xref: /netbsd-src/sys/uvm/uvm_fault.c (revision 800f65cfd08922525602506b0895f419b45e9f33)
1 /*	$NetBSD: uvm_fault.c,v 1.234 2023/08/13 23:06:07 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28  */
29 
30 /*
31  * uvm_fault.c: fault handler
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.234 2023/08/13 23:06:07 chs Exp $");
36 
37 #include "opt_uvmhist.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/kernel.h>
43 #include <sys/mman.h>
44 
45 #include <uvm/uvm.h>
46 #include <uvm/uvm_pdpolicy.h>
47 #include <uvm/uvm_rndsource.h>
48 
49 /*
50  *
51  * a word on page faults:
52  *
53  * types of page faults we handle:
54  *
55  * CASE 1: upper layer faults                   CASE 2: lower layer faults
56  *
57  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
58  *    read/write1     write>1                  read/write   +-cow_write/zero
59  *         |             |                         |        |
60  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
61  * amap |  V  |       |  ---------> new |          |        | |  ^  |
62  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
63  *                                                 |        |    |
64  *      +-----+       +-----+                   +--|--+     | +--|--+
65  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
66  *      +-----+       +-----+                   +-----+       +-----+
67  *
68  * d/c = don't care
69  *
70  *   case [0]: layerless fault
71  *	no amap or uobj is present.   this is an error.
72  *
73  *   case [1]: upper layer fault [anon active]
74  *     1A: [read] or [write with anon->an_ref == 1]
75  *		I/O takes place in upper level anon and uobj is not touched.
76  *     1B: [write with anon->an_ref > 1]
77  *		new anon is alloc'd and data is copied off ["COW"]
78  *
79  *   case [2]: lower layer fault [uobj]
80  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
81  *		I/O takes place directly in object.
82  *     2B: [write to copy_on_write] or [read on NULL uobj]
83  *		data is "promoted" from uobj to a new anon.
84  *		if uobj is null, then we zero fill.
85  *
86  * we follow the standard UVM locking protocol ordering:
87  *
88  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
89  * we hold a PG_BUSY page if we unlock for I/O
90  *
91  *
92  * the code is structured as follows:
93  *
94  *     - init the "IN" params in the ufi structure
95  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
96  *     - do lookups [locks maps], check protection, handle needs_copy
97  *     - check for case 0 fault (error)
98  *     - establish "range" of fault
99  *     - if we have an amap lock it and extract the anons
100  *     - if sequential advice deactivate pages behind us
101  *     - at the same time check pmap for unmapped areas and anon for pages
102  *	 that we could map in (and do map it if found)
103  *     - check object for resident pages that we could map in
104  *     - if (case 2) goto Case2
105  *     - >>> handle case 1
106  *           - ensure source anon is resident in RAM
107  *           - if case 1B alloc new anon and copy from source
108  *           - map the correct page in
109  *   Case2:
110  *     - >>> handle case 2
111  *           - ensure source page is resident (if uobj)
112  *           - if case 2B alloc new anon and copy from source (could be zero
113  *		fill if uobj == NULL)
114  *           - map the correct page in
115  *     - done!
116  *
117  * note on paging:
118  *   if we have to do I/O we place a PG_BUSY page in the correct object,
119  * unlock everything, and do the I/O.   when I/O is done we must reverify
120  * the state of the world before assuming that our data structures are
121  * valid.   [because mappings could change while the map is unlocked]
122  *
123  *  alternative 1: unbusy the page in question and restart the page fault
124  *    from the top (ReFault).   this is easy but does not take advantage
125  *    of the information that we already have from our previous lookup,
126  *    although it is possible that the "hints" in the vm_map will help here.
127  *
128  * alternative 2: the system already keeps track of a "version" number of
129  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
130  *    mapping) you bump the version number up by one...]   so, we can save
131  *    the version number of the map before we release the lock and start I/O.
132  *    then when I/O is done we can relock and check the version numbers
133  *    to see if anything changed.    this might save us some over 1 because
134  *    we don't have to unbusy the page and may be less compares(?).
135  *
136  * alternative 3: put in backpointers or a way to "hold" part of a map
137  *    in place while I/O is in progress.   this could be complex to
138  *    implement (especially with structures like amap that can be referenced
139  *    by multiple map entries, and figuring out what should wait could be
140  *    complex as well...).
141  *
142  * we use alternative 2.  given that we are multi-threaded now we may want
143  * to reconsider the choice.
144  */
145 
146 /*
147  * local data structures
148  */
149 
150 struct uvm_advice {
151 	int advice;
152 	int nback;
153 	int nforw;
154 };
155 
156 /*
157  * page range array:
158  * note: index in array must match "advice" value
159  * XXX: borrowed numbers from freebsd.   do they work well for us?
160  */
161 
162 static const struct uvm_advice uvmadvice[] = {
163 	{ UVM_ADV_NORMAL, 3, 4 },
164 	{ UVM_ADV_RANDOM, 0, 0 },
165 	{ UVM_ADV_SEQUENTIAL, 8, 7},
166 };
167 
168 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
169 
170 /*
171  * private prototypes
172  */
173 
174 /*
175  * inline functions
176  */
177 
178 /*
179  * uvmfault_anonflush: try and deactivate pages in specified anons
180  *
181  * => does not have to deactivate page if it is busy
182  */
183 
184 static inline void
185 uvmfault_anonflush(struct vm_anon **anons, int n)
186 {
187 	int lcv;
188 	struct vm_page *pg;
189 
190 	for (lcv = 0; lcv < n; lcv++) {
191 		if (anons[lcv] == NULL)
192 			continue;
193 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
194 		pg = anons[lcv]->an_page;
195 		if (pg && (pg->flags & PG_BUSY) == 0) {
196 			uvm_pagelock(pg);
197 			uvm_pagedeactivate(pg);
198 			uvm_pageunlock(pg);
199 		}
200 	}
201 }
202 
203 /*
204  * normal functions
205  */
206 
207 /*
208  * uvmfault_amapcopy: clear "needs_copy" in a map.
209  *
210  * => called with VM data structures unlocked (usually, see below)
211  * => we get a write lock on the maps and clear needs_copy for a VA
212  * => if we are out of RAM we sleep (waiting for more)
213  */
214 
215 static void
216 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
217 {
218 	for (;;) {
219 
220 		/*
221 		 * no mapping?  give up.
222 		 */
223 
224 		if (uvmfault_lookup(ufi, true) == false)
225 			return;
226 
227 		/*
228 		 * copy if needed.
229 		 */
230 
231 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
232 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
233 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
234 
235 		/*
236 		 * didn't work?  must be out of RAM.   unlock and sleep.
237 		 */
238 
239 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
240 			uvmfault_unlockmaps(ufi, true);
241 			uvm_wait("fltamapcopy");
242 			continue;
243 		}
244 
245 		/*
246 		 * got it!   unlock and return.
247 		 */
248 
249 		uvmfault_unlockmaps(ufi, true);
250 		return;
251 	}
252 	/*NOTREACHED*/
253 }
254 
255 /*
256  * uvmfault_anonget: get data in an anon into a non-busy, non-released
257  * page in that anon.
258  *
259  * => Map, amap and thus anon should be locked by caller.
260  * => If we fail, we unlock everything and error is returned.
261  * => If we are successful, return with everything still locked.
262  * => We do not move the page on the queues [gets moved later].  If we
263  *    allocate a new page [we_own], it gets put on the queues.  Either way,
264  *    the result is that the page is on the queues at return time
265  * => For pages which are on loan from a uvm_object (and thus are not owned
266  *    by the anon): if successful, return with the owning object locked.
267  *    The caller must unlock this object when it unlocks everything else.
268  */
269 
270 int
271 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
272     struct vm_anon *anon)
273 {
274 	struct vm_page *pg;
275 	krw_t lock_type;
276 	int error;
277 
278 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
279 	KASSERT(rw_lock_held(anon->an_lock));
280 	KASSERT(anon->an_lock == amap->am_lock);
281 
282 	/* Increment the counters.*/
283 	cpu_count(CPU_COUNT_FLTANGET, 1);
284 	if (anon->an_page) {
285 		curlwp->l_ru.ru_minflt++;
286 	} else {
287 		curlwp->l_ru.ru_majflt++;
288 	}
289 	error = 0;
290 
291 	/*
292 	 * Loop until we get the anon data, or fail.
293 	 */
294 
295 	for (;;) {
296 		bool we_own, locked;
297 		/*
298 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
299 		 */
300 		we_own = false;
301 		pg = anon->an_page;
302 
303 		/*
304 		 * If there is a resident page and it is loaned, then anon
305 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
306 		 * identify and lock the real owner of the page.
307 		 */
308 
309 		if (pg && pg->loan_count)
310 			pg = uvm_anon_lockloanpg(anon);
311 
312 		/*
313 		 * Is page resident?  Make sure it is not busy/released.
314 		 */
315 
316 		lock_type = rw_lock_op(anon->an_lock);
317 		if (pg) {
318 
319 			/*
320 			 * at this point, if the page has a uobject [meaning
321 			 * we have it on loan], then that uobject is locked
322 			 * by us!   if the page is busy, we drop all the
323 			 * locks (including uobject) and try again.
324 			 */
325 
326 			if ((pg->flags & PG_BUSY) == 0) {
327 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
328 				return 0;
329 			}
330 			cpu_count(CPU_COUNT_FLTPGWAIT, 1);
331 
332 			/*
333 			 * The last unlock must be an atomic unlock and wait
334 			 * on the owner of page.
335 			 */
336 
337 			if (pg->uobject) {
338 				/* Owner of page is UVM object. */
339 				uvmfault_unlockall(ufi, amap, NULL);
340 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
341 				    0,0,0);
342 				uvm_pagewait(pg, pg->uobject->vmobjlock, "anonget1");
343 			} else {
344 				/* Owner of page is anon. */
345 				uvmfault_unlockall(ufi, NULL, NULL);
346 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
347 				    0,0,0);
348 				uvm_pagewait(pg, anon->an_lock, "anonget2");
349 			}
350 		} else {
351 #if defined(VMSWAP)
352 			/*
353 			 * No page, therefore allocate one.  A write lock is
354 			 * required for this.  If the caller didn't supply
355 			 * one, fail now and have them retry.
356 			 */
357 
358 			if (lock_type == RW_READER) {
359 				return ENOLCK;
360 			}
361 			pg = uvm_pagealloc(NULL,
362 			    ufi != NULL ? ufi->orig_rvaddr : 0,
363 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
364 			if (pg == NULL) {
365 				/* Out of memory.  Wait a little. */
366 				uvmfault_unlockall(ufi, amap, NULL);
367 				cpu_count(CPU_COUNT_FLTNORAM, 1);
368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
369 				    0,0,0);
370 				if (!uvm_reclaimable()) {
371 					return ENOMEM;
372 				}
373 				uvm_wait("flt_noram1");
374 			} else {
375 				/* PG_BUSY bit is set. */
376 				we_own = true;
377 				uvmfault_unlockall(ufi, amap, NULL);
378 
379 				/*
380 				 * Pass a PG_BUSY+PG_FAKE clean page into
381 				 * the uvm_swap_get() function with all data
382 				 * structures unlocked.  Note that it is OK
383 				 * to read an_swslot here, because we hold
384 				 * PG_BUSY on the page.
