1 /* $NetBSD: uvm_fault.c,v 1.206 2019/05/28 08:59:35 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 28 */ 29 30 /* 31 * uvm_fault.c: fault handler 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.206 2019/05/28 08:59:35 msaitoh Exp $"); 36 37 #include "opt_uvmhist.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/mman.h> 43 44 #include <uvm/uvm.h> 45 46 /* 47 * 48 * a word on page faults: 49 * 50 * types of page faults we handle: 51 * 52 * CASE 1: upper layer faults CASE 2: lower layer faults 53 * 54 * CASE 1A CASE 1B CASE 2A CASE 2B 55 * read/write1 write>1 read/write +-cow_write/zero 56 * | | | | 57 * +--|--+ +--|--+ +-----+ + | + | +-----+ 58 * amap | V | | ---------> new | | | | ^ | 59 * +-----+ +-----+ +-----+ + | + | +--|--+ 60 * | | | 61 * +-----+ +-----+ +--|--+ | +--|--+ 62 * uobj | d/c | | d/c | | V | +----+ | 63 * +-----+ +-----+ +-----+ +-----+ 64 * 65 * d/c = don't care 66 * 67 * case [0]: layerless fault 68 * no amap or uobj is present. this is an error. 69 * 70 * case [1]: upper layer fault [anon active] 71 * 1A: [read] or [write with anon->an_ref == 1] 72 * I/O takes place in upper level anon and uobj is not touched. 73 * 1B: [write with anon->an_ref > 1] 74 * new anon is alloc'd and data is copied off ["COW"] 75 * 76 * case [2]: lower layer fault [uobj] 77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 78 * I/O takes place directly in object. 79 * 2B: [write to copy_on_write] or [read on NULL uobj] 80 * data is "promoted" from uobj to a new anon. 81 * if uobj is null, then we zero fill. 82 * 83 * we follow the standard UVM locking protocol ordering: 84 * 85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 86 * we hold a PG_BUSY page if we unlock for I/O 87 * 88 * 89 * the code is structured as follows: 90 * 91 * - init the "IN" params in the ufi structure 92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal) 93 * - do lookups [locks maps], check protection, handle needs_copy 94 * - check for case 0 fault (error) 95 * - establish "range" of fault 96 * - if we have an amap lock it and extract the anons 97 * - if sequential advice deactivate pages behind us 98 * - at the same time check pmap for unmapped areas and anon for pages 99 * that we could map in (and do map it if found) 100 * - check object for resident pages that we could map in 101 * - if (case 2) goto Case2 102 * - >>> handle case 1 103 * - ensure source anon is resident in RAM 104 * - if case 1B alloc new anon and copy from source 105 * - map the correct page in 106 * Case2: 107 * - >>> handle case 2 108 * - ensure source page is resident (if uobj) 109 * - if case 2B alloc new anon and copy from source (could be zero 110 * fill if uobj == NULL) 111 * - map the correct page in 112 * - done! 113 * 114 * note on paging: 115 * if we have to do I/O we place a PG_BUSY page in the correct object, 116 * unlock everything, and do the I/O. when I/O is done we must reverify 117 * the state of the world before assuming that our data structures are 118 * valid. [because mappings could change while the map is unlocked] 119 * 120 * alternative 1: unbusy the page in question and restart the page fault 121 * from the top (ReFault). this is easy but does not take advantage 122 * of the information that we already have from our previous lookup, 123 * although it is possible that the "hints" in the vm_map will help here. 124 * 125 * alternative 2: the system already keeps track of a "version" number of 126 * a map. [i.e. every time you write-lock a map (e.g. to change a 127 * mapping) you bump the version number up by one...] so, we can save 128 * the version number of the map before we release the lock and start I/O. 129 * then when I/O is done we can relock and check the version numbers 130 * to see if anything changed. this might save us some over 1 because 131 * we don't have to unbusy the page and may be less compares(?). 132 * 133 * alternative 3: put in backpointers or a way to "hold" part of a map 134 * in place while I/O is in progress. this could be complex to 135 * implement (especially with structures like amap that can be referenced 136 * by multiple map entries, and figuring out what should wait could be 137 * complex as well...). 138 * 139 * we use alternative 2. given that we are multi-threaded now we may want 140 * to reconsider the choice. 141 */ 142 143 /* 144 * local data structures 145 */ 146 147 struct uvm_advice { 148 int advice; 149 int nback; 150 int nforw; 151 }; 152 153 /* 154 * page range array: 155 * note: index in array must match "advice" value 156 * XXX: borrowed numbers from freebsd. do they work well for us? 157 */ 158 159 static const struct uvm_advice uvmadvice[] = { 160 { UVM_ADV_NORMAL, 3, 4 }, 161 { UVM_ADV_RANDOM, 0, 0 }, 162 { UVM_ADV_SEQUENTIAL, 8, 7}, 163 }; 164 165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */ 166 167 /* 168 * private prototypes 169 */ 170 171 /* 172 * externs from other modules 173 */ 174 175 extern int start_init_exec; /* Is init_main() done / init running? */ 176 177 /* 178 * inline functions 179 */ 180 181 /* 182 * uvmfault_anonflush: try and deactivate pages in specified anons 183 * 184 * => does not have to deactivate page if it is busy 185 */ 186 187 static inline void 188 uvmfault_anonflush(struct vm_anon **anons, int n) 189 { 190 int lcv; 191 struct vm_page *pg; 192 193 for (lcv = 0; lcv < n; lcv++) { 194 if (anons[lcv] == NULL) 195 continue; 196 KASSERT(mutex_owned(anons[lcv]->an_lock)); 197 pg = anons[lcv]->an_page; 198 if (pg && (pg->flags & PG_BUSY) == 0) { 199 mutex_enter(&uvm_pageqlock); 200 if (pg->wire_count == 0) { 201 uvm_pagedeactivate(pg); 202 } 203 mutex_exit(&uvm_pageqlock); 204 } 205 } 206 } 207 208 /* 209 * normal functions 210 */ 211 212 /* 213 * uvmfault_amapcopy: clear "needs_copy" in a map. 214 * 215 * => called with VM data structures unlocked (usually, see below) 216 * => we get a write lock on the maps and clear needs_copy for a VA 217 * => if we are out of RAM we sleep (waiting for more) 218 */ 219 220 static void 221 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 222 { 223 for (;;) { 224 225 /* 226 * no mapping? give up. 227 */ 228 229 if (uvmfault_lookup(ufi, true) == false) 230 return; 231 232 /* 233 * copy if needed. 234 */ 235 236 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT, 238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 239 240 /* 241 * didn't work? must be out of RAM. unlock and sleep. 242 */ 243 244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 245 uvmfault_unlockmaps(ufi, true); 246 uvm_wait("fltamapcopy"); 247 continue; 248 } 249 250 /* 251 * got it! unlock and return. 252 */ 253 254 uvmfault_unlockmaps(ufi, true); 255 return; 256 } 257 /*NOTREACHED*/ 258 } 259 260 /* 261 * uvmfault_anonget: get data in an anon into a non-busy, non-released 262 * page in that anon. 263 * 264 * => Map, amap and thus anon should be locked by caller. 265 * => If we fail, we unlock everything and error is returned. 266 * => If we are successful, return with everything still locked. 267 * => We do not move the page on the queues [gets moved later]. If we 268 * allocate a new page [we_own], it gets put on the queues. Either way, 269 * the result is that the page is on the queues at return time 270 * => For pages which are on loan from a uvm_object (and thus are not owned 271 * by the anon): if successful, return with the owning object locked. 272 * The caller must unlock this object when it unlocks everything else. 273 */ 274 275 int 276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 277 struct vm_anon *anon) 278 { 279 struct vm_page *pg; 280 int error; 281 282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist); 283 KASSERT(mutex_owned(anon->an_lock)); 284 KASSERT(anon->an_lock == amap->am_lock); 285 286 /* Increment the counters.*/ 287 uvmexp.fltanget++; 288 if (anon->an_page) { 289 curlwp->l_ru.ru_minflt++; 290 } else { 291 curlwp->l_ru.ru_majflt++; 292 } 293 error = 0; 294 295 /* 296 * Loop until we get the anon data, or fail. 297 */ 298 299 for (;;) { 300 bool we_own, locked; 301 /* 302 * Note: 'we_own' will become true if we set PG_BUSY on a page. 303 */ 304 we_own = false; 305 pg = anon->an_page; 306 307 /* 308 * If there is a resident page and it is loaned, then anon 309 * may not own it. Call out to uvm_anon_lockloanpg() to 310 * identify and lock the real owner of the page. 311 */ 312 313 if (pg && pg->loan_count) 314 pg = uvm_anon_lockloanpg(anon); 315 316 /* 317 * Is page resident? Make sure it is not busy/released. 318 */ 319 320 if (pg) { 321 322 /* 323 * at this point, if the page has a uobject [meaning 324 * we have it on loan], then that uobject is locked 325 * by us! if the page is busy, we drop all the 326 * locks (including uobject) and try again. 