xref: /netbsd-src/sys/uvm/uvm_fault.c (revision e39ef1d61eee3ccba837ee281f1e098c864487aa)
1 /*	$NetBSD: uvm_fault.c,v 1.191 2011/11/28 14:06:59 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28  */
29 
30 /*
31  * uvm_fault.c: fault handler
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.191 2011/11/28 14:06:59 yamt Exp $");
36 
37 #include "opt_uvmhist.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43 
44 #include <uvm/uvm.h>
45 
46 /*
47  *
48  * a word on page faults:
49  *
50  * types of page faults we handle:
51  *
52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
53  *
54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55  *    read/write1     write>1                  read/write   +-cow_write/zero
56  *         |             |                         |        |
57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60  *                                                 |        |    |
61  *      +-----+       +-----+                   +--|--+     | +--|--+
62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63  *      +-----+       +-----+                   +-----+       +-----+
64  *
65  * d/c = don't care
66  *
67  *   case [0]: layerless fault
68  *	no amap or uobj is present.   this is an error.
69  *
70  *   case [1]: upper layer fault [anon active]
71  *     1A: [read] or [write with anon->an_ref == 1]
72  *		I/O takes place in upper level anon and uobj is not touched.
73  *     1B: [write with anon->an_ref > 1]
74  *		new anon is alloc'd and data is copied off ["COW"]
75  *
76  *   case [2]: lower layer fault [uobj]
77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78  *		I/O takes place directly in object.
79  *     2B: [write to copy_on_write] or [read on NULL uobj]
80  *		data is "promoted" from uobj to a new anon.
81  *		if uobj is null, then we zero fill.
82  *
83  * we follow the standard UVM locking protocol ordering:
84  *
85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86  * we hold a PG_BUSY page if we unlock for I/O
87  *
88  *
89  * the code is structured as follows:
90  *
91  *     - init the "IN" params in the ufi structure
92  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93  *     - do lookups [locks maps], check protection, handle needs_copy
94  *     - check for case 0 fault (error)
95  *     - establish "range" of fault
96  *     - if we have an amap lock it and extract the anons
97  *     - if sequential advice deactivate pages behind us
98  *     - at the same time check pmap for unmapped areas and anon for pages
99  *	 that we could map in (and do map it if found)
100  *     - check object for resident pages that we could map in
101  *     - if (case 2) goto Case2
102  *     - >>> handle case 1
103  *           - ensure source anon is resident in RAM
104  *           - if case 1B alloc new anon and copy from source
105  *           - map the correct page in
106  *   Case2:
107  *     - >>> handle case 2
108  *           - ensure source page is resident (if uobj)
109  *           - if case 2B alloc new anon and copy from source (could be zero
110  *		fill if uobj == NULL)
111  *           - map the correct page in
112  *     - done!
113  *
114  * note on paging:
115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
116  * unlock everything, and do the I/O.   when I/O is done we must reverify
117  * the state of the world before assuming that our data structures are
118  * valid.   [because mappings could change while the map is unlocked]
119  *
120  *  alternative 1: unbusy the page in question and restart the page fault
121  *    from the top (ReFault).   this is easy but does not take advantage
122  *    of the information that we already have from our previous lookup,
123  *    although it is possible that the "hints" in the vm_map will help here.
124  *
125  * alternative 2: the system already keeps track of a "version" number of
126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127  *    mapping) you bump the version number up by one...]   so, we can save
128  *    the version number of the map before we release the lock and start I/O.
129  *    then when I/O is done we can relock and check the version numbers
130  *    to see if anything changed.    this might save us some over 1 because
131  *    we don't have to unbusy the page and may be less compares(?).
132  *
133  * alternative 3: put in backpointers or a way to "hold" part of a map
134  *    in place while I/O is in progress.   this could be complex to
135  *    implement (especially with structures like amap that can be referenced
136  *    by multiple map entries, and figuring out what should wait could be
137  *    complex as well...).
138  *
139  * we use alternative 2.  given that we are multi-threaded now we may want
140  * to reconsider the choice.
141  */
142 
143 /*
144  * local data structures
145  */
146 
147 struct uvm_advice {
148 	int advice;
149 	int nback;
150 	int nforw;
151 };
152 
153 /*
154  * page range array:
155  * note: index in array must match "advice" value
156  * XXX: borrowed numbers from freebsd.   do they work well for us?
157  */
158 
159 static const struct uvm_advice uvmadvice[] = {
160 	{ UVM_ADV_NORMAL, 3, 4 },
161 	{ UVM_ADV_RANDOM, 0, 0 },
162 	{ UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164 
165 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
166 
167 /*
168  * private prototypes
169  */
170 
171 /*
172  * inline functions
173  */
174 
175 /*
176  * uvmfault_anonflush: try and deactivate pages in specified anons
177  *
178  * => does not have to deactivate page if it is busy
179  */
180 
181 static inline void
182 uvmfault_anonflush(struct vm_anon **anons, int n)
183 {
184 	int lcv;
185 	struct vm_page *pg;
186 
187 	for (lcv = 0; lcv < n; lcv++) {
188 		if (anons[lcv] == NULL)
189 			continue;
190 		KASSERT(mutex_owned(anons[lcv]->an_lock));
191 		pg = anons[lcv]->an_page;
192 		if (pg && (pg->flags & PG_BUSY) == 0) {
193 			mutex_enter(&uvm_pageqlock);
194 			if (pg->wire_count == 0) {
195 				uvm_pagedeactivate(pg);
196 			}
197 			mutex_exit(&uvm_pageqlock);
198 		}
199 	}
200 }
201 
202 /*
203  * normal functions
204  */
205 
206 /*
207  * uvmfault_amapcopy: clear "needs_copy" in a map.
208  *
209  * => called with VM data structures unlocked (usually, see below)
210  * => we get a write lock on the maps and clear needs_copy for a VA
211  * => if we are out of RAM we sleep (waiting for more)
212  */
213 
214 static void
215 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
216 {
217 	for (;;) {
218 
219 		/*
220 		 * no mapping?  give up.
221 		 */
222 
223 		if (uvmfault_lookup(ufi, true) == false)
224 			return;
225 
226 		/*
227 		 * copy if needed.
228 		 */
229 
230 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
231 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
232 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
233 
234 		/*
235 		 * didn't work?  must be out of RAM.   unlock and sleep.
236 		 */
237 
238 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
239 			uvmfault_unlockmaps(ufi, true);
240 			uvm_wait("fltamapcopy");
241 			continue;
242 		}
243 
244 		/*
245 		 * got it!   unlock and return.
246 		 */
247 
248 		uvmfault_unlockmaps(ufi, true);
249 		return;
250 	}
251 	/*NOTREACHED*/
252 }
253 
254 /*
255  * uvmfault_anonget: get data in an anon into a non-busy, non-released
256  * page in that anon.
257  *
258  * => Map, amap and thus anon should be locked by caller.
259  * => If we fail, we unlock everything and error is returned.
260  * => If we are successful, return with everything still locked.
261  * => We do not move the page on the queues [gets moved later].  If we
262  *    allocate a new page [we_own], it gets put on the queues.  Either way,
263  *    the result is that the page is on the queues at return time
264  * => For pages which are on loan from a uvm_object (and thus are not owned
265  *    by the anon): if successful, return with the owning object locked.
266  *    The caller must unlock this object when it unlocks everything else.
267  */
268 
269 int
270 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
271     struct vm_anon *anon)
272 {
273 	struct vm_page *pg;
274 	int error;
275 
276 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
277 	KASSERT(mutex_owned(anon->an_lock));
278 	KASSERT(anon->an_lock == amap->am_lock);
279 
280 	/* Increment the counters.*/
281 	uvmexp.fltanget++;
282 	if (anon->an_page) {
283 		curlwp->l_ru.ru_minflt++;
284 	} else {
285 		curlwp->l_ru.ru_majflt++;
286 	}
287 	error = 0;
288 
289 	/*
290 	 * Loop until we get the anon data, or fail.
291 	 */
292 
293 	for (;;) {
294 		bool we_own, locked;
295 		/*
296 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
297 		 */
298 		we_own = false;
299 		pg = anon->an_page;
300 
301 		/*
302 		 * If there is a resident page and it is loaned, then anon
303 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
304 		 * identify and lock the real owner of the page.
305 		 */
306 
307 		if (pg && pg->loan_count)
308 			pg = uvm_anon_lockloanpg(anon);
309 
310 		/*
311 		 * Is page resident?  Make sure it is not busy/released.
312 		 */
313 
314 		if (pg) {
315 
316 			/*
317 			 * at this point, if the page has a uobject [meaning
318 			 * we have it on loan], then that uobject is locked
319 			 * by us!   if the page is busy, we drop all the
320 			 * locks (including uobject) and try again.
321 			 */
322 
323 			if ((pg->flags & PG_BUSY) == 0) {
324 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
325 				return 0;
326 			}
327 			pg->flags |= PG_WANTED;
328 			uvmexp.fltpgwait++;
329 
330 			/*
331 			 * The last unlock must be an atomic unlock and wait
332 			 * on the owner of page.