385 				 */
386 				cpu_count(CPU_COUNT_PAGEINS, 1);
387 				error = uvm_swap_get(pg, anon->an_swslot,
388 				    PGO_SYNCIO);
389 
390 				/*
391 				 * We clean up after the I/O below in the
392 				 * 'we_own' case.
393 				 */
394 			}
395 #else
396 			panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 		}
399 
400 		/*
401 		 * Re-lock the map and anon.
402 		 */
403 
404 		locked = uvmfault_relock(ufi);
405 		if (locked || we_own) {
406 			rw_enter(anon->an_lock, lock_type);
407 		}
408 
409 		/*
410 		 * If we own the page (i.e. we set PG_BUSY), then we need
411 		 * to clean up after the I/O.  There are three cases to
412 		 * consider:
413 		 *
414 		 * 1) Page was released during I/O: free anon and ReFault.
415 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
416 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
417 		 *    case (i.e. drop anon lock if not locked).
418 		 */
419 
420 		if (we_own) {
421 			KASSERT(lock_type == RW_WRITER);
422 #if defined(VMSWAP)
423 			if (error) {
424 
425 				/*
426 				 * Remove the swap slot from the anon and
427 				 * mark the anon as having no real slot.
428 				 * Do not free the swap slot, thus preventing
429 				 * it from being used again.
430 				 */
431 
432 				if (anon->an_swslot > 0) {
433 					uvm_swap_markbad(anon->an_swslot, 1);
434 				}
435 				anon->an_swslot = SWSLOT_BAD;
436 
437 				if ((pg->flags & PG_RELEASED) != 0) {
438 					goto released;
439 				}
440 
441 				/*
442 				 * Note: page was never !PG_BUSY, so it
443 				 * cannot be mapped and thus no need to
444 				 * pmap_page_protect() it.
445 				 */
446 
447 				uvm_pagefree(pg);
448 
449 				if (locked) {
450 					uvmfault_unlockall(ufi, NULL, NULL);
451 				}
452 				rw_exit(anon->an_lock);
453 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
454 				return error;
455 			}
456 
457 			if ((pg->flags & PG_RELEASED) != 0) {
458 released:
459 				KASSERT(anon->an_ref == 0);
460 
461 				/*
462 				 * Released while we had unlocked amap.
463 				 */
464 
465 				if (locked) {
466 					uvmfault_unlockall(ufi, NULL, NULL);
467 				}
468 				uvm_anon_release(anon);
469 
470 				if (error) {
471 					UVMHIST_LOG(maphist,
472 					    "<- ERROR/RELEASED", 0,0,0,0);
473 					return error;
474 				}
475 
476 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
477 				return ERESTART;
478 			}
479 
480 			/*
481 			 * We have successfully read the page, activate it.
482 			 */
483 
484 			uvm_pagelock(pg);
485 			uvm_pageactivate(pg);
486 			uvm_pagewakeup(pg);
487 			uvm_pageunlock(pg);
488 			pg->flags &= ~(PG_BUSY|PG_FAKE);
489 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
490 			UVM_PAGE_OWN(pg, NULL);
491 #else
492 			panic("%s: we_own", __func__);
493 #endif /* defined(VMSWAP) */
494 		}
495 
496 		/*
497 		 * We were not able to re-lock the map - restart the fault.
498 		 */
499 
500 		if (!locked) {
501 			if (we_own) {
502 				rw_exit(anon->an_lock);
503 			}
504 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
505 			return ERESTART;
506 		}
507 
508 		/*
509 		 * Verify that no one has touched the amap and moved
510 		 * the anon on us.
511 		 */
512 
513 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
514 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
515 
516 			uvmfault_unlockall(ufi, amap, NULL);
517 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
518 			return ERESTART;
519 		}
520 
521 		/*
522 		 * Retry..
523 		 */
524 
525 		cpu_count(CPU_COUNT_FLTANRETRY, 1);
526 		continue;
527 	}
528 	/*NOTREACHED*/
529 }
530 
531 /*
532  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
533  *
534  *	1. allocate an anon and a page.
535  *	2. fill its contents.
536  *	3. put it into amap.
537  *
538  * => if we fail (result != 0) we unlock everything.
539  * => on success, return a new locked anon via 'nanon'.
540  *    (*nanon)->an_page will be a resident, locked, dirty page.
541  * => it's caller's responsibility to put the promoted nanon->an_page to the
542  *    page queue.
543  */
544 
545 static int
546 uvmfault_promote(struct uvm_faultinfo *ufi,
547     struct vm_anon *oanon,
548     struct vm_page *uobjpage,
549     struct vm_anon **nanon, /* OUT: allocated anon */
550     struct vm_anon **spare)
551 {
552 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
553 	struct uvm_object *uobj;
554 	struct vm_anon *anon;
555 	struct vm_page *pg;
556 	struct vm_page *opg;
557 	int error;
558 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
559 
560 	if (oanon) {
561 		/* anon COW */
562 		opg = oanon->an_page;
563 		KASSERT(opg != NULL);
564 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
565 	} else if (uobjpage != PGO_DONTCARE) {
566 		/* object-backed COW */
567 		opg = uobjpage;
568 		KASSERT(rw_lock_held(opg->uobject->vmobjlock));
569 	} else {
570 		/* ZFOD */
571 		opg = NULL;
572 	}
573 	if (opg != NULL) {
574 		uobj = opg->uobject;
575 	} else {
576 		uobj = NULL;
577 	}
578 
579 	KASSERT(amap != NULL);
580 	KASSERT(uobjpage != NULL);
581 	KASSERT(rw_write_held(amap->am_lock));
582 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
583 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
584 
585 	if (*spare != NULL) {
586 		anon = *spare;
587 		*spare = NULL;
588 	} else {
589 		anon = uvm_analloc();
590 	}
591 	if (anon) {
592 
593 		/*
594 		 * The new anon is locked.
595 		 *
596 		 * if opg == NULL, we want a zero'd, dirty page,
597 		 * so have uvm_pagealloc() do that for us.
598 		 */
599 
600 		KASSERT(anon->an_lock == NULL);
601 		anon->an_lock = amap->am_lock;
602 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
603 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
604 		if (pg == NULL) {
605 			anon->an_lock = NULL;
606 		}
607 	} else {
608 		pg = NULL;
609 	}
610 
611 	/*
612 	 * out of memory resources?
613 	 */
614 
615 	if (pg == NULL) {
616 		/* save anon for the next try. */
617 		if (anon != NULL) {
618 			*spare = anon;
619 		}
620 
621 		/* unlock and fail ... */
622 		uvmfault_unlockall(ufi, amap, uobj);
623 		if (!uvm_reclaimable()) {
624 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
625 			cpu_count(CPU_COUNT_FLTNOANON, 1);
626 			error = ENOMEM;
627 			goto done;
628 		}
629 
630 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
631 		cpu_count(CPU_COUNT_FLTNORAM, 1);
632 		uvm_wait("flt_noram5");
633 		error = ERESTART;
634 		goto done;
635 	}
636 
637 	/*
638 	 * copy the page [pg now dirty]
639 	 *
640 	 * Remove the pmap entry now for the old page at this address
641 	 * so that no thread can modify the new page while any thread
642 	 * might still see the old page.
643 	 */
644 	if (opg) {
645 		pmap_remove(vm_map_pmap(ufi->orig_map), ufi->orig_rvaddr,
646 			     ufi->orig_rvaddr + PAGE_SIZE);
647 		pmap_update(vm_map_pmap(ufi->orig_map));
648 		uvm_pagecopy(opg, pg);
649 	}
650 	KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_DIRTY);
651 
652 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
653 	    oanon != NULL);
654 
655 	/*
656 	 * from this point on am_lock won't be dropped until the page is
657 	 * entered, so it's safe to unbusy the page up front.
658 	 *
659 	 * uvm_fault_{upper,lower}_done will activate or enqueue the page.
660 	 */
661 
662 	pg = anon->an_page;
663 	pg->flags &= ~(PG_BUSY|PG_FAKE);
664 	UVM_PAGE_OWN(pg, NULL);
665 
666 	*nanon = anon;
667 	error = 0;
668 done:
669 	return error;
670 }
671 
672 /*
673  * Update statistics after fault resolution.
674  * - maxrss
675  */
676 void
677 uvmfault_update_stats(struct uvm_faultinfo *ufi)
678 {
679 	struct vm_map		*map;
680 	struct vmspace 		*vm;
681 	struct proc		*p;
682 	vsize_t			 res;
683 
684 	map = ufi->orig_map;
685 
686 	p = curproc;
687 	KASSERT(p != NULL);
688 	vm = p->p_vmspace;
689 
690 	if (&vm->vm_map != map)
691 		return;
692 
693 	res = pmap_resident_count(map->pmap);
694 	if (vm->vm_rssmax < res)
695 		vm->vm_rssmax = res;
696 }
697 
698 /*
699  *   F A U L T   -   m a i n   e n t r y   p o i n t
700  */
701 
702 /*
703  * uvm_fault: page fault handler
704  *
705  * => called from MD code to resolve a page fault
706  * => VM data structures usually should be unlocked.   however, it is
707  *	possible to call here with the main map locked if the caller
708  *	gets a write lock, sets it recursive, and then calls us (c.f.
709  *	uvm_map_pageable).   this should be avoided because it keeps
710  *	the map locked off during I/O.
711  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
712  */
713 
714 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
715 			 ~VM_PROT_WRITE : VM_PROT_ALL)
716 
717 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
718 #define UVM_FAULT_WIRE		(1 << 0)
719 #define UVM_FAULT_MAXPROT	(1 << 1)
720 
721 struct uvm_faultctx {
722 
723 	/*
724 	 * the following members are set up by uvm_fault_check() and
725 	 * read-only after that.
726 	 *
727 	 * note that narrow is used by uvm_fault_check() to change
728 	 * the behaviour after ERESTART.
729 	 *
730 	 * most of them might change after RESTART if the underlying
731 	 * map entry has been changed behind us.  an exception is
732 	 * wire_paging, which does never change.
733 	 */
734 	vm_prot_t access_type;
735 	vaddr_t startva;
736 	int npages;
737 	int centeridx;
738 	bool narrow;		/* work on a single requested page only */
739 	bool wire_mapping;	/* request a PMAP_WIRED mapping
740 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
741 	bool wire_paging;	/* request uvm_pagewire
742 				   (true for UVM_FAULT_WIRE) */
743 	bool cow_now;		/* VM_PROT_WRITE is actually requested
744 				   (ie. should break COW and page loaning) */
745 
746 	/*
747 	 * enter_prot is set up by uvm_fault_check() and clamped
748 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
749 	 * of !cow_now.
