1 /* $NetBSD: uvm_fault.c,v 1.103 2005/12/24 20:45:10 perry Exp $ */ 2 3 /* 4 * 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Charles D. Cranor and 19 * Washington University. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 35 */ 36 37 /* 38 * uvm_fault.c: fault handler 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.103 2005/12/24 20:45:10 perry Exp $"); 43 44 #include "opt_uvmhist.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/proc.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/user.h> 53 #include <sys/vnode.h> 54 55 #include <uvm/uvm.h> 56 57 /* 58 * 59 * a word on page faults: 60 * 61 * types of page faults we handle: 62 * 63 * CASE 1: upper layer faults CASE 2: lower layer faults 64 * 65 * CASE 1A CASE 1B CASE 2A CASE 2B 66 * read/write1 write>1 read/write +-cow_write/zero 67 * | | | | 68 * +--|--+ +--|--+ +-----+ + | + | +-----+ 69 * amap | V | | ----------->new| | | | ^ | 70 * +-----+ +-----+ +-----+ + | + | +--|--+ 71 * | | | 72 * +-----+ +-----+ +--|--+ | +--|--+ 73 * uobj | d/c | | d/c | | V | +----| | 74 * +-----+ +-----+ +-----+ +-----+ 75 * 76 * d/c = don't care 77 * 78 * case [0]: layerless fault 79 * no amap or uobj is present. this is an error. 80 * 81 * case [1]: upper layer fault [anon active] 82 * 1A: [read] or [write with anon->an_ref == 1] 83 * I/O takes place in top level anon and uobj is not touched. 84 * 1B: [write with anon->an_ref > 1] 85 * new anon is alloc'd and data is copied off ["COW"] 86 * 87 * case [2]: lower layer fault [uobj] 88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 89 * I/O takes place directly in object. 90 * 2B: [write to copy_on_write] or [read on NULL uobj] 91 * data is "promoted" from uobj to a new anon. 92 * if uobj is null, then we zero fill. 93 * 94 * we follow the standard UVM locking protocol ordering: 95 * 96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 97 * we hold a PG_BUSY page if we unlock for I/O 98 * 99 * 100 * the code is structured as follows: 101 * 102 * - init the "IN" params in the ufi structure 103 * ReFault: 104 * - do lookups [locks maps], check protection, handle needs_copy 105 * - check for case 0 fault (error) 106 * - establish "range" of fault 107 * - if we have an amap lock it and extract the anons 108 * - if sequential advice deactivate pages behind us 109 * - at the same time check pmap for unmapped areas and anon for pages 110 * that we could map in (and do map it if found) 111 * - check object for resident pages that we could map in 112 * - if (case 2) goto Case2 113 * - >>> handle case 1 114 * - ensure source anon is resident in RAM 115 * - if case 1B alloc new anon and copy from source 116 * - map the correct page in 117 * Case2: 118 * - >>> handle case 2 119 * - ensure source page is resident (if uobj) 120 * - if case 2B alloc new anon and copy from source (could be zero 121 * fill if uobj == NULL) 122 * - map the correct page in 123 * - done! 124 * 125 * note on paging: 126 * if we have to do I/O we place a PG_BUSY page in the correct object, 127 * unlock everything, and do the I/O. when I/O is done we must reverify 128 * the state of the world before assuming that our data structures are 129 * valid. [because mappings could change while the map is unlocked] 130 * 131 * alternative 1: unbusy the page in question and restart the page fault 132 * from the top (ReFault). this is easy but does not take advantage 133 * of the information that we already have from our previous lookup, 134 * although it is possible that the "hints" in the vm_map will help here. 135 * 136 * alternative 2: the system already keeps track of a "version" number of 137 * a map. [i.e. every time you write-lock a map (e.g. to change a 138 * mapping) you bump the version number up by one...] so, we can save 139 * the version number of the map before we release the lock and start I/O. 140 * then when I/O is done we can relock and check the version numbers 141 * to see if anything changed. this might save us some over 1 because 142 * we don't have to unbusy the page and may be less compares(?). 143 * 144 * alternative 3: put in backpointers or a way to "hold" part of a map 145 * in place while I/O is in progress. this could be complex to 146 * implement (especially with structures like amap that can be referenced 147 * by multiple map entries, and figuring out what should wait could be 148 * complex as well...). 149 * 150 * given that we are not currently multiprocessor or multithreaded we might 151 * as well choose alternative 2 now. maybe alternative 3 would be useful 152 * in the future. XXX keep in mind for future consideration//rechecking. 153 */ 154 155 /* 156 * local data structures 157 */ 158 159 struct uvm_advice { 160 int advice; 161 int nback; 162 int nforw; 163 }; 164 165 /* 166 * page range array: 167 * note: index in array must match "advice" value 168 * XXX: borrowed numbers from freebsd. do they work well for us? 169 */ 170 171 static const struct uvm_advice uvmadvice[] = { 172 { MADV_NORMAL, 3, 4 }, 173 { MADV_RANDOM, 0, 0 }, 174 { MADV_SEQUENTIAL, 8, 7}, 175 }; 176 177 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */ 178 179 /* 180 * private prototypes 181 */ 182 183 /* 184 * inline functions 185 */ 186 187 /* 188 * uvmfault_anonflush: try and deactivate pages in specified anons 189 * 190 * => does not have to deactivate page if it is busy 191 */ 192 193 static inline void 194 uvmfault_anonflush(struct vm_anon **anons, int n) 195 { 196 int lcv; 197 struct vm_page *pg; 198 199 for (lcv = 0 ; lcv < n ; lcv++) { 200 if (anons[lcv] == NULL) 201 continue; 202 simple_lock(&anons[lcv]->an_lock); 203 pg = anons[lcv]->an_page; 204 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) { 205 uvm_lock_pageq(); 206 if (pg->wire_count == 0) { 207 pmap_clear_reference(pg); 208 uvm_pagedeactivate(pg); 209 } 210 uvm_unlock_pageq(); 211 } 212 simple_unlock(&anons[lcv]->an_lock); 213 } 214 } 215 216 /* 217 * normal functions 218 */ 219 220 /* 221 * uvmfault_amapcopy: clear "needs_copy" in a map. 222 * 223 * => called with VM data structures unlocked (usually, see below) 224 * => we get a write lock on the maps and clear needs_copy for a VA 225 * => if we are out of RAM we sleep (waiting for more) 226 */ 227 228 static void 229 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 230 { 231 for (;;) { 232 233 /* 234 * no mapping? give up. 235 */ 236 237 if (uvmfault_lookup(ufi, TRUE) == FALSE) 238 return; 239 240 /* 241 * copy if needed. 