xref: /netbsd-src/sys/uvm/uvm_fault.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $	*/
2 
3 /*
4  *
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35  */
36 
37 /*
38  * uvm_fault.c: fault handler
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.166 2010/02/08 00:02:50 mlelstv Exp $");
43 
44 #include "opt_uvmhist.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 
53 #include <uvm/uvm.h>
54 
55 /*
56  *
57  * a word on page faults:
58  *
59  * types of page faults we handle:
60  *
61  * CASE 1: upper layer faults                   CASE 2: lower layer faults
62  *
63  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
64  *    read/write1     write>1                  read/write   +-cow_write/zero
65  *         |             |                         |        |
66  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
67  * amap |  V  |       |  ---------> new |          |        | |  ^  |
68  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
69  *                                                 |        |    |
70  *      +-----+       +-----+                   +--|--+     | +--|--+
71  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
72  *      +-----+       +-----+                   +-----+       +-----+
73  *
74  * d/c = don't care
75  *
76  *   case [0]: layerless fault
77  *	no amap or uobj is present.   this is an error.
78  *
79  *   case [1]: upper layer fault [anon active]
80  *     1A: [read] or [write with anon->an_ref == 1]
81  *		I/O takes place in upper level anon and uobj is not touched.
82  *     1B: [write with anon->an_ref > 1]
83  *		new anon is alloc'd and data is copied off ["COW"]
84  *
85  *   case [2]: lower layer fault [uobj]
86  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87  *		I/O takes place directly in object.
88  *     2B: [write to copy_on_write] or [read on NULL uobj]
89  *		data is "promoted" from uobj to a new anon.
90  *		if uobj is null, then we zero fill.
91  *
92  * we follow the standard UVM locking protocol ordering:
93  *
94  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95  * we hold a PG_BUSY page if we unlock for I/O
96  *
97  *
98  * the code is structured as follows:
99  *
100  *     - init the "IN" params in the ufi structure
101  *   ReFault:
102  *     - do lookups [locks maps], check protection, handle needs_copy
103  *     - check for case 0 fault (error)
104  *     - establish "range" of fault
105  *     - if we have an amap lock it and extract the anons
106  *     - if sequential advice deactivate pages behind us
107  *     - at the same time check pmap for unmapped areas and anon for pages
108  *	 that we could map in (and do map it if found)
109  *     - check object for resident pages that we could map in
110  *     - if (case 2) goto Case2
111  *     - >>> handle case 1
112  *           - ensure source anon is resident in RAM
113  *           - if case 1B alloc new anon and copy from source
114  *           - map the correct page in
115  *   Case2:
116  *     - >>> handle case 2
117  *           - ensure source page is resident (if uobj)
118  *           - if case 2B alloc new anon and copy from source (could be zero
119  *		fill if uobj == NULL)
120  *           - map the correct page in
121  *     - done!
122  *
123  * note on paging:
124  *   if we have to do I/O we place a PG_BUSY page in the correct object,
125  * unlock everything, and do the I/O.   when I/O is done we must reverify
126  * the state of the world before assuming that our data structures are
127  * valid.   [because mappings could change while the map is unlocked]
128  *
129  *  alternative 1: unbusy the page in question and restart the page fault
130  *    from the top (ReFault).   this is easy but does not take advantage
131  *    of the information that we already have from our previous lookup,
132  *    although it is possible that the "hints" in the vm_map will help here.
133  *
134  * alternative 2: the system already keeps track of a "version" number of
135  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
136  *    mapping) you bump the version number up by one...]   so, we can save
137  *    the version number of the map before we release the lock and start I/O.
138  *    then when I/O is done we can relock and check the version numbers
139  *    to see if anything changed.    this might save us some over 1 because
140  *    we don't have to unbusy the page and may be less compares(?).
141  *
142  * alternative 3: put in backpointers or a way to "hold" part of a map
143  *    in place while I/O is in progress.   this could be complex to
144  *    implement (especially with structures like amap that can be referenced
145  *    by multiple map entries, and figuring out what should wait could be
146  *    complex as well...).
147  *
148  * we use alternative 2.  given that we are multi-threaded now we may want
149  * to reconsider the choice.
150  */
151 
152 /*
153  * local data structures
154  */
155 
156 struct uvm_advice {
157 	int advice;
158 	int nback;
159 	int nforw;
160 };
161 
162 /*
163  * page range array:
164  * note: index in array must match "advice" value
165  * XXX: borrowed numbers from freebsd.   do they work well for us?
166  */
167 
168 static const struct uvm_advice uvmadvice[] = {
169 	{ MADV_NORMAL, 3, 4 },
170 	{ MADV_RANDOM, 0, 0 },
171 	{ MADV_SEQUENTIAL, 8, 7},
172 };
173 
174 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
175 
176 /*
177  * private prototypes
178  */
179 
180 /*
181  * inline functions
182  */
183 
184 /*
185  * uvmfault_anonflush: try and deactivate pages in specified anons
186  *
187  * => does not have to deactivate page if it is busy
188  */
189 
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 	int lcv;
194 	struct vm_page *pg;
195 
196 	for (lcv = 0; lcv < n; lcv++) {
197 		if (anons[lcv] == NULL)
198 			continue;
199 		mutex_enter(&anons[lcv]->an_lock);
200 		pg = anons[lcv]->an_page;
201 		if (pg && (pg->flags & PG_BUSY) == 0) {
202 			mutex_enter(&uvm_pageqlock);
203 			if (pg->wire_count == 0) {
204 				uvm_pagedeactivate(pg);
205 			}
206 			mutex_exit(&uvm_pageqlock);
207 		}
208 		mutex_exit(&anons[lcv]->an_lock);
209 	}
210 }
211 
212 /*
213  * normal functions
214  */
215 
216 /*
217  * uvmfault_amapcopy: clear "needs_copy" in a map.
218  *
219  * => called with VM data structures unlocked (usually, see below)
220  * => we get a write lock on the maps and clear needs_copy for a VA
221  * => if we are out of RAM we sleep (waiting for more)
222  */
223 
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 	for (;;) {
228 
229 		/*
230 		 * no mapping?  give up.
231 		 */
232 
233 		if (uvmfault_lookup(ufi, true) == false)
234 			return;
235 
236 		/*
237 		 * copy if needed.
238 		 */
239 
240 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243 
244 		/*
245 		 * didn't work?  must be out of RAM.   unlock and sleep.
246 		 */
247 
248 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 			uvmfault_unlockmaps(ufi, true);
250 			uvm_wait("fltamapcopy");
251 			continue;
252 		}
253 
254 		/*
255 		 * got it!   unlock and return.
256 		 */
257 
258 		uvmfault_unlockmaps(ufi, true);
259 		return;
260 	}
261 	/*NOTREACHED*/
262 }
263 
264 /*
265  * uvmfault_anonget: get data in an anon into a non-busy, non-released
266  * page in that anon.
267  *
268  * => maps, amap, and anon locked by caller.
269  * => if we fail (result != 0) we unlock everything.
270  * => if we are successful, we return with everything still locked.
271  * => we don't move the page on the queues [gets moved later]
272  * => if we allocate a new page [we_own], it gets put on the queues.
273  *    either way, the result is that the page is on the queues at return time
274  * => for pages which are on loan from a uvm_object (and thus are not
275  *    owned by the anon): if successful, we return with the owning object
276  *    locked.   the caller must unlock this object when it unlocks everything
277  *    else.
278  */
279 
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282     struct vm_anon *anon)
283 {
284 	bool we_own;	/* we own anon's page? */
285 	bool locked;	/* did we relock? */
286 	struct vm_page *pg;
287 	int error;
288 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289 
290 	KASSERT(mutex_owned(&anon->an_lock));
291 
292 	error = 0;
293 	uvmexp.fltanget++;
294         /* bump rusage counters */
295 	if (anon->an_page)
296 		curlwp->l_ru.ru_minflt++;
297 	else
298 		curlwp->l_ru.ru_majflt++;
299 
300 	/*
301 	 * loop until we get it, or fail.