750 	 */
751 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
752 
753 	/*
754 	 * the following member is for uvmfault_promote() and ERESTART.
755 	 */
756 	struct vm_anon *anon_spare;
757 
758 	/*
759 	 * the following is actually a uvm_fault_lower() internal.
760 	 * it's here merely for debugging.
761 	 * (or due to the mechanical separation of the function?)
762 	 */
763 	bool promote;
764 
765 	/*
766 	 * type of lock to acquire on objects in both layers.
767 	 */
768 	krw_t lower_lock_type;
769 	krw_t upper_lock_type;
770 };
771 
772 static inline int	uvm_fault_check(
773 			    struct uvm_faultinfo *, struct uvm_faultctx *,
774 			    struct vm_anon ***, bool);
775 
776 static int		uvm_fault_upper(
777 			    struct uvm_faultinfo *, struct uvm_faultctx *,
778 			    struct vm_anon **);
779 static inline int	uvm_fault_upper_lookup(
780 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
781 			    struct vm_anon **, struct vm_page **);
782 static inline void	uvm_fault_upper_neighbor(
783 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
784 			    vaddr_t, struct vm_page *, bool);
785 static inline int	uvm_fault_upper_loan(
786 			    struct uvm_faultinfo *, struct uvm_faultctx *,
787 			    struct vm_anon *, struct uvm_object **);
788 static inline int	uvm_fault_upper_promote(
789 			    struct uvm_faultinfo *, struct uvm_faultctx *,
790 			    struct uvm_object *, struct vm_anon *);
791 static inline int	uvm_fault_upper_direct(
792 			    struct uvm_faultinfo *, struct uvm_faultctx *,
793 			    struct uvm_object *, struct vm_anon *);
794 static int		uvm_fault_upper_enter(
795 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
796 			    struct uvm_object *, struct vm_anon *,
797 			    struct vm_page *, struct vm_anon *);
798 static inline void	uvm_fault_upper_done(
799 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
800 			    struct vm_anon *, struct vm_page *);
801 
802 static int		uvm_fault_lower(
803 			    struct uvm_faultinfo *, struct uvm_faultctx *,
804 			    struct vm_page **);
805 static inline void	uvm_fault_lower_lookup(
806 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
807 			    struct vm_page **);
808 static inline void	uvm_fault_lower_neighbor(
809 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
810 			    vaddr_t, struct vm_page *);
811 static inline int	uvm_fault_lower_io(
812 			    struct uvm_faultinfo *, struct uvm_faultctx *,
813 			    struct uvm_object **, struct vm_page **);
814 static inline int	uvm_fault_lower_direct(
815 			    struct uvm_faultinfo *, struct uvm_faultctx *,
816 			    struct uvm_object *, struct vm_page *);
817 static inline int	uvm_fault_lower_direct_loan(
818 			    struct uvm_faultinfo *, struct uvm_faultctx *,
819 			    struct uvm_object *, struct vm_page **,
820 			    struct vm_page **);
821 static inline int	uvm_fault_lower_promote(
822 			    struct uvm_faultinfo *, struct uvm_faultctx *,
823 			    struct uvm_object *, struct vm_page *);
824 static int		uvm_fault_lower_enter(
825 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
826 			    struct uvm_object *,
827 			    struct vm_anon *, struct vm_page *);
828 static inline void	uvm_fault_lower_done(
829 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
830 			    struct uvm_object *, struct vm_page *);
831 
832 int
833 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
834     vm_prot_t access_type, int fault_flag)
835 {
836 	struct uvm_faultinfo ufi;
837 	struct uvm_faultctx flt = {
838 		.access_type = access_type,
839 
840 		/* don't look for neighborhood * pages on "wire" fault */
841 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
842 
843 		/* "wire" fault causes wiring of both mapping and paging */
844 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
845 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
846 
847 		/*
848 		 * default lock type to acquire on upper & lower layer
849 		 * objects: reader.  this can be upgraded at any point
850 		 * during the fault from read -> write and uvm_faultctx
851 		 * changed to match, but is never downgraded write -> read.
852 		 */
853 #ifdef __HAVE_UNLOCKED_PMAP /* XXX temporary */
854 		.upper_lock_type = RW_WRITER,
855 		.lower_lock_type = RW_WRITER,
856 #else
857 		.upper_lock_type = RW_READER,
858 		.lower_lock_type = RW_READER,
859 #endif
860 	};
861 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
862 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
863 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
864 	int error;
865 
866 	UVMHIST_FUNC(__func__);
867 	UVMHIST_CALLARGS(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
868 	      (uintptr_t)orig_map, vaddr, access_type, fault_flag);
869 
870 	/* Don't count anything until user interaction is possible */
871 	kpreempt_disable();
872 	if (__predict_true(start_init_exec)) {
873 		struct cpu_info *ci = curcpu();
874 		CPU_COUNT(CPU_COUNT_NFAULT, 1);
875 		/* Don't flood RNG subsystem with samples. */
876 		if (++(ci->ci_faultrng) == 503) {
877 			ci->ci_faultrng = 0;
878 			rnd_add_uint32(&uvm_fault_rndsource,
879 			    sizeof(vaddr_t) == sizeof(uint32_t) ?
880 			    (uint32_t)vaddr : sizeof(vaddr_t) ==
881 			    sizeof(uint64_t) ?
882 			    (uint32_t)vaddr :
883 			    (uint32_t)ci->ci_counts[CPU_COUNT_NFAULT]);
884 		}
885 	}
886 	kpreempt_enable();
887 
888 	/*
889 	 * init the IN parameters in the ufi
890 	 */
891 
892 	ufi.orig_map = orig_map;
893 	ufi.orig_rvaddr = trunc_page(vaddr);
894 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
895 
896 	error = ERESTART;
897 	while (error == ERESTART) { /* ReFault: */
898 		anons = anons_store;
899 		pages = pages_store;
900 
901 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
902 		if (error != 0)
903 			continue;
904 
905 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
906 		if (error != 0)
907 			continue;
908 
909 		if (pages[flt.centeridx] == PGO_DONTCARE)
910 			error = uvm_fault_upper(&ufi, &flt, anons);
911 		else {
912 			struct uvm_object * const uobj =
913 			    ufi.entry->object.uvm_obj;
914 
915 			if (uobj && uobj->pgops->pgo_fault != NULL) {
916 				/*
917 				 * invoke "special" fault routine.
918 				 */
919 				rw_enter(uobj->vmobjlock, RW_WRITER);
920 				/* locked: maps(read), amap(if there), uobj */
921 				error = uobj->pgops->pgo_fault(&ufi,
922 				    flt.startva, pages, flt.npages,
923 				    flt.centeridx, flt.access_type,
924 				    PGO_LOCKED|PGO_SYNCIO);
925 
926 				/*
927 				 * locked: nothing, pgo_fault has unlocked
928 				 * everything
929 				 */
930 
931 				/*
932 				 * object fault routine responsible for
933 				 * pmap_update().
934 				 */
935 
936 				/*
937 				 * Wake up the pagedaemon if the fault method
938 				 * failed for lack of memory but some can be
939 				 * reclaimed.
940 				 */
941 				if (error == ENOMEM && uvm_reclaimable()) {
942 					uvm_wait("pgo_fault");
943 					error = ERESTART;
944 				}
945 			} else {
946 				error = uvm_fault_lower(&ufi, &flt, pages);
947 			}
948 		}
949 	}
950 
951 	if (flt.anon_spare != NULL) {
952 		flt.anon_spare->an_ref--;
953 		KASSERT(flt.anon_spare->an_ref == 0);
954 		KASSERT(flt.anon_spare->an_lock == NULL);
955 		uvm_anfree(flt.anon_spare);
956 	}
957 	return error;
958 }
959 
960 /*
961  * uvm_fault_check: check prot, handle needs-copy, etc.
962  *
963  *	1. lookup entry.
964  *	2. check protection.
965  *	3. adjust fault condition (mainly for simulated fault).
966  *	4. handle needs-copy (lazy amap copy).
967  *	5. establish range of interest for neighbor fault (aka pre-fault).
968  *	6. look up anons (if amap exists).
969  *	7. flush pages (if MADV_SEQUENTIAL)
970  *
971  * => called with nothing locked.
972  * => if we fail (result != 0) we unlock everything.
973  * => initialize/adjust many members of flt.
974  */
975 
976 static int
977 uvm_fault_check(
978 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
979 	struct vm_anon ***ranons, bool maxprot)
980 {
981 	struct vm_amap *amap;
982 	struct uvm_object *uobj;
983 	vm_prot_t check_prot;
984 	int nback, nforw;
985 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
986 
987 	/*
988 	 * lookup and lock the maps
989 	 */
990 
991 	if (uvmfault_lookup(ufi, false) == false) {
992 		UVMHIST_LOG(maphist, "<- no mapping @ %#jx", ufi->orig_rvaddr,
993 		    0,0,0);
994 		return EFAULT;
995 	}
996 	/* locked: maps(read) */
997 
998 #ifdef DIAGNOSTIC
999 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
1000 		printf("Page fault on non-pageable map:\n");
1001 		printf("ufi->map = %p\n", ufi->map);
1002 		printf("ufi->orig_map = %p\n", ufi->orig_map);
1003 		printf("ufi->orig_rvaddr = %#lx\n", (u_long) ufi->orig_rvaddr);
1004 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
1005 	}
1006 #endif
1007 
1008 	/*
1009 	 * check protection
1010 	 */
1011 
1012 	check_prot = maxprot ?
1013 	    ufi->entry->max_protection : ufi->entry->protection;
1014 	if ((check_prot & flt->access_type) != flt->access_type) {
1015 		UVMHIST_LOG(maphist,
1016 		    "<- protection failure (prot=%#jx, access=%#jx)",
1017 		    ufi->entry->protection, flt->access_type, 0, 0);
1018 		uvmfault_unlockmaps(ufi, false);
1019 		return EFAULT;
1020 	}
1021 
1022 	/*
1023 	 * "enter_prot" is the protection we want to enter the page in at.
1024 	 * for certain pages (e.g. copy-on-write pages) this protection can
1025 	 * be more strict than ufi->entry->protection.  "wired" means either
1026 	 * the entry is wired or we are fault-wiring the pg.
1027 	 */
1028 
1029 	flt->enter_prot = ufi->entry->protection;
1030 	if (VM_MAPENT_ISWIRED(ufi->entry)) {
1031 		flt->wire_mapping = true;
1032 		flt->wire_paging = true;
1033 		flt->narrow = true;
1034 	}
1035 
1036 	if (flt->wire_mapping) {
1037 		flt->access_type = flt->enter_prot; /* full access for wired */
1038 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
1039 	} else {
1040 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
1041 	}
1042 
1043 	if (flt->wire_paging) {
1044 		/* wiring pages requires a write lock. */
1045 		flt->upper_lock_type = RW_WRITER;
1046 		flt->lower_lock_type = RW_WRITER;
1047 	}
1048 
1049 	flt->promote = false;
1050 
1051 	/*
1052 	 * handle "needs_copy" case.   if we need to copy the amap we will
1053 	 * have to drop our readlock and relock it with a write lock.  (we
1054 	 * need a write lock to change anything in a map entry [e.g.
