xref: /netbsd-src/sys/uvm/uvm_fault.c (revision ce099b40997c43048fb78bd578195f81d2456523)
1 /*	$NetBSD: uvm_fault.c,v 1.124 2008/03/27 19:06:52 ad Exp $	*/
2 
3 /*
4  *
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35  */
36 
37 /*
38  * uvm_fault.c: fault handler
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.124 2008/03/27 19:06:52 ad Exp $");
43 
44 #include "opt_uvmhist.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53 
54 #include <uvm/uvm.h>
55 
56 /*
57  *
58  * a word on page faults:
59  *
60  * types of page faults we handle:
61  *
62  * CASE 1: upper layer faults                   CASE 2: lower layer faults
63  *
64  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
65  *    read/write1     write>1                  read/write   +-cow_write/zero
66  *         |             |                         |        |
67  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
68  * amap |  V  |       |  ----------->new|          |        | |  ^  |
69  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
70  *                                                 |        |    |
71  *      +-----+       +-----+                   +--|--+     | +--|--+
72  * uobj | d/c |       | d/c |                   |  V  |     +----|  |
73  *      +-----+       +-----+                   +-----+       +-----+
74  *
75  * d/c = don't care
76  *
77  *   case [0]: layerless fault
78  *	no amap or uobj is present.   this is an error.
79  *
80  *   case [1]: upper layer fault [anon active]
81  *     1A: [read] or [write with anon->an_ref == 1]
82  *		I/O takes place in top level anon and uobj is not touched.
83  *     1B: [write with anon->an_ref > 1]
84  *		new anon is alloc'd and data is copied off ["COW"]
85  *
86  *   case [2]: lower layer fault [uobj]
87  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88  *		I/O takes place directly in object.
89  *     2B: [write to copy_on_write] or [read on NULL uobj]
90  *		data is "promoted" from uobj to a new anon.
91  *		if uobj is null, then we zero fill.
92  *
93  * we follow the standard UVM locking protocol ordering:
94  *
95  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96  * we hold a PG_BUSY page if we unlock for I/O
97  *
98  *
99  * the code is structured as follows:
100  *
101  *     - init the "IN" params in the ufi structure
102  *   ReFault:
103  *     - do lookups [locks maps], check protection, handle needs_copy
104  *     - check for case 0 fault (error)
105  *     - establish "range" of fault
106  *     - if we have an amap lock it and extract the anons
107  *     - if sequential advice deactivate pages behind us
108  *     - at the same time check pmap for unmapped areas and anon for pages
109  *	 that we could map in (and do map it if found)
110  *     - check object for resident pages that we could map in
111  *     - if (case 2) goto Case2
112  *     - >>> handle case 1
113  *           - ensure source anon is resident in RAM
114  *           - if case 1B alloc new anon and copy from source
115  *           - map the correct page in
116  *   Case2:
117  *     - >>> handle case 2
118  *           - ensure source page is resident (if uobj)
119  *           - if case 2B alloc new anon and copy from source (could be zero
120  *		fill if uobj == NULL)
121  *           - map the correct page in
122  *     - done!
123  *
124  * note on paging:
125  *   if we have to do I/O we place a PG_BUSY page in the correct object,
126  * unlock everything, and do the I/O.   when I/O is done we must reverify
127  * the state of the world before assuming that our data structures are
128  * valid.   [because mappings could change while the map is unlocked]
129  *
130  *  alternative 1: unbusy the page in question and restart the page fault
131  *    from the top (ReFault).   this is easy but does not take advantage
132  *    of the information that we already have from our previous lookup,
133  *    although it is possible that the "hints" in the vm_map will help here.
134  *
135  * alternative 2: the system already keeps track of a "version" number of
136  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
137  *    mapping) you bump the version number up by one...]   so, we can save
138  *    the version number of the map before we release the lock and start I/O.
139  *    then when I/O is done we can relock and check the version numbers
140  *    to see if anything changed.    this might save us some over 1 because
141  *    we don't have to unbusy the page and may be less compares(?).
142  *
143  * alternative 3: put in backpointers or a way to "hold" part of a map
144  *    in place while I/O is in progress.   this could be complex to
145  *    implement (especially with structures like amap that can be referenced
146  *    by multiple map entries, and figuring out what should wait could be
147  *    complex as well...).
148  *
149  * given that we are not currently multiprocessor or multithreaded we might
150  * as well choose alternative 2 now.   maybe alternative 3 would be useful
151  * in the future.    XXX keep in mind for future consideration//rechecking.
152  */
153 
154 /*
155  * local data structures
156  */
157 
158 struct uvm_advice {
159 	int advice;
160 	int nback;
161 	int nforw;
162 };
163 
164 /*
165  * page range array:
166  * note: index in array must match "advice" value
167  * XXX: borrowed numbers from freebsd.   do they work well for us?
168  */
169 
170 static const struct uvm_advice uvmadvice[] = {
171 	{ MADV_NORMAL, 3, 4 },
172 	{ MADV_RANDOM, 0, 0 },
173 	{ MADV_SEQUENTIAL, 8, 7},
174 };
175 
176 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
177 
178 /*
179  * private prototypes
180  */
181 
182 /*
183  * inline functions
184  */
185 
186 /*
187  * uvmfault_anonflush: try and deactivate pages in specified anons
188  *
189  * => does not have to deactivate page if it is busy
190  */
191 
192 static inline void
193 uvmfault_anonflush(struct vm_anon **anons, int n)
194 {
195 	int lcv;
196 	struct vm_page *pg;
197 
198 	for (lcv = 0 ; lcv < n ; lcv++) {
199 		if (anons[lcv] == NULL)
200 			continue;
201 		mutex_enter(&anons[lcv]->an_lock);
202 		pg = anons[lcv]->an_page;
203 		if (pg && (pg->flags & PG_BUSY) == 0) {
204 			mutex_enter(&uvm_pageqlock);
205 			if (pg->wire_count == 0) {
206 				uvm_pagedeactivate(pg);
207 			}
208 			mutex_exit(&uvm_pageqlock);
209 		}
210 		mutex_exit(&anons[lcv]->an_lock);
211 	}
212 }
213 
214 /*
215  * normal functions
216  */
217 
218 /*
219  * uvmfault_amapcopy: clear "needs_copy" in a map.
220  *
221  * => called with VM data structures unlocked (usually, see below)
222  * => we get a write lock on the maps and clear needs_copy for a VA
223  * => if we are out of RAM we sleep (waiting for more)
224  */
225 
226 static void
227 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
228 {
229 	for (;;) {
230 
231 		/*
232 		 * no mapping?  give up.
233 		 */
234 
235 		if (uvmfault_lookup(ufi, true) == false)
236 			return;
237 
238 		/*
239 		 * copy if needed.
240 		 */
241 
242 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
244 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
245 
246 		/*
247 		 * didn't work?  must be out of RAM.   unlock and sleep.
248 		 */
249 
250 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 			uvmfault_unlockmaps(ufi, true);
252 			uvm_wait("fltamapcopy");
253 			continue;
254 		}
255 
256 		/*
257 		 * got it!   unlock and return.
258 		 */
259 
260 		uvmfault_unlockmaps(ufi, true);
261 		return;
262 	}
263 	/*NOTREACHED*/
264 }
265 
266 /*
267  * uvmfault_anonget: get data in an anon into a non-busy, non-released
268  * page in that anon.
269  *
270  * => maps, amap, and anon locked by caller.
271  * => if we fail (result != 0) we unlock everything.
272  * => if we are successful, we return with everything still locked.
273  * => we don't move the page on the queues [gets moved later]
274  * => if we allocate a new page [we_own], it gets put on the queues.
