1 /* $NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $ */ 2 3 /* 4 * 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Charles D. Cranor and 19 * Washington University. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 35 */ 36 37 /* 38 * uvm_fault.c: fault handler 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $"); 43 44 #include "opt_uvmhist.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/proc.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 53 #include <uvm/uvm.h> 54 55 /* 56 * 57 * a word on page faults: 58 * 59 * types of page faults we handle: 60 * 61 * CASE 1: upper layer faults CASE 2: lower layer faults 62 * 63 * CASE 1A CASE 1B CASE 2A CASE 2B 64 * read/write1 write>1 read/write +-cow_write/zero 65 * | | | | 66 * +--|--+ +--|--+ +-----+ + | + | +-----+ 67 * amap | V | | ---------> new | | | | ^ | 68 * +-----+ +-----+ +-----+ + | + | +--|--+ 69 * | | | 70 * +-----+ +-----+ +--|--+ | +--|--+ 71 * uobj | d/c | | d/c | | V | +----+ | 72 * +-----+ +-----+ +-----+ +-----+ 73 * 74 * d/c = don't care 75 * 76 * case [0]: layerless fault 77 * no amap or uobj is present. this is an error. 78 * 79 * case [1]: upper layer fault [anon active] 80 * 1A: [read] or [write with anon->an_ref == 1] 81 * I/O takes place in upper level anon and uobj is not touched. 82 * 1B: [write with anon->an_ref > 1] 83 * new anon is alloc'd and data is copied off ["COW"] 84 * 85 * case [2]: lower layer fault [uobj] 86 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 87 * I/O takes place directly in object. 88 * 2B: [write to copy_on_write] or [read on NULL uobj] 89 * data is "promoted" from uobj to a new anon. 90 * if uobj is null, then we zero fill. 91 * 92 * we follow the standard UVM locking protocol ordering: 93 * 94 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 95 * we hold a PG_BUSY page if we unlock for I/O 96 * 97 * 98 * the code is structured as follows: 99 * 100 * - init the "IN" params in the ufi structure 101 * ReFault: 102 * - do lookups [locks maps], check protection, handle needs_copy 103 * - check for case 0 fault (error) 104 * - establish "range" of fault 105 * - if we have an amap lock it and extract the anons 106 * - if sequential advice deactivate pages behind us 107 * - at the same time check pmap for unmapped areas and anon for pages 108 * that we could map in (and do map it if found) 109 * - check object for resident pages that we could map in 110 * - if (case 2) goto Case2 111 * - >>> handle case 1 112 * - ensure source anon is resident in RAM 113 * - if case 1B alloc new anon and copy from source 114 * - map the correct page in 115 * Case2: 116 * - >>> handle case 2 117 * - ensure source page is resident (if uobj) 118 * - if case 2B alloc new anon and copy from source (could be zero 119 * fill if uobj == NULL) 120 * - map the correct page in 121 * - done! 122 * 123 * note on paging: 124 * if we have to do I/O we place a PG_BUSY page in the correct object, 125 * unlock everything, and do the I/O. when I/O is done we must reverify 126 * the state of the world before assuming that our data structures are 127 * valid. [because mappings could change while the map is unlocked] 128 * 129 * alternative 1: unbusy the page in question and restart the page fault 130 * from the top (ReFault). this is easy but does not take advantage 131 * of the information that we already have from our previous lookup, 132 * although it is possible that the "hints" in the vm_map will help here. 133 * 134 * alternative 2: the system already keeps track of a "version" number of 135 * a map. [i.e. every time you write-lock a map (e.g. to change a 136 * mapping) you bump the version number up by one...] so, we can save 137 * the version number of the map before we release the lock and start I/O. 138 * then when I/O is done we can relock and check the version numbers 139 * to see if anything changed. this might save us some over 1 because 140 * we don't have to unbusy the page and may be less compares(?). 141 * 142 * alternative 3: put in backpointers or a way to "hold" part of a map 143 * in place while I/O is in progress. this could be complex to 144 * implement (especially with structures like amap that can be referenced 145 * by multiple map entries, and figuring out what should wait could be 146 * complex as well...). 147 * 148 * we use alternative 2. given that we are multi-threaded now we may want 149 * to reconsider the choice. 150 */ 151 152 /* 153 * local data structures 154 */ 155 156 struct uvm_advice { 157 int advice; 158 int nback; 159 int nforw; 160 }; 161 162 /* 163 * page range array: 164 * note: index in array must match "advice" value 165 * XXX: borrowed numbers from freebsd. do they work well for us? 166 */ 167 168 static const struct uvm_advice uvmadvice[] = { 169 { MADV_NORMAL, 3, 4 }, 170 { MADV_RANDOM, 0, 0 }, 171 { MADV_SEQUENTIAL, 8, 7}, 172 }; 173 174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */ 175 176 /* 177 * private prototypes 178 */ 179 180 /* 181 * inline functions 182 */ 183 184 /* 185 * uvmfault_anonflush: try and deactivate pages in specified anons 186 * 187 * => does not have to deactivate page if it is busy 188 */ 189 190 static inline void 191 uvmfault_anonflush(struct vm_anon **anons, int n) 192 { 193 int lcv; 194 struct vm_page *pg; 195 196 for (lcv = 0; lcv < n; lcv++) { 197 if (anons[lcv] == NULL) 198 continue; 199 mutex_enter(&anons[lcv]->an_lock); 200 pg = anons[lcv]->an_page; 201 if (pg && (pg->flags & PG_BUSY) == 0) { 202 mutex_enter(&uvm_pageqlock); 203 if (pg->wire_count == 0) { 204 uvm_pagedeactivate(pg); 205 } 206 mutex_exit(&uvm_pageqlock); 207 } 208 mutex_exit(&anons[lcv]->an_lock); 209 } 210 } 211 212 /* 213 * normal functions 214 */ 215 216 /* 217 * uvmfault_amapcopy: clear "needs_copy" in a map. 218 * 219 * => called with VM data structures unlocked (usually, see below) 220 * => we get a write lock on the maps and clear needs_copy for a VA 221 * => if we are out of RAM we sleep (waiting for more) 222 */ 223 224 static void 225 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 226 { 227 for (;;) { 228 229 /* 230 * no mapping? give up. 231 */ 232 233 if (uvmfault_lookup(ufi, true) == false) 234 return; 235 236 /* 237 * copy if needed. 238 */ 239 240 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 241 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT, 242 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 243 244 /* 245 * didn't work? must be out of RAM. unlock and sleep. 246 */ 247 248 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 249 uvmfault_unlockmaps(ufi, true); 250 uvm_wait("fltamapcopy"); 251 continue; 252 } 253 254 /* 255 * got it! unlock and return. 256 */ 257 258 uvmfault_unlockmaps(ufi, true); 259 return; 260 } 261 /*NOTREACHED*/ 262 } 263 264 /* 265 * uvmfault_anonget: get data in an anon into a non-busy, non-released 266 * page in that anon. 267 * 268 * => maps, amap, and anon locked by caller. 269 * => if we fail (result != 0) we unlock everything. 270 * => if we are successful, we return with everything still locked. 271 * => we don't move the page on the queues [gets moved later] 272 * => if we allocate a new page [we_own], it gets put on the queues. 273 * either way, the result is that the page is on the queues at return time 274 * => for pages which are on loan from a uvm_object (and thus are not 275 * owned by the anon): if successful, we return with the owning object 276 * locked. the caller must unlock this object when it unlocks everything 277 * else. 278 */ 279 280 int 281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 282 struct vm_anon *anon) 283 { 284 bool we_own; /* we own anon's page? */ 285 bool locked; /* did we relock? */ 286 struct vm_page *pg; 287 int error; 288 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist); 289 290 KASSERT(mutex_owned(&anon->an_lock)); 291 292 error = 0; 293 uvmexp.fltanget++; 294 /* bump rusage counters */ 295 if (anon->an_page) 296 curlwp->l_ru.ru_minflt++; 297 else 298 curlwp->l_ru.ru_majflt++; 299 300 /* 301 * loop until we get it, or fail. 302 */ 303 304 for (;;) { 305 we_own = false; /* true if we set PG_BUSY on a page */ 306 pg = anon->an_page; 307 308 /* 309 * if there is a resident page and it is loaned, then anon 310 * may not own it. call out to uvm_anon_lockpage() to ensure 311 * the real owner of the page has been identified and locked. 