1055 	 * needs_copy]).
1056 	 */
1057 
1058 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
1059 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
1060 			KASSERT(!maxprot);
1061 			/* need to clear */
1062 			UVMHIST_LOG(maphist,
1063 			    "  need to clear needs_copy and refault",0,0,0,0);
1064 			uvmfault_unlockmaps(ufi, false);
1065 			uvmfault_amapcopy(ufi);
1066 			cpu_count(CPU_COUNT_FLTAMCOPY, 1);
1067 			return ERESTART;
1068 
1069 		} else {
1070 
1071 			/*
1072 			 * ensure that we pmap_enter page R/O since
1073 			 * needs_copy is still true
1074 			 */
1075 
1076 			flt->enter_prot &= ~VM_PROT_WRITE;
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * identify the players
1082 	 */
1083 
1084 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
1085 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
1086 
1087 	/*
1088 	 * check for a case 0 fault.  if nothing backing the entry then
1089 	 * error now.
1090 	 */
1091 
1092 	if (amap == NULL && uobj == NULL) {
1093 		uvmfault_unlockmaps(ufi, false);
1094 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1095 		return EFAULT;
1096 	}
1097 
1098 	/*
1099 	 * for a case 2B fault waste no time on adjacent pages because
1100 	 * they are likely already entered.
1101 	 */
1102 
1103 	if (uobj != NULL && amap != NULL &&
1104 	    (flt->access_type & VM_PROT_WRITE) != 0) {
1105 		/* wide fault (!narrow) */
1106 		flt->narrow = true;
1107 	}
1108 
1109 	/*
1110 	 * establish range of interest based on advice from mapper
1111 	 * and then clip to fit map entry.   note that we only want
1112 	 * to do this the first time through the fault.   if we
1113 	 * ReFault we will disable this by setting "narrow" to true.
1114 	 */
1115 
1116 	if (flt->narrow == false) {
1117 
1118 		/* wide fault (!narrow) */
1119 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
1120 			 ufi->entry->advice);
1121 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
1122 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1123 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1124 		/*
1125 		 * note: "-1" because we don't want to count the
1126 		 * faulting page as forw
1127 		 */
1128 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1129 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
1130 			     PAGE_SHIFT) - 1);
1131 		flt->npages = nback + nforw + 1;
1132 		flt->centeridx = nback;
1133 
1134 		flt->narrow = true;	/* ensure only once per-fault */
1135 
1136 	} else {
1137 
1138 		/* narrow fault! */
1139 		nback = nforw = 0;
1140 		flt->startva = ufi->orig_rvaddr;
1141 		flt->npages = 1;
1142 		flt->centeridx = 0;
1143 
1144 	}
1145 	/* offset from entry's start to pgs' start */
1146 	const voff_t eoff = flt->startva - ufi->entry->start;
1147 
1148 	/* locked: maps(read) */
1149 	UVMHIST_LOG(maphist, "  narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1150 		    flt->narrow, nback, nforw, flt->startva);
1151 	UVMHIST_LOG(maphist, "  entry=%#jx, amap=%#jx, obj=%#jx",
1152 	    (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1153 
1154 	/*
1155 	 * guess at the most suitable lock types to acquire.
1156 	 * if we've got an amap then lock it and extract current anons.
1157 	 */
1158 
1159 	if (amap) {
1160 		if ((amap_flags(amap) & AMAP_SHARED) == 0) {
1161 			/*
1162 			 * the amap isn't shared.  get a writer lock to
1163 			 * avoid the cost of upgrading the lock later if
1164 			 * needed.
1165 			 *
1166 			 * XXX nice for PostgreSQL, but consider threads.
1167 			 */
1168 			flt->upper_lock_type = RW_WRITER;
1169 		} else if ((flt->access_type & VM_PROT_WRITE) != 0) {
1170 			/*
1171 			 * assume we're about to COW.
1172 			 */
1173 			flt->upper_lock_type = RW_WRITER;
1174 		}
1175 		amap_lock(amap, flt->upper_lock_type);
1176 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1177 	} else {
1178 		if ((flt->access_type & VM_PROT_WRITE) != 0) {
1179 			/*
1180 			 * we are about to dirty the object and that
1181 			 * requires a write lock.
1182 			 */
1183 			flt->lower_lock_type = RW_WRITER;
1184 		}
1185 		*ranons = NULL;	/* to be safe */
1186 	}
1187 
1188 	/* locked: maps(read), amap(if there) */
1189 	KASSERT(amap == NULL ||
1190 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1191 
1192 	/*
1193 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1194 	 * now and then forget about them (for the rest of the fault).
1195 	 */
1196 
1197 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1198 
1199 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
1200 		    0,0,0,0);
1201 		/* flush back-page anons? */
1202 		if (amap)
1203 			uvmfault_anonflush(*ranons, nback);
1204 
1205 		/*
1206 		 * flush object?  change lock type to RW_WRITER, to avoid
1207 		 * excessive competition between read/write locks if many
1208 		 * threads doing "sequential access".
1209 		 */
1210 		if (uobj) {
1211 			voff_t uoff;
1212 
1213 			flt->lower_lock_type = RW_WRITER;
1214 			uoff = ufi->entry->offset + eoff;
1215 			rw_enter(uobj->vmobjlock, RW_WRITER);
1216 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1217 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1218 		}
1219 
1220 		/* now forget about the backpages */
1221 		if (amap)
1222 			*ranons += nback;
1223 		flt->startva += (nback << PAGE_SHIFT);
1224 		flt->npages -= nback;
1225 		flt->centeridx = 0;
1226 	}
1227 	/*
1228 	 * => startva is fixed
1229 	 * => npages is fixed
1230 	 */
1231 	KASSERT(flt->startva <= ufi->orig_rvaddr);
1232 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1233 	    flt->startva + (flt->npages << PAGE_SHIFT));
1234 	return 0;
1235 }
1236 
1237 /*
1238  * uvm_fault_upper_upgrade: upgrade upper lock, reader -> writer
1239  */
1240 
1241 static inline int
1242 uvm_fault_upper_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1243     struct vm_amap *amap, struct uvm_object *uobj)
1244 {
1245 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1246 
1247 	KASSERT(amap != NULL);
1248 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1249 
1250 	/*
1251 	 * fast path.
1252 	 */
1253 
1254 	if (__predict_true(flt->upper_lock_type == RW_WRITER)) {
1255 		return 0;
1256 	}
1257 
1258 	/*
1259 	 * otherwise try for the upgrade.  if we don't get it, unlock
1260 	 * everything, restart the fault and next time around get a writer
1261 	 * lock.
1262 	 */
1263 
1264 	flt->upper_lock_type = RW_WRITER;
1265 	if (__predict_false(!rw_tryupgrade(amap->am_lock))) {
1266 		uvmfault_unlockall(ufi, amap, uobj);
1267 		cpu_count(CPU_COUNT_FLTNOUP, 1);
1268 		UVMHIST_LOG(maphist, "  !upgrade upper", 0, 0,0,0);
1269 		return ERESTART;
1270 	}
1271 	cpu_count(CPU_COUNT_FLTUP, 1);
1272 	KASSERT(flt->upper_lock_type == rw_lock_op(amap->am_lock));
1273 	return 0;
1274 }
1275 
1276 /*
1277  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1278  *
1279  * iterate range of interest:
1280  *	1. check if h/w mapping exists.  if yes, we don't care
1281  *	2. check if anon exists.  if not, page is lower.
1282  *	3. if anon exists, enter h/w mapping for neighbors.
1283  *
1284  * => called with amap locked (if exists).
1285  */
1286 
1287 static int
1288 uvm_fault_upper_lookup(
1289 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1290 	struct vm_anon **anons, struct vm_page **pages)
1291 {
1292 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1293 	int lcv;
1294 	vaddr_t currva;
1295 	bool shadowed __unused;
1296 	bool entered;
1297 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1298 
1299 	/* locked: maps(read), amap(if there) */
1300 	KASSERT(amap == NULL ||
1301 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1302 
1303 	/*
1304 	 * map in the backpages and frontpages we found in the amap in hopes
1305 	 * of preventing future faults.    we also init the pages[] array as
1306 	 * we go.
1307 	 */
1308 
1309 	currva = flt->startva;
1310 	shadowed = false;
1311 	entered = false;
1312 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1313 		/*
1314 		 * unmapped or center page.   check if any anon at this level.
1315 		 */
1316 		if (amap == NULL || anons[lcv] == NULL) {
1317 			pages[lcv] = NULL;
1318 			continue;
1319 		}
1320 
1321 		/*
1322 		 * check for present page and map if possible.
1323 		 */
1324 
1325 		pages[lcv] = PGO_DONTCARE;
1326 		if (lcv == flt->centeridx) {	/* save center for later! */
1327 			shadowed = true;
1328 			continue;
1329 		}
1330 
1331 		struct vm_anon *anon = anons[lcv];
1332 		struct vm_page *pg = anon->an_page;
1333 
1334 		KASSERT(anon->an_lock == amap->am_lock);
1335 
1336 		/*
1337 		 * ignore loaned and busy pages.
1338 		 * don't play with VAs that are already mapped.
1339 		 */
1340 
1341 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0 &&
1342 		    !pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1343 			uvm_fault_upper_neighbor(ufi, flt, currva,
1344 			    pg, anon->an_ref > 1);
1345 			entered = true;
1346 		}
1347 	}
1348 	if (entered) {
1349 		pmap_update(ufi->orig_map->pmap);
1350 	}
1351 
1352 	/* locked: maps(read), amap(if there) */
1353 	KASSERT(amap == NULL ||
1354 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1355 	/* (shadowed == true) if there is an anon at the faulting address */
1356 	UVMHIST_LOG(maphist, "  shadowed=%jd, will_get=%jd", shadowed,
1357 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1358 
1359 	return 0;
1360 }
1361 
1362 /*
1363  * uvm_fault_upper_neighbor: enter single upper neighbor page.
1364  *
1365  * => called with amap and anon locked.
1366  */
1367 
1368 static void
1369 uvm_fault_upper_neighbor(
1370 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1371 	vaddr_t currva, struct vm_page *pg, bool readonly)
1372 {
1373 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1374 
1375 	/* locked: amap, anon */
1376 
1377 	KASSERT(pg->uobject == NULL);
1378 	KASSERT(pg->uanon != NULL);
1379 	KASSERT(rw_lock_op(pg->uanon->an_lock) == flt->upper_lock_type);
1380 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1381 
1382 	/*
1383 	 * there wasn't a direct fault on the page, so avoid the cost of
1384 	 * activating it.