275  *    either way, the result is that the page is on the queues at return time
276  * => for pages which are on loan from a uvm_object (and thus are not
277  *    owned by the anon): if successful, we return with the owning object
278  *    locked.   the caller must unlock this object when it unlocks everything
279  *    else.
280  */
281 
282 int
283 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
284     struct vm_anon *anon)
285 {
286 	bool we_own;	/* we own anon's page? */
287 	bool locked;	/* did we relock? */
288 	struct vm_page *pg;
289 	int error;
290 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
291 
292 	KASSERT(mutex_owned(&anon->an_lock));
293 
294 	error = 0;
295 	uvmexp.fltanget++;
296         /* bump rusage counters */
297 	if (anon->an_page)
298 		curlwp->l_ru.ru_minflt++;
299 	else
300 		curlwp->l_ru.ru_majflt++;
301 
302 	/*
303 	 * loop until we get it, or fail.
304 	 */
305 
306 	for (;;) {
307 		we_own = false;		/* true if we set PG_BUSY on a page */
308 		pg = anon->an_page;
309 
310 		/*
311 		 * if there is a resident page and it is loaned, then anon
312 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
313 		 * the real owner of the page has been identified and locked.
314 		 */
315 
316 		if (pg && pg->loan_count)
317 			pg = uvm_anon_lockloanpg(anon);
318 
319 		/*
320 		 * page there?   make sure it is not busy/released.
321 		 */
322 
323 		if (pg) {
324 
325 			/*
326 			 * at this point, if the page has a uobject [meaning
327 			 * we have it on loan], then that uobject is locked
328 			 * by us!   if the page is busy, we drop all the
329 			 * locks (including uobject) and try again.
330 			 */
331 
332 			if ((pg->flags & PG_BUSY) == 0) {
333 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
334 				return (0);
335 			}
336 			pg->flags |= PG_WANTED;
337 			uvmexp.fltpgwait++;
338 
339 			/*
340 			 * the last unlock must be an atomic unlock+wait on
341 			 * the owner of page
342 			 */
343 
344 			if (pg->uobject) {	/* owner is uobject ? */
345 				uvmfault_unlockall(ufi, amap, NULL, anon);
346 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
347 				    0,0,0);
348 				UVM_UNLOCK_AND_WAIT(pg,
349 				    &pg->uobject->vmobjlock,
350 				    false, "anonget1",0);
351 			} else {
352 				/* anon owns page */
353 				uvmfault_unlockall(ufi, amap, NULL, NULL);
354 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
355 				    0,0,0);
356 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
357 				    "anonget2",0);
358 			}
359 		} else {
360 #if defined(VMSWAP)
361 
362 			/*
363 			 * no page, we must try and bring it in.
364 			 */
365 
366 			pg = uvm_pagealloc(NULL, 0, anon, 0);
367 			if (pg == NULL) {		/* out of RAM.  */
368 				uvmfault_unlockall(ufi, amap, NULL, anon);
369 				uvmexp.fltnoram++;
370 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
371 				    0,0,0);
372 				if (!uvm_reclaimable()) {
373 					return ENOMEM;
374 				}
375 				uvm_wait("flt_noram1");
376 			} else {
377 				/* we set the PG_BUSY bit */
378 				we_own = true;
379 				uvmfault_unlockall(ufi, amap, NULL, anon);
380 
381 				/*
382 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
383 				 * page into the uvm_swap_get function with
384 				 * all data structures unlocked.  note that
385 				 * it is ok to read an_swslot here because
386 				 * we hold PG_BUSY on the page.
387 				 */
388 				uvmexp.pageins++;
389 				error = uvm_swap_get(pg, anon->an_swslot,
390 				    PGO_SYNCIO);
391 
392 				/*
393 				 * we clean up after the i/o below in the
394 				 * "we_own" case
395 				 */
396 			}
397 #else /* defined(VMSWAP) */
398 			panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 		}
401 
402 		/*
403 		 * now relock and try again
404 		 */
405 
406 		locked = uvmfault_relock(ufi);
407 		if (locked && amap != NULL) {
408 			amap_lock(amap);
409 		}
410 		if (locked || we_own)
411 			mutex_enter(&anon->an_lock);
412 
413 		/*
414 		 * if we own the page (i.e. we set PG_BUSY), then we need
415 		 * to clean up after the I/O. there are three cases to
416 		 * consider:
417 		 *   [1] page released during I/O: free anon and ReFault.
418 		 *   [2] I/O not OK.   free the page and cause the fault
419 		 *       to fail.
420 		 *   [3] I/O OK!   activate the page and sync with the
421 		 *       non-we_own case (i.e. drop anon lock if not locked).
422 		 */
423 
424 		if (we_own) {
425 #if defined(VMSWAP)
426 			if (pg->flags & PG_WANTED) {
427 				wakeup(pg);
428 			}
429 			if (error) {
430 
431 				/*
432 				 * remove the swap slot from the anon
433 				 * and mark the anon as having no real slot.
434 				 * don't free the swap slot, thus preventing
435 				 * it from being used again.
436 				 */
437 
438 				if (anon->an_swslot > 0)
439 					uvm_swap_markbad(anon->an_swslot, 1);
440 				anon->an_swslot = SWSLOT_BAD;
441 
442 				if ((pg->flags & PG_RELEASED) != 0)
443 					goto released;
444 
445 				/*
446 				 * note: page was never !PG_BUSY, so it
447 				 * can't be mapped and thus no need to
448 				 * pmap_page_protect it...
449 				 */
450 
451 				mutex_enter(&uvm_pageqlock);
452 				uvm_pagefree(pg);
453 				mutex_exit(&uvm_pageqlock);
454 
455 				if (locked)
456 					uvmfault_unlockall(ufi, amap, NULL,
457 					    anon);
458 				else
459 					mutex_exit(&anon->an_lock);
460 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
461 				return error;
462 			}
463 
464 			if ((pg->flags & PG_RELEASED) != 0) {
465 released:
466 				KASSERT(anon->an_ref == 0);
467 
468 				/*
469 				 * released while we unlocked amap.
470 				 */
471 
472 				if (locked)
473 					uvmfault_unlockall(ufi, amap, NULL,
474 					    NULL);
475 
476 				uvm_anon_release(anon);
477 
478 				if (error) {
479 					UVMHIST_LOG(maphist,
480 					    "<- ERROR/RELEASED", 0,0,0,0);
481 					return error;
482 				}
483 
484 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
485 				return ERESTART;
486 			}
487 
488 			/*
489 			 * we've successfully read the page, activate it.
490 			 */
491 
492 			mutex_enter(&uvm_pageqlock);
493 			uvm_pageactivate(pg);
494 			mutex_exit(&uvm_pageqlock);
495 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
496 			UVM_PAGE_OWN(pg, NULL);
497 			if (!locked)
498 				mutex_exit(&anon->an_lock);
499 #else /* defined(VMSWAP) */
500 			panic("%s: we_own", __func__);
501 #endif /* defined(VMSWAP) */
502 		}
503 
504 		/*
505 		 * we were not able to relock.   restart fault.
506 		 */
507 
508 		if (!locked) {
509 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
510 			return (ERESTART);
511 		}
512 
513 		/*
514 		 * verify no one has touched the amap and moved the anon on us.
515 		 */
516 
517 		if (ufi != NULL &&
518 		    amap_lookup(&ufi->entry->aref,
519 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
520 
521 			uvmfault_unlockall(ufi, amap, NULL, anon);
522 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
523 			return (ERESTART);
524 		}
525 
526 		/*
527 		 * try it again!
