xref: /netbsd-src/sys/uvm/uvm_glue.c (revision 08c81a9c2dc8c7300e893321eb65c0925d60871c)
1 /*	$NetBSD: uvm_glue.c,v 1.59 2002/07/02 20:27:48 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.59 2002/07/02 20:27:48 yamt Exp $");
71 
72 #include "opt_kgdb.h"
73 #include "opt_kstack.h"
74 #include "opt_sysv.h"
75 #include "opt_uvmhist.h"
76 
77 /*
78  * uvm_glue.c: glue functions
79  */
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 #ifdef SYSVSHM
88 #include <sys/shm.h>
89 #endif
90 
91 #include <uvm/uvm.h>
92 
93 #include <machine/cpu.h>
94 
95 /*
96  * local prototypes
97  */
98 
99 static void uvm_swapout __P((struct proc *));
100 
101 /*
102  * XXXCDC: do these really belong here?
103  */
104 
105 int readbuffers = 0;		/* allow KGDB to read kern buffer pool */
106 				/* XXX: see uvm_kernacc */
107 
108 
109 /*
110  * uvm_kernacc: can the kernel access a region of memory
111  *
112  * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
113  */
114 
115 boolean_t
116 uvm_kernacc(addr, len, rw)
117 	caddr_t addr;
118 	size_t len;
119 	int rw;
120 {
121 	boolean_t rv;
122 	vaddr_t saddr, eaddr;
123 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
124 
125 	saddr = trunc_page((vaddr_t)addr);
126 	eaddr = round_page((vaddr_t)addr + len);
127 	vm_map_lock_read(kernel_map);
128 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
129 	vm_map_unlock_read(kernel_map);
130 
131 	/*
132 	 * XXX there are still some things (e.g. the buffer cache) that
133 	 * are managed behind the VM system's back so even though an
134 	 * address is accessible in the mind of the VM system, there may
135 	 * not be physical pages where the VM thinks there is.  This can
136 	 * lead to bogus allocation of pages in the kernel address space
137 	 * or worse, inconsistencies at the pmap level.  We only worry
138 	 * about the buffer cache for now.
139 	 */
140 	if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
141 			     saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
142 		rv = FALSE;
143 	return(rv);
144 }
145 
146 /*
147  * uvm_useracc: can the user access it?
148  *
149  * - called from physio() and sys___sysctl().
150  */
151 
152 boolean_t
153 uvm_useracc(addr, len, rw)
154 	caddr_t addr;
155 	size_t len;
156 	int rw;
157 {
158 	struct vm_map *map;
159 	boolean_t rv;
160 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
161 
162 	/* XXX curproc */
163 	map = &curproc->p_vmspace->vm_map;
164 
165 	vm_map_lock_read(map);
166 	rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
167 	    round_page((vaddr_t)addr + len), prot);
168 	vm_map_unlock_read(map);
169 
170 	return(rv);
171 }
172 
173 #ifdef KGDB
174 /*
175  * Change protections on kernel pages from addr to addr+len
176  * (presumably so debugger can plant a breakpoint).
177  *
178  * We force the protection change at the pmap level.  If we were
179  * to use vm_map_protect a change to allow writing would be lazily-
180  * applied meaning we would still take a protection fault, something
181  * we really don't want to do.  It would also fragment the kernel
182  * map unnecessarily.  We cannot use pmap_protect since it also won't
183  * enforce a write-enable request.  Using pmap_enter is the only way
184  * we can ensure the change takes place properly.
185  */
186 void
187 uvm_chgkprot(addr, len, rw)
188 	caddr_t addr;
189 	size_t len;
190 	int rw;
191 {
192 	vm_prot_t prot;
193 	paddr_t pa;
194 	vaddr_t sva, eva;
195 
196 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
197 	eva = round_page((vaddr_t)addr + len);
198 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
199 		/*
200 		 * Extract physical address for the page.