1385 	 */
1386 
1387 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
1388 		uvm_pagelock(pg);
1389 		uvm_pageenqueue(pg);
1390 		uvm_pageunlock(pg);
1391 	}
1392 
1393 	UVMHIST_LOG(maphist,
1394 	    "  MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1395 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1396 	cpu_count(CPU_COUNT_FLTNAMAP, 1);
1397 
1398 	/*
1399 	 * Since this page isn't the page that's actually faulting,
1400 	 * ignore pmap_enter() failures; it's not critical that we
1401 	 * enter these right now.
1402 	 */
1403 
1404 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1405 	    VM_PAGE_TO_PHYS(pg),
1406 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1407 	    flt->enter_prot,
1408 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1409 }
1410 
1411 /*
1412  * uvm_fault_upper: handle upper fault.
1413  *
1414  *	1. acquire anon lock.
1415  *	2. get anon.  let uvmfault_anonget do the dirty work.
1416  *	3. handle loan.
1417  *	4. dispatch direct or promote handlers.
1418  */
1419 
1420 static int
1421 uvm_fault_upper(
1422 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1423 	struct vm_anon **anons)
1424 {
1425 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1426 	struct vm_anon * const anon = anons[flt->centeridx];
1427 	struct uvm_object *uobj;
1428 	int error;
1429 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1430 
1431 	/* locked: maps(read), amap, anon */
1432 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1433 	KASSERT(anon->an_lock == amap->am_lock);
1434 
1435 	/*
1436 	 * handle case 1: fault on an anon in our amap
1437 	 */
1438 
1439 	UVMHIST_LOG(maphist, "  case 1 fault: anon=%#jx",
1440 	    (uintptr_t)anon, 0, 0, 0);
1441 
1442 	/*
1443 	 * no matter if we have case 1A or case 1B we are going to need to
1444 	 * have the anon's memory resident.   ensure that now.
1445 	 */
1446 
1447 	/*
1448 	 * let uvmfault_anonget do the dirty work.
1449 	 * if it fails (!OK) it will unlock everything for us.
1450 	 * if it succeeds, locks are still valid and locked.
1451 	 * also, if it is OK, then the anon's page is on the queues.
1452 	 * if the page is on loan from a uvm_object, then anonget will
1453 	 * lock that object for us if it does not fail.
1454 	 */
1455  retry:
1456 	error = uvmfault_anonget(ufi, amap, anon);
1457 	switch (error) {
1458 	case 0:
1459 		break;
1460 
1461 	case ERESTART:
1462 		return ERESTART;
1463 
1464 	case EAGAIN:
1465 		kpause("fltagain1", false, hz/2, NULL);
1466 		return ERESTART;
1467 
1468 	case ENOLCK:
1469 		/* it needs a write lock: retry */
1470 		error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1471 		if (error != 0) {
1472 			return error;
1473 		}
1474 		KASSERT(rw_write_held(amap->am_lock));
1475 		goto retry;
1476 
1477 	default:
1478 		return error;
1479 	}
1480 
1481 	/*
1482 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1483 	 */
1484 
1485 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1486 
1487 	/* locked: maps(read), amap, anon, uobj(if one) */
1488 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1489 	KASSERT(anon->an_lock == amap->am_lock);
1490 	KASSERT(uobj == NULL ||
1491 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1492 
1493 	/*
1494 	 * special handling for loaned pages
1495 	 */
1496 
1497 	if (anon->an_page->loan_count) {
1498 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1499 		if (error != 0)
1500 			return error;
1501 	}
1502 
1503 	/*
1504 	 * if we are case 1B then we will need to allocate a new blank
1505 	 * anon to transfer the data into.   note that we have a lock
1506 	 * on anon, so no one can busy or release the page until we are done.
1507 	 * also note that the ref count can't drop to zero here because
1508 	 * it is > 1 and we are only dropping one ref.
1509 	 *
1510 	 * in the (hopefully very rare) case that we are out of RAM we
1511 	 * will unlock, wait for more RAM, and refault.
1512 	 *
1513 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1514 	 */
1515 
1516 	if (flt->cow_now && anon->an_ref > 1) {
1517 		flt->promote = true;
1518 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1519 	} else {
1520 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1521 	}
1522 	return error;
1523 }
1524 
1525 /*
1526  * uvm_fault_upper_loan: handle loaned upper page.
1527  *
1528  *	1. if not cow'ing now, simply adjust flt->enter_prot.
1529  *	2. if cow'ing now, and if ref count is 1, break loan.
1530  */
1531 
1532 static int
1533 uvm_fault_upper_loan(
1534 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1535 	struct vm_anon *anon, struct uvm_object **ruobj)
1536 {
1537 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1538 	int error = 0;
1539 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1540 
1541 	if (!flt->cow_now) {
1542 
1543 		/*
1544 		 * for read faults on loaned pages we just cap the
1545 		 * protection at read-only.
1546 		 */
1547 
1548 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1549 
1550 	} else {
1551 		/*
1552 		 * note that we can't allow writes into a loaned page!
1553 		 *
1554 		 * if we have a write fault on a loaned page in an
1555 		 * anon then we need to look at the anon's ref count.
1556 		 * if it is greater than one then we are going to do
1557 		 * a normal copy-on-write fault into a new anon (this
1558 		 * is not a problem).  however, if the reference count
1559 		 * is one (a case where we would normally allow a
1560 		 * write directly to the page) then we need to kill
1561 		 * the loan before we continue.
1562 		 */
1563 
1564 		/* >1 case is already ok */
1565 		if (anon->an_ref == 1) {
1566 			/* breaking loan requires a write lock. */
1567 			error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1568 			if (error != 0) {
1569 				return error;
1570 			}
1571 			KASSERT(rw_write_held(amap->am_lock));
1572 
1573 			error = uvm_loanbreak_anon(anon, *ruobj);
1574 			if (error != 0) {
1575 				uvmfault_unlockall(ufi, amap, *ruobj);
1576 				uvm_wait("flt_noram2");
1577 				return ERESTART;
1578 			}
1579 			/* if we were a loan receiver uobj is gone */
1580 			if (*ruobj)
1581 				*ruobj = NULL;
1582 		}
1583 	}
1584 	return error;
1585 }
1586 
1587 /*
1588  * uvm_fault_upper_promote: promote upper page.
1589  *
1590  *	1. call uvmfault_promote.
1591  *	2. enqueue page.
1592  *	3. deref.
1593  *	4. pass page to uvm_fault_upper_enter.
1594  */
1595 
1596 static int
1597 uvm_fault_upper_promote(
1598 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1599 	struct uvm_object *uobj, struct vm_anon *anon)
1600 {
1601 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1602 	struct vm_anon * const oanon = anon;
1603 	struct vm_page *pg;
1604 	int error;
1605 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1606 
1607 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1608 	cpu_count(CPU_COUNT_FLT_ACOW, 1);
1609 
1610 	/* promoting requires a write lock. */
1611 	error = uvm_fault_upper_upgrade(ufi, flt, amap, NULL);
1612 	if (error != 0) {
1613 		return error;
1614 	}
1615 	KASSERT(rw_write_held(amap->am_lock));
1616 
1617 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1618 	    &flt->anon_spare);
1619 	switch (error) {
1620 	case 0:
1621 		break;
1622 	case ERESTART:
1623 		return ERESTART;
1624 	default:
1625 		return error;
1626 	}
1627 	pg = anon->an_page;
1628 
1629 	KASSERT(anon->an_lock == oanon->an_lock);
1630 	KASSERT((pg->flags & (PG_BUSY | PG_FAKE)) == 0);
1631 
1632 	/* deref: can not drop to zero here by defn! */
1633 	KASSERT(oanon->an_ref > 1);
1634 	oanon->an_ref--;
1635 
1636 	/*
1637 	 * note: oanon is still locked, as is the new anon.  we
1638 	 * need to check for this later when we unlock oanon; if
1639 	 * oanon != anon, we'll have to unlock anon, too.
1640 	 */
1641 
1642 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1643 }
1644 
1645 /*
1646  * uvm_fault_upper_direct: handle direct fault.
1647  */
1648 
1649 static int
1650 uvm_fault_upper_direct(
1651 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1652 	struct uvm_object *uobj, struct vm_anon *anon)
1653 {
1654 	struct vm_anon * const oanon = anon;
1655 	struct vm_page *pg;
1656 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1657 
1658 	cpu_count(CPU_COUNT_FLT_ANON, 1);
1659 	pg = anon->an_page;
1660 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1661 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1662 
1663 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1664 }
1665 
1666 /*
1667  * uvm_fault_upper_enter: enter h/w mapping of upper page.
1668  */
1669 
1670 static int
1671 uvm_fault_upper_enter(
1672 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1673 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1674 	struct vm_anon *oanon)
1675 {
1676 	struct pmap *pmap = ufi->orig_map->pmap;
1677 	vaddr_t va = ufi->orig_rvaddr;
1678 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1679 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1680 
1681 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
1682 	KASSERT(rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1683 	KASSERT(anon->an_lock == amap->am_lock);
1684 	KASSERT(oanon->an_lock == amap->am_lock);
1685 	KASSERT(uobj == NULL ||
1686 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1687 	KASSERT(uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
1688 
1689 	/*
1690 	 * now map the page in.
1691 	 */
1692 
1693 	UVMHIST_LOG(maphist,
1694 	    "  MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1695 	    (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1696 	if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1697 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1698 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1699 
1700 		/*
1701 		 * If pmap_enter() fails, it must not leave behind an existing
1702 		 * pmap entry.  In particular, a now-stale entry for a different
1703 		 * page would leave the pmap inconsistent with the vm_map.
1704 		 * This is not to imply that pmap_enter() should remove an
1705 		 * existing mapping in such a situation (since that could create
1706 		 * different problems, eg. if the existing mapping is wired),
1707 		 * but rather that the pmap should be designed such that it
1708 		 * never needs to fail when the new mapping is replacing an
1709 		 * existing mapping and the new page has no existing mappings.
1710 		 *
1711 		 * XXX This can't be asserted safely any more because many
1712 		 * LWPs and/or many processes could simultaneously fault on
1713 		 * the same VA and some might succeed.
1714 		 */
1715 
1716 		/* KASSERT(!pmap_extract(pmap, va, NULL)); */
1717 
1718 		/*
1719 		 * ensure that the page is queued in the case that
1720 		 * we just promoted.
1721 		 */
1722 
1723 		uvm_pagelock(pg);
1724 		uvm_pageenqueue(pg);
1725 		uvm_pageunlock(pg);
1726 
1727 		/*
1728 		 * No need to undo what we did; we can simply think of
1729 		 * this as the pmap throwing away the mapping information.
1730 		 *
1731 		 * We do, however, have to go through the ReFault path,
1732 		 * as the map may change while we're asleep.