302 	 */
303 
304 	for (;;) {
305 		we_own = false;		/* true if we set PG_BUSY on a page */
306 		pg = anon->an_page;
307 
308 		/*
309 		 * if there is a resident page and it is loaned, then anon
310 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
311 		 * the real owner of the page has been identified and locked.
312 		 */
313 
314 		if (pg && pg->loan_count)
315 			pg = uvm_anon_lockloanpg(anon);
316 
317 		/*
318 		 * page there?   make sure it is not busy/released.
319 		 */
320 
321 		if (pg) {
322 
323 			/*
324 			 * at this point, if the page has a uobject [meaning
325 			 * we have it on loan], then that uobject is locked
326 			 * by us!   if the page is busy, we drop all the
327 			 * locks (including uobject) and try again.
328 			 */
329 
330 			if ((pg->flags & PG_BUSY) == 0) {
331 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 				return (0);
333 			}
334 			pg->flags |= PG_WANTED;
335 			uvmexp.fltpgwait++;
336 
337 			/*
338 			 * the last unlock must be an atomic unlock+wait on
339 			 * the owner of page
340 			 */
341 
342 			if (pg->uobject) {	/* owner is uobject ? */
343 				uvmfault_unlockall(ufi, amap, NULL, anon);
344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 				    0,0,0);
346 				UVM_UNLOCK_AND_WAIT(pg,
347 				    &pg->uobject->vmobjlock,
348 				    false, "anonget1",0);
349 			} else {
350 				/* anon owns page */
351 				uvmfault_unlockall(ufi, amap, NULL, NULL);
352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 				    0,0,0);
354 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 				    "anonget2",0);
356 			}
357 		} else {
358 #if defined(VMSWAP)
359 
360 			/*
361 			 * no page, we must try and bring it in.
362 			 */
363 
364 			pg = uvm_pagealloc(NULL, 0, anon, 0);
365 			if (pg == NULL) {		/* out of RAM.  */
366 				uvmfault_unlockall(ufi, amap, NULL, anon);
367 				uvmexp.fltnoram++;
368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
369 				    0,0,0);
370 				if (!uvm_reclaimable()) {
371 					return ENOMEM;
372 				}
373 				uvm_wait("flt_noram1");
374 			} else {
375 				/* we set the PG_BUSY bit */
376 				we_own = true;
377 				uvmfault_unlockall(ufi, amap, NULL, anon);
378 
379 				/*
380 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 				 * page into the uvm_swap_get function with
382 				 * all data structures unlocked.  note that
383 				 * it is ok to read an_swslot here because
384 				 * we hold PG_BUSY on the page.
385 				 */
386 				uvmexp.pageins++;
387 				error = uvm_swap_get(pg, anon->an_swslot,
388 				    PGO_SYNCIO);
389 
390 				/*
391 				 * we clean up after the i/o below in the
392 				 * "we_own" case
393 				 */
394 			}
395 #else /* defined(VMSWAP) */
396 			panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 		}
399 
400 		/*
401 		 * now relock and try again
402 		 */
403 
404 		locked = uvmfault_relock(ufi);
405 		if (locked && amap != NULL) {
406 			amap_lock(amap);
407 		}
408 		if (locked || we_own)
409 			mutex_enter(&anon->an_lock);
410 
411 		/*
412 		 * if we own the page (i.e. we set PG_BUSY), then we need
413 		 * to clean up after the I/O. there are three cases to
414 		 * consider:
415 		 *   [1] page released during I/O: free anon and ReFault.
416 		 *   [2] I/O not OK.   free the page and cause the fault
417 		 *       to fail.
418 		 *   [3] I/O OK!   activate the page and sync with the
419 		 *       non-we_own case (i.e. drop anon lock if not locked).
420 		 */
421 
422 		if (we_own) {
423 #if defined(VMSWAP)
424 			if (pg->flags & PG_WANTED) {
425 				wakeup(pg);
426 			}
427 			if (error) {
428 
429 				/*
430 				 * remove the swap slot from the anon
431 				 * and mark the anon as having no real slot.
432 				 * don't free the swap slot, thus preventing
433 				 * it from being used again.
434 				 */
435 
436 				if (anon->an_swslot > 0)
437 					uvm_swap_markbad(anon->an_swslot, 1);
438 				anon->an_swslot = SWSLOT_BAD;
439 
440 				if ((pg->flags & PG_RELEASED) != 0)
441 					goto released;
442 
443 				/*
444 				 * note: page was never !PG_BUSY, so it
445 				 * can't be mapped and thus no need to
446 				 * pmap_page_protect it...
447 				 */
448 
449 				mutex_enter(&uvm_pageqlock);
450 				uvm_pagefree(pg);
451 				mutex_exit(&uvm_pageqlock);
452 
453 				if (locked)
454 					uvmfault_unlockall(ufi, amap, NULL,
455 					    anon);
456 				else
457 					mutex_exit(&anon->an_lock);
458 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 				return error;
460 			}
461 
462 			if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 				KASSERT(anon->an_ref == 0);
465 
466 				/*
467 				 * released while we unlocked amap.
468 				 */
469 
470 				if (locked)
471 					uvmfault_unlockall(ufi, amap, NULL,
472 					    NULL);
473 
474 				uvm_anon_release(anon);
475 
476 				if (error) {
477 					UVMHIST_LOG(maphist,
478 					    "<- ERROR/RELEASED", 0,0,0,0);
479 					return error;
480 				}
481 
482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 				return ERESTART;
484 			}
485 
486 			/*
487 			 * we've successfully read the page, activate it.
488 			 */
489 
490 			mutex_enter(&uvm_pageqlock);
491 			uvm_pageactivate(pg);
492 			mutex_exit(&uvm_pageqlock);
493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 			UVM_PAGE_OWN(pg, NULL);
495 			if (!locked)
496 				mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 			panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 		}
501 
502 		/*
503 		 * we were not able to relock.   restart fault.
504 		 */
505 
506 		if (!locked) {
507 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 			return (ERESTART);
509 		}
510 
511 		/*
512 		 * verify no one has touched the amap and moved the anon on us.
513 		 */
514 
515 		if (ufi != NULL &&
516 		    amap_lookup(&ufi->entry->aref,
517 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
518 
519 			uvmfault_unlockall(ufi, amap, NULL, anon);
520 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 			return (ERESTART);
522 		}
523 
524 		/*
525 		 * try it again!
526 		 */
527 
528 		uvmexp.fltanretry++;
529 		continue;
530 	}
531 	/*NOTREACHED*/
532 }
533 
534 /*
535  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
536  *
537  *	1. allocate an anon and a page.
538  *	2. fill its contents.
539  *	3. put it into amap.
540  *
541  * => if we fail (result != 0) we unlock everything.
542  * => on success, return a new locked anon via 'nanon'.
543  *    (*nanon)->an_page will be a resident, locked, dirty page.
544  */
545 
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548     struct vm_anon *oanon,
549     struct vm_page *uobjpage,
550     struct vm_anon **nanon, /* OUT: allocated anon */
551     struct vm_anon **spare)
552 {
553 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 	struct uvm_object *uobj;
555 	struct vm_anon *anon;
556 	struct vm_page *pg;
557 	struct vm_page *opg;
558 	int error;
559 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560 
561 	if (oanon) {
562 		/* anon COW */
563 		opg = oanon->an_page;
564 		KASSERT(opg != NULL);
565 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 	} else if (uobjpage != PGO_DONTCARE) {
567 		/* object-backed COW */
568 		opg = uobjpage;
569 	} else {
570 		/* ZFOD */
571 		opg = NULL;
572 	}
573 	if (opg != NULL) {
574 		uobj = opg->uobject;
575 	} else {
576 		uobj = NULL;
577 	}
578 
579 	KASSERT(amap != NULL);
580 	KASSERT(uobjpage != NULL);
581 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 	KASSERT(mutex_owned(&amap->am_l));
583 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588 
589 	if (*spare != NULL) {
590 		anon = *spare;
591 		*spare = NULL;
592 		mutex_enter(&anon->an_lock);
593 	} else if (ufi->map != kernel_map) {
594 		anon = uvm_analloc();
595 	} else {
596 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597 
598 		/*
599 		 * we can't allocate anons with kernel_map locked.
