* 92 * local prototypes 93 */ 94 95 static void uvm_swapout(struct lwp *); 96 97 #define UVM_NUAREA_MAX 16 98 void *uvm_uareas; 99 int uvm_nuarea; 100 struct simplelock uvm_uareas_slock = SIMPLELOCK_INITIALIZER; 101 102 static void uvm_uarea_free(vaddr_t); 103 104 /* 105 * XXXCDC: do these really belong here? 106 */ 107 108 /* 109 * uvm_kernacc: can the kernel access a region of memory 110 * 111 * - used only by /dev/kmem driver (mem.c) 112 */ 113 114 boolean_t 115 uvm_kernacc(addr, len, rw) 116 caddr_t addr; 117 size_t len; 118 int rw; 119 { 120 boolean_t rv; 121 vaddr_t saddr, eaddr; 122 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE; 123 124 saddr = trunc_page((vaddr_t)addr); 125 eaddr = round_page((vaddr_t)addr + len); 126 vm_map_lock_read(kernel_map); 127 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot); 128 vm_map_unlock_read(kernel_map); 129 130 return(rv); 131 } 132 133 #ifdef KGDB 134 /* 135 * Change protections on kernel pages from addr to addr+len 136 * (presumably so debugger can plant a breakpoint). 137 * 138 * We force the protection change at the pmap level. If we were 139 * to use vm_map_protect a change to allow writing would be lazily- 140 * applied meaning we would still take a protection fault, something 141 * we really don't want to do. It would also fragment the kernel 142 * map unnecessarily. We cannot use pmap_protect since it also won't 143 * enforce a write-enable request. Using pmap_enter is the only way 144 * we can ensure the change takes place properly. 145 */ 146 void 147 uvm_chgkprot(addr, len, rw) 148 caddr_t addr; 149 size_t len; 150 int rw; 151 { 152 vm_prot_t prot; 153 paddr_t pa; 154 vaddr_t sva, eva; 155 156 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE; 157 eva = round_page((vaddr_t)addr + len); 158 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) { 159 /* 160 * Extract physical address for the page. 161 */ 162 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE) 163 panic("chgkprot: invalid page"); 164 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED); 165 } 166 pmap_update(pmap_kernel()); 167 } 168 #endif 169 170 /* 171 * uvm_vslock: wire user memory for I/O 172 * 173 * - called from physio and sys___sysctl 174 * - XXXCDC: consider nuking this (or making it a macro?) 175 */ 176 177 int 178 uvm_vslock(p, addr, len, access_type) 179 struct proc *p; 180 caddr_t addr; 181 size_t len; 182 vm_prot_t access_type; 183 { 184 struct vm_map *map; 185 vaddr_t start, end; 186 int error; 187 188 map = &p->p_vmspace->vm_map; 189 start = trunc_page((vaddr_t)addr); 190 end = round_page((vaddr_t)addr + len); 191 error = uvm_fault_wire(map, start, end, VM_FAULT_WIRE, access_type); 192 return error; 193 } 194 195 /* 196 * uvm_vsunlock: unwire user memory wired by uvm_vslock() 197 * 198 * - called from physio and sys___sysctl 199 * - XXXCDC: consider nuking this (or making it a macro?) 200 */ 201 202 void 203 uvm_vsunlock(p, addr, len) 204 struct proc *p; 205 caddr_t addr; 206 size_t len; 207 { 208 uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr), 209 round_page((vaddr_t)addr + len)); 210 } 211 212 /* 213 * uvm_proc_fork: fork a virtual address space 214 * 215 * - the address space is copied as per parent map's inherit values 216 */ 217 void 218 uvm_proc_fork(p1, p2, shared) 219 struct proc *p1, *p2; 220 boolean_t shared; 221 { 222 223 if (shared == TRUE) { 224 p2->p_vmspace = NULL; 225 uvmspace_share(p1, p2); 226 } else { 227 p2->p_vmspace = uvmspace_fork(p1->p_vmspace); 228 } 229 230 cpu_proc_fork(p1, p2); 231 } 232 233 234 /* 235 * uvm_lwp_fork: fork a thread 236 * 237 * - a new "user" structure is allocated for the child process 238 * [filled in by MD layer...] 