1733 		 */
1734 
1735 		uvmfault_unlockall(ufi, amap, uobj);
1736 		if (!uvm_reclaimable()) {
1737 			UVMHIST_LOG(maphist,
1738 			    "<- failed.  out of VM",0,0,0,0);
1739 			/* XXX instrumentation */
1740 			return ENOMEM;
1741 		}
1742 		/* XXX instrumentation */
1743 		uvm_wait("flt_pmfail1");
1744 		return ERESTART;
1745 	}
1746 
1747 	uvm_fault_upper_done(ufi, flt, anon, pg);
1748 
1749 	/*
1750 	 * done case 1!  finish up by unlocking everything and returning success
1751 	 */
1752 
1753 	pmap_update(pmap);
1754 	uvmfault_unlockall(ufi, amap, uobj);
1755 	return 0;
1756 }
1757 
1758 /*
1759  * uvm_fault_upper_done: queue upper center page.
1760  */
1761 
1762 static void
1763 uvm_fault_upper_done(
1764 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1765 	struct vm_anon *anon, struct vm_page *pg)
1766 {
1767 	const bool wire_paging = flt->wire_paging;
1768 
1769 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1770 
1771 	/*
1772 	 * ... update the page queues.
1773 	 */
1774 
1775 	if (wire_paging) {
1776 		uvm_pagelock(pg);
1777 		uvm_pagewire(pg);
1778 		uvm_pageunlock(pg);
1779 
1780 		/*
1781 		 * since the now-wired page cannot be paged out,
1782 		 * release its swap resources for others to use.
1783 		 * and since an anon with no swap cannot be clean,
1784 		 * mark it dirty now.
1785 		 */
1786 
1787 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1788 		uvm_anon_dropswap(anon);
1789 	} else if (uvmpdpol_pageactivate_p(pg)) {
1790 		/*
1791 		 * avoid re-activating the page unless needed,
1792 		 * to avoid false sharing on multiprocessor.
1793 		 */
1794 
1795 		uvm_pagelock(pg);
1796 		uvm_pageactivate(pg);
1797 		uvm_pageunlock(pg);
1798 	}
1799 }
1800 
1801 /*
1802  * uvm_fault_lower_upgrade: upgrade lower lock, reader -> writer
1803  */
1804 
1805 static inline int
1806 uvm_fault_lower_upgrade(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1807     struct vm_amap *amap, struct uvm_object *uobj, struct vm_page *uobjpage)
1808 {
1809 
1810 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1811 
1812 	KASSERT(uobj != NULL);
1813 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1814 
1815 	/*
1816 	 * fast path.
1817 	 */
1818 
1819 	if (__predict_true(flt->lower_lock_type == RW_WRITER)) {
1820 		return 0;
1821 	}
1822 
1823 	/*
1824 	 * otherwise try for the upgrade.  if we don't get it, unlock
1825 	 * everything, restart the fault and next time around get a writer
1826 	 * lock.
1827 	 */
1828 
1829 	flt->lower_lock_type = RW_WRITER;
1830 	if (__predict_false(!rw_tryupgrade(uobj->vmobjlock))) {
1831 		uvmfault_unlockall(ufi, amap, uobj);
1832 		cpu_count(CPU_COUNT_FLTNOUP, 1);
1833 		UVMHIST_LOG(maphist, "  !upgrade lower", 0, 0,0,0);
1834 		return ERESTART;
1835 	}
1836 	cpu_count(CPU_COUNT_FLTUP, 1);
1837 	KASSERT(flt->lower_lock_type == rw_lock_op(uobj->vmobjlock));
1838 	return 0;
1839 }
1840 
1841 /*
1842  * uvm_fault_lower: handle lower fault.
1843  *
1844  *	1. check uobj
1845  *	1.1. if null, ZFOD.
1846  *	1.2. if not null, look up unnmapped neighbor pages.
1847  *	2. for center page, check if promote.
1848  *	2.1. ZFOD always needs promotion.
1849  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1850  *	3. if uobj is not ZFOD and page is not found, do i/o.
1851  *	4. dispatch either direct / promote fault.
1852  */
1853 
1854 static int
1855 uvm_fault_lower(
1856 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1857 	struct vm_page **pages)
1858 {
1859 	struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1860 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1861 	struct vm_page *uobjpage;
1862 	int error;
1863 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1864 
1865 	/*
1866 	 * now, if the desired page is not shadowed by the amap and we have
1867 	 * a backing object that does not have a special fault routine, then
1868 	 * we ask (with pgo_get) the object for resident pages that we care
1869 	 * about and attempt to map them in.  we do not let pgo_get block
1870 	 * (PGO_LOCKED).
1871 	 */
1872 
1873 	if (uobj == NULL) {
1874 		/* zero fill; don't care neighbor pages */
1875 		uobjpage = NULL;
1876 	} else {
1877 		uvm_fault_lower_lookup(ufi, flt, pages);
1878 		uobjpage = pages[flt->centeridx];
1879 	}
1880 
1881 	/*
1882 	 * note that at this point we are done with any front or back pages.
1883 	 * we are now going to focus on the center page (i.e. the one we've
1884 	 * faulted on).  if we have faulted on the upper (anon) layer
1885 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1886 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1887 	 * layer [i.e. case 2] and the page was both present and available,
1888 	 * then we've got a pointer to it as "uobjpage" and we've already
1889 	 * made it BUSY.
1890 	 */
1891 
1892 	/*
1893 	 * locked:
1894 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1895 	 */
1896 	KASSERT(amap == NULL ||
1897 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1898 	KASSERT(uobj == NULL ||
1899 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1900 
1901 	/*
1902 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1903 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1904 	 * have a backing object, check and see if we are going to promote
1905 	 * the data up to an anon during the fault.
1906 	 */
1907 
1908 	if (uobj == NULL) {
1909 		uobjpage = PGO_DONTCARE;
1910 		flt->promote = true;		/* always need anon here */
1911 	} else {
1912 		KASSERT(uobjpage != PGO_DONTCARE);
1913 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1914 	}
1915 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%jd, zfill=%jd",
1916 	    flt->promote, (uobj == NULL), 0,0);
1917 
1918 	/*
1919 	 * if uobjpage is not null then we do not need to do I/O to get the
1920 	 * uobjpage.
1921 	 *
1922 	 * if uobjpage is null, then we need to unlock and ask the pager to
1923 	 * get the data for us.   once we have the data, we need to reverify
1924 	 * the state the world.   we are currently not holding any resources.
1925 	 */
1926 
1927 	if (uobjpage) {
1928 		/* update rusage counters */
1929 		curlwp->l_ru.ru_minflt++;
1930 	} else {
1931 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1932 		if (error != 0)
1933 			return error;
1934 	}
1935 
1936 	/*
1937 	 * locked:
1938 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1939 	 */
1940 	KASSERT(amap == NULL ||
1941 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
1942 	KASSERT(uobj == NULL ||
1943 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
1944 
1945 	/*
1946 	 * notes:
1947 	 *  - at this point uobjpage can not be NULL
1948 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1949 	 *  for it above)
1950 	 *  - at this point uobjpage could be waited on (handle later)
1951 	 *  - uobjpage can be from a different object if tmpfs (vnode vs UAO)
1952 	 */
1953 
1954 	KASSERT(uobjpage != NULL);
1955 	KASSERT(uobj == NULL ||
1956 	    uobjpage->uobject->vmobjlock == uobj->vmobjlock);
1957 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1958 	    uvm_pagegetdirty(uobjpage) == UVM_PAGE_STATUS_CLEAN);
1959 
1960 	if (!flt->promote) {
1961 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1962 	} else {
1963 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1964 	}
1965 	return error;
1966 }
1967 
1968 /*
1969  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1970  *
1971  *	1. get on-memory pages.
1972  *	2. if failed, give up (get only center page later).
1973  *	3. if succeeded, enter h/w mapping of neighbor pages.
1974  */
1975 
1976 static void
1977 uvm_fault_lower_lookup(
1978 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1979 	struct vm_page **pages)
1980 {
1981 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1982 	int lcv, gotpages;
1983 	vaddr_t currva;
1984 	bool entered;
1985 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1986 
1987 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1988 
1989 	/*
1990 	 * Locked: maps(read), amap(if there), uobj
1991 	 */
1992 
1993 	cpu_count(CPU_COUNT_FLTLGET, 1);
1994 	gotpages = flt->npages;
1995 	(void) uobj->pgops->pgo_get(uobj,
1996 	    ufi->entry->offset + flt->startva - ufi->entry->start,
1997 	    pages, &gotpages, flt->centeridx,
1998 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1999 	    PGO_LOCKED);
2000 
2001 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2002 
2003 	/*
2004 	 * check for pages to map, if we got any
2005 	 */
2006 
2007 	if (gotpages == 0) {
2008 		pages[flt->centeridx] = NULL;
2009 		return;
2010 	}
2011 
2012 	entered = false;
2013 	currva = flt->startva;
2014 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
2015 		struct vm_page *curpg;
2016 
2017 		curpg = pages[lcv];
2018 		if (curpg == NULL || curpg == PGO_DONTCARE) {
2019 			continue;
2020 		}
2021 
2022 		/*
2023 		 * in the case of tmpfs, the pages might be from a different
2024 		 * uvm_object.  just make sure that they have the same lock.
2025 		 */
2026 
2027 		KASSERT(curpg->uobject->vmobjlock == uobj->vmobjlock);
2028 		KASSERT((curpg->flags & PG_BUSY) == 0);
2029 
2030 		/*
2031 		 * leave the centre page for later.  don't screw with
2032 		 * existing mappings (needless & expensive).
2033 		 */
2034 
2035 		if (lcv == flt->centeridx) {
2036 			UVMHIST_LOG(maphist, "  got uobjpage (%#jx) "
2037 			    "with locked get", (uintptr_t)curpg, 0, 0, 0);
2038 		} else if (!pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
2039 			uvm_fault_lower_neighbor(ufi, flt, currva, curpg);
2040 			entered = true;
2041 		}
2042 	}
2043 	if (entered) {
2044 		pmap_update(ufi->orig_map->pmap);
2045 	}
2046 }
2047 
2048 /*
2049  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
2050  */
2051 
2052 static void
2053 uvm_fault_lower_neighbor(
2054 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2055 	vaddr_t currva, struct vm_page *pg)
2056 {
2057 	const bool readonly = uvm_pagereadonly_p(pg) || pg->loan_count > 0;
2058 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2059 
2060 	/* locked: maps(read), amap(if there), uobj */
2061 
2062 	/*
2063 	 * calling pgo_get with PGO_LOCKED returns us pages which
2064 	 * are neither busy nor released, so we don't need to check
2065 	 * for this.  we can just directly enter the pages.
2066 	 *
2067 	 * there wasn't a direct fault on the page, so avoid the cost of
2068 	 * activating it.