327 */ 328 329 if ((pg->flags & PG_BUSY) == 0) { 330 UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 331 return 0; 332 } 333 pg->flags |= PG_WANTED; 334 uvmexp.fltpgwait++; 335 336 /* 337 * The last unlock must be an atomic unlock and wait 338 * on the owner of page. 339 */ 340 341 if (pg->uobject) { 342 /* Owner of page is UVM object. */ 343 uvmfault_unlockall(ufi, amap, NULL); 344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 345 0,0,0); 346 UVM_UNLOCK_AND_WAIT(pg, 347 pg->uobject->vmobjlock, 348 false, "anonget1", 0); 349 } else { 350 /* Owner of page is anon. */ 351 uvmfault_unlockall(ufi, NULL, NULL); 352 UVMHIST_LOG(maphist, " unlock+wait on anon",0, 353 0,0,0); 354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock, 355 false, "anonget2", 0); 356 } 357 } else { 358 #if defined(VMSWAP) 359 /* 360 * No page, therefore allocate one. 361 */ 362 363 pg = uvm_pagealloc(NULL, 364 ufi != NULL ? ufi->orig_rvaddr : 0, 365 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0); 366 if (pg == NULL) { 367 /* Out of memory. Wait a little. */ 368 uvmfault_unlockall(ufi, amap, NULL); 369 uvmexp.fltnoram++; 370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 371 0,0,0); 372 if (!uvm_reclaimable()) { 373 return ENOMEM; 374 } 375 uvm_wait("flt_noram1"); 376 } else { 377 /* PG_BUSY bit is set. */ 378 we_own = true; 379 uvmfault_unlockall(ufi, amap, NULL); 380 381 /* 382 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into 383 * the uvm_swap_get() function with all data 384 * structures unlocked. Note that it is OK 385 * to read an_swslot here, because we hold 386 * PG_BUSY on the page. 387 */ 388 uvmexp.pageins++; 389 error = uvm_swap_get(pg, anon->an_swslot, 390 PGO_SYNCIO); 391 392 /* 393 * We clean up after the I/O below in the 394 * 'we_own' case. 395 */ 396 } 397 #else 398 panic("%s: no page", __func__); 399 #endif /* defined(VMSWAP) */ 400 } 401 402 /* 403 * Re-lock the map and anon. 404 */ 405 406 locked = uvmfault_relock(ufi); 407 if (locked || we_own) { 408 mutex_enter(anon->an_lock); 409 } 410 411 /* 412 * If we own the page (i.e. we set PG_BUSY), then we need 413 * to clean up after the I/O. There are three cases to 414 * consider: 415 * 416 * 1) Page was released during I/O: free anon and ReFault. 417 * 2) I/O not OK. Free the page and cause the fault to fail. 418 * 3) I/O OK! Activate the page and sync with the non-we_own 419 * case (i.e. drop anon lock if not locked). 420 */ 421 422 if (we_own) { 423 #if defined(VMSWAP) 424 if (pg->flags & PG_WANTED) { 425 wakeup(pg); 426 } 427 if (error) { 428 429 /* 430 * Remove the swap slot from the anon and 431 * mark the anon as having no real slot. 432 * Do not free the swap slot, thus preventing 433 * it from being used again. 434 */ 435 436 if (anon->an_swslot > 0) { 437 uvm_swap_markbad(anon->an_swslot, 1); 438 } 439 anon->an_swslot = SWSLOT_BAD; 440 441 if ((pg->flags & PG_RELEASED) != 0) { 442 goto released; 443 } 444 445 /* 446 * Note: page was never !PG_BUSY, so it 447 * cannot be mapped and thus no need to 448 * pmap_page_protect() it. 449 */ 450 451 mutex_enter(&uvm_pageqlock); 452 uvm_pagefree(pg); 453 mutex_exit(&uvm_pageqlock); 454 455 if (locked) { 456 uvmfault_unlockall(ufi, NULL, NULL); 457 } 458 mutex_exit(anon->an_lock); 459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 460 return error; 461 } 462 463 if ((pg->flags & PG_RELEASED) != 0) { 464 released: 465 KASSERT(anon->an_ref == 0); 466 467 /* 468 * Released while we had unlocked amap. 469 */ 470 471 if (locked) { 472 uvmfault_unlockall(ufi, NULL, NULL); 473 } 474 uvm_anon_release(anon); 475 476 if (error) { 477 UVMHIST_LOG(maphist, 478 "<- ERROR/RELEASED", 0,0,0,0); 479 return error; 480 } 481 482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0); 483 return ERESTART; 484 } 485 486 /* 487 * We have successfully read the page, activate it. 488 */ 489 490 mutex_enter(&uvm_pageqlock); 491 uvm_pageactivate(pg); 492 mutex_exit(&uvm_pageqlock); 493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 494 UVM_PAGE_OWN(pg, NULL); 495 #else 496 panic("%s: we_own", __func__); 497 #endif /* defined(VMSWAP) */ 498 } 499 500 /* 501 * We were not able to re-lock the map - restart the fault. 502 */ 503 504 if (!locked) { 505 if (we_own) { 506 mutex_exit(anon->an_lock); 507 } 508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 509 return ERESTART; 510 } 511 512 /* 513 * Verify that no one has touched the amap and moved 514 * the anon on us. 515 */ 516 517 if (ufi != NULL && amap_lookup(&ufi->entry->aref, 518 ufi->orig_rvaddr - ufi->entry->start) != anon) { 519 520 uvmfault_unlockall(ufi, amap, NULL); 521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 522 return ERESTART; 523 } 524 525 /* 526 * Retry.. 527 */ 528 529 uvmexp.fltanretry++; 530 continue; 531 } 532 /*NOTREACHED*/ 533 } 534 535 /* 536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B. 537 * 538 * 1. allocate an anon and a page. 539 * 2. fill its contents. 540 * 3. put it into amap. 541 * 542 * => if we fail (result != 0) we unlock everything. 543 * => on success, return a new locked anon via 'nanon'. 544 * (*nanon)->an_page will be a resident, locked, dirty page. 545 * => it's caller's responsibility to put the promoted nanon->an_page to the 546 * page queue. 547 */ 548 549 static int 550 uvmfault_promote(struct uvm_faultinfo *ufi, 551 struct vm_anon *oanon, 552 struct vm_page *uobjpage, 553 struct vm_anon **nanon, /* OUT: allocated anon */ 554 struct vm_anon **spare) 555 { 556 struct vm_amap *amap = ufi->entry->aref.ar_amap; 557 struct uvm_object *uobj; 558 struct vm_anon *anon; 559 struct vm_page *pg; 560 struct vm_page *opg; 561 int error; 562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 563 564 if (oanon) { 565 /* anon COW */ 566 opg = oanon->an_page; 567 KASSERT(opg != NULL); 568 KASSERT(opg->uobject == NULL || opg->loan_count > 0); 569 } else if (uobjpage != PGO_DONTCARE) { 570 /* object-backed COW */ 571 opg = uobjpage; 572 } else { 573 /* ZFOD */ 574 opg = NULL; 575 } 576 if (opg != NULL) { 577 uobj = opg->uobject; 578 } else { 579 uobj = NULL; 580 } 581 582 KASSERT(amap != NULL); 583 KASSERT(uobjpage != NULL); 584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0); 585 KASSERT(mutex_owned(amap->am_lock)); 586 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock); 587 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 588 589 if (*spare != NULL) { 590 anon = *spare; 591 *spare = NULL; 592 } else { 593 anon = uvm_analloc(); 594 } 595 if (anon) { 596 597 /* 598 * The new anon is locked. 599 * 600 * if opg == NULL, we want a zero'd, dirty page, 601 * so have uvm_pagealloc() do that for us. 602 */ 603 604 KASSERT(anon->an_lock == NULL); 605 anon->an_lock = amap->am_lock; 606 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon, 607 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0)); 608 if (pg == NULL) { 609 anon->an_lock = NULL; 610 } 611 } else { 612 pg = NULL; 613 } 614 615 /* 616 * out of memory resources? 617 */ 618 619 if (pg == NULL) { 620 /* save anon for the next try. */ 621 if (anon != NULL) { 622 *spare = anon; 623 } 624 625 /* unlock and fail ... */ 626 uvm_page_unbusy(&uobjpage, 1); 627 uvmfault_unlockall(ufi, amap, uobj); 628 if (!uvm_reclaimable()) { 629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0); 630 uvmexp.fltnoanon++; 631 error = ENOMEM; 632 goto done; 633 } 634 635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0); 636 uvmexp.fltnoram++; 637 uvm_wait("flt_noram5"); 638 error = ERESTART; 639 goto done; 640 } 641 642 /* copy page [pg now dirty] */ 643 if (opg) { 644 uvm_pagecopy(opg, pg); 645 } 646 647 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon, 648 oanon != NULL); 649 650 *nanon = anon; 651 error = 0; 652 done: 653 return error; 654 } 655 656 /* 657 * Update statistics after fault resolution. 658 * - maxrss 659 */ 660 void 661 uvmfault_update_stats(struct uvm_faultinfo *ufi) 662 { 663 struct vm_map *map; 664 struct vmspace *vm; 665 struct proc *p; 666 vsize_t res; 667 668 map = ufi->orig_map; 669 670 p = curproc; 671 KASSERT(p != NULL); 672 vm = p->p_vmspace; 673 674 if (&vm->vm_map != map) 675 return; 676 677 res = pmap_resident_count(map->pmap); 678 if (vm->vm_rssmax < res) 679 vm->vm_rssmax = res; 680 } 681 682 /* 683 * F A U L T - m a i n e n t r y p o i n t 684 */ 685 686 /* 687 * uvm_fault: page fault handler 688 * 689 * => called from MD code to resolve a page fault 690 * => VM data structures usually should be unlocked. however, it is 691 * possible to call here with the main map locked if the caller 692 * gets a write lock, sets it recusive, and then calls us (c.f. 693 * uvm_map_pageable). this should be avoided because it keeps 694 * the map locked off during I/O. 695 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT 696 */ 697 698 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 699 ~VM_PROT_WRITE : VM_PROT_ALL) 700 701 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */ 702 #define UVM_FAULT_WIRE (1 << 0) 703 #define UVM_FAULT_MAXPROT (1 << 1) 704 705 struct uvm_faultctx { 706 707 /* 708 * the following members are set up by uvm_fault_check() and 709 * read-only after that. 710 * 711 * note that narrow is used by uvm_fault_check() to change 712 * the behaviour after ERESTART. 