239 * - if specified, the child gets a new user stack described by 240 * stack and stacksize 241 * - NOTE: the kernel stack may be at a different location in the child 242 * process, and thus addresses of automatic variables may be invalid 243 * after cpu_lwp_fork returns in the child process. We do nothing here 244 * after cpu_lwp_fork returns. 245 * - XXXCDC: we need a way for this to return a failure value rather 246 * than just hang 247 */ 248 void 249 uvm_lwp_fork(l1, l2, stack, stacksize, func, arg) 250 struct lwp *l1, *l2; 251 void *stack; 252 size_t stacksize; 253 void (*func)(void *); 254 void *arg; 255 { 256 struct user *up = l2->l_addr; 257 int error; 258 259 /* 260 * Wire down the U-area for the process, which contains the PCB 261 * and the kernel stack. Wired state is stored in l->l_flag's 262 * L_INMEM bit rather than in the vm_map_entry's wired count 263 * to prevent kernel_map fragmentation. If we reused a cached U-area, 264 * L_INMEM will already be set and we don't need to do anything. 265 * 266 * Note the kernel stack gets read/write accesses right off the bat. 267 */ 268 269 if ((l2->l_flag & L_INMEM) == 0) { 270 error = uvm_fault_wire(kernel_map, (vaddr_t)up, 271 (vaddr_t)up + USPACE, VM_FAULT_WIRE, 272 VM_PROT_READ | VM_PROT_WRITE); 273 if (error) 274 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error); 275 #ifdef PMAP_UAREA 276 /* Tell the pmap this is a u-area mapping */ 277 PMAP_UAREA((vaddr_t)up); 278 #endif 279 l2->l_flag |= L_INMEM; 280 } 281 282 #ifdef KSTACK_CHECK_MAGIC 283 /* 284 * fill stack with magic number 285 */ 286 kstack_setup_magic(l2); 287 #endif 288 289 /* 290 * cpu_lwp_fork() copy and update the pcb, and make the child ready 291 * to run. If this is a normal user fork, the child will exit 292 * directly to user mode via child_return() on its first time 293 * slice and will not return here. If this is a kernel thread, 294 * the specified entry point will be executed. 295 */ 296 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg); 297 } 298 299 /* 300 * uvm_uarea_alloc: allocate a u-area 301 */ 302 303 boolean_t 304 uvm_uarea_alloc(vaddr_t *uaddrp) 305 { 306 vaddr_t uaddr; 307 308 #ifndef USPACE_ALIGN 309 #define USPACE_ALIGN 0 310 #endif 311 312 simple_lock(&uvm_uareas_slock); 313 if (uvm_nuarea > 0) { 314 uaddr = (vaddr_t)uvm_uareas; 315 uvm_uareas = *(void **)uvm_uareas; 316 uvm_nuarea--; 317 simple_unlock(&uvm_uareas_slock); 318 *uaddrp = uaddr; 319 return TRUE; 320 } else { 321 simple_unlock(&uvm_uareas_slock); 322 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN, 323 UVM_KMF_PAGEABLE); 324 return FALSE; 325 } 326 } 327 328 /* 329 * uvm_uarea_free: free a u-area; never blocks 330 */ 331 332 static __inline__ void 333 uvm_uarea_free(vaddr_t uaddr) 334 { 335 simple_lock(&uvm_uareas_slock); 336 *(void **)uaddr = uvm_uareas; 337 uvm_uareas = (void *)uaddr; 338 uvm_nuarea++; 339 simple_unlock(&uvm_uareas_slock); 340 } 341 342 /* 343 * uvm_uarea_drain: return memory of u-areas over limit 344 * back to system 345 */ 346 347 void 348 uvm_uarea_drain(boolean_t empty) 349 { 350 int leave = empty ? 