312 */ 313 314 if (pg && pg->loan_count) 315 pg = uvm_anon_lockloanpg(anon); 316 317 /* 318 * page there? make sure it is not busy/released. 319 */ 320 321 if (pg) { 322 323 /* 324 * at this point, if the page has a uobject [meaning 325 * we have it on loan], then that uobject is locked 326 * by us! if the page is busy, we drop all the 327 * locks (including uobject) and try again. 328 */ 329 330 if ((pg->flags & PG_BUSY) == 0) { 331 UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 332 return (0); 333 } 334 pg->flags |= PG_WANTED; 335 uvmexp.fltpgwait++; 336 337 /* 338 * the last unlock must be an atomic unlock+wait on 339 * the owner of page 340 */ 341 342 if (pg->uobject) { /* owner is uobject ? */ 343 uvmfault_unlockall(ufi, amap, NULL, anon); 344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 345 0,0,0); 346 UVM_UNLOCK_AND_WAIT(pg, 347 &pg->uobject->vmobjlock, 348 false, "anonget1",0); 349 } else { 350 /* anon owns page */ 351 uvmfault_unlockall(ufi, amap, NULL, NULL); 352 UVMHIST_LOG(maphist, " unlock+wait on anon",0, 353 0,0,0); 354 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0, 355 "anonget2",0); 356 } 357 } else { 358 #if defined(VMSWAP) 359 360 /* 361 * no page, we must try and bring it in. 362 */ 363 364 pg = uvm_pagealloc(NULL, 0, anon, 0); 365 if (pg == NULL) { /* out of RAM. */ 366 uvmfault_unlockall(ufi, amap, NULL, anon); 367 uvmexp.fltnoram++; 368 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 369 0,0,0); 370 if (!uvm_reclaimable()) { 371 return ENOMEM; 372 } 373 uvm_wait("flt_noram1"); 374 } else { 375 /* we set the PG_BUSY bit */ 376 we_own = true; 377 uvmfault_unlockall(ufi, amap, NULL, anon); 378 379 /* 380 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN 381 * page into the uvm_swap_get function with 382 * all data structures unlocked. note that 383 * it is ok to read an_swslot here because 384 * we hold PG_BUSY on the page. 385 */ 386 uvmexp.pageins++; 387 error = uvm_swap_get(pg, anon->an_swslot, 388 PGO_SYNCIO); 389 390 /* 391 * we clean up after the i/o below in the 392 * "we_own" case 393 */ 394 } 395 #else /* defined(VMSWAP) */ 396 panic("%s: no page", __func__); 397 #endif /* defined(VMSWAP) */ 398 } 399 400 /* 401 * now relock and try again 402 */ 403 404 locked = uvmfault_relock(ufi); 405 if (locked && amap != NULL) { 406 amap_lock(amap); 407 } 408 if (locked || we_own) 409 mutex_enter(&anon->an_lock); 410 411 /* 412 * if we own the page (i.e. we set PG_BUSY), then we need 413 * to clean up after the I/O. there are three cases to 414 * consider: 415 * [1] page released during I/O: free anon and ReFault. 416 * [2] I/O not OK. free the page and cause the fault 417 * to fail. 418 * [3] I/O OK! activate the page and sync with the 419 * non-we_own case (i.e. drop anon lock if not locked). 420 */ 421 422 if (we_own) { 423 #if defined(VMSWAP) 424 if (pg->flags & PG_WANTED) { 425 wakeup(pg); 426 } 427 if (error) { 428 429 /* 430 * remove the swap slot from the anon 431 * and mark the anon as having no real slot. 432 * don't free the swap slot, thus preventing 433 * it from being used again. 434 */ 435 436 if (anon->an_swslot > 0) 437 uvm_swap_markbad(anon->an_swslot, 1); 438 anon->an_swslot = SWSLOT_BAD; 439 440 if ((pg->flags & PG_RELEASED) != 0) 441 goto released; 442 443 /* 444 * note: page was never !PG_BUSY, so it 445 * can't be mapped and thus no need to 446 * pmap_page_protect it... 447 */ 448 449 mutex_enter(&uvm_pageqlock); 450 uvm_pagefree(pg); 451 mutex_exit(&uvm_pageqlock); 452 453 if (locked) 454 uvmfault_unlockall(ufi, amap, NULL, 455 anon); 456 else 457 mutex_exit(&anon->an_lock); 458 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 459 return error; 460 } 461 462 if ((pg->flags & PG_RELEASED) != 0) { 463 released: 464 KASSERT(anon->an_ref == 0); 465 466 /* 467 * released while we unlocked amap. 468 */ 469 470 if (locked) 471 uvmfault_unlockall(ufi, amap, NULL, 472 NULL); 473 474 uvm_anon_release(anon); 475 476 if (error) { 477 UVMHIST_LOG(maphist, 478 "<- ERROR/RELEASED", 0,0,0,0); 479 return error; 480 } 481 482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0); 483 return ERESTART; 484 } 485 486 /* 487 * we've successfully read the page, activate it. 488 */ 489 490 mutex_enter(&uvm_pageqlock); 491 uvm_pageactivate(pg); 492 mutex_exit(&uvm_pageqlock); 493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 494 UVM_PAGE_OWN(pg, NULL); 495 if (!locked) 496 mutex_exit(&anon->an_lock); 497 #else /* defined(VMSWAP) */ 498 panic("%s: we_own", __func__); 499 #endif /* defined(VMSWAP) */ 500 } 501 502 /* 503 * we were not able to relock. restart fault. 504 */ 505 506 if (!locked) { 507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 508 return (ERESTART); 509 } 510 511 /* 512 * verify no one has touched the amap and moved the anon on us. 513 */ 514 515 if (ufi != NULL && 516 amap_lookup(&ufi->entry->aref, 517 ufi->orig_rvaddr - ufi->entry->start) != anon) { 518 519 uvmfault_unlockall(ufi, amap, NULL, anon); 520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 521 return (ERESTART); 522 } 523 524 /* 525 * try it again! 526 */ 527 528 uvmexp.fltanretry++; 529 continue; 530 } 531 /*NOTREACHED*/ 532 } 533 534 /* 535 * uvmfault_promote: promote data to a new anon. used for 1B and 2B. 536 * 537 * 1. allocate an anon and a page. 538 * 2. fill its contents. 539 * 3. put it into amap. 540 * 541 * => if we fail (result != 0) we unlock everything. 542 * => on success, return a new locked anon via 'nanon'. 543 * (*nanon)->an_page will be a resident, locked, dirty page. 544 */ 545 546 static int 547 uvmfault_promote(struct uvm_faultinfo *ufi, 548 struct vm_anon *oanon, 549 struct vm_page *uobjpage, 550 struct vm_anon **nanon, /* OUT: allocated anon */ 551 struct vm_anon **spare) 552 { 553 struct vm_amap *amap = ufi->entry->aref.ar_amap; 554 struct uvm_object *uobj; 555 struct vm_anon *anon; 556 struct vm_page *pg; 557 struct vm_page *opg; 558 int error; 559 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 560 561 if (oanon) { 562 /* anon COW */ 563 opg = oanon->an_page; 564 KASSERT(opg != NULL); 565 KASSERT(opg->uobject == NULL || opg->loan_count > 0); 566 } else if (uobjpage != PGO_DONTCARE) { 567 /* object-backed COW */ 568 opg = uobjpage; 569 } else { 570 /* ZFOD */ 571 opg = NULL; 572 } 573 if (opg != NULL) { 574 uobj = opg->uobject; 575 } else { 576 uobj = NULL; 577 } 578 579 KASSERT(amap != NULL); 580 KASSERT(uobjpage != NULL); 581 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0); 582 KASSERT(mutex_owned(&amap->am_l)); 583 KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock)); 584 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock)); 585 #if 0 586 KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock)); 587 #endif 588 589 if (*spare != NULL) { 590 anon = *spare; 591 *spare = NULL; 592 mutex_enter(&anon->an_lock); 593 } else if (ufi->map != kernel_map) { 594 anon = uvm_analloc(); 595 } else { 596 UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0); 597 598 /* 599 * we can't allocate anons with kernel_map locked. 600 */ 601 602 uvm_page_unbusy(&uobjpage, 1); 603 uvmfault_unlockall(ufi, amap, uobj, oanon); 604 605 *spare = uvm_analloc(); 606 if (*spare == NULL) { 607 goto nomem; 608 } 609 mutex_exit(&(*spare)->an_lock); 610 error = ERESTART; 611 goto done; 612 } 613 if (anon) { 614 615 /* 616 * The new anon is locked. 617 * 618 * if opg == NULL, we want a zero'd, dirty page, 619 * so have uvm_pagealloc() do that for us. 620 */ 621 622 pg = uvm_pagealloc(NULL, 0, anon, 623 (opg == NULL) ? UVM_PGA_ZERO : 0); 624 } else { 625 pg = NULL; 626 } 627 628 /* 629 * out of memory resources? 