201 		 */
202 		if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
203 			panic("chgkprot: invalid page");
204 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
205 	}
206 	pmap_update(pmap_kernel());
207 }
208 #endif
209 
210 /*
211  * uvm_vslock: wire user memory for I/O
212  *
213  * - called from physio and sys___sysctl
214  * - XXXCDC: consider nuking this (or making it a macro?)
215  */
216 
217 int
218 uvm_vslock(p, addr, len, access_type)
219 	struct proc *p;
220 	caddr_t	addr;
221 	size_t	len;
222 	vm_prot_t access_type;
223 {
224 	struct vm_map *map;
225 	vaddr_t start, end;
226 	int error;
227 
228 	map = &p->p_vmspace->vm_map;
229 	start = trunc_page((vaddr_t)addr);
230 	end = round_page((vaddr_t)addr + len);
231 	error = uvm_fault_wire(map, start, end, VM_FAULT_WIRE, access_type);
232 	return error;
233 }
234 
235 /*
236  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
237  *
238  * - called from physio and sys___sysctl
239  * - XXXCDC: consider nuking this (or making it a macro?)
240  */
241 
242 void
243 uvm_vsunlock(p, addr, len)
244 	struct proc *p;
245 	caddr_t	addr;
246 	size_t	len;
247 {
248 	uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
249 		round_page((vaddr_t)addr + len));
250 }
251 
252 /*
253  * uvm_fork: fork a virtual address space
254  *
255  * - the address space is copied as per parent map's inherit values
256  * - a new "user" structure is allocated for the child process
257  *	[filled in by MD layer...]
258  * - if specified, the child gets a new user stack described by
259  *	stack and stacksize
260  * - NOTE: the kernel stack may be at a different location in the child
261  *	process, and thus addresses of automatic variables may be invalid
262  *	after cpu_fork returns in the child process.  We do nothing here
263  *	after cpu_fork returns.
264  * - XXXCDC: we need a way for this to return a failure value rather
265  *   than just hang
266  */
267 void
268 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
269 	struct proc *p1, *p2;
270 	boolean_t shared;
271 	void *stack;
272 	size_t stacksize;
273 	void (*func) __P((void *));
274 	void *arg;
275 {
276 	struct user *up = p2->p_addr;
277 	int error;
278 
279 	if (shared == TRUE) {
280 		p2->p_vmspace = NULL;
281 		uvmspace_share(p1, p2);
282 	} else
283 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
284 
285 	/*
286 	 * Wire down the U-area for the process, which contains the PCB
287 	 * and the kernel stack.  Wired state is stored in p->p_flag's
288 	 * P_INMEM bit rather than in the vm_map_entry's wired count
289 	 * to prevent kernel_map fragmentation.
290 	 *
291 	 * Note the kernel stack gets read/write accesses right off
292 	 * the bat.
293 	 */
294 	error = uvm_fault_wire(kernel_map, (vaddr_t)up, (vaddr_t)up + USPACE,
295 	    VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
296 	if (error)
297 		panic("uvm_fork: uvm_fault_wire failed: %d", error);
298 
299 #ifdef KSTACK_CHECK_MAGIC
300 	/*
301 	 * fill stack with magic number
302 	 */
303 	kstack_setup_magic(p2);
304 #endif
305 
306 	/*
307 	 * p_stats currently points at a field in the user struct.  Copy
308 	 * parts of p_stats, and zero out the rest.
309 	 */
310 	p2->p_stats = &up->u_stats;
311 	memset(&up->u_stats.pstat_startzero, 0,
312 	       ((caddr_t)&up->u_stats.pstat_endzero -
313 		(caddr_t)&up->u_stats.pstat_startzero));
314 	memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
315 	       ((caddr_t)&up->u_stats.pstat_endcopy -
316 		(caddr_t)&up->u_stats.pstat_startcopy));
317 
318 	/*
319 	 * cpu_fork() copy and update the pcb, and make the child ready
320 	 * to run.  If this is a normal user fork, the child will exit
321 	 * directly to user mode via child_return() on its first time
322 	 * slice and will not return here.  If this is a kernel thread,
323 	 * the specified entry point will be executed.