0 : UVM_NUAREA_MAX; 351 vaddr_t uaddr; 352 353 if (uvm_nuarea <= leave) 354 return; 355 356 simple_lock(&uvm_uareas_slock); 357 while(uvm_nuarea > leave) { 358 uaddr = (vaddr_t)uvm_uareas; 359 uvm_uareas = *(void **)uvm_uareas; 360 uvm_nuarea--; 361 simple_unlock(&uvm_uareas_slock); 362 uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE); 363 simple_lock(&uvm_uareas_slock); 364 } 365 simple_unlock(&uvm_uareas_slock); 366 } 367 368 /* 369 * uvm_exit: exit a virtual address space 370 * 371 * - the process passed to us is a dead (pre-zombie) process; we 372 * are running on a different context now (the reaper). 373 * - borrow proc0's address space because freeing the vmspace 374 * of the dead process may block. 375 */ 376 377 void 378 uvm_proc_exit(p) 379 struct proc *p; 380 { 381 struct lwp *l = curlwp; /* XXX */ 382 struct vmspace *ovm; 383 384 KASSERT(p == l->l_proc); 385 ovm = p->p_vmspace; 386 387 /* 388 * borrow proc0's address space. 389 */ 390 pmap_deactivate(l); 391 p->p_vmspace = proc0.p_vmspace; 392 pmap_activate(l); 393 394 uvmspace_free(ovm); 395 } 396 397 void 398 uvm_lwp_exit(struct lwp *l) 399 { 400 vaddr_t va = (vaddr_t)l->l_addr; 401 402 l->l_flag &= ~L_INMEM; 403 uvm_uarea_free(va); 404 l->l_addr = NULL; 405 } 406 407 /* 408 * uvm_init_limit: init per-process VM limits 409 * 410 * - called for process 0 and then inherited by all others. 411 */ 412 413 void 414 uvm_init_limits(p) 415 struct proc *p; 416 { 417 418 /* 419 * Set up the initial limits on process VM. Set the maximum 420 * resident set size to be all of (reasonably) available memory. 421 * This causes any single, large process to start random page 422 * replacement once it fills memory. 423 */ 424 425 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ; 426 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap; 427 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ; 428 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap; 429 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free); 430 } 431 432 #ifdef DEBUG 433 int enableswap = 1; 434 int swapdebug = 0; 435 #define SDB_FOLLOW 1 436 #define SDB_SWAPIN 2 437 #define SDB_SWAPOUT 4 438 #endif 439 440 /* 441 * uvm_swapin: swap in a process's u-area. 442 */ 443 444 void 445 uvm_swapin(l) 446 struct lwp *l; 447 { 448 vaddr_t addr; 449 int s, error; 450 451 addr = (vaddr_t)l->l_addr; 452 /* make L_INMEM true */ 453 error = uvm_fault_wire(kernel_map, addr, addr + USPACE, VM_FAULT_WIRE, 454 VM_PROT_READ | VM_PROT_WRITE); 455 if (error) { 456 panic("uvm_swapin: rewiring stack failed: %d", error); 457 } 458 459 /* 460 * Some architectures need to be notified when the user area has 461 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c). 462 */ 463 cpu_swapin(l); 464 SCHED_LOCK(s); 465 if (l->l_stat == LSRUN) 466 setrunqueue(l); 467 l->l_flag |= L_INMEM; 468 SCHED_UNLOCK(s); 469 l->l_swtime = 0; 470 ++uvmexp.swapins; 471 } 472 473 /* 474 * uvm_scheduler: process zero main loop 475 * 476 * - attempt to swapin every swaped-out, runnable process in order of 477 * priority. 478 * - if not enough memory, wake the pagedaemon and let it clear space. 479 */ 480 481 void 482 uvm_scheduler() 483 { 484 struct lwp *l, *ll; 485 int pri; 486 int ppri; 487 488 loop: 489 #ifdef DEBUG 490 while (!enableswap) 491 tsleep(&proc0, PVM, "noswap", 0); 492 #endif 493 ll = NULL; /* process to choose */ 494 ppri = INT_MIN; /* its priority */ 495 proclist_lock_read(); 496 497 LIST_FOREACH(l, &alllwp, l_list) { 498 /* is it a runnable swapped out process? */ 499 if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) { 500 pri = l->l_swtime + l->l_slptime - 501 (l->l_proc->p_nice - NZERO) * 8; 502 if (pri > ppri) { /* higher priority? remember it. */ 503 ll = l; 504 ppri = pri; 505 } 506 } 507 } 508 /* 509 * XXXSMP: possible unlock/sleep race between here and the 510 * "scheduler" tsleep below.. 