528 		 */
529 
530 		uvmexp.fltanretry++;
531 		continue;
532 	}
533 	/*NOTREACHED*/
534 }
535 
536 /*
537  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
538  *
539  *	1. allocate an anon and a page.
540  *	2. fill its contents.
541  *	3. put it into amap.
542  *
543  * => if we fail (result != 0) we unlock everything.
544  * => on success, return a new locked anon via 'nanon'.
545  *    (*nanon)->an_page will be a resident, locked, dirty page.
546  */
547 
548 static int
549 uvmfault_promote(struct uvm_faultinfo *ufi,
550     struct vm_anon *oanon,
551     struct vm_page *uobjpage,
552     struct vm_anon **nanon, /* OUT: allocated anon */
553     struct vm_anon **spare)
554 {
555 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
556 	struct uvm_object *uobj;
557 	struct vm_anon *anon;
558 	struct vm_page *pg;
559 	struct vm_page *opg;
560 	int error;
561 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
562 
563 	if (oanon) {
564 		/* anon COW */
565 		opg = oanon->an_page;
566 		KASSERT(opg != NULL);
567 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
568 	} else if (uobjpage != PGO_DONTCARE) {
569 		/* object-backed COW */
570 		opg = uobjpage;
571 	} else {
572 		/* ZFOD */
573 		opg = NULL;
574 	}
575 	if (opg != NULL) {
576 		uobj = opg->uobject;
577 	} else {
578 		uobj = NULL;
579 	}
580 
581 	KASSERT(amap != NULL);
582 	KASSERT(uobjpage != NULL);
583 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
584 	KASSERT(mutex_owned(&amap->am_l));
585 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
586 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
587 #if 0
588 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
589 #endif
590 
591 	if (*spare != NULL) {
592 		anon = *spare;
593 		*spare = NULL;
594 		mutex_enter(&anon->an_lock);
595 	} else if (ufi->map != kernel_map) {
596 		anon = uvm_analloc();
597 	} else {
598 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
599 
600 		/*
601 		 * we can't allocate anons with kernel_map locked.
602 		 */
603 
604 		uvm_page_unbusy(&uobjpage, 1);
605 		uvmfault_unlockall(ufi, amap, uobj, oanon);
606 
607 		*spare = uvm_analloc();
608 		if (*spare == NULL) {
609 			goto nomem;
610 		}
611 		mutex_exit(&(*spare)->an_lock);
612 		error = ERESTART;
613 		goto done;
614 	}
615 	if (anon) {
616 
617 		/*
618 		 * The new anon is locked.
619 		 *
620 		 * if opg == NULL, we want a zero'd, dirty page,
621 		 * so have uvm_pagealloc() do that for us.
622 		 */
623 
624 		pg = uvm_pagealloc(NULL, 0, anon,
625 		    (opg == NULL) ? UVM_PGA_ZERO : 0);
626 	} else {
627 		pg = NULL;
628 	}
629 
630 	/*
631 	 * out of memory resources?
632 	 */
633 
634 	if (pg == NULL) {
635 		/* save anon for the next try. */
636 		if (anon != NULL) {
637 			mutex_exit(&anon->an_lock);
638 			*spare = anon;
639 		}
640 
641 		/* unlock and fail ... */
642 		uvm_page_unbusy(&uobjpage, 1);
643 		uvmfault_unlockall(ufi, amap, uobj, oanon);
644 nomem:
645 		if (!uvm_reclaimable()) {
646 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
647 			uvmexp.fltnoanon++;
648 			error = ENOMEM;
649 			goto done;
650 		}
651 
652 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
653 		uvmexp.fltnoram++;
654 		uvm_wait("flt_noram5");
655 		error = ERESTART;
656 		goto done;
657 	}
658 
659 	/* copy page [pg now dirty] */
660 	if (opg) {
661 		uvm_pagecopy(opg, pg);
662 	}
663 
664 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
665 	    oanon != NULL);
666 
667 	*nanon = anon;
668 	error = 0;
669 done:
670 	return error;
671 }
672 
673 
674 /*
675  *   F A U L T   -   m a i n   e n t r y   p o i n t
676  */
677 
678 /*
679  * uvm_fault: page fault handler
680  *
681  * => called from MD code to resolve a page fault
682  * => VM data structures usually should be unlocked.   however, it is
683  *	possible to call here with the main map locked if the caller
684  *	gets a write lock, sets it recusive, and then calls us (c.f.
685  *	uvm_map_pageable).   this should be avoided because it keeps
686  *	the map locked off during I/O.
687  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
688  */
689 
690 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
691 			 ~VM_PROT_WRITE : VM_PROT_ALL)
692 
693 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
694 #define UVM_FAULT_WIRE 1
695 #define UVM_FAULT_WIREMAX 2
696 
697 int
698 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
699     vm_prot_t access_type, int fault_flag)
700 {
701 	struct uvm_faultinfo ufi;
702 	vm_prot_t enter_prot, check_prot;
703 	bool wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
704 	int npages, nback, nforw, centeridx, error, lcv, gotpages;
705 	vaddr_t startva, currva;
706 	voff_t uoff;
707 	struct vm_amap *amap;
708 	struct uvm_object *uobj;
709 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
710 	struct vm_anon *anon_spare;
711 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
712 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
713 
714 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
715 	      orig_map, vaddr, access_type, fault_flag);
716 
717 	anon = anon_spare = NULL;
718 	pg = NULL;
719 
720 	uvmexp.faults++;	/* XXX: locking? */
721 
722 	/*
723 	 * init the IN parameters in the ufi
724 	 */
725 
726 	ufi.orig_map = orig_map;
727 	ufi.orig_rvaddr = trunc_page(vaddr);
728 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
729 	wire_fault = (fault_flag > 0);
730 	if (wire_fault)
731 		narrow = true;		/* don't look for neighborhood
732 					 * pages on wire */
733 	else
734 		narrow = false;		/* normal fault */
735 
736 	/*
737 	 * "goto ReFault" means restart the page fault from ground zero.
738 	 */
739 ReFault:
740 
741 	/*
742 	 * lookup and lock the maps
743 	 */
744 
745 	if (uvmfault_lookup(&ufi, false) == false) {
746 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
747 		error = EFAULT;
748 		goto done;
749 	}
750 	/* locked: maps(read) */
751 
752 #ifdef DIAGNOSTIC
753 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
754 		printf("Page fault on non-pageable map:\n");
755 		printf("ufi.map = %p\n", ufi.map);
756 		printf("ufi.orig_map = %p\n", ufi.orig_map);
757 		printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
758 		panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
759 	}
760 #endif
761 
762 	/*
763 	 * check protection
764 	 */
765 
766 	check_prot = fault_flag == UVM_FAULT_WIREMAX ?
767 	    ufi.entry->max_protection : ufi.entry->protection;
768 	if ((check_prot & access_type) != access_type) {
769 		UVMHIST_LOG(maphist,
770 		    "<- protection failure (prot=0x%x, access=0x%x)",
771 		    ufi.entry->protection, access_type, 0, 0);
772 		uvmfault_unlockmaps(&ufi, false);
773 		error = EACCES;
774 		goto done;
775 	}
776 
777 	/*
778 	 * "enter_prot" is the protection we want to enter the page in at.
779 	 * for certain pages (e.g. copy-on-write pages) this protection can
780 	 * be more strict than ufi.entry->protection.  "wired" means either
781 	 * the entry is wired or we are fault-wiring the pg.