242 */ 243 244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 245 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE, 246 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 247 248 /* 249 * didn't work? must be out of RAM. unlock and sleep. 250 */ 251 252 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 253 uvmfault_unlockmaps(ufi, TRUE); 254 uvm_wait("fltamapcopy"); 255 continue; 256 } 257 258 /* 259 * got it! unlock and return. 260 */ 261 262 uvmfault_unlockmaps(ufi, TRUE); 263 return; 264 } 265 /*NOTREACHED*/ 266 } 267 268 /* 269 * uvmfault_anonget: get data in an anon into a non-busy, non-released 270 * page in that anon. 271 * 272 * => maps, amap, and anon locked by caller. 273 * => if we fail (result != 0) we unlock everything. 274 * => if we are successful, we return with everything still locked. 275 * => we don't move the page on the queues [gets moved later] 276 * => if we allocate a new page [we_own], it gets put on the queues. 277 * either way, the result is that the page is on the queues at return time 278 * => for pages which are on loan from a uvm_object (and thus are not 279 * owned by the anon): if successful, we return with the owning object 280 * locked. the caller must unlock this object when it unlocks everything 281 * else. 282 */ 283 284 int 285 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 286 struct vm_anon *anon) 287 { 288 boolean_t we_own; /* we own anon's page? */ 289 boolean_t locked; /* did we relock? */ 290 struct vm_page *pg; 291 int error; 292 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist); 293 294 LOCK_ASSERT(simple_lock_held(&anon->an_lock)); 295 296 error = 0; 297 uvmexp.fltanget++; 298 /* bump rusage counters */ 299 if (anon->an_page) 300 curproc->p_stats->p_ru.ru_minflt++; 301 else 302 curproc->p_stats->p_ru.ru_majflt++; 303 304 /* 305 * loop until we get it, or fail. 306 */ 307 308 for (;;) { 309 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */ 310 pg = anon->an_page; 311 312 /* 313 * if there is a resident page and it is loaned, then anon 314 * may not own it. call out to uvm_anon_lockpage() to ensure 315 * the real owner of the page has been identified and locked. 316 */ 317 318 if (pg && pg->loan_count) 319 pg = uvm_anon_lockloanpg(anon); 320 321 /* 322 * page there? make sure it is not busy/released. 323 */ 324 325 if (pg) { 326 327 /* 328 * at this point, if the page has a uobject [meaning 329 * we have it on loan], then that uobject is locked 330 * by us! if the page is busy, we drop all the 331 * locks (including uobject) and try again. 332 */ 333 334 if ((pg->flags & PG_BUSY) == 0) { 335 UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 336 return (0); 337 } 338 pg->flags |= PG_WANTED; 339 uvmexp.fltpgwait++; 340 341 /* 342 * the last unlock must be an atomic unlock+wait on 343 * the owner of page 344 */ 345 346 if (pg->uobject) { /* owner is uobject ? */ 347 uvmfault_unlockall(ufi, amap, NULL, anon); 348 UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 349 0,0,0); 350 UVM_UNLOCK_AND_WAIT(pg, 351 &pg->uobject->vmobjlock, 352 FALSE, "anonget1",0); 353 } else { 354 /* anon owns page */ 355 uvmfault_unlockall(ufi, amap, NULL, NULL); 356 UVMHIST_LOG(maphist, " unlock+wait on anon",0, 357 0,0,0); 358 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0, 359 "anonget2",0); 360 } 361 } else { 362 #if defined(VMSWAP) 363 364 /* 365 * no page, we must try and bring it in. 366 */ 367 368 pg = uvm_pagealloc(NULL, 0, anon, 0); 369 if (pg == NULL) { /* out of RAM. */ 370 uvmfault_unlockall(ufi, amap, NULL, anon); 371 uvmexp.fltnoram++; 372 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 373 0,0,0); 374 if (!uvm_reclaimable()) { 375 return ENOMEM; 376 } 377 uvm_wait("flt_noram1"); 378 } else { 379 /* we set the PG_BUSY bit */ 380 we_own = TRUE; 381 uvmfault_unlockall(ufi, amap, NULL, anon); 382 383 /* 384 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN 385 * page into the uvm_swap_get function with 386 * all data structures unlocked. note that 387 * it is ok to read an_swslot here because 388 * we hold PG_BUSY on the page. 389 */ 390 uvmexp.pageins++; 391 error = uvm_swap_get(pg, anon->an_swslot, 392 PGO_SYNCIO); 393 394 /* 395 * we clean up after the i/o below in the 396 * "we_own" case 397 */ 398 } 399 #else /* defined(VMSWAP) */ 400 panic("%s: no page", __func__); 401 #endif /* defined(VMSWAP) */ 402 } 403 404 /* 405 * now relock and try again 406 */ 407 408 locked = uvmfault_relock(ufi); 409 if (locked && amap != NULL) { 410 amap_lock(amap); 411 } 412 if (locked || we_own) 413 simple_lock(&anon->an_lock); 414 415 /* 416 * if we own the page (i.e. we set PG_BUSY), then we need 417 * to clean up after the I/O. there are three cases to 418 * consider: 419 * [1] page released during I/O: free anon and ReFault. 420 * [2] I/O not OK. free the page and cause the fault 421 * to fail. 422 * [3] I/O OK! activate the page and sync with the 423 * non-we_own case (i.e. drop anon lock if not locked). 424 */ 425 426 if (we_own) { 427 #if defined(VMSWAP) 428 if (pg->flags & PG_WANTED) { 429 wakeup(pg); 430 } 431 if (error) { 432 433 /* 434 * remove the swap slot from the anon 435 * and mark the anon as having no real slot. 436 * don't free the swap slot, thus preventing 437 * it from being used again. 