333 			 */
334 
335 			if (pg->uobject) {
336 				/* Owner of page is UVM object. */
337 				uvmfault_unlockall(ufi, amap, NULL);
338 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
339 				    0,0,0);
340 				UVM_UNLOCK_AND_WAIT(pg,
341 				    pg->uobject->vmobjlock,
342 				    false, "anonget1", 0);
343 			} else {
344 				/* Owner of page is anon. */
345 				uvmfault_unlockall(ufi, NULL, NULL);
346 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
347 				    0,0,0);
348 				UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
349 				    false, "anonget2", 0);
350 			}
351 		} else {
352 #if defined(VMSWAP)
353 			/*
354 			 * No page, therefore allocate one.
355 			 */
356 
357 			pg = uvm_pagealloc(NULL,
358 			    ufi != NULL ? ufi->orig_rvaddr : 0,
359 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
360 			if (pg == NULL) {
361 				/* Out of memory.  Wait a little. */
362 				uvmfault_unlockall(ufi, amap, NULL);
363 				uvmexp.fltnoram++;
364 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
365 				    0,0,0);
366 				if (!uvm_reclaimable()) {
367 					return ENOMEM;
368 				}
369 				uvm_wait("flt_noram1");
370 			} else {
371 				/* PG_BUSY bit is set. */
372 				we_own = true;
373 				uvmfault_unlockall(ufi, amap, NULL);
374 
375 				/*
376 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
377 				 * the uvm_swap_get() function with all data
378 				 * structures unlocked.  Note that it is OK
379 				 * to read an_swslot here, because we hold
380 				 * PG_BUSY on the page.
381 				 */
382 				uvmexp.pageins++;
383 				error = uvm_swap_get(pg, anon->an_swslot,
384 				    PGO_SYNCIO);
385 
386 				/*
387 				 * We clean up after the I/O below in the
388 				 * 'we_own' case.
389 				 */
390 			}
391 #else
392 			panic("%s: no page", __func__);
393 #endif /* defined(VMSWAP) */
394 		}
395 
396 		/*
397 		 * Re-lock the map and anon.
398 		 */
399 
400 		locked = uvmfault_relock(ufi);
401 		if (locked || we_own) {
402 			mutex_enter(anon->an_lock);
403 		}
404 
405 		/*
406 		 * If we own the page (i.e. we set PG_BUSY), then we need
407 		 * to clean up after the I/O.  There are three cases to
408 		 * consider:
409 		 *
410 		 * 1) Page was released during I/O: free anon and ReFault.
411 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
412 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
413 		 *    case (i.e. drop anon lock if not locked).
414 		 */
415 
416 		if (we_own) {
417 #if defined(VMSWAP)
418 			if (pg->flags & PG_WANTED) {
419 				wakeup(pg);
420 			}
421 			if (error) {
422 
423 				/*
424 				 * Remove the swap slot from the anon and
425 				 * mark the anon as having no real slot.
426 				 * Do not free the swap slot, thus preventing
427 				 * it from being used again.
428 				 */
429 
430 				if (anon->an_swslot > 0) {
431 					uvm_swap_markbad(anon->an_swslot, 1);
432 				}
433 				anon->an_swslot = SWSLOT_BAD;
434 
435 				if ((pg->flags & PG_RELEASED) != 0) {
436 					goto released;
437 				}
438 
439 				/*
440 				 * Note: page was never !PG_BUSY, so it
441 				 * cannot be mapped and thus no need to
442 				 * pmap_page_protect() it.
443 				 */
444 
445 				mutex_enter(&uvm_pageqlock);
446 				uvm_pagefree(pg);
447 				mutex_exit(&uvm_pageqlock);
448 
449 				if (locked) {
450 					uvmfault_unlockall(ufi, NULL, NULL);
451 				}
452 				mutex_exit(anon->an_lock);
453 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 				return error;
455 			}
456 
457 			if ((pg->flags & PG_RELEASED) != 0) {
458 released:
459 				KASSERT(anon->an_ref == 0);
460 
461 				/*
462 				 * Released while we had unlocked amap.
463 				 */
464 
465 				if (locked) {
466 					uvmfault_unlockall(ufi, NULL, NULL);
467 				}
468 				uvm_anon_release(anon);
469 
470 				if (error) {
471 					UVMHIST_LOG(maphist,
472 					    "<- ERROR/RELEASED", 0,0,0,0);
473 					return error;
474 				}
475 
476 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
477 				return ERESTART;
478 			}
479 
480 			/*
481 			 * We have successfully read the page, activate it.
482 			 */
483 
484 			mutex_enter(&uvm_pageqlock);
485 			uvm_pageactivate(pg);
486 			mutex_exit(&uvm_pageqlock);
487 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
488 			UVM_PAGE_OWN(pg, NULL);
489 #else
490 			panic("%s: we_own", __func__);
491 #endif /* defined(VMSWAP) */
492 		}
493 
494 		/*
495 		 * We were not able to re-lock the map - restart the fault.
496 		 */
497 
498 		if (!locked) {
499 			if (we_own) {
500 				mutex_exit(anon->an_lock);
501 			}
502 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
503 			return ERESTART;
504 		}
505 
506 		/*
507 		 * Verify that no one has touched the amap and moved
508 		 * the anon on us.
509 		 */
510 
511 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
512 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
513 
514 			uvmfault_unlockall(ufi, amap, NULL);
515 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
516 			return ERESTART;
517 		}
518 
519 		/*
520 		 * Retry..
521 		 */
522 
523 		uvmexp.fltanretry++;
524 		continue;
525 	}
526 	/*NOTREACHED*/
527 }
528 
529 /*
530  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
531  *
532  *	1. allocate an anon and a page.
533  *	2. fill its contents.
534  *	3. put it into amap.
535  *
536  * => if we fail (result != 0) we unlock everything.
537  * => on success, return a new locked anon via 'nanon'.
538  *    (*nanon)->an_page will be a resident, locked, dirty page.
539  * => it's caller's responsibility to put the promoted nanon->an_page to the
540  *    page queue.
541  */
542 
543 static int
544 uvmfault_promote(struct uvm_faultinfo *ufi,
545     struct vm_anon *oanon,
546     struct vm_page *uobjpage,
547     struct vm_anon **nanon, /* OUT: allocated anon */
548     struct vm_anon **spare)
549 {
550 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
551 	struct uvm_object *uobj;
552 	struct vm_anon *anon;
553 	struct vm_page *pg;
554 	struct vm_page *opg;
555 	int error;
556 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
557 
558 	if (oanon) {
559 		/* anon COW */
560 		opg = oanon->an_page;
561 		KASSERT(opg != NULL);
562 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
563 	} else if (uobjpage != PGO_DONTCARE) {
564 		/* object-backed COW */
565 		opg = uobjpage;
566 	} else {
567 		/* ZFOD */
568 		opg = NULL;
569 	}
570 	if (opg != NULL) {
571 		uobj = opg->uobject;
572 	} else {
573 		uobj = NULL;
574 	}
575 
576 	KASSERT(amap != NULL);
577 	KASSERT(uobjpage != NULL);
578 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
579 	KASSERT(mutex_owned(amap->am_lock));
580 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
581 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
582 
583 	if (*spare != NULL) {
584 		anon = *spare;
585 		*spare = NULL;
586 	} else if (ufi->map != kernel_map) {
587 		anon = uvm_analloc();
588 	} else {
589 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
590 
591 		/*
592 		 * we can't allocate anons with kernel_map locked.
593 		 */
594 
595 		uvm_page_unbusy(&uobjpage, 1);
596 		uvmfault_unlockall(ufi, amap, uobj);
597 
598 		*spare = uvm_analloc();
599 		if (*spare == NULL) {
600 			goto nomem;
601 		}
602 		KASSERT((*spare)->an_lock == NULL);
603 		error = ERESTART;
604 		goto done;
605 	}
606 	if (anon) {
607 
608 		/*
609 		 * The new anon is locked.
610 		 *
611 		 * if opg == NULL, we want a zero'd, dirty page,
612 		 * so have uvm_pagealloc() do that for us.
613 		 */
614 
615 		KASSERT(anon->an_lock == NULL);
616 		anon->an_lock = amap->am_lock;
617 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
618 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
619 		if (pg == NULL) {
620 			anon->an_lock = NULL;
621 		}
622 	} else {
623 		pg = NULL;
624 	}
625 
626 	/*
627 	 * out of memory resources?