782 	 */
783 
784 	enter_prot = ufi.entry->protection;
785 	wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
786 	if (wired) {
787 		access_type = enter_prot; /* full access for wired */
788 		cow_now = (check_prot & VM_PROT_WRITE) != 0;
789 	} else {
790 		cow_now = (access_type & VM_PROT_WRITE) != 0;
791 	}
792 
793 	/*
794 	 * handle "needs_copy" case.   if we need to copy the amap we will
795 	 * have to drop our readlock and relock it with a write lock.  (we
796 	 * need a write lock to change anything in a map entry [e.g.
797 	 * needs_copy]).
798 	 */
799 
800 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
801 		if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
802 			KASSERT(fault_flag != UVM_FAULT_WIREMAX);
803 			/* need to clear */
804 			UVMHIST_LOG(maphist,
805 			    "  need to clear needs_copy and refault",0,0,0,0);
806 			uvmfault_unlockmaps(&ufi, false);
807 			uvmfault_amapcopy(&ufi);
808 			uvmexp.fltamcopy++;
809 			goto ReFault;
810 
811 		} else {
812 
813 			/*
814 			 * ensure that we pmap_enter page R/O since
815 			 * needs_copy is still true
816 			 */
817 
818 			enter_prot &= ~VM_PROT_WRITE;
819 		}
820 	}
821 
822 	/*
823 	 * identify the players
824 	 */
825 
826 	amap = ufi.entry->aref.ar_amap;		/* top layer */
827 	uobj = ufi.entry->object.uvm_obj;	/* bottom layer */
828 
829 	/*
830 	 * check for a case 0 fault.  if nothing backing the entry then
831 	 * error now.
832 	 */
833 
834 	if (amap == NULL && uobj == NULL) {
835 		uvmfault_unlockmaps(&ufi, false);
836 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
837 		error = EFAULT;
838 		goto done;
839 	}
840 
841 	/*
842 	 * establish range of interest based on advice from mapper
843 	 * and then clip to fit map entry.   note that we only want
844 	 * to do this the first time through the fault.   if we
845 	 * ReFault we will disable this by setting "narrow" to true.
846 	 */
847 
848 	if (narrow == false) {
849 
850 		/* wide fault (!narrow) */
851 		KASSERT(uvmadvice[ufi.entry->advice].advice ==
852 			 ufi.entry->advice);
853 		nback = MIN(uvmadvice[ufi.entry->advice].nback,
854 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
855 		startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
856 		nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
857 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
858 			     PAGE_SHIFT) - 1);
859 		/*
860 		 * note: "-1" because we don't want to count the
861 		 * faulting page as forw
862 		 */
863 		npages = nback + nforw + 1;
864 		centeridx = nback;
865 
866 		narrow = true;	/* ensure only once per-fault */
867 
868 	} else {
869 
870 		/* narrow fault! */
871 		nback = nforw = 0;
872 		startva = ufi.orig_rvaddr;
873 		npages = 1;
874 		centeridx = 0;
875 
876 	}
877 
878 	/* locked: maps(read) */
879 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
880 		    narrow, nback, nforw, startva);
881 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
882 		    amap, uobj, 0);
883 
884 	/*
885 	 * if we've got an amap, lock it and extract current anons.
886 	 */
887 
888 	if (amap) {
889 		amap_lock(amap);
890 		anons = anons_store;
891 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
892 		    anons, npages);
893 	} else {
894 		anons = NULL;	/* to be safe */
895 	}
896 
897 	/* locked: maps(read), amap(if there) */
898 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
899 
900 	/*
901 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
902 	 * now and then forget about them (for the rest of the fault).
903 	 */
904 
905 	if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
906 
907 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
908 		    0,0,0,0);
909 		/* flush back-page anons? */
910 		if (amap)
911 			uvmfault_anonflush(anons, nback);
912 
913 		/* flush object? */
914 		if (uobj) {
915 			uoff = (startva - ufi.entry->start) + ufi.entry->offset;
916 			mutex_enter(&uobj->vmobjlock);
917 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
918 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
919 		}
920 
921 		/* now forget about the backpages */
922 		if (amap)
923 			anons += nback;
924 		startva += (nback << PAGE_SHIFT);
925 		npages -= nback;
926 		nback = centeridx = 0;
927 	}
928 
929 	/* locked: maps(read), amap(if there) */
930 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
931 
932 	/*
933 	 * map in the backpages and frontpages we found in the amap in hopes
934 	 * of preventing future faults.    we also init the pages[] array as
935 	 * we go.
936 	 */
937 
938 	currva = startva;
939 	shadowed = false;
940 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
941 
942 		/*
943 		 * dont play with VAs that are already mapped
944 		 * except for center)
945 		 */
946 		if (lcv != centeridx &&
947 		    pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
948 			pages[lcv] = PGO_DONTCARE;
949 			continue;
950 		}
951 
952 		/*
953 		 * unmapped or center page.   check if any anon at this level.
954 		 */
955 		if (amap == NULL || anons[lcv] == NULL) {
956 			pages[lcv] = NULL;
957 			continue;
958 		}
959 
960 		/*
961 		 * check for present page and map if possible.   re-activate it.
962 		 */
963 
964 		pages[lcv] = PGO_DONTCARE;
965 		if (lcv == centeridx) {		/* save center for later! */
966 			shadowed = true;
967 			continue;
968 		}
969 		anon = anons[lcv];
970 		mutex_enter(&anon->an_lock);
971 		/* ignore loaned pages */
972 		if (anon->an_page && anon->an_page->loan_count == 0 &&
973 		    (anon->an_page->flags & PG_BUSY) == 0) {
974 			mutex_enter(&uvm_pageqlock);
975 			uvm_pageenqueue(anon->an_page);
976 			mutex_exit(&uvm_pageqlock);
977 			UVMHIST_LOG(maphist,
978 			    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
979 			    ufi.orig_map->pmap, currva, anon->an_page, 0);
980 			uvmexp.fltnamap++;
981 
982 			/*
983 			 * Since this isn't the page that's actually faulting,
984 			 * ignore pmap_enter() failures; it's not critical
985 			 * that we enter these right now.
986 			 */
987 
988 			(void) pmap_enter(ufi.orig_map->pmap, currva,
989 			    VM_PAGE_TO_PHYS(anon->an_page),
990 			    (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
991 			    enter_prot,
992 			    PMAP_CANFAIL |
993 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
994 		}
995 		mutex_exit(&anon->an_lock);
996 		pmap_update(ufi.orig_map->pmap);
997 	}
998 
999 	/* locked: maps(read), amap(if there) */
1000 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1001 	/* (shadowed == true) if there is an anon at the faulting address */
1002 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
1003 	    (uobj && shadowed == false),0,0);
1004 
1005 	/*
1006 	 * note that if we are really short of RAM we could sleep in the above
1007 	 * call to pmap_enter with everything locked.   bad?
1008 	 *
1009 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
1010 	 * XXX case.  --thorpej
1011 	 */
1012 
1013 	/*
1014 	 * if the desired page is not shadowed by the amap and we have a
1015 	 * backing object, then we check to see if the backing object would
1016 	 * prefer to handle the fault itself (rather than letting us do it
1017 	 * with the usual pgo_get hook).  the backing object signals this by
1018 	 * providing a pgo_fault routine.
1019 	 */
1020 
1021 	if (uobj && shadowed == false && uobj->pgops->pgo_fault != NULL) {
1022 		mutex_enter(&uobj->vmobjlock);
1023 		/* locked: maps(read), amap (if there), uobj */
1024 		error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1025 		    centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1026 
1027 		/* locked: nothing, pgo_fault has unlocked everything */
1028 
1029 		if (error == ERESTART)
1030 			goto ReFault;		/* try again! */
1031 		/*
1032 		 * object fault routine responsible for pmap_update().