600 		 */
601 
602 		uvm_page_unbusy(&uobjpage, 1);
603 		uvmfault_unlockall(ufi, amap, uobj, oanon);
604 
605 		*spare = uvm_analloc();
606 		if (*spare == NULL) {
607 			goto nomem;
608 		}
609 		mutex_exit(&(*spare)->an_lock);
610 		error = ERESTART;
611 		goto done;
612 	}
613 	if (anon) {
614 
615 		/*
616 		 * The new anon is locked.
617 		 *
618 		 * if opg == NULL, we want a zero'd, dirty page,
619 		 * so have uvm_pagealloc() do that for us.
620 		 */
621 
622 		pg = uvm_pagealloc(NULL, 0, anon,
623 		    (opg == NULL) ? UVM_PGA_ZERO : 0);
624 	} else {
625 		pg = NULL;
626 	}
627 
628 	/*
629 	 * out of memory resources?
630 	 */
631 
632 	if (pg == NULL) {
633 		/* save anon for the next try. */
634 		if (anon != NULL) {
635 			mutex_exit(&anon->an_lock);
636 			*spare = anon;
637 		}
638 
639 		/* unlock and fail ... */
640 		uvm_page_unbusy(&uobjpage, 1);
641 		uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 		if (!uvm_reclaimable()) {
644 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 			uvmexp.fltnoanon++;
646 			error = ENOMEM;
647 			goto done;
648 		}
649 
650 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 		uvmexp.fltnoram++;
652 		uvm_wait("flt_noram5");
653 		error = ERESTART;
654 		goto done;
655 	}
656 
657 	/* copy page [pg now dirty] */
658 	if (opg) {
659 		uvm_pagecopy(opg, pg);
660 	}
661 
662 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 	    oanon != NULL);
664 
665 	*nanon = anon;
666 	error = 0;
667 done:
668 	return error;
669 }
670 
671 
672 /*
673  *   F A U L T   -   m a i n   e n t r y   p o i n t
674  */
675 
676 /*
677  * uvm_fault: page fault handler
678  *
679  * => called from MD code to resolve a page fault
680  * => VM data structures usually should be unlocked.   however, it is
681  *	possible to call here with the main map locked if the caller
682  *	gets a write lock, sets it recusive, and then calls us (c.f.
683  *	uvm_map_pageable).   this should be avoided because it keeps
684  *	the map locked off during I/O.
685  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686  */
687 
688 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
689 			 ~VM_PROT_WRITE : VM_PROT_ALL)
690 
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE		(1 << 0)
693 #define UVM_FAULT_MAXPROT	(1 << 1)
694 
695 struct uvm_faultctx {
696 	vm_prot_t access_type;
697 	vm_prot_t enter_prot;
698 	vaddr_t startva;
699 	int npages;
700 	int centeridx;
701 	struct vm_anon *anon_spare;
702 	bool wire_mapping;
703 	bool narrow;
704 	bool wire_paging;
705 	bool maxprot;
706 	bool cow_now;
707 };
708 
709 static inline int	uvm_fault_check(
710 			    struct uvm_faultinfo *, struct uvm_faultctx *,
711 			    struct vm_anon ***, struct vm_page ***);
712 
713 static int		uvm_fault_upper(
714 			    struct uvm_faultinfo *, struct uvm_faultctx *,
715 			    struct vm_anon **);
716 static inline int	uvm_fault_upper_lookup(
717 			    struct uvm_faultinfo *, struct uvm_faultctx *,
718 			    struct vm_anon **, struct vm_page **);
719 static inline void	uvm_fault_upper_neighbor(
720 			    struct uvm_faultinfo *, struct uvm_faultctx *,
721 			    vaddr_t, struct vm_page *, bool);
722 static inline int	uvm_fault_upper_loan(
723 			    struct uvm_faultinfo *, struct uvm_faultctx *,
724 			    struct vm_anon *, struct uvm_object **);
725 static inline int	uvm_fault_upper_promote(
726 			    struct uvm_faultinfo *, struct uvm_faultctx *,
727 			    struct uvm_object *, struct vm_anon *);
728 static inline int	uvm_fault_upper_direct(
729 			    struct uvm_faultinfo *, struct uvm_faultctx *,
730 			    struct uvm_object *, struct vm_anon *);
731 static int		uvm_fault_upper_enter(
732 			    struct uvm_faultinfo *, struct uvm_faultctx *,
733 			    struct uvm_object *, struct vm_anon *,
734 			    struct vm_page *, struct vm_anon *);
735 static inline int	uvm_fault_upper_done(
736 			    struct uvm_faultinfo *, struct uvm_faultctx *,
737 			    struct uvm_object *, struct vm_anon *,
738 			    struct vm_page *, struct vm_anon *);
739 
740 static int		uvm_fault_lower(
741 			    struct uvm_faultinfo *, struct uvm_faultctx *,
742 			    struct vm_page **);
743 static inline int	uvm_fault_lower_special(
744 			    struct uvm_faultinfo *, struct uvm_faultctx *,
745 			    struct vm_page **);
746 static inline		int uvm_fault_lower_lookup(
747 			    struct uvm_faultinfo *, struct uvm_faultctx *,
748 			    struct vm_page **);
749 static inline void	uvm_fault_lower_neighbor(
750 			    struct uvm_faultinfo *, struct uvm_faultctx *,
751 			    vaddr_t, struct vm_page *, bool);
752 static inline int	uvm_fault_lower_generic(
753 			    struct uvm_faultinfo *, struct uvm_faultctx *,
754 			    struct vm_page **);
755 static inline int	uvm_fault_lower1(
756 			    struct uvm_faultinfo *, struct uvm_faultctx *,
757 			    struct uvm_object *, struct vm_page *);
758 static inline int	uvm_fault_lower_io(
759 			    struct uvm_faultinfo *, struct uvm_faultctx *,
760 			    struct uvm_object **, struct vm_page **);
761 static inline int	uvm_fault_lower_direct(
762 			    struct uvm_faultinfo *, struct uvm_faultctx *,
763 			    struct uvm_object *, struct vm_page *);
764 static inline int	uvm_fault_lower_direct_loan(
765 			    struct uvm_faultinfo *, struct uvm_faultctx *,
766 			    struct uvm_object *, struct vm_page **,
767 			    struct vm_page **);
768 static inline int	uvm_fault_lower_promote(
769 			    struct uvm_faultinfo *, struct uvm_faultctx *,
770 			    struct uvm_object *, struct vm_page *);
771 static int		uvm_fault_lower_enter(
772 			    struct uvm_faultinfo *, struct uvm_faultctx *,
773 			    struct uvm_object *,
774 			    struct vm_anon *, struct vm_page *,
775 			    struct vm_page *);
776 static inline int	uvm_fault_lower_done(
777 			    struct uvm_faultinfo *, struct uvm_faultctx *,
778 			    struct uvm_object *,
779 			    struct vm_anon *, struct vm_page *);
780 
781 int
782 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
783     vm_prot_t access_type, int fault_flag)
784 {
785 	struct uvm_faultinfo ufi;
786 	struct uvm_faultctx flt = {
787 		.access_type = access_type,
788 
789 		/* don't look for neighborhood * pages on "wire" fault */
790 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
791 
792 		/* "wire" fault causes wiring of both mapping and paging */
793 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
794 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
795 
796 		.maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
797 	};
798 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
799 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
800 	int error;
801 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
802 
803 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
804 	      orig_map, vaddr, access_type, fault_flag);
805 
806 	uvmexp.faults++;	/* XXX: locking? */
807 
808 	/*
809 	 * init the IN parameters in the ufi
810 	 */
811 
812 	ufi.orig_map = orig_map;
813 	ufi.orig_rvaddr = trunc_page(vaddr);
814 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
815 
816 	error = ERESTART;
817 	while (error == ERESTART) {
818 		anons = anons_store;
819 		pages = pages_store;
820 
821 		error = uvm_fault_check(&ufi, &flt, &anons, &pages);
822 		if (error != 0)
823 			continue;
824 
825 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
826 		if (error != 0)
827 			continue;
828 
829 		if (pages[flt.centeridx] == PGO_DONTCARE)
830 			error = uvm_fault_upper(&ufi, &flt, anons);
831 		else
832 			error = uvm_fault_lower(&ufi, &flt, pages);
833 	}
834 
835 	if (flt.anon_spare != NULL) {
836 		flt.anon_spare->an_ref--;
837 		uvm_anfree(flt.anon_spare);
838 	}
839 	return error;
840 }
841 
842 static int
843 uvm_fault_check(
844 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
845 	struct vm_anon ***ranons, struct vm_page ***rpages)
846 {
847 	struct vm_amap *amap;
848 	struct uvm_object *uobj;
849 	vm_prot_t check_prot;
850 	int nback, nforw;
851 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
852 
853 	/*
854 	 * lookup and lock the maps
855 	 */
856 
857 	if (uvmfault_lookup(ufi, false) == false) {
858 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
859 		return EFAULT;
860 	}
861 	/* locked: maps(read) */
862 
863 #ifdef DIAGNOSTIC
864 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
865 		printf("Page fault on non-pageable map:\n");
866 		printf("ufi->map = %p\n", ufi->map);
867 		printf("ufi->orig_map = %p\n", ufi->orig_map);
868 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
869 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
870 	}
871 #endif
872 
873 	/*
874 	 * check protection
875 	 */
876 
877 	check_prot = flt->maxprot ?