511 */ 512 proclist_unlock_read(); 513 514 #ifdef DEBUG 515 if (swapdebug & SDB_FOLLOW) 516 printf("scheduler: running, procp %p pri %d\n", ll, ppri); 517 #endif 518 /* 519 * Nothing to do, back to sleep 520 */ 521 if ((l = ll) == NULL) { 522 tsleep(&proc0, PVM, "scheduler", 0); 523 goto loop; 524 } 525 526 /* 527 * we have found swapped out process which we would like to bring 528 * back in. 529 * 530 * XXX: this part is really bogus cuz we could deadlock on memory 531 * despite our feeble check 532 */ 533 if (uvmexp.free > atop(USPACE)) { 534 #ifdef DEBUG 535 if (swapdebug & SDB_SWAPIN) 536 printf("swapin: pid %d(%s)@%p, pri %d free %d\n", 537 l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free); 538 #endif 539 uvm_swapin(l); 540 goto loop; 541 } 542 /* 543 * not enough memory, jab the pageout daemon and wait til the coast 544 * is clear 545 */ 546 #ifdef DEBUG 547 if (swapdebug & SDB_FOLLOW) 548 printf("scheduler: no room for pid %d(%s), free %d\n", 549 l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free); 550 #endif 551 uvm_wait("schedpwait"); 552 #ifdef DEBUG 553 if (swapdebug & SDB_FOLLOW) 554 printf("scheduler: room again, free %d\n", uvmexp.free); 555 #endif 556 goto loop; 557 } 558 559 /* 560 * swappable: is LWP "l" swappable? 561 */ 562 563 #define swappable(l) \ 564 (((l)->l_flag & (L_INMEM)) && \ 565 ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) && \ 566 (l)->l_holdcnt == 0) 567 568 /* 569 * swapout_threads: find threads that can be swapped and unwire their 570 * u-areas. 571 * 572 * - called by the pagedaemon 573 * - try and swap at least one processs 574 * - processes that are sleeping or stopped for maxslp or more seconds 575 * are swapped... otherwise the longest-sleeping or stopped process 576 * is swapped, otherwise the longest resident process... 577 */ 578 579 void 580 uvm_swapout_threads() 581 { 582 struct lwp *l; 583 struct lwp *outl, *outl2; 584 int outpri, outpri2; 585 int didswap = 0; 586 extern int maxslp; 587 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */ 588 589 #ifdef DEBUG 590 if (!enableswap) 591 return; 592 #endif 593 594 /* 595 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp 596 * outl2/outpri2: the longest resident thread (its swap time) 597 */ 598 outl = outl2 = NULL; 599 outpri = outpri2 = 0; 600 proclist_lock_read(); 601 LIST_FOREACH(l, &alllwp, l_list) { 602 KASSERT(l->l_proc != NULL); 603 if (!swappable(l)) 604 continue; 605 switch (l->l_stat) { 606 case LSONPROC: 607 KDASSERT(l->l_cpu != curcpu()); 608 continue; 609 610 case LSRUN: 611 if (l->l_swtime > outpri2) { 612 outl2 = l; 613 outpri2 = l->l_swtime; 614 } 615 continue; 616 617 case LSSLEEP: 618 case LSSTOP: 619 if (l->l_slptime >= maxslp) { 620 uvm_swapout(l); 621 didswap++; 622 } else if (l->l_slptime > outpri) { 623 outl = l; 624 outpri = l->l_slptime; 625 } 626 continue; 627 } 628 } 629 proclist_unlock_read(); 630 631 /* 632 * If we didn't get rid of any real duds, toss out the next most 633 * likely sleeping/stopped or running candidate. We only do this 634 * if we are real low on memory since we don't gain much by doing 635 * it (USPACE bytes). 