2069 	 */
2070 
2071 	if (!uvmpdpol_pageisqueued_p(pg) && pg->wire_count == 0) {
2072 		uvm_pagelock(pg);
2073 		uvm_pageenqueue(pg);
2074 		uvm_pageunlock(pg);
2075 	}
2076 
2077 	UVMHIST_LOG(maphist,
2078 	    "  MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
2079 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
2080 	cpu_count(CPU_COUNT_FLTNOMAP, 1);
2081 
2082 	/*
2083 	 * Since this page isn't the page that's actually faulting,
2084 	 * ignore pmap_enter() failures; it's not critical that we
2085 	 * enter these right now.
2086 	 * NOTE: page can't be waited on or PG_RELEASED because we've
2087 	 * held the lock the whole time we've had the handle.
2088 	 */
2089 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
2090 	KASSERT((pg->flags & PG_RELEASED) == 0);
2091 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
2092 	    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
2093 	KASSERT((pg->flags & PG_BUSY) == 0);
2094 	KASSERT(rw_lock_op(pg->uobject->vmobjlock) == flt->lower_lock_type);
2095 
2096 	const vm_prot_t mapprot =
2097 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
2098 	    flt->enter_prot & MASK(ufi->entry);
2099 	const u_int mapflags =
2100 	    PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
2101 	(void) pmap_enter(ufi->orig_map->pmap, currva,
2102 	    VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
2103 }
2104 
2105 /*
2106  * uvm_fault_lower_io: get lower page from backing store.
2107  *
2108  *	1. unlock everything, because i/o will block.
2109  *	2. call pgo_get.
2110  *	3. if failed, recover.
2111  *	4. if succeeded, relock everything and verify things.
2112  */
2113 
2114 static int
2115 uvm_fault_lower_io(
2116 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2117 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
2118 {
2119 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2120 	struct uvm_object *uobj = *ruobj;
2121 	struct vm_page *pg;
2122 	bool locked;
2123 	int gotpages;
2124 	int error;
2125 	voff_t uoff;
2126 	vm_prot_t access_type;
2127 	int advice;
2128 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2129 
2130 	/* update rusage counters */
2131 	curlwp->l_ru.ru_majflt++;
2132 
2133 	/* grab everything we need from the entry before we unlock */
2134 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
2135 	access_type = flt->access_type & MASK(ufi->entry);
2136 	advice = ufi->entry->advice;
2137 
2138 	/* Locked: maps(read), amap(if there), uobj */
2139 	KASSERT(rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2140 
2141 	/* Upgrade to a write lock if needed. */
2142 	error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, NULL);
2143 	if (error != 0) {
2144 		return error;
2145 	}
2146 	uvmfault_unlockall(ufi, amap, NULL);
2147 
2148 	/* Locked: uobj(write) */
2149 	KASSERT(rw_write_held(uobj->vmobjlock));
2150 
2151 	cpu_count(CPU_COUNT_FLTGET, 1);
2152 	gotpages = 1;
2153 	pg = NULL;
2154 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
2155 	    0, access_type, advice, PGO_SYNCIO);
2156 	/* locked: pg(if no error) */
2157 
2158 	/*
2159 	 * recover from I/O
2160 	 */
2161 
2162 	if (error) {
2163 		if (error == EAGAIN) {
2164 			UVMHIST_LOG(maphist,
2165 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
2166 			kpause("fltagain2", false, hz/2, NULL);
2167 			return ERESTART;
2168 		}
2169 
2170 #if 0
2171 		KASSERT(error != ERESTART);
2172 #else
2173 		/* XXXUEBS don't re-fault? */
2174 		if (error == ERESTART)
2175 			error = EIO;
2176 #endif
2177 
2178 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
2179 		    error, 0,0,0);
2180 		return error;
2181 	}
2182 
2183 	/*
2184 	 * re-verify the state of the world by first trying to relock
2185 	 * the maps.  always relock the object.
2186 	 */
2187 
2188 	locked = uvmfault_relock(ufi);
2189 	if (locked && amap)
2190 		amap_lock(amap, flt->upper_lock_type);
2191 
2192 	/* might be changed */
2193 	uobj = pg->uobject;
2194 
2195 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
2196 	KASSERT((pg->flags & PG_BUSY) != 0);
2197 	KASSERT(flt->lower_lock_type == RW_WRITER);
2198 
2199 	uvm_pagelock(pg);
2200 	uvm_pageactivate(pg);
2201 	uvm_pageunlock(pg);
2202 
2203 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
2204 	/* locked(!locked): uobj, pg */
2205 
2206 	/*
2207 	 * verify that the page has not be released and re-verify
2208 	 * that amap slot is still free.   if there is a problem,
2209 	 * we unlock and clean up.
2210 	 */
2211 
2212 	if ((pg->flags & PG_RELEASED) != 0 ||
2213 	    (locked && amap && amap_lookup(&ufi->entry->aref,
2214 	      ufi->orig_rvaddr - ufi->entry->start))) {
2215 		if (locked)
2216 			uvmfault_unlockall(ufi, amap, NULL);
2217 		locked = false;
2218 	}
2219 
2220 	/*
2221 	 * unbusy/release the page.
2222 	 */
2223 
2224 	if ((pg->flags & PG_RELEASED) == 0) {
2225 		pg->flags &= ~PG_BUSY;
2226 		uvm_pagelock(pg);
2227 		uvm_pagewakeup(pg);
2228 		uvm_pageunlock(pg);
2229 		UVM_PAGE_OWN(pg, NULL);
2230 	} else {
2231 		cpu_count(CPU_COUNT_FLTPGRELE, 1);
2232 		uvm_pagefree(pg);
2233 	}
2234 
2235 	/*
2236 	 * didn't get the lock?   retry.
2237 	 */
2238 
2239 	if (locked == false) {
2240 		UVMHIST_LOG(maphist,
2241 		    "  wasn't able to relock after fault: retry",
2242 		    0,0,0,0);
2243 		rw_exit(uobj->vmobjlock);
2244 		return ERESTART;
2245 	}
2246 
2247 	/*
2248 	 * we have the data in pg.  we are holding object lock (so the page
2249 	 * can't be released on us).
2250 	 */
2251 
2252 	/* locked: maps(read), amap(if !null), uobj */
2253 
2254 	*ruobj = uobj;
2255 	*ruobjpage = pg;
2256 	return 0;
2257 }
2258 
2259 /*
2260  * uvm_fault_lower_direct: fault lower center page
2261  *
2262  *	1. adjust flt->enter_prot.
2263  *	2. if page is loaned, resolve.
2264  */
2265 
2266 int
2267 uvm_fault_lower_direct(
2268 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2269 	struct uvm_object *uobj, struct vm_page *uobjpage)
2270 {
2271 	struct vm_page *pg;
2272 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2273 
2274 	/*
2275 	 * we are not promoting.   if the mapping is COW ensure that we
2276 	 * don't give more access than we should (e.g. when doing a read
2277 	 * fault on a COPYONWRITE mapping we want to map the COW page in
2278 	 * R/O even though the entry protection could be R/W).
2279 	 *
2280 	 * set "pg" to the page we want to map in (uobjpage, usually)
2281 	 */
2282 
2283 	cpu_count(CPU_COUNT_FLT_OBJ, 1);
2284 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2285 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2286 		flt->enter_prot &= ~VM_PROT_WRITE;
2287 	pg = uobjpage;		/* map in the actual object */
2288 
2289 	KASSERT(uobjpage != PGO_DONTCARE);
2290 
2291 	/*
2292 	 * we are faulting directly on the page.   be careful
2293 	 * about writing to loaned pages...
2294 	 */
2295 
2296 	if (uobjpage->loan_count) {
2297 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2298 	}
2299 	KASSERT(pg == uobjpage);
2300 	KASSERT((pg->flags & PG_BUSY) == 0);
2301 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2302 }
2303 
2304 /*
2305  * uvm_fault_lower_direct_loan: resolve loaned page.
2306  *
2307  *	1. if not cow'ing, adjust flt->enter_prot.
2308  *	2. if cow'ing, break loan.
2309  */
2310 
2311 static int
2312 uvm_fault_lower_direct_loan(
2313 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2314 	struct uvm_object *uobj, struct vm_page **rpg,
2315 	struct vm_page **ruobjpage)
2316 {
2317 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2318 	struct vm_page *pg;
2319 	struct vm_page *uobjpage = *ruobjpage;
2320 	int error;
2321 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2322 
2323 	if (!flt->cow_now) {
2324 		/* read fault: cap the protection at readonly */
2325 		/* cap! */
2326 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2327 	} else {
2328 		/*
2329 		 * write fault: must break the loan here.  to do this
2330 		 * we need a write lock on the object.
2331 		 */
2332 
2333 		error = uvm_fault_lower_upgrade(ufi, flt, amap, uobj, uobjpage);
2334 		if (error != 0) {
2335 			return error;
2336 		}
2337 		KASSERT(rw_write_held(uobj->vmobjlock));
2338 
2339 		pg = uvm_loanbreak(uobjpage);
2340 		if (pg == NULL) {
2341 
2342 			uvmfault_unlockall(ufi, amap, uobj);
2343 			UVMHIST_LOG(maphist,
2344 			  "  out of RAM breaking loan, waiting",
2345 			  0,0,0,0);
2346 			cpu_count(CPU_COUNT_FLTNORAM, 1);
2347 			uvm_wait("flt_noram4");
2348 			return ERESTART;
2349 		}
2350 		*rpg = pg;
2351 		*ruobjpage = pg;
2352 
2353 		/*
2354 		 * drop ownership of page while still holding object lock,
2355 		 * which won't be dropped until the page is entered.
2356 		 */
2357 
2358 		uvm_pagelock(pg);
2359 		uvm_pagewakeup(pg);
2360 		uvm_pageunlock(pg);
2361 		pg->flags &= ~PG_BUSY;
2362 		UVM_PAGE_OWN(pg, NULL);
2363 	}
2364 	return 0;
2365 }
2366 
2367 /*
2368  * uvm_fault_lower_promote: promote lower page.
2369  *
2370  *	1. call uvmfault_promote.
2371  *	2. fill in data.
2372  *	3. if not ZFOD, dispose old page.
2373  */
2374 
2375 int
2376 uvm_fault_lower_promote(
2377 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2378 	struct uvm_object *uobj, struct vm_page *uobjpage)
2379 {
2380 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2381 	struct vm_anon *anon;
2382 	struct vm_page *pg;
2383 	int error;
2384 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2385 
2386 	KASSERT(amap != NULL);
2387 
2388 	/* promoting requires a write lock. */
2389 	error = uvm_fault_upper_upgrade(ufi, flt, amap, uobj);
2390 	if (error != 0) {
2391 		return error;
2392 	}
2393 	KASSERT(rw_write_held(amap->am_lock));
2394 	KASSERT(uobj == NULL ||
2395 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2396 
2397 	/*
2398 	 * If we are going to promote the data to an anon we
2399 	 * allocate a blank anon here and plug it into our amap.