878 	    ufi->entry->max_protection : ufi->entry->protection;
879 	if ((check_prot & flt->access_type) != flt->access_type) {
880 		UVMHIST_LOG(maphist,
881 		    "<- protection failure (prot=0x%x, access=0x%x)",
882 		    ufi->entry->protection, flt->access_type, 0, 0);
883 		uvmfault_unlockmaps(ufi, false);
884 		return EACCES;
885 	}
886 
887 	/*
888 	 * "enter_prot" is the protection we want to enter the page in at.
889 	 * for certain pages (e.g. copy-on-write pages) this protection can
890 	 * be more strict than ufi->entry->protection.  "wired" means either
891 	 * the entry is wired or we are fault-wiring the pg.
892 	 */
893 
894 	flt->enter_prot = ufi->entry->protection;
895 	if (VM_MAPENT_ISWIRED(ufi->entry))
896 		flt->wire_mapping = true;
897 
898 	if (flt->wire_mapping) {
899 		flt->access_type = flt->enter_prot; /* full access for wired */
900 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
901 	} else {
902 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
903 	}
904 
905 	/*
906 	 * handle "needs_copy" case.   if we need to copy the amap we will
907 	 * have to drop our readlock and relock it with a write lock.  (we
908 	 * need a write lock to change anything in a map entry [e.g.
909 	 * needs_copy]).
910 	 */
911 
912 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
913 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
914 			KASSERT(!flt->maxprot);
915 			/* need to clear */
916 			UVMHIST_LOG(maphist,
917 			    "  need to clear needs_copy and refault",0,0,0,0);
918 			uvmfault_unlockmaps(ufi, false);
919 			uvmfault_amapcopy(ufi);
920 			uvmexp.fltamcopy++;
921 			return ERESTART;
922 
923 		} else {
924 
925 			/*
926 			 * ensure that we pmap_enter page R/O since
927 			 * needs_copy is still true
928 			 */
929 
930 			flt->enter_prot &= ~VM_PROT_WRITE;
931 		}
932 	}
933 
934 	/*
935 	 * identify the players
936 	 */
937 
938 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
939 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
940 
941 	/*
942 	 * check for a case 0 fault.  if nothing backing the entry then
943 	 * error now.
944 	 */
945 
946 	if (amap == NULL && uobj == NULL) {
947 		uvmfault_unlockmaps(ufi, false);
948 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
949 		return EFAULT;
950 	}
951 
952 	/*
953 	 * establish range of interest based on advice from mapper
954 	 * and then clip to fit map entry.   note that we only want
955 	 * to do this the first time through the fault.   if we
956 	 * ReFault we will disable this by setting "narrow" to true.
957 	 */
958 
959 	if (flt->narrow == false) {
960 
961 		/* wide fault (!narrow) */
962 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
963 			 ufi->entry->advice);
964 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
965 			    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
966 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
967 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
968 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
969 			     PAGE_SHIFT) - 1);
970 		/*
971 		 * note: "-1" because we don't want to count the
972 		 * faulting page as forw
973 		 */
974 		flt->npages = nback + nforw + 1;
975 		flt->centeridx = nback;
976 
977 		flt->narrow = true;	/* ensure only once per-fault */
978 
979 	} else {
980 
981 		/* narrow fault! */
982 		nback = nforw = 0;
983 		flt->startva = ufi->orig_rvaddr;
984 		flt->npages = 1;
985 		flt->centeridx = 0;
986 
987 	}
988 	/* offset from entry's start to pgs' start */
989 	const voff_t eoff = flt->startva - ufi->entry->start;
990 
991 	/* locked: maps(read) */
992 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
993 		    flt->narrow, nback, nforw, flt->startva);
994 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
995 		    amap, uobj, 0);
996 
997 	/*
998 	 * if we've got an amap, lock it and extract current anons.
999 	 */
1000 
1001 	if (amap) {
1002 		amap_lock(amap);
1003 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1004 	} else {
1005 		*ranons = NULL;	/* to be safe */
1006 	}
1007 
1008 	/* locked: maps(read), amap(if there) */
1009 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1010 
1011 	/*
1012 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1013 	 * now and then forget about them (for the rest of the fault).
1014 	 */
1015 
1016 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1017 
1018 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
1019 		    0,0,0,0);
1020 		/* flush back-page anons? */
1021 		if (amap)
1022 			uvmfault_anonflush(*ranons, nback);
1023 
1024 		/* flush object? */
1025 		if (uobj) {
1026 			voff_t uoff;
1027 
1028 			uoff = ufi->entry->offset + eoff;
1029 			mutex_enter(&uobj->vmobjlock);
1030 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1031 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1032 		}
1033 
1034 		/* now forget about the backpages */
1035 		if (amap)
1036 			*ranons += nback;
1037 #if 0
1038 		/* XXXUEBS */
1039 		if (uobj)
1040 			*rpages += nback;
1041 #endif
1042 		flt->startva += (nback << PAGE_SHIFT);
1043 		flt->npages -= nback;
1044 		flt->centeridx = 0;
1045 	}
1046 	/*
1047 	 * => startva is fixed
1048 	 * => npages is fixed
1049 	 */
1050 
1051 	return 0;
1052 }
1053 
1054 static int
1055 uvm_fault_upper_lookup(
1056 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1057 	struct vm_anon **anons, struct vm_page **pages)
1058 {
1059 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1060 	int lcv;
1061 	vaddr_t currva;
1062 	bool shadowed;
1063 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1064 
1065 	/* locked: maps(read), amap(if there) */
1066 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1067 
1068 	/*
1069 	 * map in the backpages and frontpages we found in the amap in hopes
1070 	 * of preventing future faults.    we also init the pages[] array as
1071 	 * we go.
1072 	 */
1073 
1074 	currva = flt->startva;
1075 	shadowed = false;
1076 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1077 		/*
1078 		 * dont play with VAs that are already mapped
1079 		 * except for center)
1080 		 */
1081 		if (lcv != flt->centeridx &&
1082 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1083 			pages[lcv] = PGO_DONTCARE;
1084 			continue;
1085 		}
1086 
1087 		/*
1088 		 * unmapped or center page.   check if any anon at this level.
1089 		 */
1090 		if (amap == NULL || anons[lcv] == NULL) {
1091 			pages[lcv] = NULL;
1092 			continue;
1093 		}
1094 
1095 		/*
1096 		 * check for present page and map if possible.   re-activate it.