636 */ 637 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) { 638 if ((l = outl) == NULL) 639 l = outl2; 640 #ifdef DEBUG 641 if (swapdebug & SDB_SWAPOUT) 642 printf("swapout_threads: no duds, try procp %p\n", l); 643 #endif 644 if (l) 645 uvm_swapout(l); 646 } 647 } 648 649 /* 650 * uvm_swapout: swap out lwp "l" 651 * 652 * - currently "swapout" means "unwire U-area" and "pmap_collect()" 653 * the pmap. 654 * - XXXCDC: should deactivate all process' private anonymous memory 655 */ 656 657 static void 658 uvm_swapout(l) 659 struct lwp *l; 660 { 661 vaddr_t addr; 662 int s; 663 struct proc *p = l->l_proc; 664 665 #ifdef DEBUG 666 if (swapdebug & SDB_SWAPOUT) 667 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n", 668 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat, 669 l->l_slptime, uvmexp.free); 670 #endif 671 672 /* 673 * Mark it as (potentially) swapped out. 674 */ 675 SCHED_LOCK(s); 676 if (l->l_stat == LSONPROC) { 677 KDASSERT(l->l_cpu != curcpu()); 678 SCHED_UNLOCK(s); 679 return; 680 } 681 l->l_flag &= ~L_INMEM; 682 if (l->l_stat == LSRUN) 683 remrunqueue(l); 684 SCHED_UNLOCK(s); 685 l->l_swtime = 0; 686 p->p_stats->p_ru.ru_nswap++; 687 ++uvmexp.swapouts; 688 689 /* 690 * Do any machine-specific actions necessary before swapout. 691 * This can include saving floating point state, etc. 692 */ 693 cpu_swapout(l); 694 695 /* 696 * Unwire the to-be-swapped process's user struct and kernel stack. 697 */ 698 addr = (vaddr_t)l->l_addr; 699 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */ 700 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map)); 701 } 702 703 /* 704 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping 705 * a core file. 706 */ 707 708 int 709 uvm_coredump_walkmap(p, vp, cred, func, cookie) 710 struct proc *p; 711 struct vnode *vp; 712 struct ucred *cred; 713 int (*func)(struct proc *, struct vnode *, struct ucred *, 714 struct uvm_coredump_state *); 715 void *cookie; 716 { 717 struct uvm_coredump_state state; 718 struct vmspace *vm = p->p_vmspace; 719 struct vm_map *map = &vm->vm_map; 720 struct vm_map_entry *entry; 721 int error; 722 723 entry = NULL; 724 vm_map_lock_read(map); 725 for (;;) { 726 if (entry == NULL) 727 entry = map->header.next; 728 else if (!uvm_map_lookup_entry(map, state.end, &entry)) 729 entry = entry->next; 730 if (entry == &map->header) 731 break; 732 733 state.cookie = cookie; 734 state.start = entry->start; 735 state.end = entry->end; 736 state.prot = entry->protection; 737 state.flags = 0; 738 739 /* 740 * Dump the region unless one of the following is true: 741 * 742 * (1) the region has neither object nor amap behind it 743 * (ie. it has never been accessed). 744 * 745 * (2) the region has no amap and is read-only 746 * (eg. an executable text section). 747 * 748 * (3) the region's object is a device. 749 */ 750 751 KASSERT(!UVM_ET_ISSUBMAP(entry)); 752 KASSERT(state.start < VM_MAXUSER_ADDRESS); 753 KASSERT(state.end <= VM_MAXUSER_ADDRESS); 754 if (entry->object.uvm_obj == NULL && 755 entry->aref.ar_amap == NULL) { 756 state.flags |= UVM_COREDUMP_NODUMP; 757 } 758 if ((entry->protection & VM_PROT_WRITE) == 0 && 759 entry->aref.ar_amap == NULL) { 760 state.flags |= UVM_COREDUMP_NODUMP; 761 } 762 if (entry->object.uvm_obj != NULL && 763 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) { 764 state.flags |= UVM_COREDUMP_NODUMP; 765 } 766 if (state.start >= (vaddr_t)vm->vm_maxsaddr) { 767 state.flags |= UVM_COREDUMP_STACK; 768 } 769 770 vm_map_unlock_read(map); 771 error = (*func)(p, vp, cred, &state); 772 if (error) 773 return (error); 774 vm_map_lock_read(map); 775 } 776 vm_map_unlock_read(map); 777 778 return (0); 779 } 780