438 */ 439 440 if (anon->an_swslot > 0) 441 uvm_swap_markbad(anon->an_swslot, 1); 442 anon->an_swslot = SWSLOT_BAD; 443 444 if ((pg->flags & PG_RELEASED) != 0) 445 goto released; 446 447 /* 448 * note: page was never !PG_BUSY, so it 449 * can't be mapped and thus no need to 450 * pmap_page_protect it... 451 */ 452 453 uvm_lock_pageq(); 454 uvm_pagefree(pg); 455 uvm_unlock_pageq(); 456 457 if (locked) 458 uvmfault_unlockall(ufi, amap, NULL, 459 anon); 460 else 461 simple_unlock(&anon->an_lock); 462 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 463 return error; 464 } 465 466 if ((pg->flags & PG_RELEASED) != 0) { 467 released: 468 KASSERT(anon->an_ref == 0); 469 470 /* 471 * released while we unlocked amap. 472 */ 473 474 if (locked) 475 uvmfault_unlockall(ufi, amap, NULL, 476 NULL); 477 478 uvm_anon_release(anon); 479 480 if (error) { 481 UVMHIST_LOG(maphist, 482 "<- ERROR/RELEASED", 0,0,0,0); 483 return error; 484 } 485 486 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0); 487 return ERESTART; 488 } 489 490 /* 491 * we've successfully read the page, activate it. 492 */ 493 494 uvm_lock_pageq(); 495 uvm_pageactivate(pg); 496 uvm_unlock_pageq(); 497 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 498 UVM_PAGE_OWN(pg, NULL); 499 if (!locked) 500 simple_unlock(&anon->an_lock); 501 #else /* defined(VMSWAP) */ 502 panic("%s: we_own", __func__); 503 #endif /* defined(VMSWAP) */ 504 } 505 506 /* 507 * we were not able to relock. restart fault. 508 */ 509 510 if (!locked) { 511 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 512 return (ERESTART); 513 } 514 515 /* 516 * verify no one has touched the amap and moved the anon on us. 517 */ 518 519 if (ufi != NULL && 520 amap_lookup(&ufi->entry->aref, 521 ufi->orig_rvaddr - ufi->entry->start) != anon) { 522 523 uvmfault_unlockall(ufi, amap, NULL, anon); 524 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 525 return (ERESTART); 526 } 527 528 /* 529 * try it again! 530 */ 531 532 uvmexp.fltanretry++; 533 continue; 534 } 535 /*NOTREACHED*/ 536 } 537 538 /* 539 * F A U L T - m a i n e n t r y p o i n t 540 */ 541 542 /* 543 * uvm_fault: page fault handler 544 * 545 * => called from MD code to resolve a page fault 546 * => VM data structures usually should be unlocked. however, it is 547 * possible to call here with the main map locked if the caller 548 * gets a write lock, sets it recusive, and then calls us (c.f. 549 * uvm_map_pageable). this should be avoided because it keeps 550 * the map locked off during I/O. 551 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT 552 */ 553 554 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 555 ~VM_PROT_WRITE : VM_PROT_ALL) 556 557 int 558 uvm_fault(struct vm_map *orig_map, vaddr_t vaddr, vm_fault_t fault_type, 559 vm_prot_t access_type) 560 { 561 struct uvm_faultinfo ufi; 562 vm_prot_t enter_prot, check_prot; 563 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now; 564 int npages, nback, nforw, centeridx, error, lcv, gotpages; 565 vaddr_t startva, currva; 566 voff_t uoff; 567 struct vm_amap *amap; 568 struct uvm_object *uobj; 569 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon; 570 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage; 571 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist); 572 573 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)", 574 orig_map, vaddr, fault_type, access_type); 575 576 anon = NULL; 577 pg = NULL; 578 579 uvmexp.faults++; /* XXX: locking? */ 580 581 /* 582 * init the IN parameters in the ufi 583 */ 584 585 ufi.orig_map = orig_map; 586 ufi.orig_rvaddr = trunc_page(vaddr); 587 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 588 wire_fault = fault_type == VM_FAULT_WIRE || 589 fault_type == VM_FAULT_WIREMAX; 590 if (wire_fault) 591 narrow = TRUE; /* don't look for neighborhood 592 * pages on wire */ 593 else 594 narrow = FALSE; /* normal fault */ 595 596 /* 597 * "goto ReFault" means restart the page fault from ground zero. 598 */ 599 ReFault: 600 601 /* 602 * lookup and lock the maps 603 */ 604 605 if (uvmfault_lookup(&ufi, FALSE) == FALSE) { 606 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0); 607 return (EFAULT); 608 } 609 /* locked: maps(read) */ 610 611 #ifdef DIAGNOSTIC 612 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) { 613 printf("Page fault on non-pageable map:\n"); 614 printf("ufi.map = %p\n", ufi.map); 615 printf("ufi.orig_map = %p\n", ufi.orig_map); 616 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr); 617 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0"); 618 } 619 #endif 620 621 /* 622 * check protection 623 */ 624 625 check_prot = fault_type == VM_FAULT_WIREMAX ? 626 ufi.entry->max_protection : ufi.entry->protection; 627 if ((check_prot & access_type) != access_type) { 628 UVMHIST_LOG(maphist, 629 "<- protection failure (prot=0x%x, access=0x%x)", 630 ufi.entry->protection, access_type, 0, 0); 631 uvmfault_unlockmaps(&ufi, FALSE); 632 return EACCES; 633 } 634 635 /* 636 * "enter_prot" is the protection we want to enter the page in at. 637 * for certain pages (e.g. copy-on-write pages) this protection can 638 * be more strict than ufi.entry->protection. "wired" means either 639 * the entry is wired or we are fault-wiring the pg. 640 */ 641 642 enter_prot = ufi.entry->protection; 643 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault; 644 if (wired) { 645 access_type = enter_prot; /* full access for wired */ 646 cow_now = (check_prot & VM_PROT_WRITE) != 0; 647 } else { 648 cow_now = (access_type & VM_PROT_WRITE) != 0; 649 } 650 651 /* 652 * handle "needs_copy" case. if we need to copy the amap we will 653 * have to drop our readlock and relock it with a write lock. (we 654 * need a write lock to change anything in a map entry [e.g. 655 * needs_copy]). 656 */ 657 658 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) { 659 KASSERT(fault_type != VM_FAULT_WIREMAX); 660 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) { 661 /* need to clear */ 662 UVMHIST_LOG(maphist, 663 " need to clear needs_copy and refault",0,0,0,0); 664 uvmfault_unlockmaps(&ufi, FALSE); 665 uvmfault_amapcopy(&ufi); 666 uvmexp.fltamcopy++; 667 goto ReFault; 668 669 } else { 670 671 /* 672 * ensure that we pmap_enter page R/O since 673 * needs_copy is still true 674 */ 675 676 enter_prot &= ~VM_PROT_WRITE; 677 } 678 } 679 680 /* 681 * identify the players 682 */ 683 684 amap = ufi.entry->aref.ar_amap; /* top layer */ 685 uobj = ufi.entry->object.uvm_obj; /* bottom layer */ 686 687 /* 688 * check for a case 0 fault. if nothing backing the entry then 689 * error now. 690 */ 691 692 if (amap == NULL && uobj == NULL) { 693 uvmfault_unlockmaps(&ufi, FALSE); 694 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 695 return (EFAULT); 696 } 697 698 /* 699 * establish range of interest based on advice from mapper 700 * and then clip to fit map entry. note that we only