713 * 714 * most of them might change after RESTART if the underlying 715 * map entry has been changed behind us. an exception is 716 * wire_paging, which does never change. 717 */ 718 vm_prot_t access_type; 719 vaddr_t startva; 720 int npages; 721 int centeridx; 722 bool narrow; /* work on a single requested page only */ 723 bool wire_mapping; /* request a PMAP_WIRED mapping 724 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */ 725 bool wire_paging; /* request uvm_pagewire 726 (true for UVM_FAULT_WIRE) */ 727 bool cow_now; /* VM_PROT_WRITE is actually requested 728 (ie. should break COW and page loaning) */ 729 730 /* 731 * enter_prot is set up by uvm_fault_check() and clamped 732 * (ie. drop the VM_PROT_WRITE bit) in various places in case 733 * of !cow_now. 734 */ 735 vm_prot_t enter_prot; /* prot at which we want to enter pages in */ 736 737 /* 738 * the following member is for uvmfault_promote() and ERESTART. 739 */ 740 struct vm_anon *anon_spare; 741 742 /* 743 * the folloing is actually a uvm_fault_lower() internal. 744 * it's here merely for debugging. 745 * (or due to the mechanical separation of the function?) 746 */ 747 bool promote; 748 }; 749 750 static inline int uvm_fault_check( 751 struct uvm_faultinfo *, struct uvm_faultctx *, 752 struct vm_anon ***, bool); 753 754 static int uvm_fault_upper( 755 struct uvm_faultinfo *, struct uvm_faultctx *, 756 struct vm_anon **); 757 static inline int uvm_fault_upper_lookup( 758 struct uvm_faultinfo *, const struct uvm_faultctx *, 759 struct vm_anon **, struct vm_page **); 760 static inline void uvm_fault_upper_neighbor( 761 struct uvm_faultinfo *, const struct uvm_faultctx *, 762 vaddr_t, struct vm_page *, bool); 763 static inline int uvm_fault_upper_loan( 764 struct uvm_faultinfo *, struct uvm_faultctx *, 765 struct vm_anon *, struct uvm_object **); 766 static inline int uvm_fault_upper_promote( 767 struct uvm_faultinfo *, struct uvm_faultctx *, 768 struct uvm_object *, struct vm_anon *); 769 static inline int uvm_fault_upper_direct( 770 struct uvm_faultinfo *, struct uvm_faultctx *, 771 struct uvm_object *, struct vm_anon *); 772 static int uvm_fault_upper_enter( 773 struct uvm_faultinfo *, const struct uvm_faultctx *, 774 struct uvm_object *, struct vm_anon *, 775 struct vm_page *, struct vm_anon *); 776 static inline void uvm_fault_upper_done( 777 struct uvm_faultinfo *, const struct uvm_faultctx *, 778 struct vm_anon *, struct vm_page *); 779 780 static int uvm_fault_lower( 781 struct uvm_faultinfo *, struct uvm_faultctx *, 782 struct vm_page **); 783 static inline void uvm_fault_lower_lookup( 784 struct uvm_faultinfo *, const struct uvm_faultctx *, 785 struct vm_page **); 786 static inline void uvm_fault_lower_neighbor( 787 struct uvm_faultinfo *, const struct uvm_faultctx *, 788 vaddr_t, struct vm_page *, bool); 789 static inline int uvm_fault_lower_io( 790 struct uvm_faultinfo *, const struct uvm_faultctx *, 791 struct uvm_object **, struct vm_page **); 792 static inline int uvm_fault_lower_direct( 793 struct uvm_faultinfo *, struct uvm_faultctx *, 794 struct uvm_object *, struct vm_page *); 795 static inline int uvm_fault_lower_direct_loan( 796 struct uvm_faultinfo *, struct uvm_faultctx *, 797 struct uvm_object *, struct vm_page **, 798 struct vm_page **); 799 static inline int uvm_fault_lower_promote( 800 struct uvm_faultinfo *, struct uvm_faultctx *, 801 struct uvm_object *, struct vm_page *); 802 static int uvm_fault_lower_enter( 803 struct uvm_faultinfo *, const struct uvm_faultctx *, 804 struct uvm_object *, 805 struct vm_anon *, struct vm_page *); 806 static inline void uvm_fault_lower_done( 807 struct uvm_faultinfo *, const struct uvm_faultctx *, 808 struct uvm_object *, struct vm_page *); 809 810 int 811 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr, 812 vm_prot_t access_type, int fault_flag) 813 { 814 struct cpu_data *cd; 815 struct uvm_cpu *ucpu; 816 struct uvm_faultinfo ufi; 817 struct uvm_faultctx flt = { 818 .access_type = access_type, 819 820 /* don't look for neighborhood * pages on "wire" fault */ 821 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0, 822 823 /* "wire" fault causes wiring of both mapping and paging */ 824 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0, 825 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0, 826 }; 827 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0; 828 struct vm_anon *anons_store[UVM_MAXRANGE], **anons; 829 struct vm_page *pages_store[UVM_MAXRANGE], **pages; 830 int error; 831 832 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist); 833 834 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)", 835 (uintptr_t)orig_map, vaddr, access_type, fault_flag); 836 837 cd = &(curcpu()->ci_data); 838 cd->cpu_nfault++; 839 ucpu = cd->cpu_uvm; 840 841 /* Don't flood RNG subsystem with samples. */ 842 if (cd->cpu_nfault % 503) 843 goto norng; 844 845 /* Don't count anything until user interaction is possible */ 846 if (__predict_true(start_init_exec)) { 847 kpreempt_disable(); 848 rnd_add_uint32(&ucpu->rs, 849 sizeof(vaddr_t) == sizeof(uint32_t) ? 850 (uint32_t)vaddr : sizeof(vaddr_t) == 851 sizeof(uint64_t) ? 852 (uint32_t)(vaddr & 0x00000000ffffffff) : 853 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff)); 854 kpreempt_enable(); 855 } 856 norng: 857 /* 858 * init the IN parameters in the ufi 859 */ 860 861 ufi.orig_map = orig_map; 862 ufi.orig_rvaddr = trunc_page(vaddr); 863 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 864 865 error = ERESTART; 866 while (error == ERESTART) { /* ReFault: */ 867 anons = anons_store; 868 pages = pages_store; 869 870 error = uvm_fault_check(&ufi, &flt, &anons, maxprot); 871 if (error != 0) 872 continue; 873 874 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); 875 if (error != 0) 876 continue; 877 878 if (pages[flt.centeridx] == PGO_DONTCARE) 879 error = uvm_fault_upper(&ufi, &flt, anons); 880 else { 881 struct uvm_object * const uobj = 882 ufi.entry->object.uvm_obj; 883 884 if (uobj && uobj->pgops->pgo_fault != NULL) { 885 /* 886 * invoke "special" fault routine. 887 */ 888 mutex_enter(uobj->vmobjlock); 889 /* locked: maps(read), amap(if there), uobj */ 890 error = uobj->pgops->pgo_fault(&ufi, 891 flt.startva, pages, flt.npages, 892 flt.centeridx, flt.access_type, 893 PGO_LOCKED|PGO_SYNCIO); 894 895 /* 896 * locked: nothing, pgo_fault has unlocked 897 * everything 898 */ 899 900 /* 901 * object fault routine responsible for 902 * pmap_update(). 903 */ 904 905 /* 906 * Wake up the pagedaemon if the fault method 907 * failed for lack of memory but some can be 908 * reclaimed. 909 */ 910 if (error == ENOMEM && uvm_reclaimable()) { 911 uvm_wait("pgo_fault"); 912 error = ERESTART; 913 } 914 } else { 915 error = uvm_fault_lower(&ufi, &flt, pages); 916 } 917 } 918 } 919 920 if (flt.anon_spare != NULL) { 921 flt.anon_spare->an_ref--; 922 KASSERT(flt.anon_spare->an_ref == 0); 923 KASSERT(flt.anon_spare->an_lock == NULL); 924 uvm_anon_free(flt.anon_spare); 925 } 926 return error; 927 } 928 929 /* 930 * uvm_fault_check: check prot, handle needs-copy, etc. 931 * 932 * 1. lookup entry. 933 * 2. check protection. 934 * 3. adjust fault condition (mainly for simulated fault). 935 * 4. handle needs-copy (lazy amap copy). 936 * 5. establish range of interest for neighbor fault (aka pre-fault). 937 * 6. look up anons (if amap exists). 938 * 7. flush pages (if MADV_SEQUENTIAL) 939 * 940 * => called with nothing locked. 941 * => if we fail (result != 0) we unlock everything. 942 * => initialize/adjust many members of flt. 943 */ 944 945 static int 946 uvm_fault_check( 947 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 948 struct vm_anon ***ranons, bool maxprot) 949 { 950 struct vm_amap *amap; 951 struct uvm_object *uobj; 952 vm_prot_t check_prot; 953 int nback, nforw; 954 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist); 955 956 /* 957 * lookup and lock the maps 958 */ 959 960 if (uvmfault_lookup(ufi, false) == false) { 961 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr, 962 0,0,0); 963 return EFAULT; 964 } 965 /* locked: maps(read) */ 966 967 #ifdef DIAGNOSTIC 968 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) { 969 printf("Page fault on non-pageable map:\n"); 970 printf("ufi->map = %p\n", ufi->map); 971 printf("ufi->orig_map = %p\n", ufi->orig_map); 972 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr); 973 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0"); 974 } 975 #endif 976 977 /* 978 * check protection 979 */ 980 981 check_prot = maxprot ? 