628 	 */
629 
630 	if (pg == NULL) {
631 		/* save anon for the next try. */
632 		if (anon != NULL) {
633 			*spare = anon;
634 		}
635 
636 		/* unlock and fail ... */
637 		uvm_page_unbusy(&uobjpage, 1);
638 		uvmfault_unlockall(ufi, amap, uobj);
639 nomem:
640 		if (!uvm_reclaimable()) {
641 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
642 			uvmexp.fltnoanon++;
643 			error = ENOMEM;
644 			goto done;
645 		}
646 
647 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
648 		uvmexp.fltnoram++;
649 		uvm_wait("flt_noram5");
650 		error = ERESTART;
651 		goto done;
652 	}
653 
654 	/* copy page [pg now dirty] */
655 	if (opg) {
656 		uvm_pagecopy(opg, pg);
657 	}
658 
659 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
660 	    oanon != NULL);
661 
662 	*nanon = anon;
663 	error = 0;
664 done:
665 	return error;
666 }
667 
668 
669 /*
670  *   F A U L T   -   m a i n   e n t r y   p o i n t
671  */
672 
673 /*
674  * uvm_fault: page fault handler
675  *
676  * => called from MD code to resolve a page fault
677  * => VM data structures usually should be unlocked.   however, it is
678  *	possible to call here with the main map locked if the caller
679  *	gets a write lock, sets it recusive, and then calls us (c.f.
680  *	uvm_map_pageable).   this should be avoided because it keeps
681  *	the map locked off during I/O.
682  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
683  */
684 
685 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
686 			 ~VM_PROT_WRITE : VM_PROT_ALL)
687 
688 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
689 #define UVM_FAULT_WIRE		(1 << 0)
690 #define UVM_FAULT_MAXPROT	(1 << 1)
691 
692 struct uvm_faultctx {
693 
694 	/*
695 	 * the following members are set up by uvm_fault_check() and
696 	 * read-only after that.
697 	 *
698 	 * note that narrow is used by uvm_fault_check() to change
699 	 * the behaviour after ERESTART.
700 	 *
701 	 * most of them might change after RESTART if the underlying
702 	 * map entry has been changed behind us.  an exception is
703 	 * wire_paging, which does never change.
704 	 */
705 	vm_prot_t access_type;
706 	vaddr_t startva;
707 	int npages;
708 	int centeridx;
709 	bool narrow;		/* work on a single requested page only */
710 	bool wire_mapping;	/* request a PMAP_WIRED mapping
711 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
712 	bool wire_paging;	/* request uvm_pagewire
713 				   (true for UVM_FAULT_WIRE) */
714 	bool cow_now;		/* VM_PROT_WRITE is actually requested
715 				   (ie. should break COW and page loaning) */
716 
717 	/*
718 	 * enter_prot is set up by uvm_fault_check() and clamped
719 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
720 	 * of !cow_now.
721 	 */
722 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
723 
724 	/*
725 	 * the following member is for uvmfault_promote() and ERESTART.
726 	 */
727 	struct vm_anon *anon_spare;
728 
729 	/*
730 	 * the folloing is actually a uvm_fault_lower() internal.
731 	 * it's here merely for debugging.
732 	 * (or due to the mechanical separation of the function?)
733 	 */
734 	bool promote;
735 };
736 
737 static inline int	uvm_fault_check(
738 			    struct uvm_faultinfo *, struct uvm_faultctx *,
739 			    struct vm_anon ***, bool);
740 
741 static int		uvm_fault_upper(
742 			    struct uvm_faultinfo *, struct uvm_faultctx *,
743 			    struct vm_anon **);
744 static inline int	uvm_fault_upper_lookup(
745 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
746 			    struct vm_anon **, struct vm_page **);
747 static inline void	uvm_fault_upper_neighbor(
748 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
749 			    vaddr_t, struct vm_page *, bool);
750 static inline int	uvm_fault_upper_loan(
751 			    struct uvm_faultinfo *, struct uvm_faultctx *,
752 			    struct vm_anon *, struct uvm_object **);
753 static inline int	uvm_fault_upper_promote(
754 			    struct uvm_faultinfo *, struct uvm_faultctx *,
755 			    struct uvm_object *, struct vm_anon *);
756 static inline int	uvm_fault_upper_direct(
757 			    struct uvm_faultinfo *, struct uvm_faultctx *,
758 			    struct uvm_object *, struct vm_anon *);
759 static int		uvm_fault_upper_enter(
760 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
761 			    struct uvm_object *, struct vm_anon *,
762 			    struct vm_page *, struct vm_anon *);
763 static inline void	uvm_fault_upper_done(
764 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
765 			    struct vm_anon *, struct vm_page *);
766 
767 static int		uvm_fault_lower(
768 			    struct uvm_faultinfo *, struct uvm_faultctx *,
769 			    struct vm_page **);
770 static inline void	uvm_fault_lower_lookup(
771 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
772 			    struct vm_page **);
773 static inline void	uvm_fault_lower_neighbor(
774 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
775 			    vaddr_t, struct vm_page *, bool);
776 static inline int	uvm_fault_lower_io(
777 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
778 			    struct uvm_object **, struct vm_page **);
779 static inline int	uvm_fault_lower_direct(
780 			    struct uvm_faultinfo *, struct uvm_faultctx *,
781 			    struct uvm_object *, struct vm_page *);
782 static inline int	uvm_fault_lower_direct_loan(
783 			    struct uvm_faultinfo *, struct uvm_faultctx *,
784 			    struct uvm_object *, struct vm_page **,
785 			    struct vm_page **);
786 static inline int	uvm_fault_lower_promote(
787 			    struct uvm_faultinfo *, struct uvm_faultctx *,
788 			    struct uvm_object *, struct vm_page *);
789 static int		uvm_fault_lower_enter(
790 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
791 			    struct uvm_object *,
792 			    struct vm_anon *, struct vm_page *);
793 static inline void	uvm_fault_lower_done(
794 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
795 			    struct uvm_object *, struct vm_page *);
796 
797 int
798 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
799     vm_prot_t access_type, int fault_flag)
800 {
801 	struct uvm_faultinfo ufi;
802 	struct uvm_faultctx flt = {
803 		.access_type = access_type,
804 
805 		/* don't look for neighborhood * pages on "wire" fault */
806 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
807 
808 		/* "wire" fault causes wiring of both mapping and paging */
809 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
810 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
811 	};
812 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
813 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
814 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
815 	int error;
816 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
817 
818 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
819 	      orig_map, vaddr, access_type, fault_flag);
820 
821 	curcpu()->ci_data.cpu_nfault++;
822 
823 	/*
824 	 * init the IN parameters in the ufi
825 	 */
826 
827 	ufi.orig_map = orig_map;
828 	ufi.orig_rvaddr = trunc_page(vaddr);
829 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
830 
831 	error = ERESTART;
832 	while (error == ERESTART) { /* ReFault: */
833 		anons = anons_store;
834 		pages = pages_store;
835 
836 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
837 		if (error != 0)
838 			continue;
839 
840 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
841 		if (error != 0)
842 			continue;
843 
844 		if (pages[flt.centeridx] == PGO_DONTCARE)
845 			error = uvm_fault_upper(&ufi, &flt, anons);
846 		else {
847 			struct uvm_object * const uobj =
848 			    ufi.entry->object.uvm_obj;
849 
850 			if (uobj && uobj->pgops->pgo_fault != NULL) {
851 				/*
852 				 * invoke "special" fault routine.
853 				 */
854 				mutex_enter(uobj->vmobjlock);
855 				/* locked: maps(read), amap(if there), uobj */
856 				error = uobj->pgops->pgo_fault(&ufi,
857 				    flt.startva, pages, flt.npages,
858 				    flt.centeridx, flt.access_type,
859 				    PGO_LOCKED|PGO_SYNCIO);
860 
861 				/*
862 				 * locked: nothing, pgo_fault has unlocked
863 				 * everything
864 				 */
865 
866 				/*
867 				 * object fault routine responsible for
868 				 * pmap_update().
869 				 */
870 			} else {
871 				error = uvm_fault_lower(&ufi, &flt, pages);
872 			}
873 		}
874 	}
875 
876 	if (flt.anon_spare != NULL) {
877 		flt.anon_spare->an_ref--;
878 		KASSERT(flt.anon_spare->an_ref == 0);
879 		KASSERT(flt.anon_spare->an_lock == NULL);
880 		uvm_anon_free(flt.anon_spare);
881 	}
882 	return error;
883 }
884 
885 /*
886  * uvm_fault_check: check prot, handle needs-copy, etc.
887  *
888  *	1. lookup entry.
889  *	2. check protection.
890  *	3. adjust fault condition (mainly for simulated fault).
891  *	4. handle needs-copy (lazy amap copy).
892  *	5. establish range of interest for neighbor fault (aka pre-fault).
893  *	6. look up anons (if amap exists).
894  *	7. flush pages (if MADV_SEQUENTIAL)
895  *
896  * => called with nothing locked.
897  * => if we fail (result != 0) we unlock everything.
898  * => initialize/adjust many members of flt.
899  */
900 
901 static int
902 uvm_fault_check(
903 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
904 	struct vm_anon ***ranons, bool maxprot)
905 {
906 	struct vm_amap *amap;
907 	struct uvm_object *uobj;
908 	vm_prot_t check_prot;
909 	int nback, nforw;
910 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
911 
912 	/*
913 	 * lookup and lock the maps
914 	 */
915 
916 	if (uvmfault_lookup(ufi, false) == false) {
917 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr,
918 		    0,0,0);
919 		return EFAULT;
920 	}
921 	/* locked: maps(read) */
922 
923 #ifdef DIAGNOSTIC
924 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
925 		printf("Page fault on non-pageable map:\n");
926 		printf("ufi->map = %p\n", ufi->map);
927 		printf("ufi->orig_map = %p\n", ufi->orig_map);
928 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
929 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
930 	}
931 #endif
932 
933 	/*
934 	 * check protection
935 	 */
936 
937 	check_prot = maxprot ?