630 */ 631 632 if (pg == NULL) { 633 /* save anon for the next try. */ 634 if (anon != NULL) { 635 mutex_exit(&anon->an_lock); 636 *spare = anon; 637 } 638 639 /* unlock and fail ... */ 640 uvm_page_unbusy(&uobjpage, 1); 641 uvmfault_unlockall(ufi, amap, uobj, oanon); 642 nomem: 643 if (!uvm_reclaimable()) { 644 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0); 645 uvmexp.fltnoanon++; 646 error = ENOMEM; 647 goto done; 648 } 649 650 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0); 651 uvmexp.fltnoram++; 652 uvm_wait("flt_noram5"); 653 error = ERESTART; 654 goto done; 655 } 656 657 /* copy page [pg now dirty] */ 658 if (opg) { 659 uvm_pagecopy(opg, pg); 660 } 661 662 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon, 663 oanon != NULL); 664 665 *nanon = anon; 666 error = 0; 667 done: 668 return error; 669 } 670 671 672 /* 673 * F A U L T - m a i n e n t r y p o i n t 674 */ 675 676 /* 677 * uvm_fault: page fault handler 678 * 679 * => called from MD code to resolve a page fault 680 * => VM data structures usually should be unlocked. however, it is 681 * possible to call here with the main map locked if the caller 682 * gets a write lock, sets it recusive, and then calls us (c.f. 683 * uvm_map_pageable). this should be avoided because it keeps 684 * the map locked off during I/O. 685 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT 686 */ 687 688 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 689 ~VM_PROT_WRITE : VM_PROT_ALL) 690 691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */ 692 #define UVM_FAULT_WIRE (1 << 0) 693 #define UVM_FAULT_MAXPROT (1 << 1) 694 695 struct uvm_faultctx { 696 vm_prot_t access_type; 697 vm_prot_t enter_prot; 698 vaddr_t startva; 699 int npages; 700 int centeridx; 701 struct vm_anon *anon_spare; 702 bool wire_mapping; 703 bool narrow; 704 bool wire_paging; 705 bool maxprot; 706 bool cow_now; 707 }; 708 709 static inline int uvm_fault_check( 710 struct uvm_faultinfo *, struct uvm_faultctx *, 711 struct vm_anon ***, struct vm_page ***); 712 713 static int uvm_fault_upper( 714 struct uvm_faultinfo *, struct uvm_faultctx *, 715 struct vm_anon **); 716 static inline int uvm_fault_upper_lookup( 717 struct uvm_faultinfo *, struct uvm_faultctx *, 718 struct vm_anon **, struct vm_page **); 719 static inline void uvm_fault_upper_neighbor( 720 struct uvm_faultinfo *, struct uvm_faultctx *, 721 vaddr_t, struct vm_page *, bool); 722 static inline int uvm_fault_upper_loan( 723 struct uvm_faultinfo *, struct uvm_faultctx *, 724 struct vm_anon *, struct uvm_object **); 725 static inline int uvm_fault_upper_promote( 726 struct uvm_faultinfo *, struct uvm_faultctx *, 727 struct uvm_object *, struct vm_anon *); 728 static inline int uvm_fault_upper_direct( 729 struct uvm_faultinfo *, struct uvm_faultctx *, 730 struct uvm_object *, struct vm_anon *); 731 static int uvm_fault_upper_enter( 732 struct uvm_faultinfo *, struct uvm_faultctx *, 733 struct uvm_object *, struct vm_anon *, 734 struct vm_page *, struct vm_anon *); 735 static inline int uvm_fault_upper_done( 736 struct uvm_faultinfo *, struct uvm_faultctx *, 737 struct uvm_object *, struct vm_anon *, 738 struct vm_page *, struct vm_anon *); 739 740 static int uvm_fault_lower( 741 struct uvm_faultinfo *, struct uvm_faultctx *, 742 struct vm_page **); 743 static inline int uvm_fault_lower_special( 744 struct uvm_faultinfo *, struct uvm_faultctx *, 745 struct vm_page **); 746 static inline int uvm_fault_lower_lookup( 747 struct uvm_faultinfo *, struct uvm_faultctx *, 748 struct vm_page **); 749 static inline void uvm_fault_lower_neighbor( 750 struct uvm_faultinfo *, struct uvm_faultctx *, 751 vaddr_t, struct vm_page *, bool); 752 static inline int uvm_fault_lower_generic( 753 struct uvm_faultinfo *, struct uvm_faultctx *, 754 struct vm_page **); 755 static inline int uvm_fault_lower1( 756 struct uvm_faultinfo *, struct uvm_faultctx *, 757 struct uvm_object *, struct vm_page *); 758 static inline int uvm_fault_lower_io( 759 struct uvm_faultinfo *, struct uvm_faultctx *, 760 struct uvm_object **, struct vm_page **); 761 static inline int uvm_fault_lower_direct( 762 struct uvm_faultinfo *, struct uvm_faultctx *, 763 struct uvm_object *, struct vm_page *); 764 static inline int uvm_fault_lower_direct_loan( 765 struct uvm_faultinfo *, struct uvm_faultctx *, 766 struct uvm_object *, struct vm_page **, 767 struct vm_page **); 768 static inline int uvm_fault_lower_promote( 769 struct uvm_faultinfo *, struct uvm_faultctx *, 770 struct uvm_object *, struct vm_page *); 771 static int uvm_fault_lower_enter( 772 struct uvm_faultinfo *, struct uvm_faultctx *, 773 struct uvm_object *, 774 struct vm_anon *, struct vm_page *, 775 struct vm_page *); 776 static inline int uvm_fault_lower_done( 777 struct uvm_faultinfo *, struct uvm_faultctx *, 778 struct uvm_object *, 779 struct vm_anon *, struct vm_page *); 780 781 int 782 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr, 783 vm_prot_t access_type, int fault_flag) 784 { 785 struct uvm_faultinfo ufi; 786 struct uvm_faultctx flt = { 787 .access_type = access_type, 788 789 /* don't look for neighborhood * pages on "wire" fault */ 790 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0, 791 792 /* "wire" fault causes wiring of both mapping and paging */ 793 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0, 794 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0, 795 796 .maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0, 797 }; 798 struct vm_anon *anons_store[UVM_MAXRANGE], **anons; 799 struct vm_page *pages_store[UVM_MAXRANGE], **pages; 800 int error; 801 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist); 802 803 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)", 804 orig_map, vaddr, access_type, fault_flag); 805 806 uvmexp.faults++; /* XXX: locking? */ 807 808 /* 809 * init the IN parameters in the ufi 810 */ 811 812 ufi.orig_map = orig_map; 813 ufi.orig_rvaddr = trunc_page(vaddr); 814 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 815 816 error = ERESTART; 817 while (error == ERESTART) { 818 anons = anons_store; 819 pages = pages_store; 820 821 error = uvm_fault_check(&ufi, &flt, &anons, &pages); 822 if (error != 0) 823 continue; 824 825 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); 826 if (error != 0) 827 continue; 828 829 if (pages[flt.centeridx] == PGO_DONTCARE) 830 error = uvm_fault_upper(&ufi, &flt, anons); 831 else 832 error = uvm_fault_lower(&ufi, &flt, pages); 833 } 834 835 if (flt.anon_spare != NULL) { 836 flt.anon_spare->an_ref--; 837 uvm_anfree(flt.anon_spare); 838 } 839 return error; 840 } 841 842 static int 843 uvm_fault_check( 844 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 845 struct vm_anon ***ranons, struct vm_page ***rpages) 846 { 847 struct vm_amap *amap; 848 struct uvm_object *uobj; 849 vm_prot_t check_prot; 850 int nback, nforw; 851 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist); 852 853 /* 854 * lookup and lock the maps 855 */ 856 857 if (uvmfault_lookup(ufi, false) == false) { 858 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0); 859 return EFAULT; 860 } 861 /* locked: maps(read) */ 862 863 #ifdef DIAGNOSTIC 864 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) { 865 printf("Page fault on non-pageable map:\n"); 866 printf("ufi->map = %p\n", ufi->map); 867 printf("ufi->orig_map = %p\n", ufi->orig_map); 868 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr); 869 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0"); 870 } 871 #endif 872 873 /* 874 * check protection 875 */ 876 877 check_prot = flt->maxprot ? 