1033 		 */
1034 		goto done;
1035 	}
1036 
1037 	/*
1038 	 * now, if the desired page is not shadowed by the amap and we have
1039 	 * a backing object that does not have a special fault routine, then
1040 	 * we ask (with pgo_get) the object for resident pages that we care
1041 	 * about and attempt to map them in.  we do not let pgo_get block
1042 	 * (PGO_LOCKED).
1043 	 */
1044 
1045 	if (uobj && shadowed == false) {
1046 		mutex_enter(&uobj->vmobjlock);
1047 		/* locked (!shadowed): maps(read), amap (if there), uobj */
1048 		/*
1049 		 * the following call to pgo_get does _not_ change locking state
1050 		 */
1051 
1052 		uvmexp.fltlget++;
1053 		gotpages = npages;
1054 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1055 				(startva - ufi.entry->start),
1056 				pages, &gotpages, centeridx,
1057 				access_type & MASK(ufi.entry),
1058 				ufi.entry->advice, PGO_LOCKED);
1059 
1060 		/*
1061 		 * check for pages to map, if we got any
1062 		 */
1063 
1064 		uobjpage = NULL;
1065 
1066 		if (gotpages) {
1067 			currva = startva;
1068 			for (lcv = 0; lcv < npages;
1069 			     lcv++, currva += PAGE_SIZE) {
1070 				struct vm_page *curpg;
1071 				bool readonly;
1072 
1073 				curpg = pages[lcv];
1074 				if (curpg == NULL || curpg == PGO_DONTCARE) {
1075 					continue;
1076 				}
1077 				KASSERT(curpg->uobject == uobj);
1078 
1079 				/*
1080 				 * if center page is resident and not
1081 				 * PG_BUSY|PG_RELEASED then pgo_get
1082 				 * made it PG_BUSY for us and gave
1083 				 * us a handle to it.   remember this
1084 				 * page as "uobjpage." (for later use).
1085 				 */
1086 
1087 				if (lcv == centeridx) {
1088 					uobjpage = curpg;
1089 					UVMHIST_LOG(maphist, "  got uobjpage "
1090 					    "(0x%x) with locked get",
1091 					    uobjpage, 0,0,0);
1092 					continue;
1093 				}
1094 
1095 				/*
1096 				 * calling pgo_get with PGO_LOCKED returns us
1097 				 * pages which are neither busy nor released,
1098 				 * so we don't need to check for this.
1099 				 * we can just directly enter the pages.
1100 				 */
1101 
1102 				mutex_enter(&uvm_pageqlock);
1103 				uvm_pageenqueue(curpg);
1104 				mutex_exit(&uvm_pageqlock);
1105 				UVMHIST_LOG(maphist,
1106 				  "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1107 				  ufi.orig_map->pmap, currva, curpg, 0);
1108 				uvmexp.fltnomap++;
1109 
1110 				/*
1111 				 * Since this page isn't the page that's
1112 				 * actually faulting, ignore pmap_enter()
1113 				 * failures; it's not critical that we
1114 				 * enter these right now.
1115 				 */
1116 				KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1117 				KASSERT((curpg->flags & PG_RELEASED) == 0);
1118 				KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1119 				    (curpg->flags & PG_CLEAN) != 0);
1120 				readonly = (curpg->flags & PG_RDONLY)
1121 				    || (curpg->loan_count > 0)
1122 				    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1123 
1124 				(void) pmap_enter(ufi.orig_map->pmap, currva,
1125 				    VM_PAGE_TO_PHYS(curpg),
1126 				    readonly ?
1127 				    enter_prot & ~VM_PROT_WRITE :
1128 				    enter_prot & MASK(ufi.entry),
1129 				    PMAP_CANFAIL |
1130 				     (wired ? PMAP_WIRED : 0));
1131 
1132 				/*
1133 				 * NOTE: page can't be PG_WANTED or PG_RELEASED
1134 				 * because we've held the lock the whole time
1135 				 * we've had the handle.
1136 				 */
1137 				KASSERT((curpg->flags & PG_WANTED) == 0);
1138 				KASSERT((curpg->flags & PG_RELEASED) == 0);
1139 
1140 				curpg->flags &= ~(PG_BUSY);
1141 				UVM_PAGE_OWN(curpg, NULL);
1142 			}
1143 			pmap_update(ufi.orig_map->pmap);
1144 		}
1145 	} else {
1146 		uobjpage = NULL;
1147 	}
1148 
1149 	/* locked (shadowed): maps(read), amap */
1150 	/* locked (!shadowed): maps(read), amap(if there),
1151 		 uobj(if !null), uobjpage(if !null) */
1152 	if (shadowed) {
1153 		KASSERT(mutex_owned(&amap->am_l));
1154 	} else {
1155 		KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1156 		KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1157 		KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1158 	}
1159 
1160 	/*
1161 	 * note that at this point we are done with any front or back pages.
1162 	 * we are now going to focus on the center page (i.e. the one we've
1163 	 * faulted on).  if we have faulted on the top (anon) layer
1164 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1165 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1166 	 * layer [i.e. case 2] and the page was both present and available,
1167 	 * then we've got a pointer to it as "uobjpage" and we've already
1168 	 * made it BUSY.
1169 	 */
1170 
1171 	/*
1172 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1173 	 */
1174 
1175 	/*
1176 	 * redirect case 2: if we are not shadowed, go to case 2.
1177 	 */
1178 
1179 	if (shadowed == false)
1180 		goto Case2;
1181 
1182 	/* locked: maps(read), amap */
1183 
1184 	/*
1185 	 * handle case 1: fault on an anon in our amap
1186 	 */
1187 
1188 	anon = anons[centeridx];
1189 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
1190 	mutex_enter(&anon->an_lock);
1191 
1192 	/* locked: maps(read), amap, anon */
1193 	KASSERT(mutex_owned(&amap->am_l));
1194 	KASSERT(mutex_owned(&anon->an_lock));
1195 
1196 	/*
1197 	 * no matter if we have case 1A or case 1B we are going to need to
1198 	 * have the anon's memory resident.   ensure that now.
1199 	 */
1200 
1201 	/*
1202 	 * let uvmfault_anonget do the dirty work.
1203 	 * if it fails (!OK) it will unlock everything for us.
1204 	 * if it succeeds, locks are still valid and locked.
1205 	 * also, if it is OK, then the anon's page is on the queues.
1206 	 * if the page is on loan from a uvm_object, then anonget will
1207 	 * lock that object for us if it does not fail.
1208 	 */
1209 
1210 	error = uvmfault_anonget(&ufi, amap, anon);
1211 	switch (error) {
1212 	case 0:
1213 		break;
1214 
1215 	case ERESTART:
1216 		goto ReFault;
1217 
1218 	case EAGAIN:
1219 		tsleep(&lbolt, PVM, "fltagain1", 0);
1220 		goto ReFault;
1221 
1222 	default:
1223 		goto done;
1224 	}
1225 
1226 	/*
1227 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1228 	 */
1229 
1230 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1231 
1232 	/* locked: maps(read), amap, anon, uobj(if one) */
1233 	KASSERT(mutex_owned(&amap->am_l));
1234 	KASSERT(mutex_owned(&anon->an_lock));
1235 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1236 
1237 	/*
1238 	 * special handling for loaned pages
1239 	 */
1240 
1241 	if (anon->an_page->loan_count) {
1242 
1243 		if (!cow_now) {
1244 
1245 			/*
1246 			 * for read faults on loaned pages we just cap the
1247 			 * protection at read-only.
1248 			 */
1249 
1250 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1251 
1252 		} else {
1253 			/*
1254 			 * note that we can't allow writes into a loaned page!