want 701 * to do this the first time through the fault. if we 702 * ReFault we will disable this by setting "narrow" to true. 703 */ 704 705 if (narrow == FALSE) { 706 707 /* wide fault (!narrow) */ 708 KASSERT(uvmadvice[ufi.entry->advice].advice == 709 ufi.entry->advice); 710 nback = MIN(uvmadvice[ufi.entry->advice].nback, 711 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT); 712 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT); 713 nforw = MIN(uvmadvice[ufi.entry->advice].nforw, 714 ((ufi.entry->end - ufi.orig_rvaddr) >> 715 PAGE_SHIFT) - 1); 716 /* 717 * note: "-1" because we don't want to count the 718 * faulting page as forw 719 */ 720 npages = nback + nforw + 1; 721 centeridx = nback; 722 723 narrow = TRUE; /* ensure only once per-fault */ 724 725 } else { 726 727 /* narrow fault! */ 728 nback = nforw = 0; 729 startva = ufi.orig_rvaddr; 730 npages = 1; 731 centeridx = 0; 732 733 } 734 735 /* locked: maps(read) */ 736 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x", 737 narrow, nback, nforw, startva); 738 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry, 739 amap, uobj, 0); 740 741 /* 742 * if we've got an amap, lock it and extract current anons. 743 */ 744 745 if (amap) { 746 amap_lock(amap); 747 anons = anons_store; 748 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start, 749 anons, npages); 750 } else { 751 anons = NULL; /* to be safe */ 752 } 753 754 /* locked: maps(read), amap(if there) */ 755 756 /* 757 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 758 * now and then forget about them (for the rest of the fault). 759 */ 760 761 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) { 762 763 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 764 0,0,0,0); 765 /* flush back-page anons? */ 766 if (amap) 767 uvmfault_anonflush(anons, nback); 768 769 /* flush object? */ 770 if (uobj) { 771 uoff = (startva - ufi.entry->start) + ufi.entry->offset; 772 simple_lock(&uobj->vmobjlock); 773 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff + 774 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 775 } 776 777 /* now forget about the backpages */ 778 if (amap) 779 anons += nback; 780 startva += (nback << PAGE_SHIFT); 781 npages -= nback; 782 nback = centeridx = 0; 783 } 784 785 /* locked: maps(read), amap(if there) */ 786 787 /* 788 * map in the backpages and frontpages we found in the amap in hopes 789 * of preventing future faults. we also init the pages[] array as 790 * we go. 791 */ 792 793 currva = startva; 794 shadowed = FALSE; 795 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) { 796 797 /* 798 * dont play with VAs that are already mapped 799 * except for center) 800 */ 801 if (lcv != centeridx && 802 pmap_extract(ufi.orig_map->pmap, currva, NULL)) { 803 pages[lcv] = PGO_DONTCARE; 804 continue; 805 } 806 807 /* 808 * unmapped or center page. check if any anon at this level. 809 */ 810 if (amap == NULL || anons[lcv] == NULL) { 811 pages[lcv] = NULL; 812 continue; 813 } 814 815 /* 816 * check for present page and map if possible. re-activate it. 817 */ 818 819 pages[lcv] = PGO_DONTCARE; 820 if (lcv == centeridx) { /* save center for later! */ 821 shadowed = TRUE; 822 continue; 823 } 824 anon = anons[lcv]; 825 simple_lock(&anon->an_lock); 826 /* ignore loaned pages */ 827 if (anon->an_page && anon->an_page->loan_count == 0 && 828 (anon->an_page->flags & PG_BUSY) == 0) { 829 uvm_lock_pageq(); 830 uvm_pageactivate(anon->an_page); 831 uvm_unlock_pageq(); 832 UVMHIST_LOG(maphist, 833 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x", 834 ufi.orig_map->pmap, currva, anon->an_page, 0); 835 uvmexp.fltnamap++; 836 837 /* 838 * Since this isn't the page that's actually faulting, 839 * ignore pmap_enter() failures; it's not critical 840 * that we enter these right now. 841 */ 842 843 (void) pmap_enter(ufi.orig_map->pmap, currva, 844 VM_PAGE_TO_PHYS(anon->an_page), 845 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) : 846 enter_prot, 847 PMAP_CANFAIL | 848 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0)); 849 } 850 simple_unlock(&anon->an_lock); 851 pmap_update(ufi.orig_map->pmap); 852 } 853 854 /* locked: maps(read), amap(if there) */ 855 /* (shadowed == TRUE) if there is an anon at the faulting address */ 856 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed, 857 (uobj && shadowed == FALSE),0,0); 858 859 /* 860 * note that if we are really short of RAM we could sleep in the above 861 * call to pmap_enter with everything locked. bad? 862 * 863 * XXX Actually, that is bad; pmap_enter() should just fail in that 864 * XXX case. --thorpej 865 */ 866 867 /* 868 * if the desired page is not shadowed by the amap and we have a 869 * backing object, then we check to see if the backing object would 870 * prefer to handle the fault itself (rather than letting us do it 871 * with the usual pgo_get hook). the backing object signals this by 872 * providing a pgo_fault routine. 873 */ 874 875 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) { 876 simple_lock(&uobj->vmobjlock); 877 878 /* locked: maps(read), amap (if there), uobj */ 879 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages, 880 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO); 881 882 /* locked: nothing, pgo_fault has unlocked everything */ 883 884 if (error == ERESTART) 885 goto ReFault; /* try again! */ 886 /* 887 * object fault routine responsible for pmap_update(). 888 */ 889 return error; 890 } 891 892 /* 893 * now, if the desired page is not shadowed by the amap and we have 894 * a backing object that does not have a special fault routine, then 895 * we ask (with pgo_get) the object for resident pages that we care 896 * about and attempt to map them in. we do not let pgo_get block 897 * (PGO_LOCKED). 