938 	    ufi->entry->max_protection : ufi->entry->protection;
939 	if ((check_prot & flt->access_type) != flt->access_type) {
940 		UVMHIST_LOG(maphist,
941 		    "<- protection failure (prot=0x%x, access=0x%x)",
942 		    ufi->entry->protection, flt->access_type, 0, 0);
943 		uvmfault_unlockmaps(ufi, false);
944 		return EACCES;
945 	}
946 
947 	/*
948 	 * "enter_prot" is the protection we want to enter the page in at.
949 	 * for certain pages (e.g. copy-on-write pages) this protection can
950 	 * be more strict than ufi->entry->protection.  "wired" means either
951 	 * the entry is wired or we are fault-wiring the pg.
952 	 */
953 
954 	flt->enter_prot = ufi->entry->protection;
955 	if (VM_MAPENT_ISWIRED(ufi->entry))
956 		flt->wire_mapping = true;
957 
958 	if (flt->wire_mapping) {
959 		flt->access_type = flt->enter_prot; /* full access for wired */
960 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
961 	} else {
962 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
963 	}
964 
965 	flt->promote = false;
966 
967 	/*
968 	 * handle "needs_copy" case.   if we need to copy the amap we will
969 	 * have to drop our readlock and relock it with a write lock.  (we
970 	 * need a write lock to change anything in a map entry [e.g.
971 	 * needs_copy]).
972 	 */
973 
974 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
975 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
976 			KASSERT(!maxprot);
977 			/* need to clear */
978 			UVMHIST_LOG(maphist,
979 			    "  need to clear needs_copy and refault",0,0,0,0);
980 			uvmfault_unlockmaps(ufi, false);
981 			uvmfault_amapcopy(ufi);
982 			uvmexp.fltamcopy++;
983 			return ERESTART;
984 
985 		} else {
986 
987 			/*
988 			 * ensure that we pmap_enter page R/O since
989 			 * needs_copy is still true
990 			 */
991 
992 			flt->enter_prot &= ~VM_PROT_WRITE;
993 		}
994 	}
995 
996 	/*
997 	 * identify the players
998 	 */
999 
1000 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
1001 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
1002 
1003 	/*
1004 	 * check for a case 0 fault.  if nothing backing the entry then
1005 	 * error now.
1006 	 */
1007 
1008 	if (amap == NULL && uobj == NULL) {
1009 		uvmfault_unlockmaps(ufi, false);
1010 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1011 		return EFAULT;
1012 	}
1013 
1014 	/*
1015 	 * establish range of interest based on advice from mapper
1016 	 * and then clip to fit map entry.   note that we only want
1017 	 * to do this the first time through the fault.   if we
1018 	 * ReFault we will disable this by setting "narrow" to true.
1019 	 */
1020 
1021 	if (flt->narrow == false) {
1022 
1023 		/* wide fault (!narrow) */
1024 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
1025 			 ufi->entry->advice);
1026 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
1027 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1028 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1029 		/*
1030 		 * note: "-1" because we don't want to count the
1031 		 * faulting page as forw
1032 		 */
1033 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1034 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
1035 			     PAGE_SHIFT) - 1);
1036 		flt->npages = nback + nforw + 1;
1037 		flt->centeridx = nback;
1038 
1039 		flt->narrow = true;	/* ensure only once per-fault */
1040 
1041 	} else {
1042 
1043 		/* narrow fault! */
1044 		nback = nforw = 0;
1045 		flt->startva = ufi->orig_rvaddr;
1046 		flt->npages = 1;
1047 		flt->centeridx = 0;
1048 
1049 	}
1050 	/* offset from entry's start to pgs' start */
1051 	const voff_t eoff = flt->startva - ufi->entry->start;
1052 
1053 	/* locked: maps(read) */
1054 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
1055 		    flt->narrow, nback, nforw, flt->startva);
1056 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1057 		    amap, uobj, 0);
1058 
1059 	/*
1060 	 * if we've got an amap, lock it and extract current anons.
1061 	 */
1062 
1063 	if (amap) {
1064 		amap_lock(amap);
1065 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1066 	} else {
1067 		*ranons = NULL;	/* to be safe */
1068 	}
1069 
1070 	/* locked: maps(read), amap(if there) */
1071 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1072 
1073 	/*
1074 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1075 	 * now and then forget about them (for the rest of the fault).
1076 	 */
1077 
1078 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1079 
1080 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
1081 		    0,0,0,0);
1082 		/* flush back-page anons? */
1083 		if (amap)
1084 			uvmfault_anonflush(*ranons, nback);
1085 
1086 		/* flush object? */
1087 		if (uobj) {
1088 			voff_t uoff;
1089 
1090 			uoff = ufi->entry->offset + eoff;
1091 			mutex_enter(uobj->vmobjlock);
1092 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1093 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1094 		}
1095 
1096 		/* now forget about the backpages */
1097 		if (amap)
1098 			*ranons += nback;
1099 		flt->startva += (nback << PAGE_SHIFT);
1100 		flt->npages -= nback;
1101 		flt->centeridx = 0;
1102 	}
1103 	/*
1104 	 * => startva is fixed
1105 	 * => npages is fixed
1106 	 */
1107 	KASSERT(flt->startva <= ufi->orig_rvaddr);
1108 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1109 	    flt->startva + (flt->npages << PAGE_SHIFT));
1110 	return 0;
1111 }
1112 
1113 /*
1114  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1115  *
1116  * iterate range of interest:
1117  *	1. check if h/w mapping exists.  if yes, we don't care
1118  *	2. check if anon exists.  if not, page is lower.
1119  *	3. if anon exists, enter h/w mapping for neighbors.
1120  *
1121  * => called with amap locked (if exists).
1122  */
1123 
1124 static int
1125 uvm_fault_upper_lookup(
1126 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1127 	struct vm_anon **anons, struct vm_page **pages)
1128 {
1129 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1130 	int lcv;
1131 	vaddr_t currva;
1132 	bool shadowed;
1133 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1134 
1135 	/* locked: maps(read), amap(if there) */
1136 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1137 
1138 	/*
1139 	 * map in the backpages and frontpages we found in the amap in hopes
1140 	 * of preventing future faults.    we also init the pages[] array as
1141 	 * we go.
1142 	 */
1143 
1144 	currva = flt->startva;
1145 	shadowed = false;
1146 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1147 		/*
1148 		 * don't play with VAs that are already mapped
1149 		 * (except for center)
1150 		 */
1151 		if (lcv != flt->centeridx &&
1152 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1153 			pages[lcv] = PGO_DONTCARE;
1154 			continue;
1155 		}
1156 
1157 		/*
1158 		 * unmapped or center page.   check if any anon at this level.
1159 		 */
1160 		if (amap == NULL || anons[lcv] == NULL) {
1161 			pages[lcv] = NULL;
1162 			continue;
1163 		}
1164 
1165 		/*
1166 		 * check for present page and map if possible.   re-activate it.
1167 		 */
1168 
1169 		pages[lcv] = PGO_DONTCARE;
1170 		if (lcv == flt->centeridx) {	/* save center for later! */
1171 			shadowed = true;
1172 			continue;
1173 		}
1174 
1175 		struct vm_anon *anon = anons[lcv];
1176 		struct vm_page *pg = anon->an_page;
1177 
1178 		KASSERT(anon->an_lock == amap->am_lock);
1179 
1180 		/* Ignore loaned and busy pages. */
1181 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1182 			uvm_fault_upper_neighbor(ufi, flt, currva,
1183 			    pg, anon->an_ref > 1);
1184 		}
1185 	}
1186 
1187 	/* locked: maps(read), amap(if there) */
1188 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1189 	/* (shadowed == true) if there is an anon at the faulting address */
1190 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
1191 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1192 
1193 	/*
1194 	 * note that if we are really short of RAM we could sleep in the above
1195 	 * call to pmap_enter with everything locked.   bad?
1196 	 *
1197 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
1198 	 * XXX case.  --thorpej
1199 	 */
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * uvm_fault_upper_neighbor: enter single lower neighbor page.
1206  *
1207  * => called with amap and anon locked.
1208  */
1209 
1210 static void
1211 uvm_fault_upper_neighbor(
1212 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1213 	vaddr_t currva, struct vm_page *pg, bool readonly)
1214 {
1215 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1216 
1217 	/* locked: amap, anon */
1218 
1219 	mutex_enter(&uvm_pageqlock);
1220 	uvm_pageenqueue(pg);
1221 	mutex_exit(&uvm_pageqlock);
1222 	UVMHIST_LOG(maphist,
1223 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1224 	    ufi->orig_map->pmap, currva, pg, 0);
1225 	uvmexp.fltnamap++;
1226 
1227 	/*
1228 	 * Since this page isn't the page that's actually faulting,
1229 	 * ignore pmap_enter() failures; it's not critical that we
1230 	 * enter these right now.