1255 			 *
1256 			 * if we have a write fault on a loaned page in an
1257 			 * anon then we need to look at the anon's ref count.
1258 			 * if it is greater than one then we are going to do
1259 			 * a normal copy-on-write fault into a new anon (this
1260 			 * is not a problem).  however, if the reference count
1261 			 * is one (a case where we would normally allow a
1262 			 * write directly to the page) then we need to kill
1263 			 * the loan before we continue.
1264 			 */
1265 
1266 			/* >1 case is already ok */
1267 			if (anon->an_ref == 1) {
1268 
1269 				/* get new un-owned replacement page */
1270 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1271 				if (pg == NULL) {
1272 					uvmfault_unlockall(&ufi, amap, uobj,
1273 					    anon);
1274 					uvm_wait("flt_noram2");
1275 					goto ReFault;
1276 				}
1277 
1278 				/*
1279 				 * copy data, kill loan, and drop uobj lock
1280 				 * (if any)
1281 				 */
1282 				/* copy old -> new */
1283 				uvm_pagecopy(anon->an_page, pg);
1284 
1285 				/* force reload */
1286 				pmap_page_protect(anon->an_page, VM_PROT_NONE);
1287 				mutex_enter(&uvm_pageqlock);	  /* KILL loan */
1288 
1289 				anon->an_page->uanon = NULL;
1290 				/* in case we owned */
1291 				anon->an_page->pqflags &= ~PQ_ANON;
1292 
1293 				if (uobj) {
1294 					/* if we were receiver of loan */
1295 					anon->an_page->loan_count--;
1296 				} else {
1297 					/*
1298 					 * we were the lender (A->K); need
1299 					 * to remove the page from pageq's.
1300 					 */
1301 					uvm_pagedequeue(anon->an_page);
1302 				}
1303 
1304 				if (uobj) {
1305 					mutex_exit(&uobj->vmobjlock);
1306 					uobj = NULL;
1307 				}
1308 
1309 				/* install new page in anon */
1310 				anon->an_page = pg;
1311 				pg->uanon = anon;
1312 				pg->pqflags |= PQ_ANON;
1313 
1314 				uvm_pageactivate(pg);
1315 				mutex_exit(&uvm_pageqlock);
1316 
1317 				pg->flags &= ~(PG_BUSY|PG_FAKE);
1318 				UVM_PAGE_OWN(pg, NULL);
1319 
1320 				/* done! */
1321 			}     /* ref == 1 */
1322 		}       /* write fault */
1323 	}         /* loan count */
1324 
1325 	/*
1326 	 * if we are case 1B then we will need to allocate a new blank
1327 	 * anon to transfer the data into.   note that we have a lock
1328 	 * on anon, so no one can busy or release the page until we are done.
1329 	 * also note that the ref count can't drop to zero here because
1330 	 * it is > 1 and we are only dropping one ref.
1331 	 *
1332 	 * in the (hopefully very rare) case that we are out of RAM we
1333 	 * will unlock, wait for more RAM, and refault.
1334 	 *
1335 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1336 	 */
1337 
1338 	if (cow_now && anon->an_ref > 1) {
1339 
1340 		UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1341 		uvmexp.flt_acow++;
1342 		oanon = anon;		/* oanon = old, locked anon */
1343 
1344 		error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1345 		    &anon, &anon_spare);
1346 		switch (error) {
1347 		case 0:
1348 			break;
1349 		case ERESTART:
1350 			goto ReFault;
1351 		default:
1352 			goto done;
1353 		}
1354 
1355 		pg = anon->an_page;
1356 		mutex_enter(&uvm_pageqlock);
1357 		uvm_pageactivate(pg);
1358 		mutex_exit(&uvm_pageqlock);
1359 		pg->flags &= ~(PG_BUSY|PG_FAKE);
1360 		UVM_PAGE_OWN(pg, NULL);
1361 
1362 		/* deref: can not drop to zero here by defn! */
1363 		oanon->an_ref--;
1364 
1365 		/*
1366 		 * note: oanon is still locked, as is the new anon.  we
1367 		 * need to check for this later when we unlock oanon; if
1368 		 * oanon != anon, we'll have to unlock anon, too.
1369 		 */
1370 
1371 	} else {
1372 
1373 		uvmexp.flt_anon++;
1374 		oanon = anon;		/* old, locked anon is same as anon */
1375 		pg = anon->an_page;
1376 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1377 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1378 
1379 	}
1380 
1381 	/* locked: maps(read), amap, oanon, anon (if different from oanon) */
1382 	KASSERT(mutex_owned(&amap->am_l));
1383 	KASSERT(mutex_owned(&anon->an_lock));
1384 	KASSERT(mutex_owned(&oanon->an_lock));
1385 
1386 	/*
1387 	 * now map the page in.
1388 	 */
1389 
1390 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1391 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1392 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1393 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1394 	    != 0) {
1395 
1396 		/*
1397 		 * No need to undo what we did; we can simply think of
1398 		 * this as the pmap throwing away the mapping information.
1399 		 *
1400 		 * We do, however, have to go through the ReFault path,
1401 		 * as the map may change while we're asleep.
1402 		 */
1403 
1404 		if (anon != oanon)
1405 			mutex_exit(&anon->an_lock);
1406 		uvmfault_unlockall(&ufi, amap, uobj, oanon);
1407 		if (!uvm_reclaimable()) {
1408 			UVMHIST_LOG(maphist,
1409 			    "<- failed.  out of VM",0,0,0,0);
1410 			/* XXX instrumentation */
1411 			error = ENOMEM;
1412 			goto done;
1413 		}
1414 		/* XXX instrumentation */
1415 		uvm_wait("flt_pmfail1");
1416 		goto ReFault;
1417 	}
1418 
1419 	/*
1420 	 * ... update the page queues.
1421 	 */
1422 
1423 	mutex_enter(&uvm_pageqlock);
1424 	if (wire_fault) {
1425 		uvm_pagewire(pg);
1426 
1427 		/*
1428 		 * since the now-wired page cannot be paged out,
1429 		 * release its swap resources for others to use.
1430 		 * since an anon with no swap cannot be PG_CLEAN,
1431 		 * clear its clean flag now.
1432 		 */
1433 
1434 		pg->flags &= ~(PG_CLEAN);
1435 		uvm_anon_dropswap(anon);
1436 	} else {
1437 		uvm_pageactivate(pg);
1438 	}
1439 	mutex_exit(&uvm_pageqlock);
1440 
1441 	/*
1442 	 * done case 1!  finish up by unlocking everything and returning success
1443 	 */
1444 
1445 	if (anon != oanon)
1446 		mutex_exit(&anon->an_lock);
1447 	uvmfault_unlockall(&ufi, amap, uobj, oanon);
1448 	pmap_update(ufi.orig_map->pmap);
1449 	error = 0;
1450 	goto done;
1451 
1452 Case2:
1453 	/*
1454 	 * handle case 2: faulting on backing object or zero fill
1455 	 */
1456 
1457 	/*
1458 	 * locked:
1459 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1460 	 */
1461 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1462 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1463 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1464 
1465 	/*
1466 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1467 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1468 	 * have a backing object, check and see if we are going to promote
1469 	 * the data up to an anon during the fault.
1470 	 */
1471 
1472 	if (uobj == NULL) {
1473 		uobjpage = PGO_DONTCARE;
1474 		promote = true;		/* always need anon here */
1475 	} else {
1476 		KASSERT(uobjpage != PGO_DONTCARE);
1477 		promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1478 	}
1479 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
1480 	    promote, (uobj == NULL), 0,0);
1481 
1482 	/*
1483 	 * if uobjpage is not null then we do not need to do I/O to get the
1484 	 * uobjpage.