1097 		 */
1098 
1099 		pages[lcv] = PGO_DONTCARE;
1100 		if (lcv == flt->centeridx) {		/* save center for later! */
1101 			shadowed = true;
1102 		} else {
1103 			struct vm_anon *anon = anons[lcv];
1104 
1105 			mutex_enter(&anon->an_lock);
1106 			uvm_fault_upper_neighbor(ufi, flt, currva,
1107 			    anon->an_page, anon->an_ref > 1);
1108 			mutex_exit(&anon->an_lock);
1109 		}
1110 	}
1111 
1112 	/* locked: maps(read), amap(if there) */
1113 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1114 	/* (shadowed == true) if there is an anon at the faulting address */
1115 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
1116 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1117 
1118 	/*
1119 	 * note that if we are really short of RAM we could sleep in the above
1120 	 * call to pmap_enter with everything locked.   bad?
1121 	 *
1122 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
1123 	 * XXX case.  --thorpej
1124 	 */
1125 
1126 	return 0;
1127 }
1128 
1129 static void
1130 uvm_fault_upper_neighbor(
1131 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1132 	vaddr_t currva, struct vm_page *pg, bool readonly)
1133 {
1134 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1135 
1136 	/* ignore loaned and busy pages */
1137 	if (pg == NULL || pg->loan_count != 0 ||
1138 	    (pg->flags & PG_BUSY) != 0)
1139 		goto uvm_fault_upper_lookup_enter_done;
1140 
1141 	mutex_enter(&uvm_pageqlock);
1142 	uvm_pageenqueue(pg);
1143 	mutex_exit(&uvm_pageqlock);
1144 	UVMHIST_LOG(maphist,
1145 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1146 	    ufi->orig_map->pmap, currva, pg, 0);
1147 	uvmexp.fltnamap++;
1148 
1149 	/*
1150 	 * Since this page isn't the page that's actually faulting,
1151 	 * ignore pmap_enter() failures; it's not critical that we
1152 	 * enter these right now.
1153 	 */
1154 
1155 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1156 	    VM_PAGE_TO_PHYS(pg),
1157 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1158 	    flt->enter_prot,
1159 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1160 
1161 uvm_fault_upper_lookup_enter_done:
1162 	pmap_update(ufi->orig_map->pmap);
1163 }
1164 
1165 static int
1166 uvm_fault_lower(
1167 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1168 	struct vm_page **pages)
1169 {
1170 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1171 	int error;
1172 
1173 	/*
1174 	 * if the desired page is not shadowed by the amap and we have a
1175 	 * backing object, then we check to see if the backing object would
1176 	 * prefer to handle the fault itself (rather than letting us do it
1177 	 * with the usual pgo_get hook).  the backing object signals this by
1178 	 * providing a pgo_fault routine.
1179 	 */
1180 
1181 	if (uobj && uobj->pgops->pgo_fault != NULL) {
1182 		error = uvm_fault_lower_special(ufi, flt, pages);
1183 	} else {
1184 		error = uvm_fault_lower_generic(ufi, flt, pages);
1185 	}
1186 	return error;
1187 }
1188 
1189 static int
1190 uvm_fault_lower_special(
1191 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1192 	struct vm_page **pages)
1193 {
1194 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1195 	int error;
1196 
1197 	mutex_enter(&uobj->vmobjlock);
1198 	/* locked: maps(read), amap (if there), uobj */
1199 	error = uobj->pgops->pgo_fault(ufi, flt->startva, pages, flt->npages,
1200 	    flt->centeridx, flt->access_type, PGO_LOCKED|PGO_SYNCIO);
1201 
1202 	/* locked: nothing, pgo_fault has unlocked everything */
1203 
1204 	if (error == ERESTART)
1205 		error = ERESTART;		/* try again! */
1206 	/*
1207 	 * object fault routine responsible for pmap_update().
1208 	 */
1209 
1210 	return error;
1211 }
1212 
1213 static int
1214 uvm_fault_lower_generic(
1215 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1216 	struct vm_page **pages)
1217 {
1218 #ifdef DIAGNOSTIC
1219 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1220 #endif
1221 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1222 	struct vm_page *uobjpage;
1223 
1224 	/*
1225 	 * now, if the desired page is not shadowed by the amap and we have
1226 	 * a backing object that does not have a special fault routine, then
1227 	 * we ask (with pgo_get) the object for resident pages that we care
1228 	 * about and attempt to map them in.  we do not let pgo_get block
1229 	 * (PGO_LOCKED).
1230 	 */
1231 
1232 	if (uobj == NULL) {
1233 		/* zero fill; don't care neighbor pages */
1234 		uobjpage = NULL;
1235 	} else {
1236 		uvm_fault_lower_lookup(ufi, flt, pages);
1237 		uobjpage = pages[flt->centeridx];
1238 	}
1239 
1240 	/* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1241 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1242 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1243 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1244 
1245 	/*
1246 	 * note that at this point we are done with any front or back pages.
1247 	 * we are now going to focus on the center page (i.e. the one we've
1248 	 * faulted on).  if we have faulted on the upper (anon) layer
1249 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1250 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1251 	 * layer [i.e. case 2] and the page was both present and available,
1252 	 * then we've got a pointer to it as "uobjpage" and we've already
1253 	 * made it BUSY.
1254 	 */
1255 
1256 	/*
1257 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1258 	 */
1259 
1260 	/*
1261 	 * redirect case 2: if we are not shadowed, go to case 2.
1262 	 */
1263 
1264 	return uvm_fault_lower1(ufi, flt, uobj, uobjpage);
1265 }
1266 
1267 static int
1268 uvm_fault_lower_lookup(
1269 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1270 	struct vm_page **pages)
1271 {
1272 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1273 	int lcv, gotpages;
1274 	vaddr_t currva;
1275 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1276 
1277 	mutex_enter(&uobj->vmobjlock);
1278 	/* locked (!shadowed): maps(read), amap (if there), uobj */
1279 	/*
1280 	 * the following call to pgo_get does _not_ change locking state
1281 	 */
1282 
1283 	uvmexp.fltlget++;
1284 	gotpages = flt->npages;
1285 	(void) uobj->pgops->pgo_get(uobj,
1286 	    ufi->entry->offset + flt->startva - ufi->entry->start,
1287 	    pages, &gotpages, flt->centeridx,
1288 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1289 
1290 	/*
1291 	 * check for pages to map, if we got any
1292 	 */
1293 
1294 	if (gotpages == 0) {
1295 		pages[flt->centeridx] = NULL;
1296 		return 0;
1297 	}
1298 
1299 	currva = flt->startva;
1300 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1301 		struct vm_page *curpg;
1302 
1303 		curpg = pages[lcv];
1304 		if (curpg == NULL || curpg == PGO_DONTCARE) {
1305 			continue;
1306 		}
1307 		KASSERT(curpg->uobject == uobj);
1308 
1309 		/*
1310 		 * if center page is resident and not PG_BUSY|PG_RELEASED
1311 		 * then pgo_get made it PG_BUSY for us and gave us a handle
1312 		 * to it.  remember this page as "uobjpage." (for later use).
1313 		 */
1314 
1315 		if (lcv == flt->centeridx) {
1316 			UVMHIST_LOG(maphist, "  got uobjpage "
1317 			    "(0x%x) with locked get",
1318 			    curpg, 0,0,0);
1319 		} else {
1320 			bool readonly = (curpg->flags & PG_RDONLY)
1321 			    || (curpg->loan_count > 0)
1322 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1323 
1324 			uvm_fault_lower_neighbor(ufi, flt,
1325 			    currva, curpg, readonly);
1326 		}
1327 	}
1328 	pmap_update(ufi->orig_map->pmap);
1329 	return 0;
1330 }
1331 
1332 static void
1333 uvm_fault_lower_neighbor(
1334 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1335 	vaddr_t currva, struct vm_page *pg, bool readonly)
1336 {
1337 	UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1338 
1339 	/*
1340 	 * calling pgo_get with PGO_LOCKED returns us pages which
1341 	 * are neither busy nor released, so we don't need to check
1342 	 * for this.  we can just directly enter the pages.