1231 	 */
1232 
1233 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1234 	    VM_PAGE_TO_PHYS(pg),
1235 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1236 	    flt->enter_prot,
1237 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1238 
1239 	pmap_update(ufi->orig_map->pmap);
1240 }
1241 
1242 /*
1243  * uvm_fault_upper: handle upper fault.
1244  *
1245  *	1. acquire anon lock.
1246  *	2. get anon.  let uvmfault_anonget do the dirty work.
1247  *	3. handle loan.
1248  *	4. dispatch direct or promote handlers.
1249  */
1250 
1251 static int
1252 uvm_fault_upper(
1253 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1254 	struct vm_anon **anons)
1255 {
1256 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1257 	struct vm_anon * const anon = anons[flt->centeridx];
1258 	struct uvm_object *uobj;
1259 	int error;
1260 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1261 
1262 	/* locked: maps(read), amap, anon */
1263 	KASSERT(mutex_owned(amap->am_lock));
1264 	KASSERT(anon->an_lock == amap->am_lock);
1265 
1266 	/*
1267 	 * handle case 1: fault on an anon in our amap
1268 	 */
1269 
1270 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
1271 
1272 	/*
1273 	 * no matter if we have case 1A or case 1B we are going to need to
1274 	 * have the anon's memory resident.   ensure that now.
1275 	 */
1276 
1277 	/*
1278 	 * let uvmfault_anonget do the dirty work.
1279 	 * if it fails (!OK) it will unlock everything for us.
1280 	 * if it succeeds, locks are still valid and locked.
1281 	 * also, if it is OK, then the anon's page is on the queues.
1282 	 * if the page is on loan from a uvm_object, then anonget will
1283 	 * lock that object for us if it does not fail.
1284 	 */
1285 
1286 	error = uvmfault_anonget(ufi, amap, anon);
1287 	switch (error) {
1288 	case 0:
1289 		break;
1290 
1291 	case ERESTART:
1292 		return ERESTART;
1293 
1294 	case EAGAIN:
1295 		kpause("fltagain1", false, hz/2, NULL);
1296 		return ERESTART;
1297 
1298 	default:
1299 		return error;
1300 	}
1301 
1302 	/*
1303 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1304 	 */
1305 
1306 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1307 
1308 	/* locked: maps(read), amap, anon, uobj(if one) */
1309 	KASSERT(mutex_owned(amap->am_lock));
1310 	KASSERT(anon->an_lock == amap->am_lock);
1311 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1312 
1313 	/*
1314 	 * special handling for loaned pages
1315 	 */
1316 
1317 	if (anon->an_page->loan_count) {
1318 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1319 		if (error != 0)
1320 			return error;
1321 	}
1322 
1323 	/*
1324 	 * if we are case 1B then we will need to allocate a new blank
1325 	 * anon to transfer the data into.   note that we have a lock
1326 	 * on anon, so no one can busy or release the page until we are done.
1327 	 * also note that the ref count can't drop to zero here because
1328 	 * it is > 1 and we are only dropping one ref.
1329 	 *
1330 	 * in the (hopefully very rare) case that we are out of RAM we
1331 	 * will unlock, wait for more RAM, and refault.
1332 	 *
1333 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1334 	 */
1335 
1336 	if (flt->cow_now && anon->an_ref > 1) {
1337 		flt->promote = true;
1338 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1339 	} else {
1340 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1341 	}
1342 	return error;
1343 }
1344 
1345 /*
1346  * uvm_fault_upper_loan: handle loaned upper page.
1347  *
1348  *	1. if not cow'ing now, simply adjust flt->enter_prot.
1349  *	2. if cow'ing now, and if ref count is 1, break loan.
1350  */
1351 
1352 static int
1353 uvm_fault_upper_loan(
1354 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1355 	struct vm_anon *anon, struct uvm_object **ruobj)
1356 {
1357 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1358 	int error = 0;
1359 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1360 
1361 	if (!flt->cow_now) {
1362 
1363 		/*
1364 		 * for read faults on loaned pages we just cap the
1365 		 * protection at read-only.
1366 		 */
1367 
1368 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1369 
1370 	} else {
1371 		/*
1372 		 * note that we can't allow writes into a loaned page!
1373 		 *
1374 		 * if we have a write fault on a loaned page in an
1375 		 * anon then we need to look at the anon's ref count.
1376 		 * if it is greater than one then we are going to do
1377 		 * a normal copy-on-write fault into a new anon (this
1378 		 * is not a problem).  however, if the reference count
1379 		 * is one (a case where we would normally allow a
1380 		 * write directly to the page) then we need to kill
1381 		 * the loan before we continue.
1382 		 */
1383 
1384 		/* >1 case is already ok */
1385 		if (anon->an_ref == 1) {
1386 			error = uvm_loanbreak_anon(anon, *ruobj);
1387 			if (error != 0) {
1388 				uvmfault_unlockall(ufi, amap, *ruobj);
1389 				uvm_wait("flt_noram2");
1390 				return ERESTART;
1391 			}
1392 			/* if we were a loan reciever uobj is gone */
1393 			if (*ruobj)
1394 				*ruobj = NULL;
1395 		}
1396 	}
1397 	return error;
1398 }
1399 
1400 /*
1401  * uvm_fault_upper_promote: promote upper page.
1402  *
1403  *	1. call uvmfault_promote.
1404  *	2. enqueue page.
1405  *	3. deref.
1406  *	4. pass page to uvm_fault_upper_enter.
1407  */
1408 
1409 static int
1410 uvm_fault_upper_promote(
1411 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1412 	struct uvm_object *uobj, struct vm_anon *anon)
1413 {
1414 	struct vm_anon * const oanon = anon;
1415 	struct vm_page *pg;
1416 	int error;
1417 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1418 
1419 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1420 	uvmexp.flt_acow++;
1421 
1422 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1423 	    &flt->anon_spare);
1424 	switch (error) {
1425 	case 0:
1426 		break;
1427 	case ERESTART:
1428 		return ERESTART;
1429 	default:
1430 		return error;
1431 	}
1432 
1433 	KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1434 
1435 	pg = anon->an_page;
1436 	mutex_enter(&uvm_pageqlock);
1437 	uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1438 	mutex_exit(&uvm_pageqlock);
1439 	pg->flags &= ~(PG_BUSY|PG_FAKE);
1440 	UVM_PAGE_OWN(pg, NULL);
1441 
1442 	/* deref: can not drop to zero here by defn! */
1443 	KASSERT(oanon->an_ref > 1);
1444 	oanon->an_ref--;
1445 
1446 	/*
1447 	 * note: oanon is still locked, as is the new anon.  we
1448 	 * need to check for this later when we unlock oanon; if
1449 	 * oanon != anon, we'll have to unlock anon, too.
1450 	 */
1451 
1452 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1453 }
1454 
1455 /*
1456  * uvm_fault_upper_direct: handle direct fault.
1457  */
1458 
1459 static int
1460 uvm_fault_upper_direct(
1461 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1462 	struct uvm_object *uobj, struct vm_anon *anon)
1463 {
1464 	struct vm_anon * const oanon = anon;
1465 	struct vm_page *pg;
1466 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1467 
1468 	uvmexp.flt_anon++;
1469 	pg = anon->an_page;
1470 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1471 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1472 
1473 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1474 }
1475 
1476 /*
1477  * uvm_fault_upper_enter: enter h/w mapping of upper page.
1478  */
1479 
1480 static int
1481 uvm_fault_upper_enter(
1482 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1483 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1484 	struct vm_anon *oanon)
1485 {
1486 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1487 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1488 
1489 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
1490 	KASSERT(mutex_owned(amap->am_lock));
1491 	KASSERT(anon->an_lock == amap->am_lock);
1492 	KASSERT(oanon->an_lock == amap->am_lock);
1493 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1494 
1495 	/*
1496 	 * now map the page in.
1497 	 */
1498 
1499 	UVMHIST_LOG(maphist,
1500 	    "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1501 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1502 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1503 	    VM_PAGE_TO_PHYS(pg),
1504 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1505 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1506 
1507 		/*
1508 		 * No need to undo what we did; we can simply think of
1509 		 * this as the pmap throwing away the mapping information.
1510 		 *
1511 		 * We do, however, have to go through the ReFault path,
1512 		 * as the map may change while we're asleep.
1513 		 */
1514 
1515 		uvmfault_unlockall(ufi, amap, uobj);
1516 		if (!uvm_reclaimable()) {
1517 			UVMHIST_LOG(maphist,
1518 			    "<- failed.  out of VM",0,0,0,0);
1519 			/* XXX instrumentation */
1520 			return ENOMEM;
1521 		}
1522 		/* XXX instrumentation */
1523 		uvm_wait("flt_pmfail1");
1524 		return ERESTART;
1525 	}
1526 
1527 	uvm_fault_upper_done(ufi, flt, anon, pg);
1528 
1529 	/*
1530 	 * done case 1!  finish up by unlocking everything and returning success
1531 	 */
1532 
1533 	pmap_update(ufi->orig_map->pmap);
1534 	uvmfault_unlockall(ufi, amap, uobj);
1535 	return 0;
1536 }
1537 
1538 /*
1539  * uvm_fault_upper_done: queue upper center page.