1485 	 *
1486 	 * if uobjpage is null, then we need to unlock and ask the pager to
1487 	 * get the data for us.   once we have the data, we need to reverify
1488 	 * the state the world.   we are currently not holding any resources.
1489 	 */
1490 
1491 	if (uobjpage) {
1492 		/* update rusage counters */
1493 		curlwp->l_ru.ru_minflt++;
1494 	} else {
1495 		/* update rusage counters */
1496 		curlwp->l_ru.ru_majflt++;
1497 
1498 		/* locked: maps(read), amap(if there), uobj */
1499 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1500 		/* locked: uobj */
1501 
1502 		uvmexp.fltget++;
1503 		gotpages = 1;
1504 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1505 		error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1506 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1507 		    PGO_SYNCIO);
1508 		/* locked: uobjpage(if no error) */
1509 		KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1510 
1511 		/*
1512 		 * recover from I/O
1513 		 */
1514 
1515 		if (error) {
1516 			if (error == EAGAIN) {
1517 				UVMHIST_LOG(maphist,
1518 				    "  pgo_get says TRY AGAIN!",0,0,0,0);
1519 				tsleep(&lbolt, PVM, "fltagain2", 0);
1520 				goto ReFault;
1521 			}
1522 
1523 			UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1524 			    error, 0,0,0);
1525 			goto done;
1526 		}
1527 
1528 		/* locked: uobjpage */
1529 
1530 		mutex_enter(&uvm_pageqlock);
1531 		uvm_pageactivate(uobjpage);
1532 		mutex_exit(&uvm_pageqlock);
1533 
1534 		/*
1535 		 * re-verify the state of the world by first trying to relock
1536 		 * the maps.  always relock the object.
1537 		 */
1538 
1539 		locked = uvmfault_relock(&ufi);
1540 		if (locked && amap)
1541 			amap_lock(amap);
1542 		uobj = uobjpage->uobject;
1543 		mutex_enter(&uobj->vmobjlock);
1544 
1545 		/* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1546 		/* locked(!locked): uobj, uobjpage */
1547 
1548 		/*
1549 		 * verify that the page has not be released and re-verify
1550 		 * that amap slot is still free.   if there is a problem,
1551 		 * we unlock and clean up.
1552 		 */
1553 
1554 		if ((uobjpage->flags & PG_RELEASED) != 0 ||
1555 		    (locked && amap &&
1556 		    amap_lookup(&ufi.entry->aref,
1557 		      ufi.orig_rvaddr - ufi.entry->start))) {
1558 			if (locked)
1559 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1560 			locked = false;
1561 		}
1562 
1563 		/*
1564 		 * didn't get the lock?   release the page and retry.
1565 		 */
1566 
1567 		if (locked == false) {
1568 			UVMHIST_LOG(maphist,
1569 			    "  wasn't able to relock after fault: retry",
1570 			    0,0,0,0);
1571 			if (uobjpage->flags & PG_WANTED)
1572 				wakeup(uobjpage);
1573 			if (uobjpage->flags & PG_RELEASED) {
1574 				uvmexp.fltpgrele++;
1575 				uvm_pagefree(uobjpage);
1576 				goto ReFault;
1577 			}
1578 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1579 			UVM_PAGE_OWN(uobjpage, NULL);
1580 			mutex_exit(&uobj->vmobjlock);
1581 			goto ReFault;
1582 		}
1583 
1584 		/*
1585 		 * we have the data in uobjpage which is busy and
1586 		 * not released.  we are holding object lock (so the page
1587 		 * can't be released on us).
1588 		 */
1589 
1590 		/* locked: maps(read), amap(if !null), uobj, uobjpage */
1591 	}
1592 
1593 	/*
1594 	 * locked:
1595 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1596 	 */
1597 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1598 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1599 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1600 
1601 	/*
1602 	 * notes:
1603 	 *  - at this point uobjpage can not be NULL
1604 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1605 	 *  for it above)
1606 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1607 	 */
1608 
1609 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1610 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1611 	    (uobjpage->flags & PG_CLEAN) != 0);
1612 	if (promote == false) {
1613 
1614 		/*
1615 		 * we are not promoting.   if the mapping is COW ensure that we
1616 		 * don't give more access than we should (e.g. when doing a read
1617 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1618 		 * R/O even though the entry protection could be R/W).
1619 		 *
1620 		 * set "pg" to the page we want to map in (uobjpage, usually)
1621 		 */
1622 
1623 		/* no anon in this case. */
1624 		anon = NULL;
1625 
1626 		uvmexp.flt_obj++;
1627 		if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1628 		    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1629 			enter_prot &= ~VM_PROT_WRITE;
1630 		pg = uobjpage;		/* map in the actual object */
1631 
1632 		KASSERT(uobjpage != PGO_DONTCARE);
1633 
1634 		/*
1635 		 * we are faulting directly on the page.   be careful
1636 		 * about writing to loaned pages...
1637 		 */
1638 
1639 		if (uobjpage->loan_count) {
1640 			if (!cow_now) {
1641 				/* read fault: cap the protection at readonly */
1642 				/* cap! */
1643 				enter_prot = enter_prot & ~VM_PROT_WRITE;
1644 			} else {
1645 				/* write fault: must break the loan here */
1646 
1647 				pg = uvm_loanbreak(uobjpage);
1648 				if (pg == NULL) {
1649 
1650 					/*
1651 					 * drop ownership of page, it can't
1652 					 * be released
1653 					 */
1654 
1655 					if (uobjpage->flags & PG_WANTED)
1656 						wakeup(uobjpage);
1657 					uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1658 					UVM_PAGE_OWN(uobjpage, NULL);
1659 
1660 					uvmfault_unlockall(&ufi, amap, uobj,
1661 					  NULL);
1662 					UVMHIST_LOG(maphist,
1663 					  "  out of RAM breaking loan, waiting",
1664 					  0,0,0,0);
1665 					uvmexp.fltnoram++;
1666 					uvm_wait("flt_noram4");
1667 					goto ReFault;
1668 				}
1669 				uobjpage = pg;
1670 			}
1671 		}
1672 	} else {
1673 
1674 		/*
1675 		 * if we are going to promote the data to an anon we
1676 		 * allocate a blank anon here and plug it into our amap.
1677 		 */
1678 #if DIAGNOSTIC
1679 		if (amap == NULL)
1680 			panic("uvm_fault: want to promote data, but no anon");
1681 #endif
1682 		error = uvmfault_promote(&ufi, NULL, uobjpage,
1683 		    &anon, &anon_spare);
1684 		switch (error) {
1685 		case 0:
1686 			break;
1687 		case ERESTART:
1688 			goto ReFault;
1689 		default:
1690 			goto done;
1691 		}
1692 
1693 		pg = anon->an_page;
1694 
1695 		/*
1696 		 * fill in the data
1697 		 */
1698 
1699 		if (uobjpage != PGO_DONTCARE) {
1700 			uvmexp.flt_prcopy++;
1701 
1702 			/*
1703 			 * promote to shared amap?  make sure all sharing
1704 			 * procs see it
1705 			 */
1706 
1707 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1708 				pmap_page_protect(uobjpage, VM_PROT_NONE);
1709 				/*
1710 				 * XXX: PAGE MIGHT BE WIRED!
1711 				 */
1712 			}
1713 
1714 			/*
1715 			 * dispose of uobjpage.  it can't be PG_RELEASED
1716 			 * since we still hold the object lock.
1717 			 * drop handle to uobj as well.