898 */ 899 900 if (uobj && shadowed == FALSE) { 901 simple_lock(&uobj->vmobjlock); 902 903 /* locked (!shadowed): maps(read), amap (if there), uobj */ 904 /* 905 * the following call to pgo_get does _not_ change locking state 906 */ 907 908 uvmexp.fltlget++; 909 gotpages = npages; 910 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset + 911 (startva - ufi.entry->start), 912 pages, &gotpages, centeridx, 913 access_type & MASK(ufi.entry), 914 ufi.entry->advice, PGO_LOCKED); 915 916 /* 917 * check for pages to map, if we got any 918 */ 919 920 uobjpage = NULL; 921 922 if (gotpages) { 923 currva = startva; 924 for (lcv = 0; lcv < npages; 925 lcv++, currva += PAGE_SIZE) { 926 struct vm_page *curpg; 927 boolean_t readonly; 928 929 curpg = pages[lcv]; 930 if (curpg == NULL || curpg == PGO_DONTCARE) { 931 continue; 932 } 933 934 /* 935 * if center page is resident and not 936 * PG_BUSY|PG_RELEASED then pgo_get 937 * made it PG_BUSY for us and gave 938 * us a handle to it. remember this 939 * page as "uobjpage." (for later use). 940 */ 941 942 if (lcv == centeridx) { 943 uobjpage = curpg; 944 UVMHIST_LOG(maphist, " got uobjpage " 945 "(0x%x) with locked get", 946 uobjpage, 0,0,0); 947 continue; 948 } 949 950 /* 951 * calling pgo_get with PGO_LOCKED returns us 952 * pages which are neither busy nor released, 953 * so we don't need to check for this. 954 * we can just directly enter the pages. 955 */ 956 957 uvm_lock_pageq(); 958 uvm_pageactivate(curpg); 959 uvm_unlock_pageq(); 960 UVMHIST_LOG(maphist, 961 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x", 962 ufi.orig_map->pmap, currva, curpg, 0); 963 uvmexp.fltnomap++; 964 965 /* 966 * Since this page isn't the page that's 967 * actually faulting, ignore pmap_enter() 968 * failures; it's not critical that we 969 * enter these right now. 970 */ 971 KASSERT((curpg->flags & PG_PAGEOUT) == 0); 972 KASSERT((curpg->flags & PG_RELEASED) == 0); 973 KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) || 974 (curpg->flags & PG_CLEAN) != 0); 975 readonly = (curpg->flags & PG_RDONLY) 976 || (curpg->loan_count > 0) 977 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject); 978 979 (void) pmap_enter(ufi.orig_map->pmap, currva, 980 VM_PAGE_TO_PHYS(curpg), 981 readonly ? 982 enter_prot & ~VM_PROT_WRITE : 983 enter_prot & MASK(ufi.entry), 984 PMAP_CANFAIL | 985 (wired ? PMAP_WIRED : 0)); 986 987 /* 988 * NOTE: page can't be PG_WANTED or PG_RELEASED 989 * because we've held the lock the whole time 990 * we've had the handle. 991 */ 992 993 curpg->flags &= ~(PG_BUSY); 994 UVM_PAGE_OWN(curpg, NULL); 995 } 996 pmap_update(ufi.orig_map->pmap); 997 } 998 } else { 999 uobjpage = NULL; 1000 } 1001 1002 /* locked (shadowed): maps(read), amap */ 1003 /* locked (!shadowed): maps(read), amap(if there), 1004 uobj(if !null), uobjpage(if !null) */ 1005 1006 /* 1007 * note that at this point we are done with any front or back pages. 1008 * we are now going to focus on the center page (i.e. the one we've 1009 * faulted on). if we have faulted on the top (anon) layer 1010 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 1011 * not touched it yet). if we have faulted on the bottom (uobj) 1012 * layer [i.e. case 2] and the page was both present and available, 1013 * then we've got a pointer to it as "uobjpage" and we've already 1014 * made it BUSY. 1015 */ 1016 1017 /* 1018 * there are four possible cases we must address: 1A, 1B, 2A, and 2B 1019 */ 1020 1021 /* 1022 * redirect case 2: if we are not shadowed, go to case 2. 1023 */ 1024 1025 if (shadowed == FALSE) 1026 goto Case2; 1027 1028 /* locked: maps(read), amap */ 1029 1030 /* 1031 * handle case 1: fault on an anon in our amap 1032 */ 1033 1034 anon = anons[centeridx]; 1035 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0); 1036 simple_lock(&anon->an_lock); 1037 1038 /* locked: maps(read), amap, anon */ 1039 1040 /* 1041 * no matter if we have case 1A or case 1B we are going to need to 1042 * have the anon's memory resident. ensure that now. 1043 */ 1044 1045 /* 1046 * let uvmfault_anonget do the dirty work. 1047 * if it fails (!OK) it will unlock everything for us. 1048 * if it succeeds, locks are still valid and locked. 1049 * also, if it is OK, then the anon's page is on the queues. 1050 * if the page is on loan from a uvm_object, then anonget will 1051 * lock that object for us if it does not fail. 1052 */ 1053 1054 error = uvmfault_anonget(&ufi, amap, anon); 1055 switch (error) { 1056 case 0: 1057 break; 1058 1059 case ERESTART: 1060 goto ReFault; 1061 1062 case EAGAIN: 1063 tsleep(&lbolt, PVM, "fltagain1", 0); 1064 goto ReFault; 1065 1066 default: 1067 return error; 1068 } 1069 1070 /* 1071 * uobj is non null if the page is on loan from an object (i.e. uobj) 1072 */ 1073 1074 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1075 1076 /* locked: maps(read), amap, anon, uobj(if one) */ 1077 1078 /* 1079 * special handling for loaned pages 1080 */ 1081 1082 if (anon->an_page->loan_count) { 1083 1084 if (!cow_now) { 1085 1086 /* 1087 * for read faults on loaned pages we just cap the 1088 * protection at read-only. 1089 */ 1090 1091 enter_prot = enter_prot & ~VM_PROT_WRITE; 1092 1093 } else { 1094 /* 1095 * note that we can't allow writes into a loaned page! 1096 * 1097 * if we have a write fault on a loaned page in an 1098 * anon then we need to look at the anon's ref count. 1099 * if it is greater than one then we are going to do 1100 * a normal copy-on-write fault into a new anon (this 1101 * is not a problem). however, if the reference count 1102 * is one (a case where we would normally allow a 1103 * write directly to the page) then we need to kill 1104 * the loan before we continue. 1105 */ 1106 1107 /* >1 case is already ok */ 1108 if (anon->an_ref == 1) { 1109 1110 /* get new un-owned replacement page */ 1111 pg = uvm_pagealloc(NULL, 0, NULL, 0); 1112 if (pg == NULL) { 1113 uvmfault_unlockall(&ufi, amap, uobj, 1114 anon); 1115 uvm_wait("flt_noram2"); 1116 goto ReFault; 1117 } 1118 1119 /* 1120 * copy data, kill loan, and drop uobj lock 1121 * (if any) 1122 */ 1123 /* copy old -> new */ 1124 uvm_pagecopy(anon->an_page, pg); 1125 1126 /* force reload */ 1127 pmap_page_protect(anon->an_page, 1128 VM_PROT_NONE); 1129 uvm_lock_pageq(); /* KILL loan */ 1130 1131 anon->an_page->uanon = NULL; 1132 /* in case we owned */ 1133 anon->an_page->pqflags &= ~PQ_ANON; 1134 1135 if (uobj) { 1136 /* if we were receiver of loan */ 1137 anon->an_page->loan_count--; 1138 } else { 1139 /* 1140 * we were the lender (A->K); need 1141 * to remove the page from pageq's. 1142 */ 1143 uvm_pagedequeue(anon->an_page); 1144 } 1145 1146 uvm_pageactivate(pg); 1147 uvm_unlock_pageq(); 1148 if (uobj) { 1149 simple_unlock(&uobj->vmobjlock); 1150 uobj = NULL; 1151 } 1152 1153 /* install new page in anon */ 1154 anon->an_page = pg; 1155 pg->uanon = anon; 1156 pg->pqflags |= PQ_ANON; 1157 pg->flags &= ~(PG_BUSY|PG_FAKE); 1158 UVM_PAGE_OWN(pg, NULL); 1159 1160 /* done! */ 1161 } /* ref == 1 */ 1162 } /* write fault */ 1163 } /* loan count */ 1164 1165 /* 1166 * if we are case 1B then we will need to allocate a new blank 1167 * anon to transfer the data into. note that we have a lock 1168 * on anon, so no one can busy or release the page until we are done. 1169 * also note that the ref count can't drop to zero here because 1170 * it is > 1 and we are only dropping one ref. 1171 * 1172 * in the (hopefully very rare) case that we are out of RAM we 1173 * will unlock, wait for more RAM, and refault. 