1540  */
1541 
1542 static void
1543 uvm_fault_upper_done(
1544 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1545 	struct vm_anon *anon, struct vm_page *pg)
1546 {
1547 	const bool wire_paging = flt->wire_paging;
1548 
1549 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1550 
1551 	/*
1552 	 * ... update the page queues.
1553 	 */
1554 
1555 	mutex_enter(&uvm_pageqlock);
1556 	if (wire_paging) {
1557 		uvm_pagewire(pg);
1558 
1559 		/*
1560 		 * since the now-wired page cannot be paged out,
1561 		 * release its swap resources for others to use.
1562 		 * since an anon with no swap cannot be PG_CLEAN,
1563 		 * clear its clean flag now.
1564 		 */
1565 
1566 		pg->flags &= ~(PG_CLEAN);
1567 
1568 	} else {
1569 		uvm_pageactivate(pg);
1570 	}
1571 	mutex_exit(&uvm_pageqlock);
1572 
1573 	if (wire_paging) {
1574 		uvm_anon_dropswap(anon);
1575 	}
1576 }
1577 
1578 /*
1579  * uvm_fault_lower: handle lower fault.
1580  *
1581  *	1. check uobj
1582  *	1.1. if null, ZFOD.
1583  *	1.2. if not null, look up unnmapped neighbor pages.
1584  *	2. for center page, check if promote.
1585  *	2.1. ZFOD always needs promotion.
1586  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1587  *	3. if uobj is not ZFOD and page is not found, do i/o.
1588  *	4. dispatch either direct / promote fault.
1589  */
1590 
1591 static int
1592 uvm_fault_lower(
1593 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1594 	struct vm_page **pages)
1595 {
1596 #ifdef DIAGNOSTIC
1597 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1598 #endif
1599 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1600 	struct vm_page *uobjpage;
1601 	int error;
1602 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1603 
1604 	/*
1605 	 * now, if the desired page is not shadowed by the amap and we have
1606 	 * a backing object that does not have a special fault routine, then
1607 	 * we ask (with pgo_get) the object for resident pages that we care
1608 	 * about and attempt to map them in.  we do not let pgo_get block
1609 	 * (PGO_LOCKED).
1610 	 */
1611 
1612 	if (uobj == NULL) {
1613 		/* zero fill; don't care neighbor pages */
1614 		uobjpage = NULL;
1615 	} else {
1616 		uvm_fault_lower_lookup(ufi, flt, pages);
1617 		uobjpage = pages[flt->centeridx];
1618 	}
1619 
1620 	/*
1621 	 * note that at this point we are done with any front or back pages.
1622 	 * we are now going to focus on the center page (i.e. the one we've
1623 	 * faulted on).  if we have faulted on the upper (anon) layer
1624 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1625 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1626 	 * layer [i.e. case 2] and the page was both present and available,
1627 	 * then we've got a pointer to it as "uobjpage" and we've already
1628 	 * made it BUSY.
1629 	 */
1630 
1631 	/*
1632 	 * locked:
1633 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1634 	 */
1635 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1636 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1637 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1638 
1639 	/*
1640 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1641 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1642 	 * have a backing object, check and see if we are going to promote
1643 	 * the data up to an anon during the fault.
1644 	 */
1645 
1646 	if (uobj == NULL) {
1647 		uobjpage = PGO_DONTCARE;
1648 		flt->promote = true;		/* always need anon here */
1649 	} else {
1650 		KASSERT(uobjpage != PGO_DONTCARE);
1651 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1652 	}
1653 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
1654 	    flt->promote, (uobj == NULL), 0,0);
1655 
1656 	/*
1657 	 * if uobjpage is not null then we do not need to do I/O to get the
1658 	 * uobjpage.
1659 	 *
1660 	 * if uobjpage is null, then we need to unlock and ask the pager to
1661 	 * get the data for us.   once we have the data, we need to reverify
1662 	 * the state the world.   we are currently not holding any resources.
1663 	 */
1664 
1665 	if (uobjpage) {
1666 		/* update rusage counters */
1667 		curlwp->l_ru.ru_minflt++;
1668 	} else {
1669 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1670 		if (error != 0)
1671 			return error;
1672 	}
1673 
1674 	/*
1675 	 * locked:
1676 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1677 	 */
1678 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1679 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1680 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1681 
1682 	/*
1683 	 * notes:
1684 	 *  - at this point uobjpage can not be NULL
1685 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1686 	 *  for it above)
1687 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1688 	 */
1689 
1690 	KASSERT(uobjpage != NULL);
1691 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1692 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1693 	    (uobjpage->flags & PG_CLEAN) != 0);
1694 
1695 	if (!flt->promote) {
1696 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1697 	} else {
1698 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1699 	}
1700 	return error;
1701 }
1702 
1703 /*
1704  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1705  *
1706  *	1. get on-memory pages.
1707  *	2. if failed, give up (get only center page later).
1708  *	3. if succeeded, enter h/w mapping of neighbor pages.
1709  */
1710 
1711 static void
1712 uvm_fault_lower_lookup(
1713 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1714 	struct vm_page **pages)
1715 {
1716 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1717 	int lcv, gotpages;
1718 	vaddr_t currva;
1719 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1720 
1721 	mutex_enter(uobj->vmobjlock);
1722 	/* Locked: maps(read), amap(if there), uobj */
1723 
1724 	uvmexp.fltlget++;
1725 	gotpages = flt->npages;
1726 	(void) uobj->pgops->pgo_get(uobj,
1727 	    ufi->entry->offset + flt->startva - ufi->entry->start,
1728 	    pages, &gotpages, flt->centeridx,
1729 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1730 
1731 	KASSERT(mutex_owned(uobj->vmobjlock));
1732 
1733 	/*
1734 	 * check for pages to map, if we got any
1735 	 */
1736 
1737 	if (gotpages == 0) {
1738 		pages[flt->centeridx] = NULL;
1739 		return;
1740 	}
1741 
1742 	currva = flt->startva;
1743 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1744 		struct vm_page *curpg;
1745 
1746 		curpg = pages[lcv];
1747 		if (curpg == NULL || curpg == PGO_DONTCARE) {
1748 			continue;
1749 		}
1750 		KASSERT(curpg->uobject == uobj);
1751 
1752 		/*
1753 		 * if center page is resident and not PG_BUSY|PG_RELEASED
1754 		 * then pgo_get made it PG_BUSY for us and gave us a handle
1755 		 * to it.
1756 		 */
1757 
1758 		if (lcv == flt->centeridx) {
1759 			UVMHIST_LOG(maphist, "  got uobjpage "
1760 			    "(0x%x) with locked get",
1761 			    curpg, 0,0,0);
1762 		} else {
1763 			bool readonly = (curpg->flags & PG_RDONLY)
1764 			    || (curpg->loan_count > 0)
1765 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1766 
1767 			uvm_fault_lower_neighbor(ufi, flt,
1768 			    currva, curpg, readonly);
1769 		}
1770 	}
1771 	pmap_update(ufi->orig_map->pmap);
1772 }
1773 
1774 /*
1775  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1776  */
1777 
1778 static void
1779 uvm_fault_lower_neighbor(
1780 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1781 	vaddr_t currva, struct vm_page *pg, bool readonly)
1782 {
1783 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1784 
1785 	/* locked: maps(read), amap(if there), uobj */
1786 
1787 	/*
1788 	 * calling pgo_get with PGO_LOCKED returns us pages which
1789 	 * are neither busy nor released, so we don't need to check
1790 	 * for this.  we can just directly enter the pages.
1791 	 */
1792 
1793 	mutex_enter(&uvm_pageqlock);
1794 	uvm_pageenqueue(pg);
1795 	mutex_exit(&uvm_pageqlock);
1796 	UVMHIST_LOG(maphist,
1797 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1798 	    ufi->orig_map->pmap, currva, pg, 0);
1799 	uvmexp.fltnomap++;
1800 
1801 	/*
1802 	 * Since this page isn't the page that's actually faulting,
1803 	 * ignore pmap_enter() failures; it's not critical that we
1804 	 * enter these right now.
1805 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1806 	 * held the lock the whole time we've had the handle.
1807 	 */
1808 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1809 	KASSERT((pg->flags & PG_RELEASED) == 0);
1810 	KASSERT((pg->flags & PG_WANTED) == 0);
1811 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1812 	pg->flags &= ~(PG_BUSY);
1813 	UVM_PAGE_OWN(pg, NULL);
1814 
1815 	KASSERT(mutex_owned(pg->uobject->vmobjlock));
1816 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1817 	    VM_PAGE_TO_PHYS(pg),
1818 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1819 	    flt->enter_prot & MASK(ufi->entry),
1820 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1821 }
1822 
1823 /*
1824  * uvm_fault_lower_io: get lower page from backing store.
1825  *
1826  *	1. unlock everything, because i/o will block.
1827  *	2. call pgo_get.