982 ufi->entry->max_protection : ufi->entry->protection; 983 if ((check_prot & flt->access_type) != flt->access_type) { 984 UVMHIST_LOG(maphist, 985 "<- protection failure (prot=%#jx, access=%#jx)", 986 ufi->entry->protection, flt->access_type, 0, 0); 987 uvmfault_unlockmaps(ufi, false); 988 return EFAULT; 989 } 990 991 /* 992 * "enter_prot" is the protection we want to enter the page in at. 993 * for certain pages (e.g. copy-on-write pages) this protection can 994 * be more strict than ufi->entry->protection. "wired" means either 995 * the entry is wired or we are fault-wiring the pg. 996 */ 997 998 flt->enter_prot = ufi->entry->protection; 999 if (VM_MAPENT_ISWIRED(ufi->entry)) 1000 flt->wire_mapping = true; 1001 1002 if (flt->wire_mapping) { 1003 flt->access_type = flt->enter_prot; /* full access for wired */ 1004 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0; 1005 } else { 1006 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0; 1007 } 1008 1009 flt->promote = false; 1010 1011 /* 1012 * handle "needs_copy" case. if we need to copy the amap we will 1013 * have to drop our readlock and relock it with a write lock. (we 1014 * need a write lock to change anything in a map entry [e.g. 1015 * needs_copy]). 1016 */ 1017 1018 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 1019 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) { 1020 KASSERT(!maxprot); 1021 /* need to clear */ 1022 UVMHIST_LOG(maphist, 1023 " need to clear needs_copy and refault",0,0,0,0); 1024 uvmfault_unlockmaps(ufi, false); 1025 uvmfault_amapcopy(ufi); 1026 uvmexp.fltamcopy++; 1027 return ERESTART; 1028 1029 } else { 1030 1031 /* 1032 * ensure that we pmap_enter page R/O since 1033 * needs_copy is still true 1034 */ 1035 1036 flt->enter_prot &= ~VM_PROT_WRITE; 1037 } 1038 } 1039 1040 /* 1041 * identify the players 1042 */ 1043 1044 amap = ufi->entry->aref.ar_amap; /* upper layer */ 1045 uobj = ufi->entry->object.uvm_obj; /* lower layer */ 1046 1047 /* 1048 * check for a case 0 fault. if nothing backing the entry then 1049 * error now. 1050 */ 1051 1052 if (amap == NULL && uobj == NULL) { 1053 uvmfault_unlockmaps(ufi, false); 1054 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 1055 return EFAULT; 1056 } 1057 1058 /* 1059 * establish range of interest based on advice from mapper 1060 * and then clip to fit map entry. note that we only want 1061 * to do this the first time through the fault. if we 1062 * ReFault we will disable this by setting "narrow" to true. 1063 */ 1064 1065 if (flt->narrow == false) { 1066 1067 /* wide fault (!narrow) */ 1068 KASSERT(uvmadvice[ufi->entry->advice].advice == 1069 ufi->entry->advice); 1070 nback = MIN(uvmadvice[ufi->entry->advice].nback, 1071 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT); 1072 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT); 1073 /* 1074 * note: "-1" because we don't want to count the 1075 * faulting page as forw 1076 */ 1077 nforw = MIN(uvmadvice[ufi->entry->advice].nforw, 1078 ((ufi->entry->end - ufi->orig_rvaddr) >> 1079 PAGE_SHIFT) - 1); 1080 flt->npages = nback + nforw + 1; 1081 flt->centeridx = nback; 1082 1083 flt->narrow = true; /* ensure only once per-fault */ 1084 1085 } else { 1086 1087 /* narrow fault! */ 1088 nback = nforw = 0; 1089 flt->startva = ufi->orig_rvaddr; 1090 flt->npages = 1; 1091 flt->centeridx = 0; 1092 1093 } 1094 /* offset from entry's start to pgs' start */ 1095 const voff_t eoff = flt->startva - ufi->entry->start; 1096 1097 /* locked: maps(read) */ 1098 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx", 1099 flt->narrow, nback, nforw, flt->startva); 1100 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx", 1101 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0); 1102 1103 /* 1104 * if we've got an amap, lock it and extract current anons. 1105 */ 1106 1107 if (amap) { 1108 amap_lock(amap); 1109 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages); 1110 } else { 1111 *ranons = NULL; /* to be safe */ 1112 } 1113 1114 /* locked: maps(read), amap(if there) */ 1115 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1116 1117 /* 1118 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 1119 * now and then forget about them (for the rest of the fault). 1120 */ 1121 1122 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) { 1123 1124 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 1125 0,0,0,0); 1126 /* flush back-page anons? */ 1127 if (amap) 1128 uvmfault_anonflush(*ranons, nback); 1129 1130 /* flush object? */ 1131 if (uobj) { 1132 voff_t uoff; 1133 1134 uoff = ufi->entry->offset + eoff; 1135 mutex_enter(uobj->vmobjlock); 1136 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff + 1137 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 1138 } 1139 1140 /* now forget about the backpages */ 1141 if (amap) 1142 *ranons += nback; 1143 flt->startva += (nback << PAGE_SHIFT); 1144 flt->npages -= nback; 1145 flt->centeridx = 0; 1146 } 1147 /* 1148 * => startva is fixed 1149 * => npages is fixed 1150 */ 1151 KASSERT(flt->startva <= ufi->orig_rvaddr); 1152 KASSERT(ufi->orig_rvaddr + ufi->orig_size <= 1153 flt->startva + (flt->npages << PAGE_SHIFT)); 1154 return 0; 1155 } 1156 1157 /* 1158 * uvm_fault_upper_lookup: look up existing h/w mapping and amap. 1159 * 1160 * iterate range of interest: 1161 * 1. check if h/w mapping exists. if yes, we don't care 1162 * 2. check if anon exists. if not, page is lower. 1163 * 3. if anon exists, enter h/w mapping for neighbors. 1164 * 1165 * => called with amap locked (if exists). 1166 */ 1167 1168 static int 1169 uvm_fault_upper_lookup( 1170 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1171 struct vm_anon **anons, struct vm_page **pages) 1172 { 1173 struct vm_amap *amap = ufi->entry->aref.ar_amap; 1174 int lcv; 1175 vaddr_t currva; 1176 bool shadowed __unused; 1177 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist); 1178 1179 /* locked: maps(read), amap(if there) */ 1180 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1181 1182 /* 1183 * map in the backpages and frontpages we found in the amap in hopes 1184 * of preventing future faults. we also init the pages[] array as 1185 * we go. 1186 */ 1187 1188 currva = flt->startva; 1189 shadowed = false; 1190 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1191 /* 1192 * don't play with VAs that are already mapped 1193 * (except for center) 1194 */ 1195 if (lcv != flt->centeridx && 1196 pmap_extract(ufi->orig_map->pmap, currva, NULL)) { 1197 pages[lcv] = PGO_DONTCARE; 1198 continue; 1199 } 1200 1201 /* 1202 * unmapped or center page. check if any anon at this level. 1203 */ 1204 if (amap == NULL || anons[lcv] == NULL) { 1205 pages[lcv] = NULL; 1206 continue; 1207 } 1208 1209 /* 1210 * check for present page and map if possible. re-activate it. 1211 */ 1212 1213 pages[lcv] = PGO_DONTCARE; 1214 if (lcv == flt->centeridx) { /* save center for later! */ 1215 shadowed = true; 1216 continue; 1217 } 1218 1219 struct vm_anon *anon = anons[lcv]; 1220 struct vm_page *pg = anon->an_page; 1221 1222 KASSERT(anon->an_lock == amap->am_lock); 1223 1224 /* Ignore loaned and busy pages. */ 1225 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) { 1226 uvm_fault_upper_neighbor(ufi, flt, currva, 1227 pg, anon->an_ref > 1); 1228 } 1229 } 1230 1231 /* locked: maps(read), amap(if there) */ 1232 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1233 /* (shadowed == true) if there is an anon at the faulting address */ 1234 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed, 1235 (ufi->entry->object.uvm_obj && shadowed != false),0,0); 1236 1237 /* 1238 * note that if we are really short of RAM we could sleep in the above 1239 * call to pmap_enter with everything locked. bad? 1240 * 1241 * XXX Actually, that is bad; pmap_enter() should just fail in that 1242 * XXX case. --thorpej 1243 */ 1244 1245 return 0; 1246 } 1247 1248 /* 1249 * uvm_fault_upper_neighbor: enter single upper neighbor page. 1250 * 1251 * => called with amap and anon locked. 