1718 			 */
1719 
1720 			if (uobjpage->flags & PG_WANTED)
1721 				/* still have the obj lock */
1722 				wakeup(uobjpage);
1723 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1724 			UVM_PAGE_OWN(uobjpage, NULL);
1725 			mutex_exit(&uobj->vmobjlock);
1726 			uobj = NULL;
1727 
1728 			UVMHIST_LOG(maphist,
1729 			    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1730 			    uobjpage, anon, pg, 0);
1731 
1732 		} else {
1733 			uvmexp.flt_przero++;
1734 
1735 			/*
1736 			 * Page is zero'd and marked dirty by
1737 			 * uvmfault_promote().
1738 			 */
1739 
1740 			UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
1741 			    anon, pg, 0, 0);
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * locked:
1747 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1748 	 *   anon(if !null), pg(if anon)
1749 	 *
1750 	 * note: pg is either the uobjpage or the new page in the new anon
1751 	 */
1752 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1753 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1754 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1755 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1756 	KASSERT((pg->flags & PG_BUSY) != 0);
1757 
1758 	/*
1759 	 * all resources are present.   we can now map it in and free our
1760 	 * resources.
1761 	 */
1762 
1763 	UVMHIST_LOG(maphist,
1764 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1765 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1766 	KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1767 		(pg->flags & PG_RDONLY) == 0);
1768 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1769 	    pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1770 	    access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1771 
1772 		/*
1773 		 * No need to undo what we did; we can simply think of
1774 		 * this as the pmap throwing away the mapping information.
1775 		 *
1776 		 * We do, however, have to go through the ReFault path,
1777 		 * as the map may change while we're asleep.
1778 		 */
1779 
1780 		if (pg->flags & PG_WANTED)
1781 			wakeup(pg);
1782 
1783 		/*
1784 		 * note that pg can't be PG_RELEASED since we did not drop
1785 		 * the object lock since the last time we checked.
1786 		 */
1787 		KASSERT((pg->flags & PG_RELEASED) == 0);
1788 
1789 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1790 		UVM_PAGE_OWN(pg, NULL);
1791 		uvmfault_unlockall(&ufi, amap, uobj, anon);
1792 		if (!uvm_reclaimable()) {
1793 			UVMHIST_LOG(maphist,
1794 			    "<- failed.  out of VM",0,0,0,0);
1795 			/* XXX instrumentation */
1796 			error = ENOMEM;
1797 			goto done;
1798 		}
1799 		/* XXX instrumentation */
1800 		uvm_wait("flt_pmfail2");
1801 		goto ReFault;
1802 	}
1803 
1804 	mutex_enter(&uvm_pageqlock);
1805 	if (wire_fault) {
1806 		uvm_pagewire(pg);
1807 		if (pg->pqflags & PQ_AOBJ) {
1808 
1809 			/*
1810 			 * since the now-wired page cannot be paged out,
1811 			 * release its swap resources for others to use.
1812 			 * since an aobj page with no swap cannot be PG_CLEAN,
1813 			 * clear its clean flag now.
1814 			 */
1815 
1816 			KASSERT(uobj != NULL);
1817 			pg->flags &= ~(PG_CLEAN);
1818 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1819 		}
1820 	} else {
1821 		uvm_pageactivate(pg);
1822 	}
1823 	mutex_exit(&uvm_pageqlock);
1824 	if (pg->flags & PG_WANTED)
1825 		wakeup(pg);
1826 
1827 	/*
1828 	 * note that pg can't be PG_RELEASED since we did not drop the object
1829 	 * lock since the last time we checked.
1830 	 */
1831 	KASSERT((pg->flags & PG_RELEASED) == 0);
1832 
1833 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1834 	UVM_PAGE_OWN(pg, NULL);
1835 	uvmfault_unlockall(&ufi, amap, uobj, anon);
1836 	pmap_update(ufi.orig_map->pmap);
1837 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1838 	error = 0;
1839 done:
1840 	if (anon_spare != NULL) {
1841 		anon_spare->an_ref--;
1842 		uvm_anfree(anon_spare);
1843 	}
1844 	return error;
1845 }
1846 
1847 
1848 /*
1849  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1850  *
1851  * => map may be read-locked by caller, but MUST NOT be write-locked.
1852  * => if map is read-locked, any operations which may cause map to
1853  *	be write-locked in uvm_fault() must be taken care of by
1854  *	the caller.  See uvm_map_pageable().
1855  */
1856 
1857 int
1858 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1859     vm_prot_t access_type, int wiremax)
1860 {
1861 	vaddr_t va;
1862 	int error;
1863 
1864 	/*
1865 	 * now fault it in a page at a time.   if the fault fails then we have
1866 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
1867 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1868 	 */
1869 
1870 	/*
1871 	 * XXX work around overflowing a vaddr_t.  this prevents us from
1872 	 * wiring the last page in the address space, though.
1873 	 */
1874 	if (start > end) {
1875 		return EFAULT;
1876 	}
1877 
1878 	for (va = start ; va < end ; va += PAGE_SIZE) {
1879 		error = uvm_fault_internal(map, va, access_type,
1880 				wiremax ? UVM_FAULT_WIREMAX : UVM_FAULT_WIRE);
1881 		if (error) {
1882 			if (va != start) {
1883 				uvm_fault_unwire(map, start, va);
1884 			}
1885 			return error;
1886 		}
1887 	}
1888 	return 0;
1889 }
1890 
1891 /*
1892  * uvm_fault_unwire(): unwire range of virtual space.
1893  */
1894 
1895 void
1896 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1897 {
1898 	vm_map_lock_read(map);
1899 	uvm_fault_unwire_locked(map, start, end);
1900 	vm_map_unlock_read(map);
1901 }
1902 
1903 /*
1904  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1905  *
1906  * => map must be at least read-locked.
1907  */
1908 
1909 void
1910 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1911 {
1912 	struct vm_map_entry *entry;
1913 	pmap_t pmap = vm_map_pmap(map);
1914 	vaddr_t va;
1915 	paddr_t pa;
1916 	struct vm_page *pg;
1917 
1918 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1919 
1920 	/*
1921 	 * we assume that the area we are unwiring has actually been wired
1922 	 * in the first place.   this means that we should be able to extract
1923 	 * the PAs from the pmap.   we also lock out the page daemon so that
1924 	 * we can call uvm_pageunwire.
1925 	 */
1926 
1927 	mutex_enter(&uvm_pageqlock);
1928 
1929 	/*
1930 	 * find the beginning map entry for the region.
1931 	 */
1932 
1933 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1934 	if (uvm_map_lookup_entry(map, start, &entry) == false)
1935 		panic("uvm_fault_unwire_locked: address not in map");
1936 
1937 	for (va = start; va < end; va += PAGE_SIZE) {
1938 		if (pmap_extract(pmap, va, &pa) == false)
1939 			continue;
1940 
1941 		/*
1942 		 * find the map entry for the current address.
1943 		 */
1944 
1945 		KASSERT(va >= entry->start);
1946 		while (va >= entry->end) {
1947 			KASSERT(entry->next != &map->header &&
1948 				entry->next->start <= entry->end);
1949 			entry = entry->next;
1950 		}
1951 
1952 		/*
1953 		 * if the entry is no longer wired, tell the pmap.
1954 		 */
1955 
1956 		if (VM_MAPENT_ISWIRED(entry) == 0)
1957 			pmap_unwire(pmap, va);
1958 
1959 		pg = PHYS_TO_VM_PAGE(pa);
1960 		if (pg)
1961 			uvm_pageunwire(pg);
1962 	}
1963 
1964 	mutex_exit(&uvm_pageqlock);
1965 }
1966