1828  *	3. if failed, recover.
1829  *	4. if succeeded, relock everything and verify things.
1830  */
1831 
1832 static int
1833 uvm_fault_lower_io(
1834 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1835 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
1836 {
1837 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1838 	struct uvm_object *uobj = *ruobj;
1839 	struct vm_page *pg;
1840 	bool locked;
1841 	int gotpages;
1842 	int error;
1843 	voff_t uoff;
1844 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1845 
1846 	/* update rusage counters */
1847 	curlwp->l_ru.ru_majflt++;
1848 
1849 	/* Locked: maps(read), amap(if there), uobj */
1850 	uvmfault_unlockall(ufi, amap, NULL);
1851 
1852 	/* Locked: uobj */
1853 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1854 
1855 	uvmexp.fltget++;
1856 	gotpages = 1;
1857 	pg = NULL;
1858 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1859 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1860 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1861 	    PGO_SYNCIO);
1862 	/* locked: pg(if no error) */
1863 
1864 	/*
1865 	 * recover from I/O
1866 	 */
1867 
1868 	if (error) {
1869 		if (error == EAGAIN) {
1870 			UVMHIST_LOG(maphist,
1871 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
1872 			kpause("fltagain2", false, hz/2, NULL);
1873 			return ERESTART;
1874 		}
1875 
1876 #if 0
1877 		KASSERT(error != ERESTART);
1878 #else
1879 		/* XXXUEBS don't re-fault? */
1880 		if (error == ERESTART)
1881 			error = EIO;
1882 #endif
1883 
1884 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1885 		    error, 0,0,0);
1886 		return error;
1887 	}
1888 
1889 	/*
1890 	 * re-verify the state of the world by first trying to relock
1891 	 * the maps.  always relock the object.
1892 	 */
1893 
1894 	locked = uvmfault_relock(ufi);
1895 	if (locked && amap)
1896 		amap_lock(amap);
1897 
1898 	/* might be changed */
1899 	uobj = pg->uobject;
1900 
1901 	mutex_enter(uobj->vmobjlock);
1902 	KASSERT((pg->flags & PG_BUSY) != 0);
1903 
1904 	mutex_enter(&uvm_pageqlock);
1905 	uvm_pageactivate(pg);
1906 	mutex_exit(&uvm_pageqlock);
1907 
1908 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
1909 	/* locked(!locked): uobj, pg */
1910 
1911 	/*
1912 	 * verify that the page has not be released and re-verify
1913 	 * that amap slot is still free.   if there is a problem,
1914 	 * we unlock and clean up.
1915 	 */
1916 
1917 	if ((pg->flags & PG_RELEASED) != 0 ||
1918 	    (locked && amap && amap_lookup(&ufi->entry->aref,
1919 	      ufi->orig_rvaddr - ufi->entry->start))) {
1920 		if (locked)
1921 			uvmfault_unlockall(ufi, amap, NULL);
1922 		locked = false;
1923 	}
1924 
1925 	/*
1926 	 * didn't get the lock?   release the page and retry.
1927 	 */
1928 
1929 	if (locked == false) {
1930 		UVMHIST_LOG(maphist,
1931 		    "  wasn't able to relock after fault: retry",
1932 		    0,0,0,0);
1933 		if (pg->flags & PG_WANTED) {
1934 			wakeup(pg);
1935 		}
1936 		if ((pg->flags & PG_RELEASED) == 0) {
1937 			pg->flags &= ~(PG_BUSY | PG_WANTED);
1938 			UVM_PAGE_OWN(pg, NULL);
1939 		} else {
1940 			uvmexp.fltpgrele++;
1941 			uvm_pagefree(pg);
1942 		}
1943 		mutex_exit(uobj->vmobjlock);
1944 		return ERESTART;
1945 	}
1946 
1947 	/*
1948 	 * we have the data in pg which is busy and
1949 	 * not released.  we are holding object lock (so the page
1950 	 * can't be released on us).
1951 	 */
1952 
1953 	/* locked: maps(read), amap(if !null), uobj, pg */
1954 
1955 	*ruobj = uobj;
1956 	*ruobjpage = pg;
1957 	return 0;
1958 }
1959 
1960 /*
1961  * uvm_fault_lower_direct: fault lower center page
1962  *
1963  *	1. adjust flt->enter_prot.
1964  *	2. if page is loaned, resolve.
1965  */
1966 
1967 int
1968 uvm_fault_lower_direct(
1969 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1970 	struct uvm_object *uobj, struct vm_page *uobjpage)
1971 {
1972 	struct vm_page *pg;
1973 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1974 
1975 	/*
1976 	 * we are not promoting.   if the mapping is COW ensure that we
1977 	 * don't give more access than we should (e.g. when doing a read
1978 	 * fault on a COPYONWRITE mapping we want to map the COW page in
1979 	 * R/O even though the entry protection could be R/W).
1980 	 *
1981 	 * set "pg" to the page we want to map in (uobjpage, usually)
1982 	 */
1983 
1984 	uvmexp.flt_obj++;
1985 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1986 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1987 		flt->enter_prot &= ~VM_PROT_WRITE;
1988 	pg = uobjpage;		/* map in the actual object */
1989 
1990 	KASSERT(uobjpage != PGO_DONTCARE);
1991 
1992 	/*
1993 	 * we are faulting directly on the page.   be careful
1994 	 * about writing to loaned pages...
1995 	 */
1996 
1997 	if (uobjpage->loan_count) {
1998 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1999 	}
2000 	KASSERT(pg == uobjpage);
2001 
2002 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2003 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2004 }
2005 
2006 /*
2007  * uvm_fault_lower_direct_loan: resolve loaned page.
2008  *
2009  *	1. if not cow'ing, adjust flt->enter_prot.
2010  *	2. if cow'ing, break loan.
2011  */
2012 
2013 static int
2014 uvm_fault_lower_direct_loan(
2015 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2016 	struct uvm_object *uobj, struct vm_page **rpg,
2017 	struct vm_page **ruobjpage)
2018 {
2019 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2020 	struct vm_page *pg;
2021 	struct vm_page *uobjpage = *ruobjpage;
2022 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2023 
2024 	if (!flt->cow_now) {
2025 		/* read fault: cap the protection at readonly */
2026 		/* cap! */
2027 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2028 	} else {
2029 		/* write fault: must break the loan here */
2030 
2031 		pg = uvm_loanbreak(uobjpage);
2032 		if (pg == NULL) {
2033 
2034 			/*
2035 			 * drop ownership of page, it can't be released
2036 			 */
2037 
2038 			if (uobjpage->flags & PG_WANTED)
2039 				wakeup(uobjpage);
2040 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2041 			UVM_PAGE_OWN(uobjpage, NULL);
2042 
2043 			uvmfault_unlockall(ufi, amap, uobj);
2044 			UVMHIST_LOG(maphist,
2045 			  "  out of RAM breaking loan, waiting",
2046 			  0,0,0,0);
2047 			uvmexp.fltnoram++;
2048 			uvm_wait("flt_noram4");
2049 			return ERESTART;
2050 		}
2051 		*rpg = pg;
2052 		*ruobjpage = pg;
2053 	}
2054 	return 0;
2055 }
2056 
2057 /*
2058  * uvm_fault_lower_promote: promote lower page.
2059  *
2060  *	1. call uvmfault_promote.
2061  *	2. fill in data.
2062  *	3. if not ZFOD, dispose old page.
2063  */
2064 
2065 int
2066 uvm_fault_lower_promote(
2067 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2068 	struct uvm_object *uobj, struct vm_page *uobjpage)
2069 {
2070 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2071 	struct vm_anon *anon;
2072 	struct vm_page *pg;
2073 	int error;
2074 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2075 
2076 	KASSERT(amap != NULL);
2077 
2078 	/*
2079 	 * If we are going to promote the data to an anon we
2080 	 * allocate a blank anon here and plug it into our amap.
2081 	 */
2082 	error = uvmfault_promote(ufi, NULL, uobjpage,
2083 	    &anon, &flt->anon_spare);
2084 	switch (error) {
2085 	case 0:
2086 		break;
2087 	case ERESTART:
2088 		return ERESTART;
2089 	default:
2090 		return error;
2091 	}
2092 
2093 	pg = anon->an_page;
2094 
2095 	/*
2096 	 * Fill in the data.
2097 	 */
2098 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2099 
2100 	if (uobjpage != PGO_DONTCARE) {
2101 		uvmexp.flt_prcopy++;
2102 
2103 		/*
2104 		 * promote to shared amap?  make sure all sharing
2105 		 * procs see it
2106 		 */
2107 
2108 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2109 			pmap_page_protect(uobjpage, VM_PROT_NONE);
2110 			/*
2111 			 * XXX: PAGE MIGHT BE WIRED!
2112 			 */
2113 		}
2114 
2115 		/*
2116 		 * dispose of uobjpage.  it can't be PG_RELEASED
2117 		 * since we still hold the object lock.