1174 * 1175 * if we are out of anon VM we kill the process (XXX: could wait?). 1176 */ 1177 1178 if (cow_now && anon->an_ref > 1) { 1179 1180 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1181 uvmexp.flt_acow++; 1182 oanon = anon; /* oanon = old, locked anon */ 1183 anon = uvm_analloc(); 1184 if (anon) { 1185 /* new anon is locked! */ 1186 pg = uvm_pagealloc(NULL, 0, anon, 0); 1187 } 1188 1189 /* check for out of RAM */ 1190 if (anon == NULL || pg == NULL) { 1191 if (anon) { 1192 anon->an_ref--; 1193 simple_unlock(&anon->an_lock); 1194 uvm_anfree(anon); 1195 } 1196 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1197 if (!uvm_reclaimable()) { 1198 UVMHIST_LOG(maphist, 1199 "<- failed. out of VM",0,0,0,0); 1200 uvmexp.fltnoanon++; 1201 return ENOMEM; 1202 } 1203 1204 uvmexp.fltnoram++; 1205 uvm_wait("flt_noram3"); /* out of RAM, wait for more */ 1206 goto ReFault; 1207 } 1208 1209 /* got all resources, replace anon with nanon */ 1210 uvm_pagecopy(oanon->an_page, pg); 1211 uvm_lock_pageq(); 1212 uvm_pageactivate(pg); 1213 pg->flags &= ~(PG_BUSY|PG_FAKE); 1214 uvm_unlock_pageq(); 1215 UVM_PAGE_OWN(pg, NULL); 1216 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1217 anon, TRUE); 1218 1219 /* deref: can not drop to zero here by defn! */ 1220 oanon->an_ref--; 1221 1222 /* 1223 * note: oanon is still locked, as is the new anon. we 1224 * need to check for this later when we unlock oanon; if 1225 * oanon != anon, we'll have to unlock anon, too. 1226 */ 1227 1228 } else { 1229 1230 uvmexp.flt_anon++; 1231 oanon = anon; /* old, locked anon is same as anon */ 1232 pg = anon->an_page; 1233 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1234 enter_prot = enter_prot & ~VM_PROT_WRITE; 1235 1236 } 1237 1238 /* locked: maps(read), amap, oanon, anon (if different from oanon) */ 1239 1240 /* 1241 * now map the page in. 1242 */ 1243 1244 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x", 1245 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0); 1246 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1247 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) 1248 != 0) { 1249 1250 /* 1251 * No need to undo what we did; we can simply think of 1252 * this as the pmap throwing away the mapping information. 1253 * 1254 * We do, however, have to go through the ReFault path, 1255 * as the map may change while we're asleep. 1256 */ 1257 1258 if (anon != oanon) 1259 simple_unlock(&anon->an_lock); 1260 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1261 if (!uvm_reclaimable()) { 1262 UVMHIST_LOG(maphist, 1263 "<- failed. out of VM",0,0,0,0); 1264 /* XXX instrumentation */ 1265 return ENOMEM; 1266 } 1267 /* XXX instrumentation */ 1268 uvm_wait("flt_pmfail1"); 1269 goto ReFault; 1270 } 1271 1272 /* 1273 * ... update the page queues. 1274 */ 1275 1276 uvm_lock_pageq(); 1277 if (wire_fault) { 1278 uvm_pagewire(pg); 1279 1280 /* 1281 * since the now-wired page cannot be paged out, 1282 * release its swap resources for others to use. 1283 * since an anon with no swap cannot be PG_CLEAN, 1284 * clear its clean flag now. 1285 */ 1286 1287 pg->flags &= ~(PG_CLEAN); 1288 uvm_anon_dropswap(anon); 1289 } else { 1290 uvm_pageactivate(pg); 1291 } 1292 uvm_unlock_pageq(); 1293 1294 /* 1295 * done case 1! finish up by unlocking everything and returning success 1296 */ 1297 1298 if (anon != oanon) 1299 simple_unlock(&anon->an_lock); 1300 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1301 pmap_update(ufi.orig_map->pmap); 1302 return 0; 1303 1304 Case2: 1305 /* 1306 * handle case 2: faulting on backing object or zero fill 1307 */ 1308 1309 /* 1310 * locked: 1311 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1312 */ 1313 1314 /* 1315 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1316 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1317 * have a backing object, check and see if we are going to promote 1318 * the data up to an anon during the fault. 1319 */ 1320 1321 if (uobj == NULL) { 1322 uobjpage = PGO_DONTCARE; 1323 promote = TRUE; /* always need anon here */ 1324 } else { 1325 KASSERT(uobjpage != PGO_DONTCARE); 1326 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry); 1327 } 1328 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d", 1329 promote, (uobj == NULL), 0,0); 1330 1331 /* 1332 * if uobjpage is not null then we do not need to do I/O to get the 1333 * uobjpage. 1334 * 1335 * if uobjpage is null, then we need to unlock and ask the pager to 1336 * get the data for us. once we have the data, we need to reverify 1337 * the state the world. we are currently not holding any resources. 1338 */ 1339 1340 if (uobjpage) { 1341 /* update rusage counters */ 1342 curproc->p_stats->p_ru.ru_minflt++; 1343 } else { 1344 /* update rusage counters */ 1345 curproc->p_stats->p_ru.ru_majflt++; 1346 1347 /* locked: maps(read), amap(if there), uobj */ 1348 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1349 /* locked: uobj */ 1350 1351 uvmexp.fltget++; 1352 gotpages = 1; 1353 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset; 1354 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages, 1355 0, access_type & MASK(ufi.entry), ufi.entry->advice, 1356 PGO_SYNCIO); 1357 /* locked: uobjpage(if no error) */ 1358 1359 /* 1360 * recover from I/O 1361 */ 1362 1363 if (error) { 1364 if (error == EAGAIN) { 1365 UVMHIST_LOG(maphist, 1366 " pgo_get says TRY AGAIN!",0,0,0,0); 1367 tsleep(&lbolt, PVM, "fltagain2", 0); 1368 goto ReFault; 1369 } 1370 1371 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)", 1372 error, 0,0,0); 1373 return error; 1374 } 1375 1376 /* locked: uobjpage */ 1377 1378 uvm_lock_pageq(); 1379 uvm_pageactivate(uobjpage); 1380 uvm_unlock_pageq(); 1381 1382 /* 1383 * re-verify the state of the world by first trying to relock 1384 * the maps. always relock the object. 