324 	 */
325 	cpu_fork(p1, p2, stack, stacksize, func, arg);
326 }
327 
328 /*
329  * uvm_exit: exit a virtual address space
330  *
331  * - the process passed to us is a dead (pre-zombie) process; we
332  *   are running on a different context now (the reaper).
333  * - we must run in a separate thread because freeing the vmspace
334  *   of the dead process may block.
335  */
336 void
337 uvm_exit(p)
338 	struct proc *p;
339 {
340 	vaddr_t va = (vaddr_t)p->p_addr;
341 
342 	uvmspace_free(p->p_vmspace);
343 	p->p_flag &= ~P_INMEM;
344 	uvm_km_free(kernel_map, va, USPACE);
345 	p->p_addr = NULL;
346 }
347 
348 /*
349  * uvm_init_limit: init per-process VM limits
350  *
351  * - called for process 0 and then inherited by all others.
352  */
353 void
354 uvm_init_limits(p)
355 	struct proc *p;
356 {
357 
358 	/*
359 	 * Set up the initial limits on process VM.  Set the maximum
360 	 * resident set size to be all of (reasonably) available memory.
361 	 * This causes any single, large process to start random page
362 	 * replacement once it fills memory.
363 	 */
364 
365 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
366 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
367 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
368 	p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
369 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
370 }
371 
372 #ifdef DEBUG
373 int	enableswap = 1;
374 int	swapdebug = 0;
375 #define	SDB_FOLLOW	1
376 #define SDB_SWAPIN	2
377 #define SDB_SWAPOUT	4
378 #endif
379 
380 /*
381  * uvm_swapin: swap in a process's u-area.
382  */
383 
384 void
385 uvm_swapin(p)
386 	struct proc *p;
387 {
388 	vaddr_t addr;
389 	int s, error;
390 
391 	addr = (vaddr_t)p->p_addr;
392 	/* make P_INMEM true */
393 	error = uvm_fault_wire(kernel_map, addr, addr + USPACE, VM_FAULT_WIRE,
394 	    VM_PROT_READ | VM_PROT_WRITE);
395 	if (error) {
396 		panic("uvm_swapin: rewiring stack failed: %d", error);
397 	}
398 
399 	/*
400 	 * Some architectures need to be notified when the user area has
401 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
402 	 */
403 	cpu_swapin(p);
404 	SCHED_LOCK(s);
405 	if (p->p_stat == SRUN)
406 		setrunqueue(p);
407 	p->p_flag |= P_INMEM;
408 	SCHED_UNLOCK(s);
409 	p->p_swtime = 0;
410 	++uvmexp.swapins;
411 }
412 
413 /*
414  * uvm_scheduler: process zero main loop
415  *
416  * - attempt to swapin every swaped-out, runnable process in order of
417  *	priority.
418  * - if not enough memory, wake the pagedaemon and let it clear space.
419  */
420 
421 void
422 uvm_scheduler()
423 {
424 	struct proc *p;
425 	int pri;
426 	struct proc *pp;
427 	int ppri;
428 
429 loop:
430 #ifdef DEBUG
431 	while (!enableswap)
432 		tsleep(&proc0, PVM, "noswap", 0);
433 #endif
434 	pp = NULL;		/* process to choose */
435 	ppri = INT_MIN;	/* its priority */
436 	proclist_lock_read();
437 	LIST_FOREACH(p, &allproc, p_list) {
438 
439 		/* is it a runnable swapped out process? */
440 		if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
441 			pri = p->p_swtime + p->p_slptime -
442 			    (p->p_nice - NZERO) * 8;
443 			if (pri > ppri) {   /* higher priority?  remember it. */
444 				pp = p;
445 				ppri = pri;
446 			}
447 		}
448 	}
449 	/*
450 	 * XXXSMP: possible unlock/sleep race between here and the
451 	 * "scheduler" tsleep below..