1252 */ 1253 1254 static void 1255 uvm_fault_upper_neighbor( 1256 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1257 vaddr_t currva, struct vm_page *pg, bool readonly) 1258 { 1259 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist); 1260 1261 /* locked: amap, anon */ 1262 1263 mutex_enter(&uvm_pageqlock); 1264 uvm_pageenqueue(pg); 1265 mutex_exit(&uvm_pageqlock); 1266 UVMHIST_LOG(maphist, 1267 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx", 1268 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 1269 uvmexp.fltnamap++; 1270 1271 /* 1272 * Since this page isn't the page that's actually faulting, 1273 * ignore pmap_enter() failures; it's not critical that we 1274 * enter these right now. 1275 */ 1276 1277 (void) pmap_enter(ufi->orig_map->pmap, currva, 1278 VM_PAGE_TO_PHYS(pg), 1279 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1280 flt->enter_prot, 1281 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)); 1282 1283 pmap_update(ufi->orig_map->pmap); 1284 } 1285 1286 /* 1287 * uvm_fault_upper: handle upper fault. 1288 * 1289 * 1. acquire anon lock. 1290 * 2. get anon. let uvmfault_anonget do the dirty work. 1291 * 3. handle loan. 1292 * 4. dispatch direct or promote handlers. 1293 */ 1294 1295 static int 1296 uvm_fault_upper( 1297 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1298 struct vm_anon **anons) 1299 { 1300 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1301 struct vm_anon * const anon = anons[flt->centeridx]; 1302 struct uvm_object *uobj; 1303 int error; 1304 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist); 1305 1306 /* locked: maps(read), amap, anon */ 1307 KASSERT(mutex_owned(amap->am_lock)); 1308 KASSERT(anon->an_lock == amap->am_lock); 1309 1310 /* 1311 * handle case 1: fault on an anon in our amap 1312 */ 1313 1314 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx", 1315 (uintptr_t)anon, 0, 0, 0); 1316 1317 /* 1318 * no matter if we have case 1A or case 1B we are going to need to 1319 * have the anon's memory resident. ensure that now. 1320 */ 1321 1322 /* 1323 * let uvmfault_anonget do the dirty work. 1324 * if it fails (!OK) it will unlock everything for us. 1325 * if it succeeds, locks are still valid and locked. 1326 * also, if it is OK, then the anon's page is on the queues. 1327 * if the page is on loan from a uvm_object, then anonget will 1328 * lock that object for us if it does not fail. 1329 */ 1330 1331 error = uvmfault_anonget(ufi, amap, anon); 1332 switch (error) { 1333 case 0: 1334 break; 1335 1336 case ERESTART: 1337 return ERESTART; 1338 1339 case EAGAIN: 1340 kpause("fltagain1", false, hz/2, NULL); 1341 return ERESTART; 1342 1343 default: 1344 return error; 1345 } 1346 1347 /* 1348 * uobj is non null if the page is on loan from an object (i.e. uobj) 1349 */ 1350 1351 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1352 1353 /* locked: maps(read), amap, anon, uobj(if one) */ 1354 KASSERT(mutex_owned(amap->am_lock)); 1355 KASSERT(anon->an_lock == amap->am_lock); 1356 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1357 1358 /* 1359 * special handling for loaned pages 1360 */ 1361 1362 if (anon->an_page->loan_count) { 1363 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj); 1364 if (error != 0) 1365 return error; 1366 } 1367 1368 /* 1369 * if we are case 1B then we will need to allocate a new blank 1370 * anon to transfer the data into. note that we have a lock 1371 * on anon, so no one can busy or release the page until we are done. 1372 * also note that the ref count can't drop to zero here because 1373 * it is > 1 and we are only dropping one ref. 1374 * 1375 * in the (hopefully very rare) case that we are out of RAM we 1376 * will unlock, wait for more RAM, and refault. 1377 * 1378 * if we are out of anon VM we kill the process (XXX: could wait?). 1379 */ 1380 1381 if (flt->cow_now && anon->an_ref > 1) { 1382 flt->promote = true; 1383 error = uvm_fault_upper_promote(ufi, flt, uobj, anon); 1384 } else { 1385 error = uvm_fault_upper_direct(ufi, flt, uobj, anon); 1386 } 1387 return error; 1388 } 1389 1390 /* 1391 * uvm_fault_upper_loan: handle loaned upper page. 1392 * 1393 * 1. if not cow'ing now, simply adjust flt->enter_prot. 1394 * 2. if cow'ing now, and if ref count is 1, break loan. 1395 */ 1396 1397 static int 1398 uvm_fault_upper_loan( 1399 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1400 struct vm_anon *anon, struct uvm_object **ruobj) 1401 { 1402 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1403 int error = 0; 1404 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist); 1405 1406 if (!flt->cow_now) { 1407 1408 /* 1409 * for read faults on loaned pages we just cap the 1410 * protection at read-only. 1411 */ 1412 1413 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1414 1415 } else { 1416 /* 1417 * note that we can't allow writes into a loaned page! 1418 * 1419 * if we have a write fault on a loaned page in an 1420 * anon then we need to look at the anon's ref count. 1421 * if it is greater than one then we are going to do 1422 * a normal copy-on-write fault into a new anon (this 1423 * is not a problem). however, if the reference count 1424 * is one (a case where we would normally allow a 1425 * write directly to the page) then we need to kill 1426 * the loan before we continue. 1427 */ 1428 1429 /* >1 case is already ok */ 1430 if (anon->an_ref == 1) { 1431 error = uvm_loanbreak_anon(anon, *ruobj); 1432 if (error != 0) { 1433 uvmfault_unlockall(ufi, amap, *ruobj); 1434 uvm_wait("flt_noram2"); 1435 return ERESTART; 1436 } 1437 /* if we were a loan receiver uobj is gone */ 1438 if (*ruobj) 1439 *ruobj = NULL; 1440 } 1441 } 1442 return error; 1443 } 1444 1445 /* 1446 * uvm_fault_upper_promote: promote upper page. 1447 * 1448 * 1. call uvmfault_promote. 1449 * 2. enqueue page. 1450 * 3. deref. 1451 * 4. pass page to uvm_fault_upper_enter. 1452 */ 1453 1454 static int 1455 uvm_fault_upper_promote( 1456 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1457 struct uvm_object *uobj, struct vm_anon *anon) 1458 { 1459 struct vm_anon * const oanon = anon; 1460 struct vm_page *pg; 1461 int error; 1462 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist); 1463 1464 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1465 uvmexp.flt_acow++; 1466 1467 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon, 1468 &flt->anon_spare); 1469 switch (error) { 1470 case 0: 1471 break; 1472 case ERESTART: 1473 return ERESTART; 1474 default: 1475 return error; 1476 } 1477 1478 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock); 1479 1480 pg = anon->an_page; 1481 mutex_enter(&uvm_pageqlock); 1482 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */ 1483 mutex_exit(&uvm_pageqlock); 1484 pg->flags &= ~(PG_BUSY|PG_FAKE); 1485 UVM_PAGE_OWN(pg, NULL); 1486 1487 /* deref: can not drop to zero here by defn! */ 1488 KASSERT(oanon->an_ref > 1); 1489 oanon->an_ref--; 1490 1491 /* 1492 * note: oanon is still locked, as is the new anon. we 1493 * need to check for this later when we unlock oanon; if 1494 * oanon != anon, we'll have to unlock anon, too. 1495 */ 1496 1497 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1498 } 1499 1500 /* 1501 * uvm_fault_upper_direct: handle direct fault. 1502 */ 1503 1504 static int 1505 uvm_fault_upper_direct( 1506 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1507 struct uvm_object *uobj, struct vm_anon *anon) 1508 { 1509 struct vm_anon * const oanon = anon; 1510 struct vm_page *pg; 1511 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist); 1512 1513 uvmexp.flt_anon++; 1514 pg = anon->an_page; 1515 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1516 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1517 1518 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1519 } 1520 1521 /* 1522 * uvm_fault_upper_enter: enter h/w mapping of upper page. 1523 */ 1524 1525 static int 1526 uvm_fault_upper_enter( 1527 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1528 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg, 1529 struct vm_anon *oanon) 1530 { 1531 struct pmap *pmap = ufi->orig_map->pmap; 1532 vaddr_t va = ufi->orig_rvaddr; 1533 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1534 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist); 1535 1536 /* locked: maps(read), amap, oanon, anon(if different from oanon) */ 1537 KASSERT(mutex_owned(amap->am_lock)); 1538 KASSERT(anon->an_lock == amap->am_lock); 1539 KASSERT(oanon->an_lock == amap->am_lock); 1540 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1541 1542 /* 1543 * now map the page in. 1544 */ 1545 1546 UVMHIST_LOG(maphist, 1547 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 1548 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote); 1549 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg), 1550 flt->enter_prot, flt->access_type | PMAP_CANFAIL | 1551 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 1552 1553 /* 1554 * If pmap_enter() fails, it must not leave behind an existing 1555 * pmap entry. In particular, a now-stale entry for a different 1556 * page would leave the pmap inconsistent with the vm_map. 1557 * This is not to imply that pmap_enter() should remove an 1558 * existing mapping in such a situation (since that could create 1559 * different problems, eg. if the existing mapping is wired), 1560 * but rather that the pmap should be designed such that it 1561 * never needs to fail when the new mapping is replacing an 1562 * existing mapping and the new page has no existing mappings. 