1385 */ 1386 1387 locked = uvmfault_relock(&ufi); 1388 if (locked && amap) 1389 amap_lock(amap); 1390 simple_lock(&uobj->vmobjlock); 1391 1392 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */ 1393 /* locked(!locked): uobj, uobjpage */ 1394 1395 /* 1396 * verify that the page has not be released and re-verify 1397 * that amap slot is still free. if there is a problem, 1398 * we unlock and clean up. 1399 */ 1400 1401 if ((uobjpage->flags & PG_RELEASED) != 0 || 1402 (locked && amap && 1403 amap_lookup(&ufi.entry->aref, 1404 ufi.orig_rvaddr - ufi.entry->start))) { 1405 if (locked) 1406 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1407 locked = FALSE; 1408 } 1409 1410 /* 1411 * didn't get the lock? release the page and retry. 1412 */ 1413 1414 if (locked == FALSE) { 1415 UVMHIST_LOG(maphist, 1416 " wasn't able to relock after fault: retry", 1417 0,0,0,0); 1418 if (uobjpage->flags & PG_WANTED) 1419 wakeup(uobjpage); 1420 if (uobjpage->flags & PG_RELEASED) { 1421 uvmexp.fltpgrele++; 1422 uvm_pagefree(uobjpage); 1423 goto ReFault; 1424 } 1425 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1426 UVM_PAGE_OWN(uobjpage, NULL); 1427 simple_unlock(&uobj->vmobjlock); 1428 goto ReFault; 1429 } 1430 1431 /* 1432 * we have the data in uobjpage which is busy and 1433 * not released. we are holding object lock (so the page 1434 * can't be released on us). 1435 */ 1436 1437 /* locked: maps(read), amap(if !null), uobj, uobjpage */ 1438 } 1439 1440 /* 1441 * locked: 1442 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1443 */ 1444 1445 /* 1446 * notes: 1447 * - at this point uobjpage can not be NULL 1448 * - at this point uobjpage can not be PG_RELEASED (since we checked 1449 * for it above) 1450 * - at this point uobjpage could be PG_WANTED (handle later) 1451 */ 1452 1453 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) || 1454 (uobjpage->flags & PG_CLEAN) != 0); 1455 if (promote == FALSE) { 1456 1457 /* 1458 * we are not promoting. if the mapping is COW ensure that we 1459 * don't give more access than we should (e.g. when doing a read 1460 * fault on a COPYONWRITE mapping we want to map the COW page in 1461 * R/O even though the entry protection could be R/W). 1462 * 1463 * set "pg" to the page we want to map in (uobjpage, usually) 1464 */ 1465 1466 /* no anon in this case. */ 1467 anon = NULL; 1468 1469 uvmexp.flt_obj++; 1470 if (UVM_ET_ISCOPYONWRITE(ufi.entry) || 1471 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject)) 1472 enter_prot &= ~VM_PROT_WRITE; 1473 pg = uobjpage; /* map in the actual object */ 1474 1475 /* assert(uobjpage != PGO_DONTCARE) */ 1476 1477 /* 1478 * we are faulting directly on the page. be careful 1479 * about writing to loaned pages... 1480 */ 1481 1482 if (uobjpage->loan_count) { 1483 if (!cow_now) { 1484 /* read fault: cap the protection at readonly */ 1485 /* cap! */ 1486 enter_prot = enter_prot & ~VM_PROT_WRITE; 1487 } else { 1488 /* write fault: must break the loan here */ 1489 1490 pg = uvm_loanbreak(uobjpage); 1491 if (pg == NULL) { 1492 1493 /* 1494 * drop ownership of page, it can't 1495 * be released 1496 */ 1497 1498 if (uobjpage->flags & PG_WANTED) 1499 wakeup(uobjpage); 1500 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1501 UVM_PAGE_OWN(uobjpage, NULL); 1502 1503 uvmfault_unlockall(&ufi, amap, uobj, 1504 NULL); 1505 UVMHIST_LOG(maphist, 1506 " out of RAM breaking loan, waiting", 1507 0,0,0,0); 1508 uvmexp.fltnoram++; 1509 uvm_wait("flt_noram4"); 1510 goto ReFault; 1511 } 1512 uobjpage = pg; 1513 } 1514 } 1515 } else { 1516 1517 /* 1518 * if we are going to promote the data to an anon we 1519 * allocate a blank anon here and plug it into our amap. 1520 */ 1521 #if DIAGNOSTIC 1522 if (amap == NULL) 1523 panic("uvm_fault: want to promote data, but no anon"); 1524 #endif 1525 1526 anon = uvm_analloc(); 1527 if (anon) { 1528 1529 /* 1530 * The new anon is locked. 1531 * 1532 * In `Fill in data...' below, if 1533 * uobjpage == PGO_DONTCARE, we want 1534 * a zero'd, dirty page, so have 1535 * uvm_pagealloc() do that for us. 1536 */ 1537 1538 pg = uvm_pagealloc(NULL, 0, anon, 1539 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0); 1540 } 1541 1542 /* 1543 * out of memory resources? 1544 */ 1545 1546 if (anon == NULL || pg == NULL) { 1547 if (anon != NULL) { 1548 anon->an_ref--; 1549 simple_unlock(&anon->an_lock); 1550 uvm_anfree(anon); 1551 } 1552 1553 /* 1554 * arg! must unbusy our page and fail or sleep. 1555 */ 1556 1557 if (uobjpage != PGO_DONTCARE) { 1558 if (uobjpage->flags & PG_WANTED) 1559 /* still holding object lock */ 1560 wakeup(uobjpage); 1561 1562 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1563 UVM_PAGE_OWN(uobjpage, NULL); 1564 } 1565 1566 /* unlock and fail ... */ 1567 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1568 if (!uvm_reclaimable()) { 1569 UVMHIST_LOG(maphist, " promote: out of VM", 1570 0,0,0,0); 1571 uvmexp.fltnoanon++; 1572 return ENOMEM; 1573 } 1574 1575 UVMHIST_LOG(maphist, " out of RAM, waiting for more", 1576 0,0,0,0); 1577 uvmexp.fltnoram++; 1578 uvm_wait("flt_noram5"); 1579 goto ReFault; 1580 } 1581 1582 /* 1583 * fill in the data 1584 */ 1585 1586 if (uobjpage != PGO_DONTCARE) { 1587 uvmexp.flt_prcopy++; 1588 /* copy page [pg now dirty] */ 1589 uvm_pagecopy(uobjpage, pg); 1590 1591 /* 1592 * promote to shared amap? make sure all sharing 1593 * procs see it 1594 */ 1595 1596 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 1597 pmap_page_protect(uobjpage, VM_PROT_NONE); 1598 /* 1599 * XXX: PAGE MIGHT BE WIRED! 