452 	 */
453 	proclist_unlock_read();
454 
455 #ifdef DEBUG
456 	if (swapdebug & SDB_FOLLOW)
457 		printf("scheduler: running, procp %p pri %d\n", pp, ppri);
458 #endif
459 	/*
460 	 * Nothing to do, back to sleep
461 	 */
462 	if ((p = pp) == NULL) {
463 		tsleep(&proc0, PVM, "scheduler", 0);
464 		goto loop;
465 	}
466 
467 	/*
468 	 * we have found swapped out process which we would like to bring
469 	 * back in.
470 	 *
471 	 * XXX: this part is really bogus cuz we could deadlock on memory
472 	 * despite our feeble check
473 	 */
474 	if (uvmexp.free > atop(USPACE)) {
475 #ifdef DEBUG
476 		if (swapdebug & SDB_SWAPIN)
477 			printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
478 	     p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
479 #endif
480 		uvm_swapin(p);
481 		goto loop;
482 	}
483 	/*
484 	 * not enough memory, jab the pageout daemon and wait til the coast
485 	 * is clear
486 	 */
487 #ifdef DEBUG
488 	if (swapdebug & SDB_FOLLOW)
489 		printf("scheduler: no room for pid %d(%s), free %d\n",
490 	   p->p_pid, p->p_comm, uvmexp.free);
491 #endif
492 	uvm_wait("schedpwait");
493 #ifdef DEBUG
494 	if (swapdebug & SDB_FOLLOW)
495 		printf("scheduler: room again, free %d\n", uvmexp.free);
496 #endif
497 	goto loop;
498 }
499 
500 /*
501  * swappable: is process "p" swappable?
502  */
503 
504 #define	swappable(p)							\
505 	(((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM &&	\
506 	 (p)->p_holdcnt == 0)
507 
508 /*
509  * swapout_threads: find threads that can be swapped and unwire their
510  *	u-areas.
511  *
512  * - called by the pagedaemon
513  * - try and swap at least one processs
514  * - processes that are sleeping or stopped for maxslp or more seconds
515  *   are swapped... otherwise the longest-sleeping or stopped process
516  *   is swapped, otherwise the longest resident process...
517  */
518 void
519 uvm_swapout_threads()
520 {
521 	struct proc *p;
522 	struct proc *outp, *outp2;
523 	int outpri, outpri2;
524 	int didswap = 0;
525 	extern int maxslp;
526 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
527 
528 #ifdef DEBUG
529 	if (!enableswap)
530 		return;
531 #endif
532 
533 	/*
534 	 * outp/outpri  : stop/sleep process with largest sleeptime < maxslp
535 	 * outp2/outpri2: the longest resident process (its swap time)
536 	 */
537 	outp = outp2 = NULL;
538 	outpri = outpri2 = 0;
539 	proclist_lock_read();
540 	LIST_FOREACH(p, &allproc, p_list) {
541 		if (!swappable(p))
542 			continue;
543 		switch (p->p_stat) {
544 		case SRUN:
545 		case SONPROC:
546 			if (p->p_swtime > outpri2) {
547 				outp2 = p;
548 				outpri2 = p->p_swtime;
549 			}
550 			continue;
551 
552 		case SSLEEP:
553 		case SSTOP:
554 			if (p->p_slptime >= maxslp) {
555 				uvm_swapout(p);
556 				didswap++;
557 			} else if (p->p_slptime > outpri) {
558 				outp = p;
559 				outpri = p->p_slptime;
560 			}
561 			continue;
562 		}
563 	}
564 	proclist_unlock_read();
565 
566 	/*
567 	 * If we didn't get rid of any real duds, toss out the next most
568 	 * likely sleeping/stopped or running candidate.  We only do this
569 	 * if we are real low on memory since we don't gain much by doing
570 	 * it (USPACE bytes).