878 ufi->entry->max_protection : ufi->entry->protection; 879 if ((check_prot & flt->access_type) != flt->access_type) { 880 UVMHIST_LOG(maphist, 881 "<- protection failure (prot=0x%x, access=0x%x)", 882 ufi->entry->protection, flt->access_type, 0, 0); 883 uvmfault_unlockmaps(ufi, false); 884 return EACCES; 885 } 886 887 /* 888 * "enter_prot" is the protection we want to enter the page in at. 889 * for certain pages (e.g. copy-on-write pages) this protection can 890 * be more strict than ufi->entry->protection. "wired" means either 891 * the entry is wired or we are fault-wiring the pg. 892 */ 893 894 flt->enter_prot = ufi->entry->protection; 895 if (VM_MAPENT_ISWIRED(ufi->entry)) 896 flt->wire_mapping = true; 897 898 if (flt->wire_mapping) { 899 flt->access_type = flt->enter_prot; /* full access for wired */ 900 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0; 901 } else { 902 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0; 903 } 904 905 /* 906 * handle "needs_copy" case. if we need to copy the amap we will 907 * have to drop our readlock and relock it with a write lock. (we 908 * need a write lock to change anything in a map entry [e.g. 909 * needs_copy]). 910 */ 911 912 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 913 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) { 914 KASSERT(!flt->maxprot); 915 /* need to clear */ 916 UVMHIST_LOG(maphist, 917 " need to clear needs_copy and refault",0,0,0,0); 918 uvmfault_unlockmaps(ufi, false); 919 uvmfault_amapcopy(ufi); 920 uvmexp.fltamcopy++; 921 return ERESTART; 922 923 } else { 924 925 /* 926 * ensure that we pmap_enter page R/O since 927 * needs_copy is still true 928 */ 929 930 flt->enter_prot &= ~VM_PROT_WRITE; 931 } 932 } 933 934 /* 935 * identify the players 936 */ 937 938 amap = ufi->entry->aref.ar_amap; /* upper layer */ 939 uobj = ufi->entry->object.uvm_obj; /* lower layer */ 940 941 /* 942 * check for a case 0 fault. if nothing backing the entry then 943 * error now. 944 */ 945 946 if (amap == NULL && uobj == NULL) { 947 uvmfault_unlockmaps(ufi, false); 948 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 949 return EFAULT; 950 } 951 952 /* 953 * establish range of interest based on advice from mapper 954 * and then clip to fit map entry. note that we only want 955 * to do this the first time through the fault. if we 956 * ReFault we will disable this by setting "narrow" to true. 957 */ 958 959 if (flt->narrow == false) { 960 961 /* wide fault (!narrow) */ 962 KASSERT(uvmadvice[ufi->entry->advice].advice == 963 ufi->entry->advice); 964 nback = MIN(uvmadvice[ufi->entry->advice].nback, 965 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT); 966 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT); 967 nforw = MIN(uvmadvice[ufi->entry->advice].nforw, 968 ((ufi->entry->end - ufi->orig_rvaddr) >> 969 PAGE_SHIFT) - 1); 970 /* 971 * note: "-1" because we don't want to count the 972 * faulting page as forw 973 */ 974 flt->npages = nback + nforw + 1; 975 flt->centeridx = nback; 976 977 flt->narrow = true; /* ensure only once per-fault */ 978 979 } else { 980 981 /* narrow fault! */ 982 nback = nforw = 0; 983 flt->startva = ufi->orig_rvaddr; 984 flt->npages = 1; 985 flt->centeridx = 0; 986 987 } 988 /* offset from entry's start to pgs' start */ 989 const voff_t eoff = flt->startva - ufi->entry->start; 990 991 /* locked: maps(read) */ 992 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x", 993 flt->narrow, nback, nforw, flt->startva); 994 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry, 995 amap, uobj, 0); 996 997 /* 998 * if we've got an amap, lock it and extract current anons. 999 */ 1000 1001 if (amap) { 1002 amap_lock(amap); 1003 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages); 1004 } else { 1005 *ranons = NULL; /* to be safe */ 1006 } 1007 1008 /* locked: maps(read), amap(if there) */ 1009 KASSERT(amap == NULL || mutex_owned(&amap->am_l)); 1010 1011 /* 1012 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 1013 * now and then forget about them (for the rest of the fault). 1014 */ 1015 1016 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) { 1017 1018 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 1019 0,0,0,0); 1020 /* flush back-page anons? */ 1021 if (amap) 1022 uvmfault_anonflush(*ranons, nback); 1023 1024 /* flush object? */ 1025 if (uobj) { 1026 voff_t uoff; 1027 1028 uoff = ufi->entry->offset + eoff; 1029 mutex_enter(&uobj->vmobjlock); 1030 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff + 1031 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 1032 } 1033 1034 /* now forget about the backpages */ 1035 if (amap) 1036 *ranons += nback; 1037 #if 0 1038 /* XXXUEBS */ 1039 if (uobj) 1040 *rpages += nback; 1041 #endif 1042 flt->startva += (nback << PAGE_SHIFT); 1043 flt->npages -= nback; 1044 flt->centeridx = 0; 1045 } 1046 /* 1047 * => startva is fixed 1048 * => npages is fixed 1049 */ 1050 1051 return 0; 1052 } 1053 1054 static int 1055 uvm_fault_upper_lookup( 1056 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1057 struct vm_anon **anons, struct vm_page **pages) 1058 { 1059 struct vm_amap *amap = ufi->entry->aref.ar_amap; 1060 int lcv; 1061 vaddr_t currva; 1062 bool shadowed; 1063 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist); 1064 1065 /* locked: maps(read), amap(if there) */ 1066 KASSERT(amap == NULL || mutex_owned(&amap->am_l)); 1067 1068 /* 1069 * map in the backpages and frontpages we found in the amap in hopes 1070 * of preventing future faults. we also init the pages[] array as 1071 * we go. 1072 */ 1073 1074 currva = flt->startva; 1075 shadowed = false; 1076 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1077 /* 1078 * dont play with VAs that are already mapped 1079 * except for center) 1080 */ 1081 if (lcv != flt->centeridx && 1082 pmap_extract(ufi->orig_map->pmap, currva, NULL)) { 1083 pages[lcv] = PGO_DONTCARE; 1084 continue; 1085 } 1086 1087 /* 1088 * unmapped or center page. check if any anon at this level. 1089 */ 1090 if (amap == NULL || anons[lcv] == NULL) { 1091 pages[lcv] = NULL; 1092 continue; 1093 } 1094 1095 /* 1096 * check for present page and map if possible. re-activate it. 1097 */ 1098 1099 pages[lcv] = PGO_DONTCARE; 1100 if (lcv == flt->centeridx) { /* save center for later! */ 1101 shadowed = true; 1102 } else { 1103 struct vm_anon *anon = anons[lcv]; 1104 1105 mutex_enter(&anon->an_lock); 1106 uvm_fault_upper_neighbor(ufi, flt, currva, 1107 anon->an_page, anon->an_ref > 1); 1108 mutex_exit(&anon->an_lock); 1109 } 1110 } 1111 1112 /* locked: maps(read), amap(if there) */ 1113 KASSERT(amap == NULL || mutex_owned(&amap->am_l)); 1114 /* (shadowed == true) if there is an anon at the faulting address */ 1115 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed, 1116 (ufi->entry->object.uvm_obj && shadowed != false),0,0); 1117 1118 /* 1119 * note that if we are really short of RAM we could sleep in the above 1120 * call to pmap_enter with everything locked. bad? 1121 * 1122 * XXX Actually, that is bad; pmap_enter() should just fail in that 1123 * XXX case. --thorpej 1124 */ 1125 1126 return 0; 1127 } 1128 1129 static void 1130 uvm_fault_upper_neighbor( 1131 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1132 vaddr_t currva, struct vm_page *pg, bool readonly) 1133 { 1134 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist); 1135 1136 /* ignore loaned and busy pages */ 1137 if (pg == NULL || pg->loan_count != 0 || 1138 (pg->flags & PG_BUSY) != 0) 1139 goto uvm_fault_upper_lookup_enter_done; 1140 1141 mutex_enter(&uvm_pageqlock); 1142 uvm_pageenqueue(pg); 1143 mutex_exit(&uvm_pageqlock); 1144 UVMHIST_LOG(maphist, 1145 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x", 1146 ufi->orig_map->pmap, currva, pg, 0); 1147 uvmexp.fltnamap++; 1148 1149 /* 1150 * Since this page isn't the page that's actually faulting, 1151 * ignore pmap_enter() failures; it's not critical that we 1152 * enter these right now. 1153 */ 1154 1155 (void) pmap_enter(ufi->orig_map->pmap, currva, 1156 VM_PAGE_TO_PHYS(pg), 1157 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1158 flt->enter_prot, 1159 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)); 1160 1161 uvm_fault_upper_lookup_enter_done: 1162 pmap_update(ufi->orig_map->pmap); 1163 } 1164 1165 static int 1166 uvm_fault_lower( 1167 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1168 struct vm_page **pages) 1169 { 1170 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1171 int error; 1172 1173 /* 1174 * if the desired page is not shadowed by the amap and we have a 1175 * backing object, then we check to see if the backing object would 1176 * prefer to handle the fault itself (rather than letting us do it 1177 * with the usual pgo_get hook). the backing object signals this by 1178 * providing a pgo_fault routine. 