2400 	 */
2401 	error = uvmfault_promote(ufi, NULL, uobjpage, &anon, &flt->anon_spare);
2402 	switch (error) {
2403 	case 0:
2404 		break;
2405 	case ERESTART:
2406 		return ERESTART;
2407 	default:
2408 		return error;
2409 	}
2410 
2411 	pg = anon->an_page;
2412 
2413 	/*
2414 	 * Fill in the data.
2415 	 */
2416 
2417 	if (uobjpage != PGO_DONTCARE) {
2418 		cpu_count(CPU_COUNT_FLT_PRCOPY, 1);
2419 
2420 		/*
2421 		 * promote to shared amap?  make sure all sharing
2422 		 * procs see it
2423 		 */
2424 
2425 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2426 			pmap_page_protect(uobjpage, VM_PROT_NONE);
2427 			/*
2428 			 * XXX: PAGE MIGHT BE WIRED!
2429 			 */
2430 		}
2431 
2432 		UVMHIST_LOG(maphist,
2433 		    "  promote uobjpage %#jx to anon/page %#jx/%#jx",
2434 		    (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2435 
2436 	} else {
2437 		cpu_count(CPU_COUNT_FLT_PRZERO, 1);
2438 
2439 		/*
2440 		 * Page is zero'd and marked dirty by
2441 		 * uvmfault_promote().
2442 		 */
2443 
2444 		UVMHIST_LOG(maphist,"  zero fill anon/page %#jx/%#jx",
2445 		    (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2446 	}
2447 
2448 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2449 }
2450 
2451 /*
2452  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2453  * from the lower page.
2454  */
2455 
2456 int
2457 uvm_fault_lower_enter(
2458 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2459 	struct uvm_object *uobj,
2460 	struct vm_anon *anon, struct vm_page *pg)
2461 {
2462 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2463 	const bool readonly = uvm_pagereadonly_p(pg);
2464 	int error;
2465 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2466 
2467 	/*
2468 	 * Locked:
2469 	 *
2470 	 *	maps(read), amap(if !null), uobj(if !null),
2471 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
2472 	 *
2473 	 * anon must be write locked (promotion).  uobj can be either.
2474 	 *
2475 	 * Note: pg is either the uobjpage or the new page in the new anon.
2476 	 */
2477 
2478 	KASSERT(amap == NULL ||
2479 	    rw_lock_op(amap->am_lock) == flt->upper_lock_type);
2480 	KASSERT(uobj == NULL ||
2481 	    rw_lock_op(uobj->vmobjlock) == flt->lower_lock_type);
2482 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2483 
2484 	/*
2485 	 * note that pg can't be PG_RELEASED or PG_BUSY since we did
2486 	 * not drop the object lock since the last time we checked.
2487 	 */
2488 
2489 	KASSERT((pg->flags & PG_RELEASED) == 0);
2490 	KASSERT((pg->flags & PG_BUSY) == 0);
2491 
2492 	/*
2493 	 * all resources are present.   we can now map it in and free our
2494 	 * resources.
2495 	 */
2496 
2497 	UVMHIST_LOG(maphist,
2498 	    "  MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2499 	    (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2500 	    (uintptr_t)pg, flt->promote);
2501 	KASSERTMSG((flt->access_type & VM_PROT_WRITE) == 0 || !readonly,
2502 	    "promote=%u cow_now=%u access_type=%x enter_prot=%x cow=%u "
2503 	    "entry=%p map=%p orig_rvaddr=%p pg=%p",
2504 	    flt->promote, flt->cow_now, flt->access_type, flt->enter_prot,
2505 	    UVM_ET_ISCOPYONWRITE(ufi->entry), ufi->entry, ufi->orig_map,
2506 	    (void *)ufi->orig_rvaddr, pg);
2507 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || !readonly);
2508 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2509 	    VM_PAGE_TO_PHYS(pg),
2510 	    readonly ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2511 	    flt->access_type | PMAP_CANFAIL |
2512 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2513 
2514 		/*
2515 		 * No need to undo what we did; we can simply think of
2516 		 * this as the pmap throwing away the mapping information.
2517 		 *
2518 		 * We do, however, have to go through the ReFault path,
2519 		 * as the map may change while we're asleep.
2520 		 */
2521 
2522 		/*
2523 		 * ensure that the page is queued in the case that
2524 		 * we just promoted the page.
2525 		 */
2526 
2527 		if (anon != NULL) {
2528 			uvm_pagelock(pg);
2529 			uvm_pageenqueue(pg);
2530 			uvm_pagewakeup(pg);
2531 			uvm_pageunlock(pg);
2532 		}
2533 
2534 		uvmfault_unlockall(ufi, amap, uobj);
2535 		if (!uvm_reclaimable()) {
2536 			UVMHIST_LOG(maphist,
2537 			    "<- failed.  out of VM",0,0,0,0);
2538 			/* XXX instrumentation */
2539 			error = ENOMEM;
2540 			return error;
2541 		}
2542 		/* XXX instrumentation */
2543 		uvm_wait("flt_pmfail2");
2544 		return ERESTART;
2545 	}
2546 
2547 	uvm_fault_lower_done(ufi, flt, uobj, pg);
2548 	pmap_update(ufi->orig_map->pmap);
2549 	uvmfault_unlockall(ufi, amap, uobj);
2550 
2551 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2552 	return 0;
2553 }
2554 
2555 /*
2556  * uvm_fault_lower_done: queue lower center page.
2557  */
2558 
2559 void
2560 uvm_fault_lower_done(
2561 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2562 	struct uvm_object *uobj, struct vm_page *pg)
2563 {
2564 
2565 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
2566 
2567 	if (flt->wire_paging) {
2568 		uvm_pagelock(pg);
2569 		uvm_pagewire(pg);
2570 		uvm_pageunlock(pg);
2571 		if (pg->flags & PG_AOBJ) {
2572 
2573 			/*
2574 			 * since the now-wired page cannot be paged out,
2575 			 * release its swap resources for others to use.
2576 			 * since an aobj page with no swap cannot be clean,
2577 			 * mark it dirty now.
2578 			 *
2579 			 * use pg->uobject here.  if the page is from a
2580 			 * tmpfs vnode, the pages are backed by its UAO and
2581 			 * not the vnode.
2582 			 */
2583 
2584 			KASSERT(uobj != NULL);
2585 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
2586 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2587 			uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
2588 		}
2589 	} else if (uvmpdpol_pageactivate_p(pg)) {
2590 		/*
2591 		 * avoid re-activating the page unless needed,
2592 		 * to avoid false sharing on multiprocessor.
2593 		 */
2594 
2595 		uvm_pagelock(pg);
2596 		uvm_pageactivate(pg);
2597 		uvm_pageunlock(pg);
2598 	}
2599 }
2600 
2601 
2602 /*
2603  * uvm_fault_wire: wire down a range of virtual addresses in a map.
2604  *
2605  * => map may be read-locked by caller, but MUST NOT be write-locked.
2606  * => if map is read-locked, any operations which may cause map to
2607  *	be write-locked in uvm_fault() must be taken care of by
2608  *	the caller.  See uvm_map_pageable().
2609  */
2610 
2611 int
2612 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2613     vm_prot_t access_type, int maxprot)
2614 {
2615 	vaddr_t va;
2616 	int error;
2617 
2618 	/*
2619 	 * now fault it in a page at a time.   if the fault fails then we have
2620 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
2621 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2622 	 */
2623 
2624 	/*
2625 	 * XXX work around overflowing a vaddr_t.  this prevents us from
2626 	 * wiring the last page in the address space, though.
2627 	 */
2628 	if (start > end) {
2629 		return EFAULT;
2630 	}
2631 
2632 	for (va = start; va < end; va += PAGE_SIZE) {
2633 		error = uvm_fault_internal(map, va, access_type,
2634 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2635 		if (error) {
2636 			if (va != start) {
2637 				uvm_fault_unwire(map, start, va);
2638 			}
2639 			return error;
2640 		}
2641 	}
2642 	return 0;
2643 }
2644 
2645 /*
2646  * uvm_fault_unwire(): unwire range of virtual space.
2647  */
2648 
2649 void
2650 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2651 {
2652 	vm_map_lock_read(map);
2653 	uvm_fault_unwire_locked(map, start, end);
2654 	vm_map_unlock_read(map);
2655 }
2656 
2657 /*
2658  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2659  *
2660  * => map must be at least read-locked.
2661  */
2662 
2663 void
2664 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2665 {
2666 	struct vm_map_entry *entry, *oentry;
2667 	pmap_t pmap = vm_map_pmap(map);
2668 	vaddr_t va;
2669 	paddr_t pa;
2670 	struct vm_page *pg;
2671 
2672 	/*
2673 	 * we assume that the area we are unwiring has actually been wired
2674 	 * in the first place.   this means that we should be able to extract
2675 	 * the PAs from the pmap.   we also lock out the page daemon so that
2676 	 * we can call uvm_pageunwire.
2677 	 */
2678 
2679 	/*
2680 	 * find the beginning map entry for the region.
2681 	 */
2682 
2683 	KASSERT(start >= vm_map_min(map));
2684 	KASSERT(end <= vm_map_max(map));
2685 	if (uvm_map_lookup_entry(map, start, &entry) == false)
2686 		panic("uvm_fault_unwire_locked: address not in map");
2687 
2688 	oentry = NULL;
2689 	for (va = start; va < end; va += PAGE_SIZE) {
2690 
2691 		/*
2692 		 * find the map entry for the current address.
2693 		 */
2694 
2695 		KASSERT(va >= entry->start);
2696 		while (va >= entry->end) {
2697 			KASSERT(entry->next != &map->header);
2698 			KASSERT(entry->next->start <= entry->end);
2699 			entry = entry->next;
2700 		}
2701 
2702 		/*
2703 		 * lock it.
2704 		 */
2705 
2706 		if (entry != oentry) {
2707 			if (oentry != NULL) {
2708 				uvm_map_unlock_entry(oentry);
2709 			}
2710 			uvm_map_lock_entry(entry, RW_WRITER);
2711 			oentry = entry;
2712 		}
2713 
2714 		/*
2715 		 * if the entry is no longer wired, tell the pmap.
2716 		 */
2717 
2718 		if (!pmap_extract(pmap, va, &pa))
2719 			continue;
2720 
2721 		if (VM_MAPENT_ISWIRED(entry) == 0)
2722 			pmap_unwire(pmap, va);
2723 
2724 		pg = PHYS_TO_VM_PAGE(pa);
2725 		if (pg) {
2726 			uvm_pagelock(pg);
2727 			uvm_pageunwire(pg);
2728 			uvm_pageunlock(pg);
2729 		}
2730 	}
2731 
2732 	if (oentry != NULL) {
2733 		uvm_map_unlock_entry(entry);
2734 	}
2735 }
2736