1343 	 */
1344 
1345 	mutex_enter(&uvm_pageqlock);
1346 	uvm_pageenqueue(pg);
1347 	mutex_exit(&uvm_pageqlock);
1348 	UVMHIST_LOG(maphist,
1349 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1350 	    ufi->orig_map->pmap, currva, pg, 0);
1351 	uvmexp.fltnomap++;
1352 
1353 	/*
1354 	 * Since this page isn't the page that's actually faulting,
1355 	 * ignore pmap_enter() failures; it's not critical that we
1356 	 * enter these right now.
1357 	 */
1358 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1359 	KASSERT((pg->flags & PG_RELEASED) == 0);
1360 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1361 	    (pg->flags & PG_CLEAN) != 0);
1362 
1363 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1364 	    VM_PAGE_TO_PHYS(pg),
1365 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1366 	    flt->enter_prot & MASK(ufi->entry),
1367 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1368 
1369 	/*
1370 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1371 	 * held the lock the whole time we've had the handle.
1372 	 */
1373 	KASSERT((pg->flags & PG_WANTED) == 0);
1374 	KASSERT((pg->flags & PG_RELEASED) == 0);
1375 
1376 	pg->flags &= ~(PG_BUSY);
1377 	UVM_PAGE_OWN(pg, NULL);
1378 }
1379 
1380 static int
1381 uvm_fault_upper(
1382 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1383 	struct vm_anon **anons)
1384 {
1385 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1386 	struct vm_anon * const anon = anons[flt->centeridx];
1387 	struct uvm_object *uobj;
1388 	int error;
1389 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1390 
1391 	/* locked: maps(read), amap */
1392 	KASSERT(mutex_owned(&amap->am_l));
1393 
1394 	/*
1395 	 * handle case 1: fault on an anon in our amap
1396 	 */
1397 
1398 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
1399 	mutex_enter(&anon->an_lock);
1400 
1401 	/* locked: maps(read), amap, anon */
1402 	KASSERT(mutex_owned(&amap->am_l));
1403 	KASSERT(mutex_owned(&anon->an_lock));
1404 
1405 	/*
1406 	 * no matter if we have case 1A or case 1B we are going to need to
1407 	 * have the anon's memory resident.   ensure that now.
1408 	 */
1409 
1410 	/*
1411 	 * let uvmfault_anonget do the dirty work.
1412 	 * if it fails (!OK) it will unlock everything for us.
1413 	 * if it succeeds, locks are still valid and locked.
1414 	 * also, if it is OK, then the anon's page is on the queues.
1415 	 * if the page is on loan from a uvm_object, then anonget will
1416 	 * lock that object for us if it does not fail.
1417 	 */
1418 
1419 	error = uvmfault_anonget(ufi, amap, anon);
1420 	switch (error) {
1421 	case 0:
1422 		break;
1423 
1424 	case ERESTART:
1425 		return ERESTART;
1426 
1427 	case EAGAIN:
1428 		kpause("fltagain1", false, hz/2, NULL);
1429 		return ERESTART;
1430 
1431 	default:
1432 		return error;
1433 	}
1434 
1435 	/*
1436 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1437 	 */
1438 
1439 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1440 
1441 	/* locked: maps(read), amap, anon, uobj(if one) */
1442 	KASSERT(mutex_owned(&amap->am_l));
1443 	KASSERT(mutex_owned(&anon->an_lock));
1444 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1445 
1446 	/*
1447 	 * special handling for loaned pages
1448 	 */
1449 
1450 	if (anon->an_page->loan_count) {
1451 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1452 		if (error != 0)
1453 			return error;
1454 	}
1455 
1456 	/*
1457 	 * if we are case 1B then we will need to allocate a new blank
1458 	 * anon to transfer the data into.   note that we have a lock
1459 	 * on anon, so no one can busy or release the page until we are done.
1460 	 * also note that the ref count can't drop to zero here because
1461 	 * it is > 1 and we are only dropping one ref.
1462 	 *
1463 	 * in the (hopefully very rare) case that we are out of RAM we
1464 	 * will unlock, wait for more RAM, and refault.
1465 	 *
1466 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1467 	 */
1468 
1469 	if (flt->cow_now && anon->an_ref > 1) {
1470 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1471 	} else {
1472 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1473 	}
1474 	return error;
1475 }
1476 
1477 static int
1478 uvm_fault_upper_loan(
1479 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1480 	struct vm_anon *anon, struct uvm_object **ruobj)
1481 {
1482 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1483 	int error = 0;
1484 
1485 	if (!flt->cow_now) {
1486 
1487 		/*
1488 		 * for read faults on loaned pages we just cap the
1489 		 * protection at read-only.
1490 		 */
1491 
1492 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1493 
1494 	} else {
1495 		/*
1496 		 * note that we can't allow writes into a loaned page!
1497 		 *
1498 		 * if we have a write fault on a loaned page in an
1499 		 * anon then we need to look at the anon's ref count.
1500 		 * if it is greater than one then we are going to do
1501 		 * a normal copy-on-write fault into a new anon (this
1502 		 * is not a problem).  however, if the reference count
1503 		 * is one (a case where we would normally allow a
1504 		 * write directly to the page) then we need to kill
1505 		 * the loan before we continue.
1506 		 */
1507 
1508 		/* >1 case is already ok */
1509 		if (anon->an_ref == 1) {
1510 			error = uvm_loanbreak_anon(anon, *ruobj);
1511 			if (error != 0) {
1512 				uvmfault_unlockall(ufi, amap, *ruobj, anon);
1513 				uvm_wait("flt_noram2");
1514 				return ERESTART;
1515 			}
1516 			/* if we were a loan reciever uobj is gone */
1517 			if (*ruobj)
1518 				*ruobj = NULL;
1519 		}
1520 	}
1521 	return error;
1522 }
1523 
1524 static int
1525 uvm_fault_upper_promote(
1526 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1527 	struct uvm_object *uobj, struct vm_anon *anon)
1528 {
1529 	struct vm_anon * const oanon = anon;
1530 	struct vm_page *pg;
1531 	int error;
1532 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1533 
1534 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1535 	uvmexp.flt_acow++;
1536 
1537 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1538 	    &anon, &flt->anon_spare);
1539 	switch (error) {
1540 	case 0:
1541 		break;
1542 	case ERESTART:
1543 		return ERESTART;
1544 	default:
1545 		return error;
1546 	}
1547 
1548 	pg = anon->an_page;
1549 	mutex_enter(&uvm_pageqlock);
1550 	uvm_pageactivate(pg);
1551 	mutex_exit(&uvm_pageqlock);
1552 	pg->flags &= ~(PG_BUSY|PG_FAKE);
1553 	UVM_PAGE_OWN(pg, NULL);
1554 
1555 	/* deref: can not drop to zero here by defn! */
1556 	oanon->an_ref--;
1557 
1558 	/*
1559 	 * note: oanon is still locked, as is the new anon.  we
1560 	 * need to check for this later when we unlock oanon; if
1561 	 * oanon != anon, we'll have to unlock anon, too.
1562 	 */
1563 
1564 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1565 }
1566 
1567 static int
1568 uvm_fault_upper_direct(
1569 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1570 	struct uvm_object *uobj, struct vm_anon *anon)
1571 {
1572 	struct vm_anon * const oanon = anon;
1573 	struct vm_page *pg;
1574 
1575 	uvmexp.flt_anon++;
1576 	pg = anon->an_page;
1577 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1578 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1579 
1580 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1581 }
1582 
1583 static int
1584 uvm_fault_upper_enter(
1585 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1586 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1587 	struct vm_anon *oanon)
1588 {
1589 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1590 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1591 
1592 	/* locked: maps(read), amap, oanon, anon (if different from oanon) */
1593 	KASSERT(mutex_owned(&amap->am_l));
1594 	KASSERT(mutex_owned(&anon->an_lock));
1595 	KASSERT(mutex_owned(&oanon->an_lock));
1596 
1597 	/*
1598 	 * now map the page in.