1563 */ 1564 1565 KASSERT(!pmap_extract(pmap, va, NULL)); 1566 1567 /* 1568 * No need to undo what we did; we can simply think of 1569 * this as the pmap throwing away the mapping information. 1570 * 1571 * We do, however, have to go through the ReFault path, 1572 * as the map may change while we're asleep. 1573 */ 1574 1575 uvmfault_unlockall(ufi, amap, uobj); 1576 if (!uvm_reclaimable()) { 1577 UVMHIST_LOG(maphist, 1578 "<- failed. out of VM",0,0,0,0); 1579 /* XXX instrumentation */ 1580 return ENOMEM; 1581 } 1582 /* XXX instrumentation */ 1583 uvm_wait("flt_pmfail1"); 1584 return ERESTART; 1585 } 1586 1587 uvm_fault_upper_done(ufi, flt, anon, pg); 1588 1589 /* 1590 * done case 1! finish up by unlocking everything and returning success 1591 */ 1592 1593 pmap_update(pmap); 1594 uvmfault_unlockall(ufi, amap, uobj); 1595 return 0; 1596 } 1597 1598 /* 1599 * uvm_fault_upper_done: queue upper center page. 1600 */ 1601 1602 static void 1603 uvm_fault_upper_done( 1604 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1605 struct vm_anon *anon, struct vm_page *pg) 1606 { 1607 const bool wire_paging = flt->wire_paging; 1608 1609 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist); 1610 1611 /* 1612 * ... update the page queues. 1613 */ 1614 1615 mutex_enter(&uvm_pageqlock); 1616 if (wire_paging) { 1617 uvm_pagewire(pg); 1618 1619 /* 1620 * since the now-wired page cannot be paged out, 1621 * release its swap resources for others to use. 1622 * since an anon with no swap cannot be PG_CLEAN, 1623 * clear its clean flag now. 1624 */ 1625 1626 pg->flags &= ~(PG_CLEAN); 1627 1628 } else { 1629 uvm_pageactivate(pg); 1630 } 1631 mutex_exit(&uvm_pageqlock); 1632 1633 if (wire_paging) { 1634 uvm_anon_dropswap(anon); 1635 } 1636 } 1637 1638 /* 1639 * uvm_fault_lower: handle lower fault. 1640 * 1641 * 1. check uobj 1642 * 1.1. if null, ZFOD. 1643 * 1.2. if not null, look up unnmapped neighbor pages. 1644 * 2. for center page, check if promote. 1645 * 2.1. ZFOD always needs promotion. 1646 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode). 1647 * 3. if uobj is not ZFOD and page is not found, do i/o. 1648 * 4. dispatch either direct / promote fault. 1649 */ 1650 1651 static int 1652 uvm_fault_lower( 1653 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1654 struct vm_page **pages) 1655 { 1656 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap; 1657 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1658 struct vm_page *uobjpage; 1659 int error; 1660 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist); 1661 1662 /* 1663 * now, if the desired page is not shadowed by the amap and we have 1664 * a backing object that does not have a special fault routine, then 1665 * we ask (with pgo_get) the object for resident pages that we care 1666 * about and attempt to map them in. we do not let pgo_get block 1667 * (PGO_LOCKED). 1668 */ 1669 1670 if (uobj == NULL) { 1671 /* zero fill; don't care neighbor pages */ 1672 uobjpage = NULL; 1673 } else { 1674 uvm_fault_lower_lookup(ufi, flt, pages); 1675 uobjpage = pages[flt->centeridx]; 1676 } 1677 1678 /* 1679 * note that at this point we are done with any front or back pages. 1680 * we are now going to focus on the center page (i.e. the one we've 1681 * faulted on). if we have faulted on the upper (anon) layer 1682 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 1683 * not touched it yet). if we have faulted on the bottom (uobj) 1684 * layer [i.e. case 2] and the page was both present and available, 1685 * then we've got a pointer to it as "uobjpage" and we've already 1686 * made it BUSY. 1687 */ 1688 1689 /* 1690 * locked: 1691 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1692 */ 1693 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1694 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1695 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0); 1696 1697 /* 1698 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1699 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1700 * have a backing object, check and see if we are going to promote 1701 * the data up to an anon during the fault. 1702 */ 1703 1704 if (uobj == NULL) { 1705 uobjpage = PGO_DONTCARE; 1706 flt->promote = true; /* always need anon here */ 1707 } else { 1708 KASSERT(uobjpage != PGO_DONTCARE); 1709 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry); 1710 } 1711 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd", 1712 flt->promote, (uobj == NULL), 0,0); 1713 1714 /* 1715 * if uobjpage is not null then we do not need to do I/O to get the 1716 * uobjpage. 1717 * 1718 * if uobjpage is null, then we need to unlock and ask the pager to 1719 * get the data for us. once we have the data, we need to reverify 1720 * the state the world. we are currently not holding any resources. 1721 */ 1722 1723 if (uobjpage) { 1724 /* update rusage counters */ 1725 curlwp->l_ru.ru_minflt++; 1726 } else { 1727 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage); 1728 if (error != 0) 1729 return error; 1730 } 1731 1732 /* 1733 * locked: 1734 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1735 */ 1736 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1737 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1738 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 1739 1740 /* 1741 * notes: 1742 * - at this point uobjpage can not be NULL 1743 * - at this point uobjpage can not be PG_RELEASED (since we checked 1744 * for it above) 1745 * - at this point uobjpage could be PG_WANTED (handle later) 1746 */ 1747 1748 KASSERT(uobjpage != NULL); 1749 KASSERT(uobj == NULL || uobj == uobjpage->uobject); 1750 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) || 1751 (uobjpage->flags & PG_CLEAN) != 0); 1752 1753 if (!flt->promote) { 1754 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage); 1755 } else { 1756 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage); 1757 } 1758 return error; 1759 } 1760 1761 /* 1762 * uvm_fault_lower_lookup: look up on-memory uobj pages. 1763 * 1764 * 1. get on-memory pages. 1765 * 2. if failed, give up (get only center page later). 1766 * 3. if succeeded, enter h/w mapping of neighbor pages. 1767 */ 1768 1769 static void 1770 uvm_fault_lower_lookup( 1771 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1772 struct vm_page **pages) 1773 { 1774 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1775 int lcv, gotpages; 1776 vaddr_t currva; 1777 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist); 1778 1779 mutex_enter(uobj->vmobjlock); 1780 /* Locked: maps(read), amap(if there), uobj */ 1781 1782 uvmexp.fltlget++; 1783 gotpages = flt->npages; 1784 (void) uobj->pgops->pgo_get(uobj, 1785 ufi->entry->offset + flt->startva - ufi->entry->start, 1786 pages, &gotpages, flt->centeridx, 1787 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED); 1788 1789 KASSERT(mutex_owned(uobj->vmobjlock)); 1790 1791 /* 1792 * check for pages to map, if we got any 1793 */ 1794 1795 if (gotpages == 0) { 1796 pages[flt->centeridx] = NULL; 1797 return; 1798 } 1799 1800 currva = flt->startva; 1801 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1802 struct vm_page *curpg; 1803 1804 curpg = pages[lcv]; 1805 if (curpg == NULL || curpg == PGO_DONTCARE) { 1806 continue; 1807 } 1808 KASSERT(curpg->uobject == uobj); 1809 1810 /* 1811 * if center page is resident and not PG_BUSY|PG_RELEASED 1812 * then pgo_get made it PG_BUSY for us and gave us a handle 1813 * to it. 1814 */ 1815 1816 if (lcv == flt->centeridx) { 1817 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) " 1818 "with locked get", (uintptr_t)curpg, 0, 0, 0); 1819 } else { 1820 bool readonly = (curpg->flags & PG_RDONLY) 1821 || (curpg->loan_count > 0) 1822 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject); 1823 1824 uvm_fault_lower_neighbor(ufi, flt, 1825 currva, curpg, readonly); 1826 } 1827 } 1828 pmap_update(ufi->orig_map->pmap); 1829 } 1830 1831 /* 1832 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page. 1833 */ 1834 1835 static void 1836 uvm_fault_lower_neighbor( 1837 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1838 vaddr_t currva, struct vm_page *pg, bool readonly) 1839 { 1840 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1841 1842 /* locked: maps(read), amap(if there), uobj */ 1843 1844 /* 1845 * calling pgo_get with PGO_LOCKED returns us pages which 1846 * are neither busy nor released, so we don't need to check 1847 * for this. we can just directly enter the pages. 