571 	 */
572 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
573 		if ((p = outp) == NULL)
574 			p = outp2;
575 #ifdef DEBUG
576 		if (swapdebug & SDB_SWAPOUT)
577 			printf("swapout_threads: no duds, try procp %p\n", p);
578 #endif
579 		if (p)
580 			uvm_swapout(p);
581 	}
582 }
583 
584 /*
585  * uvm_swapout: swap out process "p"
586  *
587  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
588  *   the pmap.
589  * - XXXCDC: should deactivate all process' private anonymous memory
590  */
591 
592 static void
593 uvm_swapout(p)
594 	struct proc *p;
595 {
596 	vaddr_t addr;
597 	int s;
598 
599 #ifdef DEBUG
600 	if (swapdebug & SDB_SWAPOUT)
601 		printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
602 	   p->p_pid, p->p_comm, p->p_addr, p->p_stat,
603 	   p->p_slptime, uvmexp.free);
604 #endif
605 
606 	/*
607 	 * Do any machine-specific actions necessary before swapout.
608 	 * This can include saving floating point state, etc.
609 	 */
610 	cpu_swapout(p);
611 
612 	/*
613 	 * Mark it as (potentially) swapped out.
614 	 */
615 	SCHED_LOCK(s);
616 	p->p_flag &= ~P_INMEM;
617 	if (p->p_stat == SRUN)
618 		remrunqueue(p);
619 	SCHED_UNLOCK(s);
620 	p->p_swtime = 0;
621 	p->p_stats->p_ru.ru_nswap++;
622 	++uvmexp.swapouts;
623 
624 	/*
625 	 * Unwire the to-be-swapped process's user struct and kernel stack.
626 	 */
627 	addr = (vaddr_t)p->p_addr;
628 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
629 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
630 }
631 
632 /*
633  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
634  * a core file.
635  */
636 
637 int
638 uvm_coredump_walkmap(p, vp, cred, func, cookie)
639 	struct proc *p;
640 	struct vnode *vp;
641 	struct ucred *cred;
642 	int (*func)(struct proc *, struct vnode *, struct ucred *,
643 	    struct uvm_coredump_state *);
644 	void *cookie;
645 {
646 	struct uvm_coredump_state state;
647 	struct vmspace *vm = p->p_vmspace;
648 	struct vm_map *map = &vm->vm_map;
649 	struct vm_map_entry *entry;
650 	vaddr_t maxstack;
651 	int error;
652 
653 	maxstack = trunc_page(USRSTACK - ctob(vm->vm_ssize));
654 
655 	for (entry = map->header.next; entry != &map->header;
656 	     entry = entry->next) {
657 		/* Should never happen for a user process. */
658 		if (UVM_ET_ISSUBMAP(entry))
659 			panic("uvm_coredump_walkmap: user process with "
660 			    "submap?");
661 
662 		state.cookie = cookie;
663 		state.start = entry->start;
664 		state.end = entry->end;
665 		state.prot = entry->protection;
666 		state.flags = 0;
667 
668 		if (state.start >= VM_MAXUSER_ADDRESS)
669 			continue;
670 
671 		if (state.end > VM_MAXUSER_ADDRESS)
672 			state.end = VM_MAXUSER_ADDRESS;
673 
674 		if (state.start >= (vaddr_t)vm->vm_maxsaddr) {
675 			if (state.end <= maxstack)
676 				continue;
677 			if (state.start < maxstack)
678 				state.start = maxstack;
679 			state.flags |= UVM_COREDUMP_STACK;
680 		}
681 
682 		if ((entry->protection & VM_PROT_WRITE) == 0)
683 			state.flags |= UVM_COREDUMP_NODUMP;
684 
685 		if (entry->object.uvm_obj != NULL &&
686 		    entry->object.uvm_obj->pgops == &uvm_deviceops)
687 			state.flags |= UVM_COREDUMP_NODUMP;
688 
689 		error = (*func)(p, vp, cred, &state);
690 		if (error)
691 			return (error);
692 	}
693 
694 	return (0);
695 }
696