1179 */ 1180 1181 if (uobj && uobj->pgops->pgo_fault != NULL) { 1182 error = uvm_fault_lower_special(ufi, flt, pages); 1183 } else { 1184 error = uvm_fault_lower_generic(ufi, flt, pages); 1185 } 1186 return error; 1187 } 1188 1189 static int 1190 uvm_fault_lower_special( 1191 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1192 struct vm_page **pages) 1193 { 1194 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1195 int error; 1196 1197 mutex_enter(&uobj->vmobjlock); 1198 /* locked: maps(read), amap (if there), uobj */ 1199 error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages, 1200 flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO); 1201 1202 /* locked: nothing, pgo_fault has unlocked everything */ 1203 1204 if (error == ERESTART) 1205 error = ERESTART; /* try again! */ 1206 /* 1207 * object fault routine responsible for pmap_update(). 1208 */ 1209 1210 return error; 1211 } 1212 1213 static int 1214 uvm_fault_lower_generic( 1215 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1216 struct vm_page **pages) 1217 { 1218 #ifdef DIAGNOSTIC 1219 struct vm_amap *amap = ufi->entry->aref.ar_amap; 1220 #endif 1221 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1222 struct vm_page *uobjpage; 1223 1224 /* 1225 * now, if the desired page is not shadowed by the amap and we have 1226 * a backing object that does not have a special fault routine, then 1227 * we ask (with pgo_get) the object for resident pages that we care 1228 * about and attempt to map them in. we do not let pgo_get block 1229 * (PGO_LOCKED). 1230 */ 1231 1232 if (uobj == NULL) { 1233 /* zero fill; don't care neighbor pages */ 1234 uobjpage = NULL; 1235 } else { 1236 uvm_fault_lower_lookup(ufi, flt, pages); 1237 uobjpage = pages[flt->centeridx]; 1238 } 1239 1240 /* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */ 1241 KASSERT(amap == NULL || mutex_owned(&amap->am_l)); 1242 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock)); 1243 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0); 1244 1245 /* 1246 * note that at this point we are done with any front or back pages. 1247 * we are now going to focus on the center page (i.e. the one we've 1248 * faulted on). if we have faulted on the upper (anon) layer 1249 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 1250 * not touched it yet). if we have faulted on the bottom (uobj) 1251 * layer [i.e. case 2] and the page was both present and available, 1252 * then we've got a pointer to it as "uobjpage" and we've already 1253 * made it BUSY. 1254 */ 1255 1256 /* 1257 * there are four possible cases we must address: 1A, 1B, 2A, and 2B 1258 */ 1259 1260 /* 1261 * redirect case 2: if we are not shadowed, go to case 2. 1262 */ 1263 1264 return uvm_fault_lower1(ufi, flt, uobj, uobjpage); 1265 } 1266 1267 static int 1268 uvm_fault_lower_lookup( 1269 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1270 struct vm_page **pages) 1271 { 1272 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1273 int lcv, gotpages; 1274 vaddr_t currva; 1275 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist); 1276 1277 mutex_enter(&uobj->vmobjlock); 1278 /* locked (!shadowed): maps(read), amap (if there), uobj */ 1279 /* 1280 * the following call to pgo_get does _not_ change locking state 1281 */ 1282 1283 uvmexp.fltlget++; 1284 gotpages = flt->npages; 1285 (void) uobj->pgops->pgo_get(uobj, 1286 ufi->entry->offset + flt->startva - ufi->entry->start, 1287 pages, &gotpages, flt->centeridx, 1288 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED); 1289 1290 /* 1291 * check for pages to map, if we got any 1292 */ 1293 1294 if (gotpages == 0) { 1295 pages[flt->centeridx] = NULL; 1296 return 0; 1297 } 1298 1299 currva = flt->startva; 1300 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1301 struct vm_page *curpg; 1302 1303 curpg = pages[lcv]; 1304 if (curpg == NULL || curpg == PGO_DONTCARE) { 1305 continue; 1306 } 1307 KASSERT(curpg->uobject == uobj); 1308 1309 /* 1310 * if center page is resident and not PG_BUSY|PG_RELEASED 1311 * then pgo_get made it PG_BUSY for us and gave us a handle 1312 * to it. remember this page as "uobjpage." (for later use). 1313 */ 1314 1315 if (lcv == flt->centeridx) { 1316 UVMHIST_LOG(maphist, " got uobjpage " 1317 "(0x%x) with locked get", 1318 curpg, 0,0,0); 1319 } else { 1320 bool readonly = (curpg->flags & PG_RDONLY) 1321 || (curpg->loan_count > 0) 1322 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject); 1323 1324 uvm_fault_lower_neighbor(ufi, flt, 1325 currva, curpg, readonly); 1326 } 1327 } 1328 pmap_update(ufi->orig_map->pmap); 1329 return 0; 1330 } 1331 1332 static void 1333 uvm_fault_lower_neighbor( 1334 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1335 vaddr_t currva, struct vm_page *pg, bool readonly) 1336 { 1337 UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist); 1338 1339 /* 1340 * calling pgo_get with PGO_LOCKED returns us pages which 1341 * are neither busy nor released, so we don't need to check 1342 * for this. we can just directly enter the pages. 1343 */ 1344 1345 mutex_enter(&uvm_pageqlock); 1346 uvm_pageenqueue(pg); 1347 mutex_exit(&uvm_pageqlock); 1348 UVMHIST_LOG(maphist, 1349 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x", 1350 ufi->orig_map->pmap, currva, pg, 0); 1351 uvmexp.fltnomap++; 1352 1353 /* 1354 * Since this page isn't the page that's actually faulting, 1355 * ignore pmap_enter() failures; it's not critical that we 1356 * enter these right now. 1357 */ 1358 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1359 KASSERT((pg->flags & PG_RELEASED) == 0); 1360 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || 1361 (pg->flags & PG_CLEAN) != 0); 1362 1363 (void) pmap_enter(ufi->orig_map->pmap, currva, 1364 VM_PAGE_TO_PHYS(pg), 1365 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1366 flt->enter_prot & MASK(ufi->entry), 1367 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)); 1368 1369 /* 1370 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've 1371 * held the lock the whole time we've had the handle. 1372 */ 1373 KASSERT((pg->flags & PG_WANTED) == 0); 1374 KASSERT((pg->flags & PG_RELEASED) == 0); 1375 1376 pg->flags &= ~(PG_BUSY); 1377 UVM_PAGE_OWN(pg, NULL); 1378 } 1379 1380 static int 1381 uvm_fault_upper( 1382 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1383 struct vm_anon **anons) 1384 { 1385 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1386 struct vm_anon * const anon = anons[flt->centeridx]; 1387 struct uvm_object *uobj; 1388 int error; 1389 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist); 1390 1391 /* locked: maps(read), amap */ 1392 KASSERT(mutex_owned(&amap->am_l)); 1393 1394 /* 1395 * handle case 1: fault on an anon in our amap 1396 */ 1397 1398 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0); 1399 mutex_enter(&anon->an_lock); 1400 1401 /* locked: maps(read), amap, anon */ 1402 KASSERT(mutex_owned(&amap->am_l)); 1403 KASSERT(mutex_owned(&anon->an_lock)); 1404 1405 /* 1406 * no matter if we have case 1A or case 1B we are going to need to 1407 * have the anon's memory resident. ensure that now. 1408 */ 1409 1410 /* 1411 * let uvmfault_anonget do the dirty work. 1412 * if it fails (!OK) it will unlock everything for us. 1413 * if it succeeds, locks are still valid and locked. 1414 * also, if it is OK, then the anon's page is on the queues. 