1848 */ 1849 1850 mutex_enter(&uvm_pageqlock); 1851 uvm_pageenqueue(pg); 1852 mutex_exit(&uvm_pageqlock); 1853 UVMHIST_LOG(maphist, 1854 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx", 1855 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 1856 uvmexp.fltnomap++; 1857 1858 /* 1859 * Since this page isn't the page that's actually faulting, 1860 * ignore pmap_enter() failures; it's not critical that we 1861 * enter these right now. 1862 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've 1863 * held the lock the whole time we've had the handle. 1864 */ 1865 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1866 KASSERT((pg->flags & PG_RELEASED) == 0); 1867 KASSERT((pg->flags & PG_WANTED) == 0); 1868 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0); 1869 pg->flags &= ~(PG_BUSY); 1870 UVM_PAGE_OWN(pg, NULL); 1871 1872 KASSERT(mutex_owned(pg->uobject->vmobjlock)); 1873 1874 const vm_prot_t mapprot = 1875 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1876 flt->enter_prot & MASK(ufi->entry); 1877 const u_int mapflags = 1878 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0); 1879 (void) pmap_enter(ufi->orig_map->pmap, currva, 1880 VM_PAGE_TO_PHYS(pg), mapprot, mapflags); 1881 } 1882 1883 /* 1884 * uvm_fault_lower_io: get lower page from backing store. 1885 * 1886 * 1. unlock everything, because i/o will block. 1887 * 2. call pgo_get. 1888 * 3. if failed, recover. 1889 * 4. if succeeded, relock everything and verify things. 1890 */ 1891 1892 static int 1893 uvm_fault_lower_io( 1894 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1895 struct uvm_object **ruobj, struct vm_page **ruobjpage) 1896 { 1897 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1898 struct uvm_object *uobj = *ruobj; 1899 struct vm_page *pg; 1900 bool locked; 1901 int gotpages; 1902 int error; 1903 voff_t uoff; 1904 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist); 1905 1906 /* update rusage counters */ 1907 curlwp->l_ru.ru_majflt++; 1908 1909 /* Locked: maps(read), amap(if there), uobj */ 1910 uvmfault_unlockall(ufi, amap, NULL); 1911 1912 /* Locked: uobj */ 1913 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1914 1915 uvmexp.fltget++; 1916 gotpages = 1; 1917 pg = NULL; 1918 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; 1919 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages, 1920 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice, 1921 PGO_SYNCIO); 1922 /* locked: pg(if no error) */ 1923 1924 /* 1925 * recover from I/O 1926 */ 1927 1928 if (error) { 1929 if (error == EAGAIN) { 1930 UVMHIST_LOG(maphist, 1931 " pgo_get says TRY AGAIN!",0,0,0,0); 1932 kpause("fltagain2", false, hz/2, NULL); 1933 return ERESTART; 1934 } 1935 1936 #if 0 1937 KASSERT(error != ERESTART); 1938 #else 1939 /* XXXUEBS don't re-fault? */ 1940 if (error == ERESTART) 1941 error = EIO; 1942 #endif 1943 1944 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)", 1945 error, 0,0,0); 1946 return error; 1947 } 1948 1949 /* 1950 * re-verify the state of the world by first trying to relock 1951 * the maps. always relock the object. 1952 */ 1953 1954 locked = uvmfault_relock(ufi); 1955 if (locked && amap) 1956 amap_lock(amap); 1957 1958 /* might be changed */ 1959 uobj = pg->uobject; 1960 1961 mutex_enter(uobj->vmobjlock); 1962 KASSERT((pg->flags & PG_BUSY) != 0); 1963 1964 mutex_enter(&uvm_pageqlock); 1965 uvm_pageactivate(pg); 1966 mutex_exit(&uvm_pageqlock); 1967 1968 /* locked(locked): maps(read), amap(if !null), uobj, pg */ 1969 /* locked(!locked): uobj, pg */ 1970 1971 /* 1972 * verify that the page has not be released and re-verify 1973 * that amap slot is still free. if there is a problem, 1974 * we unlock and clean up. 1975 */ 1976 1977 if ((pg->flags & PG_RELEASED) != 0 || 1978 (locked && amap && amap_lookup(&ufi->entry->aref, 1979 ufi->orig_rvaddr - ufi->entry->start))) { 1980 if (locked) 1981 uvmfault_unlockall(ufi, amap, NULL); 1982 locked = false; 1983 } 1984 1985 /* 1986 * didn't get the lock? release the page and retry. 1987 */ 1988 1989 if (locked == false) { 1990 UVMHIST_LOG(maphist, 1991 " wasn't able to relock after fault: retry", 1992 0,0,0,0); 1993 if (pg->flags & PG_WANTED) { 1994 wakeup(pg); 1995 } 1996 if ((pg->flags & PG_RELEASED) == 0) { 1997 pg->flags &= ~(PG_BUSY | PG_WANTED); 1998 UVM_PAGE_OWN(pg, NULL); 1999 } else { 2000 uvmexp.fltpgrele++; 2001 uvm_pagefree(pg); 2002 } 2003 mutex_exit(uobj->vmobjlock); 2004 return ERESTART; 2005 } 2006 2007 /* 2008 * we have the data in pg which is busy and 2009 * not released. we are holding object lock (so the page 2010 * can't be released on us). 2011 */ 2012 2013 /* locked: maps(read), amap(if !null), uobj, pg */ 2014 2015 *ruobj = uobj; 2016 *ruobjpage = pg; 2017 return 0; 2018 } 2019 2020 /* 2021 * uvm_fault_lower_direct: fault lower center page 2022 * 2023 * 1. adjust flt->enter_prot. 2024 * 2. if page is loaned, resolve. 2025 */ 2026 2027 int 2028 uvm_fault_lower_direct( 2029 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2030 struct uvm_object *uobj, struct vm_page *uobjpage) 2031 { 2032 struct vm_page *pg; 2033 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist); 2034 2035 /* 2036 * we are not promoting. if the mapping is COW ensure that we 2037 * don't give more access than we should (e.g. when doing a read 2038 * fault on a COPYONWRITE mapping we want to map the COW page in 2039 * R/O even though the entry protection could be R/W). 2040 * 2041 * set "pg" to the page we want to map in (uobjpage, usually) 2042 */ 2043 2044 uvmexp.flt_obj++; 2045 if (UVM_ET_ISCOPYONWRITE(ufi->entry) || 2046 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject)) 2047 flt->enter_prot &= ~VM_PROT_WRITE; 2048 pg = uobjpage; /* map in the actual object */ 2049 2050 KASSERT(uobjpage != PGO_DONTCARE); 2051 2052 /* 2053 * we are faulting directly on the page. be careful 2054 * about writing to loaned pages... 2055 */ 2056 2057 if (uobjpage->loan_count) { 2058 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage); 2059 } 2060 KASSERT(pg == uobjpage); 2061 2062 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 2063 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg); 2064 } 2065 2066 /* 2067 * uvm_fault_lower_direct_loan: resolve loaned page. 2068 * 2069 * 1. if not cow'ing, adjust flt->enter_prot. 2070 * 2. if cow'ing, break loan. 2071 */ 2072 2073 static int 2074 uvm_fault_lower_direct_loan( 2075 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2076 struct uvm_object *uobj, struct vm_page **rpg, 2077 struct vm_page **ruobjpage) 2078 { 2079 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2080 struct vm_page *pg; 2081 struct vm_page *uobjpage = *ruobjpage; 2082 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist); 2083 2084 if (!flt->cow_now) { 2085 /* read fault: cap the protection at readonly */ 2086 /* cap! */ 2087 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 2088 } else { 2089 /* write fault: must break the loan here */ 2090 2091 pg = uvm_loanbreak(uobjpage); 2092 if (pg == NULL) { 2093 2094 /* 2095 * drop ownership of page, it can't be released 2096 */ 2097 2098 if (uobjpage->flags & PG_WANTED) 2099 wakeup(uobjpage); 2100 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 2101 UVM_PAGE_OWN(uobjpage, NULL); 2102 2103 uvmfault_unlockall(ufi, amap, uobj); 2104 UVMHIST_LOG(maphist, 2105 " out of RAM breaking loan, waiting", 2106 0,0,0,0); 2107 uvmexp.fltnoram++; 2108 uvm_wait("flt_noram4"); 2109 return ERESTART; 2110 } 2111 *rpg = pg; 2112 *ruobjpage = pg; 2113 } 2114 return 0; 2115 } 2116 2117 /* 2118 * uvm_fault_lower_promote: promote lower page. 2119 * 2120 * 1. call uvmfault_promote. 2121 * 2. fill in data. 2122 * 3. if not ZFOD, dispose old page. 2123 */ 2124 2125 int 2126 uvm_fault_lower_promote( 2127 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2128 struct uvm_object *uobj, struct vm_page *uobjpage) 2129 { 2130 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2131 struct vm_anon *anon; 2132 struct vm_page *pg; 2133 int error; 2134 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist); 2135 2136 KASSERT(amap != NULL); 2137 2138 /* 2139 * If we are going to promote the data to an anon we 2140 * allocate a blank anon here and plug it into our amap. 2141 */ 2142 error = uvmfault_promote(ufi, NULL, uobjpage, 2143 &anon, &flt->anon_spare); 2144 switch (error) { 2145 case 0: 2146 break; 2147 case ERESTART: 2148 return ERESTART; 2149 default: 2150 return error; 2151 } 2152 2153 pg = anon->an_page; 2154 2155 /* 2156 * Fill in the data. 2157 */ 2158 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 2159 2160 if (uobjpage != PGO_DONTCARE) { 2161 uvmexp.flt_prcopy++; 2162 2163 /* 2164 * promote to shared amap? make sure all sharing 2165 * procs see it 2166 */ 2167 2168 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 2169 pmap_page_protect(uobjpage, VM_PROT_NONE); 2170 /* 2171 * XXX: PAGE MIGHT BE WIRED! 