1599 	 */
1600 
1601 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1602 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
1603 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1604 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1605 	    != 0) {
1606 
1607 		/*
1608 		 * No need to undo what we did; we can simply think of
1609 		 * this as the pmap throwing away the mapping information.
1610 		 *
1611 		 * We do, however, have to go through the ReFault path,
1612 		 * as the map may change while we're asleep.
1613 		 */
1614 
1615 		if (anon != oanon)
1616 			mutex_exit(&anon->an_lock);
1617 		uvmfault_unlockall(ufi, amap, uobj, oanon);
1618 		if (!uvm_reclaimable()) {
1619 			UVMHIST_LOG(maphist,
1620 			    "<- failed.  out of VM",0,0,0,0);
1621 			/* XXX instrumentation */
1622 			return ENOMEM;
1623 		}
1624 		/* XXX instrumentation */
1625 		uvm_wait("flt_pmfail1");
1626 		return ERESTART;
1627 	}
1628 
1629 	return uvm_fault_upper_done(ufi, flt, uobj, anon, pg, oanon);
1630 }
1631 
1632 static int
1633 uvm_fault_upper_done(
1634 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1635 	struct uvm_object *uobj, struct vm_anon *anon,
1636 	struct vm_page *pg, struct vm_anon *oanon)
1637 {
1638 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1639 
1640 	/*
1641 	 * ... update the page queues.
1642 	 */
1643 
1644 	mutex_enter(&uvm_pageqlock);
1645 	if (flt->wire_paging) {
1646 		uvm_pagewire(pg);
1647 
1648 		/*
1649 		 * since the now-wired page cannot be paged out,
1650 		 * release its swap resources for others to use.
1651 		 * since an anon with no swap cannot be PG_CLEAN,
1652 		 * clear its clean flag now.
1653 		 */
1654 
1655 		pg->flags &= ~(PG_CLEAN);
1656 		uvm_anon_dropswap(anon);
1657 	} else {
1658 		uvm_pageactivate(pg);
1659 	}
1660 	mutex_exit(&uvm_pageqlock);
1661 
1662 	/*
1663 	 * done case 1!  finish up by unlocking everything and returning success
1664 	 */
1665 
1666 	if (anon != oanon)
1667 		mutex_exit(&anon->an_lock);
1668 	uvmfault_unlockall(ufi, amap, uobj, oanon);
1669 	pmap_update(ufi->orig_map->pmap);
1670 	return 0;
1671 }
1672 
1673 static int
1674 uvm_fault_lower1(
1675 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1676 	struct uvm_object *uobj, struct vm_page *uobjpage)
1677 {
1678 #ifdef DIAGNOSTIC
1679 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1680 #endif
1681 	bool promote;
1682 	int error;
1683 	UVMHIST_FUNC("uvm_fault_lower1"); UVMHIST_CALLED(maphist);
1684 
1685 	/*
1686 	 * handle case 2: faulting on backing object or zero fill
1687 	 */
1688 
1689 	/*
1690 	 * locked:
1691 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1692 	 */
1693 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1694 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1695 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1696 
1697 	/*
1698 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1699 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1700 	 * have a backing object, check and see if we are going to promote
1701 	 * the data up to an anon during the fault.
1702 	 */
1703 
1704 	if (uobj == NULL) {
1705 		uobjpage = PGO_DONTCARE;
1706 		promote = true;		/* always need anon here */
1707 	} else {
1708 		KASSERT(uobjpage != PGO_DONTCARE);
1709 		promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1710 	}
1711 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
1712 	    promote, (uobj == NULL), 0,0);
1713 
1714 	/*
1715 	 * if uobjpage is not null then we do not need to do I/O to get the
1716 	 * uobjpage.
1717 	 *
1718 	 * if uobjpage is null, then we need to unlock and ask the pager to
1719 	 * get the data for us.   once we have the data, we need to reverify
1720 	 * the state the world.   we are currently not holding any resources.
1721 	 */
1722 
1723 	if (uobjpage) {
1724 		/* update rusage counters */
1725 		curlwp->l_ru.ru_minflt++;
1726 	} else {
1727 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1728 		if (error != 0)
1729 			return error;
1730 	}
1731 
1732 	/*
1733 	 * locked:
1734 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1735 	 */
1736 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1737 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1738 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1739 
1740 	/*
1741 	 * notes:
1742 	 *  - at this point uobjpage can not be NULL
1743 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1744 	 *  for it above)
1745 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1746 	 */
1747 
1748 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1749 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1750 	    (uobjpage->flags & PG_CLEAN) != 0);
1751 
1752 	if (promote == false) {
1753 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1754 	} else {
1755 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1756 	}
1757 	return error;
1758 }
1759 
1760 static int
1761 uvm_fault_lower_io(
1762 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1763 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
1764 {
1765 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1766 	struct uvm_object *uobj = *ruobj;
1767 	struct vm_page *pg;
1768 	bool locked;
1769 	int gotpages;
1770 	int error;
1771 	voff_t uoff;
1772 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1773 
1774 	/* update rusage counters */
1775 	curlwp->l_ru.ru_majflt++;
1776 
1777 	/* locked: maps(read), amap(if there), uobj */
1778 	uvmfault_unlockall(ufi, amap, NULL, NULL);
1779 	/* locked: uobj */
1780 
1781 	uvmexp.fltget++;
1782 	gotpages = 1;
1783 	pg = NULL;
1784 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1785 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1786 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1787 	    PGO_SYNCIO);
1788 	/* locked: pg(if no error) */
1789 
1790 	/*
1791 	 * recover from I/O
1792 	 */
1793 
1794 	if (error) {
1795 		if (error == EAGAIN) {
1796 			UVMHIST_LOG(maphist,
1797 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
1798 			kpause("fltagain2", false, hz/2, NULL);
1799 			return ERESTART;
1800 		}
1801 
1802 #if 0
1803 		KASSERT(error != ERESTART);
1804 #else
1805 		/* XXXUEBS don't re-fault? */
1806 		if (error == ERESTART)
1807 			error = EIO;
1808 #endif
1809 
1810 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1811 		    error, 0,0,0);
1812 		return error;
1813 	}
1814 
1815 	/* locked: pg */
1816 
1817 	KASSERT((pg->flags & PG_BUSY) != 0);
1818 
1819 	mutex_enter(&uvm_pageqlock);
1820 	uvm_pageactivate(pg);
1821 	mutex_exit(&uvm_pageqlock);
1822 
1823 	/*
1824 	 * re-verify the state of the world by first trying to relock
1825 	 * the maps.  always relock the object.
1826 	 */
1827 
1828 	locked = uvmfault_relock(ufi);
1829 	if (locked && amap)
1830 		amap_lock(amap);
1831 
1832 	/* might be changed */
1833 	uobj = pg->uobject;
1834 
1835 	mutex_enter(&uobj->vmobjlock);
1836 
1837 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
1838 	/* locked(!locked): uobj, pg */
1839 
1840 	/*
1841 	 * verify that the page has not be released and re-verify
1842 	 * that amap slot is still free.   if there is a problem,
1843 	 * we unlock and clean up.
1844 	 */
1845 
1846 	if ((pg->flags & PG_RELEASED) != 0 ||
1847 	    (locked && amap && amap_lookup(&ufi->entry->aref,
1848 	      ufi->orig_rvaddr - ufi->entry->start))) {
1849 		if (locked)
1850 			uvmfault_unlockall(ufi, amap, NULL, NULL);
1851 		locked = false;
1852 	}
1853 
1854 	/*
1855 	 * didn't get the lock?   release the page and retry.