1415 * if the page is on loan from a uvm_object, then anonget will 1416 * lock that object for us if it does not fail. 1417 */ 1418 1419 error = uvmfault_anonget(ufi, amap, anon); 1420 switch (error) { 1421 case 0: 1422 break; 1423 1424 case ERESTART: 1425 return ERESTART; 1426 1427 case EAGAIN: 1428 kpause("fltagain1", false, hz/2, NULL); 1429 return ERESTART; 1430 1431 default: 1432 return error; 1433 } 1434 1435 /* 1436 * uobj is non null if the page is on loan from an object (i.e. uobj) 1437 */ 1438 1439 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1440 1441 /* locked: maps(read), amap, anon, uobj(if one) */ 1442 KASSERT(mutex_owned(&amap->am_l)); 1443 KASSERT(mutex_owned(&anon->an_lock)); 1444 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock)); 1445 1446 /* 1447 * special handling for loaned pages 1448 */ 1449 1450 if (anon->an_page->loan_count) { 1451 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj); 1452 if (error != 0) 1453 return error; 1454 } 1455 1456 /* 1457 * if we are case 1B then we will need to allocate a new blank 1458 * anon to transfer the data into. note that we have a lock 1459 * on anon, so no one can busy or release the page until we are done. 1460 * also note that the ref count can't drop to zero here because 1461 * it is > 1 and we are only dropping one ref. 1462 * 1463 * in the (hopefully very rare) case that we are out of RAM we 1464 * will unlock, wait for more RAM, and refault. 1465 * 1466 * if we are out of anon VM we kill the process (XXX: could wait?). 1467 */ 1468 1469 if (flt->cow_now && anon->an_ref > 1) { 1470 error = uvm_fault_upper_promote(ufi, flt, uobj, anon); 1471 } else { 1472 error = uvm_fault_upper_direct(ufi, flt, uobj, anon); 1473 } 1474 return error; 1475 } 1476 1477 static int 1478 uvm_fault_upper_loan( 1479 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1480 struct vm_anon *anon, struct uvm_object **ruobj) 1481 { 1482 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1483 int error = 0; 1484 1485 if (!flt->cow_now) { 1486 1487 /* 1488 * for read faults on loaned pages we just cap the 1489 * protection at read-only. 1490 */ 1491 1492 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1493 1494 } else { 1495 /* 1496 * note that we can't allow writes into a loaned page! 1497 * 1498 * if we have a write fault on a loaned page in an 1499 * anon then we need to look at the anon's ref count. 1500 * if it is greater than one then we are going to do 1501 * a normal copy-on-write fault into a new anon (this 1502 * is not a problem). however, if the reference count 1503 * is one (a case where we would normally allow a 1504 * write directly to the page) then we need to kill 1505 * the loan before we continue. 1506 */ 1507 1508 /* >1 case is already ok */ 1509 if (anon->an_ref == 1) { 1510 error = uvm_loanbreak_anon(anon, *ruobj); 1511 if (error != 0) { 1512 uvmfault_unlockall(ufi, amap, *ruobj, anon); 1513 uvm_wait("flt_noram2"); 1514 return ERESTART; 1515 } 1516 /* if we were a loan reciever uobj is gone */ 1517 if (*ruobj) 1518 *ruobj = NULL; 1519 } 1520 } 1521 return error; 1522 } 1523 1524 static int 1525 uvm_fault_upper_promote( 1526 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1527 struct uvm_object *uobj, struct vm_anon *anon) 1528 { 1529 struct vm_anon * const oanon = anon; 1530 struct vm_page *pg; 1531 int error; 1532 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist); 1533 1534 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1535 uvmexp.flt_acow++; 1536 1537 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, 1538 &anon, &flt->anon_spare); 1539 switch (error) { 1540 case 0: 1541 break; 1542 case ERESTART: 1543 return ERESTART; 1544 default: 1545 return error; 1546 } 1547 1548 pg = anon->an_page; 1549 mutex_enter(&uvm_pageqlock); 1550 uvm_pageactivate(pg); 1551 mutex_exit(&uvm_pageqlock); 1552 pg->flags &= ~(PG_BUSY|PG_FAKE); 1553 UVM_PAGE_OWN(pg, NULL); 1554 1555 /* deref: can not drop to zero here by defn! */ 1556 oanon->an_ref--; 1557 1558 /* 1559 * note: oanon is still locked, as is the new anon. we 1560 * need to check for this later when we unlock oanon; if 1561 * oanon != anon, we'll have to unlock anon, too. 1562 */ 1563 1564 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1565 } 1566 1567 static int 1568 uvm_fault_upper_direct( 1569 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1570 struct uvm_object *uobj, struct vm_anon *anon) 1571 { 1572 struct vm_anon * const oanon = anon; 1573 struct vm_page *pg; 1574 1575 uvmexp.flt_anon++; 1576 pg = anon->an_page; 1577 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1578 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1579 1580 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1581 } 1582 1583 static int 1584 uvm_fault_upper_enter( 1585 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1586 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg, 1587 struct vm_anon *oanon) 1588 { 1589 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1590 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist); 1591 1592 /* locked: maps(read), amap, oanon, anon (if different from oanon) */ 1593 KASSERT(mutex_owned(&amap->am_l)); 1594 KASSERT(mutex_owned(&anon->an_lock)); 1595 KASSERT(mutex_owned(&oanon->an_lock)); 1596 1597 /* 1598 * now map the page in. 1599 */ 1600 1601 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x", 1602 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0); 1603 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1604 flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) 1605 != 0) { 1606 1607 /* 1608 * No need to undo what we did; we can simply think of 1609 * this as the pmap throwing away the mapping information. 1610 * 1611 * We do, however, have to go through the ReFault path, 1612 * as the map may change while we're asleep. 1613 */ 1614 1615 if (anon != oanon) 1616 mutex_exit(&anon->an_lock); 1617 uvmfault_unlockall(ufi, amap, uobj, oanon); 1618 if (!uvm_reclaimable()) { 1619 UVMHIST_LOG(maphist, 1620 "<- failed. out of VM",0,0,0,0); 1621 /* XXX instrumentation */ 1622 return ENOMEM; 1623 } 1624 /* XXX instrumentation */ 1625 uvm_wait("flt_pmfail1"); 1626 return ERESTART; 1627 } 1628 1629 return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon); 1630 } 1631 1632 static int 1633 uvm_fault_upper_done( 1634 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1635 struct uvm_object *uobj, struct vm_anon *anon, 1636 struct vm_page *pg, struct vm_anon *oanon) 1637 { 1638 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1639 1640 /* 1641 * ... update the page queues. 1642 */ 1643 1644 mutex_enter(&uvm_pageqlock); 1645 if (flt->wire_paging) { 1646 uvm_pagewire(pg); 1647 1648 /* 1649 * since the now-wired page cannot be paged out, 1650 * release its swap resources for others to use. 1651 * since an anon with no swap cannot be PG_CLEAN, 1652 * clear its clean flag now. 1653 */ 1654 1655 pg->flags &= ~(PG_CLEAN); 1656 uvm_anon_dropswap(anon); 1657 } else { 1658 uvm_pageactivate(pg); 1659 } 1660 mutex_exit(&uvm_pageqlock); 1661 1662 /* 1663 * done case 1! finish up by unlocking everything and returning success 1664 */ 1665 1666 if (anon != oanon) 1667 mutex_exit(&anon->an_lock); 1668 uvmfault_unlockall(ufi, amap, uobj, oanon); 1669 pmap_update(ufi->orig_map->pmap); 1670 return 0; 1671 } 1672 1673 static int 1674 uvm_fault_lower1( 1675 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1676 struct uvm_object *uobj, struct vm_page *uobjpage) 1677 { 1678 #ifdef DIAGNOSTIC 1679 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1680 #endif 1681 bool promote; 1682 int error; 1683 UVMHIST_FUNC("uvm_fault_lower1"); UVMHIST_CALLED(maphist); 1684 1685 /* 1686 * handle case 2: faulting on backing object or zero fill 1687 */ 1688 1689 /* 1690 * locked: 1691 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1692 */ 1693 KASSERT(amap == NULL || mutex_owned(&amap->am_l)); 1694 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock)); 1695 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0); 1696 1697 /* 1698 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1699 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1700 * have a backing object, check and see if we are going to promote 1701 * the data up to an anon during the fault. 