2118 		 */
2119 
2120 		if (uobjpage->flags & PG_WANTED) {
2121 			/* still have the obj lock */
2122 			wakeup(uobjpage);
2123 		}
2124 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2125 		UVM_PAGE_OWN(uobjpage, NULL);
2126 
2127 		UVMHIST_LOG(maphist,
2128 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2129 		    uobjpage, anon, pg, 0);
2130 
2131 	} else {
2132 		uvmexp.flt_przero++;
2133 
2134 		/*
2135 		 * Page is zero'd and marked dirty by
2136 		 * uvmfault_promote().
2137 		 */
2138 
2139 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
2140 		    anon, pg, 0, 0);
2141 	}
2142 
2143 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2144 }
2145 
2146 /*
2147  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2148  * from the lower page.
2149  */
2150 
2151 int
2152 uvm_fault_lower_enter(
2153 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2154 	struct uvm_object *uobj,
2155 	struct vm_anon *anon, struct vm_page *pg)
2156 {
2157 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2158 	int error;
2159 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2160 
2161 	/*
2162 	 * Locked:
2163 	 *
2164 	 *	maps(read), amap(if !null), uobj(if !null),
2165 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
2166 	 *
2167 	 * Note: pg is either the uobjpage or the new page in the new anon.
2168 	 */
2169 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2170 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2171 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2172 	KASSERT((pg->flags & PG_BUSY) != 0);
2173 
2174 	/*
2175 	 * all resources are present.   we can now map it in and free our
2176 	 * resources.
2177 	 */
2178 
2179 	UVMHIST_LOG(maphist,
2180 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2181 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2182 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2183 		(pg->flags & PG_RDONLY) == 0);
2184 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2185 	    VM_PAGE_TO_PHYS(pg),
2186 	    (pg->flags & PG_RDONLY) != 0 ?
2187 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2188 	    flt->access_type | PMAP_CANFAIL |
2189 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2190 
2191 		/*
2192 		 * No need to undo what we did; we can simply think of
2193 		 * this as the pmap throwing away the mapping information.
2194 		 *
2195 		 * We do, however, have to go through the ReFault path,
2196 		 * as the map may change while we're asleep.
2197 		 */
2198 
2199 		/*
2200 		 * ensure that the page is queued in the case that
2201 		 * we just promoted the page.
2202 		 */
2203 
2204 		mutex_enter(&uvm_pageqlock);
2205 		uvm_pageenqueue(pg);
2206 		mutex_exit(&uvm_pageqlock);
2207 
2208 		if (pg->flags & PG_WANTED)
2209 			wakeup(pg);
2210 
2211 		/*
2212 		 * note that pg can't be PG_RELEASED since we did not drop
2213 		 * the object lock since the last time we checked.
2214 		 */
2215 		KASSERT((pg->flags & PG_RELEASED) == 0);
2216 
2217 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2218 		UVM_PAGE_OWN(pg, NULL);
2219 
2220 		uvmfault_unlockall(ufi, amap, uobj);
2221 		if (!uvm_reclaimable()) {
2222 			UVMHIST_LOG(maphist,
2223 			    "<- failed.  out of VM",0,0,0,0);
2224 			/* XXX instrumentation */
2225 			error = ENOMEM;
2226 			return error;
2227 		}
2228 		/* XXX instrumentation */
2229 		uvm_wait("flt_pmfail2");
2230 		return ERESTART;
2231 	}
2232 
2233 	uvm_fault_lower_done(ufi, flt, uobj, pg);
2234 
2235 	/*
2236 	 * note that pg can't be PG_RELEASED since we did not drop the object
2237 	 * lock since the last time we checked.
2238 	 */
2239 	KASSERT((pg->flags & PG_RELEASED) == 0);
2240 	if (pg->flags & PG_WANTED)
2241 		wakeup(pg);
2242 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2243 	UVM_PAGE_OWN(pg, NULL);
2244 
2245 	pmap_update(ufi->orig_map->pmap);
2246 	uvmfault_unlockall(ufi, amap, uobj);
2247 
2248 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2249 	return 0;
2250 }
2251 
2252 /*
2253  * uvm_fault_lower_done: queue lower center page.
2254  */
2255 
2256 void
2257 uvm_fault_lower_done(
2258 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2259 	struct uvm_object *uobj, struct vm_page *pg)
2260 {
2261 	bool dropswap = false;
2262 
2263 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2264 
2265 	mutex_enter(&uvm_pageqlock);
2266 	if (flt->wire_paging) {
2267 		uvm_pagewire(pg);
2268 		if (pg->pqflags & PQ_AOBJ) {
2269 
2270 			/*
2271 			 * since the now-wired page cannot be paged out,
2272 			 * release its swap resources for others to use.
2273 			 * since an aobj page with no swap cannot be PG_CLEAN,
2274 			 * clear its clean flag now.
2275 			 */
2276 
2277 			KASSERT(uobj != NULL);
2278 			pg->flags &= ~(PG_CLEAN);
2279 			dropswap = true;
2280 		}
2281 	} else {
2282 		uvm_pageactivate(pg);
2283 	}
2284 	mutex_exit(&uvm_pageqlock);
2285 
2286 	if (dropswap) {
2287 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2288 	}
2289 }
2290 
2291 
2292 /*
2293  * uvm_fault_wire: wire down a range of virtual addresses in a map.
2294  *
2295  * => map may be read-locked by caller, but MUST NOT be write-locked.
2296  * => if map is read-locked, any operations which may cause map to
2297  *	be write-locked in uvm_fault() must be taken care of by
2298  *	the caller.  See uvm_map_pageable().
2299  */
2300 
2301 int
2302 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2303     vm_prot_t access_type, int maxprot)
2304 {
2305 	vaddr_t va;
2306 	int error;
2307 
2308 	/*
2309 	 * now fault it in a page at a time.   if the fault fails then we have
2310 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
2311 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2312 	 */
2313 
2314 	/*
2315 	 * XXX work around overflowing a vaddr_t.  this prevents us from
2316 	 * wiring the last page in the address space, though.
2317 	 */
2318 	if (start > end) {
2319 		return EFAULT;
2320 	}
2321 
2322 	for (va = start; va < end; va += PAGE_SIZE) {
2323 		error = uvm_fault_internal(map, va, access_type,
2324 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2325 		if (error) {
2326 			if (va != start) {
2327 				uvm_fault_unwire(map, start, va);
2328 			}
2329 			return error;
2330 		}
2331 	}
2332 	return 0;
2333 }
2334 
2335 /*
2336  * uvm_fault_unwire(): unwire range of virtual space.
2337  */
2338 
2339 void
2340 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2341 {
2342 	vm_map_lock_read(map);
2343 	uvm_fault_unwire_locked(map, start, end);
2344 	vm_map_unlock_read(map);
2345 }
2346 
2347 /*
2348  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2349  *
2350  * => map must be at least read-locked.
2351  */
2352 
2353 void
2354 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2355 {
2356 	struct vm_map_entry *entry, *oentry;
2357 	pmap_t pmap = vm_map_pmap(map);
2358 	vaddr_t va;
2359 	paddr_t pa;
2360 	struct vm_page *pg;
2361 
2362 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2363 
2364 	/*
2365 	 * we assume that the area we are unwiring has actually been wired
2366 	 * in the first place.   this means that we should be able to extract
2367 	 * the PAs from the pmap.   we also lock out the page daemon so that
2368 	 * we can call uvm_pageunwire.
2369 	 */
2370 
2371 	/*
2372 	 * find the beginning map entry for the region.
2373 	 */
2374 
2375 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2376 	if (uvm_map_lookup_entry(map, start, &entry) == false)
2377 		panic("uvm_fault_unwire_locked: address not in map");
2378 
2379 	oentry = NULL;
2380 	for (va = start; va < end; va += PAGE_SIZE) {
2381 		if (pmap_extract(pmap, va, &pa) == false)
2382 			continue;
2383 
2384 		/*
2385 		 * find the map entry for the current address.
2386 		 */
2387 
2388 		KASSERT(va >= entry->start);
2389 		while (va >= entry->end) {
2390 			KASSERT(entry->next != &map->header &&
2391 				entry->next->start <= entry->end);
2392 			entry = entry->next;
2393 		}
2394 
2395 		/*
2396 		 * lock it.
2397 		 */
2398 
2399 		if (entry != oentry) {
2400 			if (oentry != NULL) {
2401 				mutex_exit(&uvm_pageqlock);
2402 				uvm_map_unlock_entry(oentry);
2403 			}
2404 			uvm_map_lock_entry(entry);
2405 			mutex_enter(&uvm_pageqlock);
2406 			oentry = entry;
2407 		}
2408 
2409 		/*
2410 		 * if the entry is no longer wired, tell the pmap.
2411 		 */
2412 
2413 		if (VM_MAPENT_ISWIRED(entry) == 0)
2414 			pmap_unwire(pmap, va);
2415 
2416 		pg = PHYS_TO_VM_PAGE(pa);
2417 		if (pg)
2418 			uvm_pageunwire(pg);
2419 	}
2420 
2421 	if (oentry != NULL) {
2422 		mutex_exit(&uvm_pageqlock);
2423 		uvm_map_unlock_entry(entry);
2424 	}
2425 }
2426