1600 */ 1601 } 1602 1603 /* 1604 * dispose of uobjpage. it can't be PG_RELEASED 1605 * since we still hold the object lock. 1606 * drop handle to uobj as well. 1607 */ 1608 1609 if (uobjpage->flags & PG_WANTED) 1610 /* still have the obj lock */ 1611 wakeup(uobjpage); 1612 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1613 UVM_PAGE_OWN(uobjpage, NULL); 1614 simple_unlock(&uobj->vmobjlock); 1615 uobj = NULL; 1616 1617 UVMHIST_LOG(maphist, 1618 " promote uobjpage 0x%x to anon/page 0x%x/0x%x", 1619 uobjpage, anon, pg, 0); 1620 1621 } else { 1622 uvmexp.flt_przero++; 1623 1624 /* 1625 * Page is zero'd and marked dirty by uvm_pagealloc() 1626 * above. 1627 */ 1628 1629 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x", 1630 anon, pg, 0, 0); 1631 } 1632 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1633 anon, FALSE); 1634 } 1635 1636 /* 1637 * locked: 1638 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj), 1639 * anon(if !null), pg(if anon) 1640 * 1641 * note: pg is either the uobjpage or the new page in the new anon 1642 */ 1643 1644 /* 1645 * all resources are present. we can now map it in and free our 1646 * resources. 1647 */ 1648 1649 UVMHIST_LOG(maphist, 1650 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d", 1651 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote); 1652 KASSERT((access_type & VM_PROT_WRITE) == 0 || 1653 (pg->flags & PG_RDONLY) == 0); 1654 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1655 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot, 1656 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) { 1657 1658 /* 1659 * No need to undo what we did; we can simply think of 1660 * this as the pmap throwing away the mapping information. 1661 * 1662 * We do, however, have to go through the ReFault path, 1663 * as the map may change while we're asleep. 1664 */ 1665 1666 if (pg->flags & PG_WANTED) 1667 wakeup(pg); 1668 1669 /* 1670 * note that pg can't be PG_RELEASED since we did not drop 1671 * the object lock since the last time we checked. 1672 */ 1673 1674 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 1675 UVM_PAGE_OWN(pg, NULL); 1676 uvmfault_unlockall(&ufi, amap, uobj, anon); 1677 if (!uvm_reclaimable()) { 1678 UVMHIST_LOG(maphist, 1679 "<- failed. out of VM",0,0,0,0); 1680 /* XXX instrumentation */ 1681 return ENOMEM; 1682 } 1683 /* XXX instrumentation */ 1684 uvm_wait("flt_pmfail2"); 1685 goto ReFault; 1686 } 1687 1688 uvm_lock_pageq(); 1689 if (wire_fault) { 1690 uvm_pagewire(pg); 1691 if (pg->pqflags & PQ_AOBJ) { 1692 1693 /* 1694 * since the now-wired page cannot be paged out, 1695 * release its swap resources for others to use. 1696 * since an aobj page with no swap cannot be PG_CLEAN, 1697 * clear its clean flag now. 1698 */ 1699 1700 pg->flags &= ~(PG_CLEAN); 1701 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 1702 } 1703 } else { 1704 uvm_pageactivate(pg); 1705 } 1706 uvm_unlock_pageq(); 1707 if (pg->flags & PG_WANTED) 1708 wakeup(pg); 1709 1710 /* 1711 * note that pg can't be PG_RELEASED since we did not drop the object 1712 * lock since the last time we checked. 1713 */ 1714 1715 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 1716 UVM_PAGE_OWN(pg, NULL); 1717 uvmfault_unlockall(&ufi, amap, uobj, anon); 1718 pmap_update(ufi.orig_map->pmap); 1719 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 1720 return 0; 1721 } 1722 1723 /* 1724 * uvm_fault_wire: wire down a range of virtual addresses in a map. 1725 * 1726 * => map may be read-locked by caller, but MUST NOT be write-locked. 1727 * => if map is read-locked, any operations which may cause map to 1728 * be write-locked in uvm_fault() must be taken care of by 1729 * the caller. See uvm_map_pageable(). 1730 */ 1731 1732 int 1733 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end, 1734 vm_fault_t fault_type, vm_prot_t access_type) 1735 { 1736 vaddr_t va; 1737 int error; 1738 1739 /* 1740 * now fault it in a page at a time. if the fault fails then we have 1741 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 1742 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 1743 */ 1744 1745 /* 1746 * XXX work around overflowing a vaddr_t. this prevents us from 1747 * wiring the last page in the address space, though. 1748 */ 1749 if (start > end) { 1750 return EFAULT; 1751 } 1752 1753 for (va = start ; va < end ; va += PAGE_SIZE) { 1754 error = uvm_fault(map, va, fault_type, access_type); 1755 if (error) { 1756 if (va != start) { 1757 uvm_fault_unwire(map, start, va); 1758 } 1759 return error; 1760 } 1761 } 1762 return 0; 1763 } 1764 1765 /* 1766 * uvm_fault_unwire(): unwire range of virtual space. 1767 */ 1768 1769 void 1770 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end) 1771 { 1772 vm_map_lock_read(map); 1773 uvm_fault_unwire_locked(map, start, end); 1774 vm_map_unlock_read(map); 1775 } 1776 1777 /* 1778 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 1779 * 1780 * => map must be at least read-locked. 1781 */ 1782 1783 void 1784 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end) 1785 { 1786 struct vm_map_entry *entry; 1787 pmap_t pmap = vm_map_pmap(map); 1788 vaddr_t va; 1789 paddr_t pa; 1790 struct vm_page *pg; 1791 1792 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0); 1793 1794 /* 1795 * we assume that the area we are unwiring has actually been wired 1796 * in the first place. this means that we should be able to extract 1797 * the PAs from the pmap. we also lock out the page daemon so that 1798 * we can call uvm_pageunwire. 1799 */ 1800 1801 uvm_lock_pageq(); 1802 1803 /* 1804 * find the beginning map entry for the region. 1805 */ 1806 1807 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 1808 if (uvm_map_lookup_entry(map, start, &entry) == FALSE) 1809 panic("uvm_fault_unwire_locked: address not in map"); 1810 1811 for (va = start; va < end; va += PAGE_SIZE) { 1812 if (pmap_extract(pmap, va, &pa) == FALSE) 1813 continue; 1814 1815 /* 1816 * find the map entry for the current address. 1817 */ 1818 1819 KASSERT(va >= entry->start); 1820 while (va >= entry->end) { 1821 KASSERT(entry->next != &map->header && 1822 entry->next->start <= entry->end); 1823 entry = entry->next; 1824 } 1825 1826 /* 1827 * if the entry is no longer wired, tell the pmap. 1828 */ 1829 1830 if (VM_MAPENT_ISWIRED(entry) == 0) 1831 pmap_unwire(pmap, va); 1832 1833 pg = PHYS_TO_VM_PAGE(pa); 1834 if (pg) 1835 uvm_pageunwire(pg); 1836 } 1837 1838 uvm_unlock_pageq(); 1839 } 1840