1702 */ 1703 1704 if (uobj == NULL) { 1705 uobjpage = PGO_DONTCARE; 1706 promote = true; /* always need anon here */ 1707 } else { 1708 KASSERT(uobjpage != PGO_DONTCARE); 1709 promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry); 1710 } 1711 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d", 1712 promote, (uobj == NULL), 0,0); 1713 1714 /* 1715 * if uobjpage is not null then we do not need to do I/O to get the 1716 * uobjpage. 1717 * 1718 * if uobjpage is null, then we need to unlock and ask the pager to 1719 * get the data for us. once we have the data, we need to reverify 1720 * the state the world. we are currently not holding any resources. 1721 */ 1722 1723 if (uobjpage) { 1724 /* update rusage counters */ 1725 curlwp->l_ru.ru_minflt++; 1726 } else { 1727 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage); 1728 if (error != 0) 1729 return error; 1730 } 1731 1732 /* 1733 * locked: 1734 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1735 */ 1736 KASSERT(amap == NULL || mutex_owned(&amap->am_l)); 1737 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock)); 1738 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 1739 1740 /* 1741 * notes: 1742 * - at this point uobjpage can not be NULL 1743 * - at this point uobjpage can not be PG_RELEASED (since we checked 1744 * for it above) 1745 * - at this point uobjpage could be PG_WANTED (handle later) 1746 */ 1747 1748 KASSERT(uobj == NULL || uobj == uobjpage->uobject); 1749 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) || 1750 (uobjpage->flags & PG_CLEAN) != 0); 1751 1752 if (promote == false) { 1753 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage); 1754 } else { 1755 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage); 1756 } 1757 return error; 1758 } 1759 1760 static int 1761 uvm_fault_lower_io( 1762 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1763 struct uvm_object **ruobj, struct vm_page **ruobjpage) 1764 { 1765 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1766 struct uvm_object *uobj = *ruobj; 1767 struct vm_page *pg; 1768 bool locked; 1769 int gotpages; 1770 int error; 1771 voff_t uoff; 1772 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist); 1773 1774 /* update rusage counters */ 1775 curlwp->l_ru.ru_majflt++; 1776 1777 /* locked: maps(read), amap(if there), uobj */ 1778 uvmfault_unlockall(ufi, amap, NULL, NULL); 1779 /* locked: uobj */ 1780 1781 uvmexp.fltget++; 1782 gotpages = 1; 1783 pg = NULL; 1784 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; 1785 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages, 1786 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice, 1787 PGO_SYNCIO); 1788 /* locked: pg(if no error) */ 1789 1790 /* 1791 * recover from I/O 1792 */ 1793 1794 if (error) { 1795 if (error == EAGAIN) { 1796 UVMHIST_LOG(maphist, 1797 " pgo_get says TRY AGAIN!",0,0,0,0); 1798 kpause("fltagain2", false, hz/2, NULL); 1799 return ERESTART; 1800 } 1801 1802 #if 0 1803 KASSERT(error != ERESTART); 1804 #else 1805 /* XXXUEBS don't re-fault? */ 1806 if (error == ERESTART) 1807 error = EIO; 1808 #endif 1809 1810 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)", 1811 error, 0,0,0); 1812 return error; 1813 } 1814 1815 /* locked: pg */ 1816 1817 KASSERT((pg->flags & PG_BUSY) != 0); 1818 1819 mutex_enter(&uvm_pageqlock); 1820 uvm_pageactivate(pg); 1821 mutex_exit(&uvm_pageqlock); 1822 1823 /* 1824 * re-verify the state of the world by first trying to relock 1825 * the maps. always relock the object. 1826 */ 1827 1828 locked = uvmfault_relock(ufi); 1829 if (locked && amap) 1830 amap_lock(amap); 1831 1832 /* might be changed */ 1833 uobj = pg->uobject; 1834 1835 mutex_enter(&uobj->vmobjlock); 1836 1837 /* locked(locked): maps(read), amap(if !null), uobj, pg */ 1838 /* locked(!locked): uobj, pg */ 1839 1840 /* 1841 * verify that the page has not be released and re-verify 1842 * that amap slot is still free. if there is a problem, 1843 * we unlock and clean up. 1844 */ 1845 1846 if ((pg->flags & PG_RELEASED) != 0 || 1847 (locked && amap && amap_lookup(&ufi->entry->aref, 1848 ufi->orig_rvaddr - ufi->entry->start))) { 1849 if (locked) 1850 uvmfault_unlockall(ufi, amap, NULL, NULL); 1851 locked = false; 1852 } 1853 1854 /* 1855 * didn't get the lock? release the page and retry. 1856 */ 1857 1858 if (locked == false) { 1859 UVMHIST_LOG(maphist, 1860 " wasn't able to relock after fault: retry", 1861 0,0,0,0); 1862 if (pg->flags & PG_WANTED) { 1863 wakeup(pg); 1864 } 1865 if (pg->flags & PG_RELEASED) { 1866 uvmexp.fltpgrele++; 1867 uvm_pagefree(pg); 1868 mutex_exit(&uobj->vmobjlock); 1869 return ERESTART; 1870 } 1871 pg->flags &= ~(PG_BUSY|PG_WANTED); 1872 UVM_PAGE_OWN(pg, NULL); 1873 mutex_exit(&uobj->vmobjlock); 1874 return ERESTART; 1875 } 1876 1877 /* 1878 * we have the data in pg which is busy and 1879 * not released. we are holding object lock (so the page 1880 * can't be released on us). 1881 */ 1882 1883 /* locked: maps(read), amap(if !null), uobj, pg */ 1884 1885 *ruobj = uobj; 1886 *ruobjpage = pg; 1887 return 0; 1888 } 1889 1890 int 1891 uvm_fault_lower_direct( 1892 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1893 struct uvm_object *uobj, struct vm_page *uobjpage) 1894 { 1895 struct vm_page *pg; 1896 1897 /* 1898 * we are not promoting. if the mapping is COW ensure that we 1899 * don't give more access than we should (e.g. when doing a read 1900 * fault on a COPYONWRITE mapping we want to map the COW page in 1901 * R/O even though the entry protection could be R/W). 1902 * 1903 * set "pg" to the page we want to map in (uobjpage, usually) 1904 */ 1905 1906 uvmexp.flt_obj++; 1907 if (UVM_ET_ISCOPYONWRITE(ufi->entry) || 1908 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject)) 1909 flt->enter_prot &= ~VM_PROT_WRITE; 1910 pg = uobjpage; /* map in the actual object */ 1911 1912 KASSERT(uobjpage != PGO_DONTCARE); 1913 1914 /* 1915 * we are faulting directly on the page. be careful 1916 * about writing to loaned pages... 1917 */ 1918 1919 if (uobjpage->loan_count) { 1920 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage); 1921 } 1922 KASSERT(pg == uobjpage); 1923 1924 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage); 1925 } 1926 1927 static int 1928 uvm_fault_lower_direct_loan( 1929 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1930 struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage) 1931 { 1932 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1933 struct vm_page *pg; 1934 struct vm_page *uobjpage = *ruobjpage; 1935 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist); 1936 1937 if (!flt->cow_now) { 1938 /* read fault: cap the protection at readonly */ 1939 /* cap! */ 1940 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1941 } else { 1942 /* write fault: must break the loan here */ 1943 1944 pg = uvm_loanbreak(uobjpage); 1945 if (pg == NULL) { 1946 1947 /* 1948 * drop ownership of page, it can't be released 1949 */ 1950 1951 if (uobjpage->flags & PG_WANTED) 1952 wakeup(uobjpage); 1953 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1954 UVM_PAGE_OWN(uobjpage, NULL); 1955 1956 uvmfault_unlockall(ufi, amap, uobj, NULL); 1957 UVMHIST_LOG(maphist, 1958 " out of RAM breaking loan, waiting", 1959 0,0,0,0); 1960 uvmexp.fltnoram++; 1961 uvm_wait("flt_noram4"); 1962 return ERESTART; 1963 } 1964 *rpg = pg; 1965 *ruobjpage = pg; 1966 } 1967 return 0; 1968 } 1969 1970 int 1971 uvm_fault_lower_promote( 1972 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1973 struct uvm_object *uobj, struct vm_page *uobjpage) 1974 { 1975 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1976 struct vm_anon *anon; 1977 struct vm_page *pg; 1978 int error; 1979 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist); 1980 1981 /* 1982 * if we are going to promote the data to an anon we 1983 * allocate a blank anon here and plug it into our amap. 1984 */ 1985 #if DIAGNOSTIC 1986 if (amap == NULL) 1987 panic("uvm_fault: want to promote data, but no anon"); 1988 #endif 1989 error = uvmfault_promote(ufi, NULL, uobjpage, 1990 &anon, &flt->anon_spare); 1991 switch (error) { 1992 case 0: 1993 break; 1994 case ERESTART: 1995 return ERESTART; 1996 default: 1997 return error; 1998 } 1999 2000 pg = anon->an_page; 2001 2002 /* 2003 * fill in the data 2004 */ 2005 2006 if (uobjpage != PGO_DONTCARE) { 2007 uvmexp.flt_prcopy++; 2008 2009 /* 2010 * promote to shared amap? make sure all sharing 2011 * procs see it 2012 */ 2013 2014 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 2015 pmap_page_protect(uobjpage, VM_PROT_NONE); 2016 /* 2017 * XXX: PAGE MIGHT BE WIRED! 