2172 */ 2173 } 2174 2175 /* 2176 * dispose of uobjpage. it can't be PG_RELEASED 2177 * since we still hold the object lock. 2178 */ 2179 2180 if (uobjpage->flags & PG_WANTED) { 2181 /* still have the obj lock */ 2182 wakeup(uobjpage); 2183 } 2184 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 2185 UVM_PAGE_OWN(uobjpage, NULL); 2186 2187 UVMHIST_LOG(maphist, 2188 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx", 2189 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0); 2190 2191 } else { 2192 uvmexp.flt_przero++; 2193 2194 /* 2195 * Page is zero'd and marked dirty by 2196 * uvmfault_promote(). 2197 */ 2198 2199 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx", 2200 (uintptr_t)anon, (uintptr_t)pg, 0, 0); 2201 } 2202 2203 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg); 2204 } 2205 2206 /* 2207 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted 2208 * from the lower page. 2209 */ 2210 2211 int 2212 uvm_fault_lower_enter( 2213 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2214 struct uvm_object *uobj, 2215 struct vm_anon *anon, struct vm_page *pg) 2216 { 2217 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2218 int error; 2219 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist); 2220 2221 /* 2222 * Locked: 2223 * 2224 * maps(read), amap(if !null), uobj(if !null), 2225 * anon(if !null), pg(if anon), unlock_uobj(if !null) 2226 * 2227 * Note: pg is either the uobjpage or the new page in the new anon. 2228 */ 2229 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 2230 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 2231 KASSERT(anon == NULL || anon->an_lock == amap->am_lock); 2232 KASSERT((pg->flags & PG_BUSY) != 0); 2233 2234 /* 2235 * all resources are present. we can now map it in and free our 2236 * resources. 2237 */ 2238 2239 UVMHIST_LOG(maphist, 2240 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 2241 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr, 2242 (uintptr_t)pg, flt->promote); 2243 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || 2244 (pg->flags & PG_RDONLY) == 0); 2245 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 2246 VM_PAGE_TO_PHYS(pg), 2247 (pg->flags & PG_RDONLY) != 0 ? 2248 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot, 2249 flt->access_type | PMAP_CANFAIL | 2250 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 2251 2252 /* 2253 * No need to undo what we did; we can simply think of 2254 * this as the pmap throwing away the mapping information. 2255 * 2256 * We do, however, have to go through the ReFault path, 2257 * as the map may change while we're asleep. 2258 */ 2259 2260 /* 2261 * ensure that the page is queued in the case that 2262 * we just promoted the page. 2263 */ 2264 2265 mutex_enter(&uvm_pageqlock); 2266 uvm_pageenqueue(pg); 2267 mutex_exit(&uvm_pageqlock); 2268 2269 if (pg->flags & PG_WANTED) 2270 wakeup(pg); 2271 2272 /* 2273 * note that pg can't be PG_RELEASED since we did not drop 2274 * the object lock since the last time we checked. 2275 */ 2276 KASSERT((pg->flags & PG_RELEASED) == 0); 2277 2278 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2279 UVM_PAGE_OWN(pg, NULL); 2280 2281 uvmfault_unlockall(ufi, amap, uobj); 2282 if (!uvm_reclaimable()) { 2283 UVMHIST_LOG(maphist, 2284 "<- failed. out of VM",0,0,0,0); 2285 /* XXX instrumentation */ 2286 error = ENOMEM; 2287 return error; 2288 } 2289 /* XXX instrumentation */ 2290 uvm_wait("flt_pmfail2"); 2291 return ERESTART; 2292 } 2293 2294 uvm_fault_lower_done(ufi, flt, uobj, pg); 2295 2296 /* 2297 * note that pg can't be PG_RELEASED since we did not drop the object 2298 * lock since the last time we checked. 2299 */ 2300 KASSERT((pg->flags & PG_RELEASED) == 0); 2301 if (pg->flags & PG_WANTED) 2302 wakeup(pg); 2303 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2304 UVM_PAGE_OWN(pg, NULL); 2305 2306 pmap_update(ufi->orig_map->pmap); 2307 uvmfault_unlockall(ufi, amap, uobj); 2308 2309 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 2310 return 0; 2311 } 2312 2313 /* 2314 * uvm_fault_lower_done: queue lower center page. 2315 */ 2316 2317 void 2318 uvm_fault_lower_done( 2319 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2320 struct uvm_object *uobj, struct vm_page *pg) 2321 { 2322 bool dropswap = false; 2323 2324 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist); 2325 2326 mutex_enter(&uvm_pageqlock); 2327 if (flt->wire_paging) { 2328 uvm_pagewire(pg); 2329 if (pg->pqflags & PQ_AOBJ) { 2330 2331 /* 2332 * since the now-wired page cannot be paged out, 2333 * release its swap resources for others to use. 2334 * since an aobj page with no swap cannot be PG_CLEAN, 2335 * clear its clean flag now. 2336 */ 2337 2338 KASSERT(uobj != NULL); 2339 pg->flags &= ~(PG_CLEAN); 2340 dropswap = true; 2341 } 2342 } else { 2343 uvm_pageactivate(pg); 2344 } 2345 mutex_exit(&uvm_pageqlock); 2346 2347 if (dropswap) { 2348 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 2349 } 2350 } 2351 2352 2353 /* 2354 * uvm_fault_wire: wire down a range of virtual addresses in a map. 2355 * 2356 * => map may be read-locked by caller, but MUST NOT be write-locked. 2357 * => if map is read-locked, any operations which may cause map to 2358 * be write-locked in uvm_fault() must be taken care of by 2359 * the caller. See uvm_map_pageable(). 2360 */ 2361 2362 int 2363 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end, 2364 vm_prot_t access_type, int maxprot) 2365 { 2366 vaddr_t va; 2367 int error; 2368 2369 /* 2370 * now fault it in a page at a time. if the fault fails then we have 2371 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 2372 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 2373 */ 2374 2375 /* 2376 * XXX work around overflowing a vaddr_t. this prevents us from 2377 * wiring the last page in the address space, though. 2378 */ 2379 if (start > end) { 2380 return EFAULT; 2381 } 2382 2383 for (va = start; va < end; va += PAGE_SIZE) { 2384 error = uvm_fault_internal(map, va, access_type, 2385 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE); 2386 if (error) { 2387 if (va != start) { 2388 uvm_fault_unwire(map, start, va); 2389 } 2390 return error; 2391 } 2392 } 2393 return 0; 2394 } 2395 2396 /* 2397 * uvm_fault_unwire(): unwire range of virtual space. 2398 */ 2399 2400 void 2401 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end) 2402 { 2403 vm_map_lock_read(map); 2404 uvm_fault_unwire_locked(map, start, end); 2405 vm_map_unlock_read(map); 2406 } 2407 2408 /* 2409 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 2410 * 2411 * => map must be at least read-locked. 2412 */ 2413 2414 void 2415 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end) 2416 { 2417 struct vm_map_entry *entry, *oentry; 2418 pmap_t pmap = vm_map_pmap(map); 2419 vaddr_t va; 2420 paddr_t pa; 2421 struct vm_page *pg; 2422 2423 /* 2424 * we assume that the area we are unwiring has actually been wired 2425 * in the first place. this means that we should be able to extract 2426 * the PAs from the pmap. we also lock out the page daemon so that 2427 * we can call uvm_pageunwire. 2428 */ 2429 2430 /* 2431 * find the beginning map entry for the region. 2432 */ 2433 2434 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 2435 if (uvm_map_lookup_entry(map, start, &entry) == false) 2436 panic("uvm_fault_unwire_locked: address not in map"); 2437 2438 oentry = NULL; 2439 for (va = start; va < end; va += PAGE_SIZE) { 2440 if (pmap_extract(pmap, va, &pa) == false) 2441 continue; 2442 2443 /* 2444 * find the map entry for the current address. 2445 */ 2446 2447 KASSERT(va >= entry->start); 2448 while (va >= entry->end) { 2449 KASSERT(entry->next != &map->header && 2450 entry->next->start <= entry->end); 2451 entry = entry->next; 2452 } 2453 2454 /* 2455 * lock it. 2456 */ 2457 2458 if (entry != oentry) { 2459 if (oentry != NULL) { 2460 mutex_exit(&uvm_pageqlock); 2461 uvm_map_unlock_entry(oentry); 2462 } 2463 uvm_map_lock_entry(entry); 2464 mutex_enter(&uvm_pageqlock); 2465 oentry = entry; 2466 } 2467 2468 /* 2469 * if the entry is no longer wired, tell the pmap. 2470 */ 2471 2472 if (VM_MAPENT_ISWIRED(entry) == 0) 2473 pmap_unwire(pmap, va); 2474 2475 pg = PHYS_TO_VM_PAGE(pa); 2476 if (pg) 2477 uvm_pageunwire(pg); 2478 } 2479 2480 if (oentry != NULL) { 2481 mutex_exit(&uvm_pageqlock); 2482 uvm_map_unlock_entry(entry); 2483 } 2484 } 2485