2018 */ 2019 } 2020 2021 /* 2022 * dispose of uobjpage. it can't be PG_RELEASED 2023 * since we still hold the object lock. 2024 * drop handle to uobj as well. 2025 */ 2026 2027 if (uobjpage->flags & PG_WANTED) 2028 /* still have the obj lock */ 2029 wakeup(uobjpage); 2030 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 2031 UVM_PAGE_OWN(uobjpage, NULL); 2032 mutex_exit(&uobj->vmobjlock); 2033 uobj = NULL; 2034 2035 UVMHIST_LOG(maphist, 2036 " promote uobjpage 0x%x to anon/page 0x%x/0x%x", 2037 uobjpage, anon, pg, 0); 2038 2039 } else { 2040 uvmexp.flt_przero++; 2041 2042 /* 2043 * Page is zero'd and marked dirty by 2044 * uvmfault_promote(). 2045 */ 2046 2047 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x", 2048 anon, pg, 0, 0); 2049 } 2050 2051 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage); 2052 } 2053 2054 int 2055 uvm_fault_lower_enter( 2056 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2057 struct uvm_object *uobj, 2058 struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage) 2059 { 2060 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2061 int error; 2062 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist); 2063 2064 /* 2065 * locked: 2066 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj), 2067 * anon(if !null), pg(if anon) 2068 * 2069 * note: pg is either the uobjpage or the new page in the new anon 2070 */ 2071 KASSERT(amap == NULL || mutex_owned(&amap->am_l)); 2072 KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock)); 2073 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 2074 KASSERT(anon == NULL || mutex_owned(&anon->an_lock)); 2075 KASSERT((pg->flags & PG_BUSY) != 0); 2076 2077 /* 2078 * all resources are present. we can now map it in and free our 2079 * resources. 2080 */ 2081 2082 UVMHIST_LOG(maphist, 2083 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=XXX", 2084 ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0); 2085 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || 2086 (pg->flags & PG_RDONLY) == 0); 2087 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg), 2088 pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot, 2089 flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 2090 2091 /* 2092 * No need to undo what we did; we can simply think of 2093 * this as the pmap throwing away the mapping information. 2094 * 2095 * We do, however, have to go through the ReFault path, 2096 * as the map may change while we're asleep. 2097 */ 2098 2099 if (pg->flags & PG_WANTED) 2100 wakeup(pg); 2101 2102 /* 2103 * note that pg can't be PG_RELEASED since we did not drop 2104 * the object lock since the last time we checked. 2105 */ 2106 KASSERT((pg->flags & PG_RELEASED) == 0); 2107 2108 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2109 UVM_PAGE_OWN(pg, NULL); 2110 uvmfault_unlockall(ufi, amap, uobj, anon); 2111 if (!uvm_reclaimable()) { 2112 UVMHIST_LOG(maphist, 2113 "<- failed. out of VM",0,0,0,0); 2114 /* XXX instrumentation */ 2115 error = ENOMEM; 2116 return error; 2117 } 2118 /* XXX instrumentation */ 2119 uvm_wait("flt_pmfail2"); 2120 return ERESTART; 2121 } 2122 2123 return uvm_fault_lower_done(ufi, flt, uobj, anon, pg); 2124 } 2125 2126 int 2127 uvm_fault_lower_done( 2128 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2129 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg) 2130 { 2131 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2132 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist); 2133 2134 mutex_enter(&uvm_pageqlock); 2135 if (flt->wire_paging) { 2136 uvm_pagewire(pg); 2137 if (pg->pqflags & PQ_AOBJ) { 2138 2139 /* 2140 * since the now-wired page cannot be paged out, 2141 * release its swap resources for others to use. 2142 * since an aobj page with no swap cannot be PG_CLEAN, 2143 * clear its clean flag now. 2144 */ 2145 2146 KASSERT(uobj != NULL); 2147 pg->flags &= ~(PG_CLEAN); 2148 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 2149 } 2150 } else { 2151 uvm_pageactivate(pg); 2152 } 2153 mutex_exit(&uvm_pageqlock); 2154 if (pg->flags & PG_WANTED) 2155 wakeup(pg); 2156 2157 /* 2158 * note that pg can't be PG_RELEASED since we did not drop the object 2159 * lock since the last time we checked. 2160 */ 2161 KASSERT((pg->flags & PG_RELEASED) == 0); 2162 2163 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2164 UVM_PAGE_OWN(pg, NULL); 2165 uvmfault_unlockall(ufi, amap, uobj, anon); 2166 pmap_update(ufi->orig_map->pmap); 2167 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 2168 return 0; 2169 } 2170 2171 2172 /* 2173 * uvm_fault_wire: wire down a range of virtual addresses in a map. 2174 * 2175 * => map may be read-locked by caller, but MUST NOT be write-locked. 2176 * => if map is read-locked, any operations which may cause map to 2177 * be write-locked in uvm_fault() must be taken care of by 2178 * the caller. See uvm_map_pageable(). 2179 */ 2180 2181 int 2182 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end, 2183 vm_prot_t access_type, int maxprot) 2184 { 2185 vaddr_t va; 2186 int error; 2187 2188 /* 2189 * now fault it in a page at a time. if the fault fails then we have 2190 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 2191 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 2192 */ 2193 2194 /* 2195 * XXX work around overflowing a vaddr_t. this prevents us from 2196 * wiring the last page in the address space, though. 2197 */ 2198 if (start > end) { 2199 return EFAULT; 2200 } 2201 2202 for (va = start; va < end; va += PAGE_SIZE) { 2203 error = uvm_fault_internal(map, va, access_type, 2204 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE); 2205 if (error) { 2206 if (va != start) { 2207 uvm_fault_unwire(map, start, va); 2208 } 2209 return error; 2210 } 2211 } 2212 return 0; 2213 } 2214 2215 /* 2216 * uvm_fault_unwire(): unwire range of virtual space. 2217 */ 2218 2219 void 2220 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end) 2221 { 2222 vm_map_lock_read(map); 2223 uvm_fault_unwire_locked(map, start, end); 2224 vm_map_unlock_read(map); 2225 } 2226 2227 /* 2228 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 2229 * 2230 * => map must be at least read-locked. 2231 */ 2232 2233 void 2234 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end) 2235 { 2236 struct vm_map_entry *entry; 2237 pmap_t pmap = vm_map_pmap(map); 2238 vaddr_t va; 2239 paddr_t pa; 2240 struct vm_page *pg; 2241 2242 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0); 2243 2244 /* 2245 * we assume that the area we are unwiring has actually been wired 2246 * in the first place. this means that we should be able to extract 2247 * the PAs from the pmap. we also lock out the page daemon so that 2248 * we can call uvm_pageunwire. 2249 */ 2250 2251 mutex_enter(&uvm_pageqlock); 2252 2253 /* 2254 * find the beginning map entry for the region. 2255 */ 2256 2257 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 2258 if (uvm_map_lookup_entry(map, start, &entry) == false) 2259 panic("uvm_fault_unwire_locked: address not in map"); 2260 2261 for (va = start; va < end; va += PAGE_SIZE) { 2262 if (pmap_extract(pmap, va, &pa) == false) 2263 continue; 2264 2265 /* 2266 * find the map entry for the current address. 2267 */ 2268 2269 KASSERT(va >= entry->start); 2270 while (va >= entry->end) { 2271 KASSERT(entry->next != &map->header && 2272 entry->next->start <= entry->end); 2273 entry = entry->next; 2274 } 2275 2276 /* 2277 * if the entry is no longer wired, tell the pmap. 2278 */ 2279 2280 if (VM_MAPENT_ISWIRED(entry) == 0) 2281 pmap_unwire(pmap, va); 2282 2283 pg = PHYS_TO_VM_PAGE(pa); 2284 if (pg) 2285 uvm_pageunwire(pg); 2286 } 2287 2288 mutex_exit(&uvm_pageqlock); 2289 } 2290