1856 	 */
1857 
1858 	if (locked == false) {
1859 		UVMHIST_LOG(maphist,
1860 		    "  wasn't able to relock after fault: retry",
1861 		    0,0,0,0);
1862 		if (pg->flags & PG_WANTED) {
1863 			wakeup(pg);
1864 		}
1865 		if (pg->flags & PG_RELEASED) {
1866 			uvmexp.fltpgrele++;
1867 			uvm_pagefree(pg);
1868 			mutex_exit(&uobj->vmobjlock);
1869 			return ERESTART;
1870 		}
1871 		pg->flags &= ~(PG_BUSY|PG_WANTED);
1872 		UVM_PAGE_OWN(pg, NULL);
1873 		mutex_exit(&uobj->vmobjlock);
1874 		return ERESTART;
1875 	}
1876 
1877 	/*
1878 	 * we have the data in pg which is busy and
1879 	 * not released.  we are holding object lock (so the page
1880 	 * can't be released on us).
1881 	 */
1882 
1883 	/* locked: maps(read), amap(if !null), uobj, pg */
1884 
1885 	*ruobj = uobj;
1886 	*ruobjpage = pg;
1887 	return 0;
1888 }
1889 
1890 int
1891 uvm_fault_lower_direct(
1892 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1893 	struct uvm_object *uobj, struct vm_page *uobjpage)
1894 {
1895 	struct vm_page *pg;
1896 
1897 	/*
1898 	 * we are not promoting.   if the mapping is COW ensure that we
1899 	 * don't give more access than we should (e.g. when doing a read
1900 	 * fault on a COPYONWRITE mapping we want to map the COW page in
1901 	 * R/O even though the entry protection could be R/W).
1902 	 *
1903 	 * set "pg" to the page we want to map in (uobjpage, usually)
1904 	 */
1905 
1906 	uvmexp.flt_obj++;
1907 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1908 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1909 		flt->enter_prot &= ~VM_PROT_WRITE;
1910 	pg = uobjpage;		/* map in the actual object */
1911 
1912 	KASSERT(uobjpage != PGO_DONTCARE);
1913 
1914 	/*
1915 	 * we are faulting directly on the page.   be careful
1916 	 * about writing to loaned pages...
1917 	 */
1918 
1919 	if (uobjpage->loan_count) {
1920 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1921 	}
1922 	KASSERT(pg == uobjpage);
1923 
1924 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1925 }
1926 
1927 static int
1928 uvm_fault_lower_direct_loan(
1929 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1930 	struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1931 {
1932 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1933 	struct vm_page *pg;
1934 	struct vm_page *uobjpage = *ruobjpage;
1935 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1936 
1937 	if (!flt->cow_now) {
1938 		/* read fault: cap the protection at readonly */
1939 		/* cap! */
1940 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1941 	} else {
1942 		/* write fault: must break the loan here */
1943 
1944 		pg = uvm_loanbreak(uobjpage);
1945 		if (pg == NULL) {
1946 
1947 			/*
1948 			 * drop ownership of page, it can't be released
1949 			 */
1950 
1951 			if (uobjpage->flags & PG_WANTED)
1952 				wakeup(uobjpage);
1953 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1954 			UVM_PAGE_OWN(uobjpage, NULL);
1955 
1956 			uvmfault_unlockall(ufi, amap, uobj, NULL);
1957 			UVMHIST_LOG(maphist,
1958 			  "  out of RAM breaking loan, waiting",
1959 			  0,0,0,0);
1960 			uvmexp.fltnoram++;
1961 			uvm_wait("flt_noram4");
1962 			return ERESTART;
1963 		}
1964 		*rpg = pg;
1965 		*ruobjpage = pg;
1966 	}
1967 	return 0;
1968 }
1969 
1970 int
1971 uvm_fault_lower_promote(
1972 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1973 	struct uvm_object *uobj, struct vm_page *uobjpage)
1974 {
1975 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1976 	struct vm_anon *anon;
1977 	struct vm_page *pg;
1978 	int error;
1979 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
1980 
1981 	/*
1982 	 * if we are going to promote the data to an anon we
1983 	 * allocate a blank anon here and plug it into our amap.
1984 	 */
1985 #if DIAGNOSTIC
1986 	if (amap == NULL)
1987 		panic("uvm_fault: want to promote data, but no anon");
1988 #endif
1989 	error = uvmfault_promote(ufi, NULL, uobjpage,
1990 	    &anon, &flt->anon_spare);
1991 	switch (error) {
1992 	case 0:
1993 		break;
1994 	case ERESTART:
1995 		return ERESTART;
1996 	default:
1997 		return error;
1998 	}
1999 
2000 	pg = anon->an_page;
2001 
2002 	/*
2003 	 * fill in the data
2004 	 */
2005 
2006 	if (uobjpage != PGO_DONTCARE) {
2007 		uvmexp.flt_prcopy++;
2008 
2009 		/*
2010 		 * promote to shared amap?  make sure all sharing
2011 		 * procs see it
2012 		 */
2013 
2014 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2015 			pmap_page_protect(uobjpage, VM_PROT_NONE);
2016 			/*
2017 			 * XXX: PAGE MIGHT BE WIRED!
2018 			 */
2019 		}
2020 
2021 		/*
2022 		 * dispose of uobjpage.  it can't be PG_RELEASED
2023 		 * since we still hold the object lock.
2024 		 * drop handle to uobj as well.
2025 		 */
2026 
2027 		if (uobjpage->flags & PG_WANTED)
2028 			/* still have the obj lock */
2029 			wakeup(uobjpage);
2030 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2031 		UVM_PAGE_OWN(uobjpage, NULL);
2032 		mutex_exit(&uobj->vmobjlock);
2033 		uobj = NULL;
2034 
2035 		UVMHIST_LOG(maphist,
2036 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2037 		    uobjpage, anon, pg, 0);
2038 
2039 	} else {
2040 		uvmexp.flt_przero++;
2041 
2042 		/*
2043 		 * Page is zero'd and marked dirty by
2044 		 * uvmfault_promote().
2045 		 */
2046 
2047 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
2048 		    anon, pg, 0, 0);
2049 	}
2050 
2051 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2052 }
2053 
2054 int
2055 uvm_fault_lower_enter(
2056 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2057 	struct uvm_object *uobj,
2058 	struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2059 {
2060 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2061 	int error;
2062 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2063 
2064 	/*
2065 	 * locked:
2066 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2067 	 *   anon(if !null), pg(if anon)
2068 	 *
2069 	 * note: pg is either the uobjpage or the new page in the new anon
2070 	 */
2071 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2072 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2073 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2074 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2075 	KASSERT((pg->flags & PG_BUSY) != 0);
2076 
2077 	/*
2078 	 * all resources are present.   we can now map it in and free our
2079 	 * resources.
2080 	 */
2081 
2082 	UVMHIST_LOG(maphist,
2083 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=XXX",
2084 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, 0);
2085 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2086 		(pg->flags & PG_RDONLY) == 0);
2087 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2088 	    pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2089 	    flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2090 
2091 		/*
2092 		 * No need to undo what we did; we can simply think of
2093 		 * this as the pmap throwing away the mapping information.
2094 		 *
2095 		 * We do, however, have to go through the ReFault path,
2096 		 * as the map may change while we're asleep.
2097 		 */
2098 
2099 		if (pg->flags & PG_WANTED)
2100 			wakeup(pg);
2101 
2102 		/*
2103 		 * note that pg can't be PG_RELEASED since we did not drop
2104 		 * the object lock since the last time we checked.
2105 		 */
2106 		KASSERT((pg->flags & PG_RELEASED) == 0);
2107 
2108 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2109 		UVM_PAGE_OWN(pg, NULL);
2110 		uvmfault_unlockall(ufi, amap, uobj, anon);
2111 		if (!uvm_reclaimable()) {
2112 			UVMHIST_LOG(maphist,
2113 			    "<- failed.  out of VM",0,0,0,0);
2114 			/* XXX instrumentation */
2115 			error = ENOMEM;
2116 			return error;
2117 		}
2118 		/* XXX instrumentation */
2119 		uvm_wait("flt_pmfail2");
2120 		return ERESTART;
2121 	}
2122 
2123 	return uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2124 }
2125 
2126 int
2127 uvm_fault_lower_done(
2128 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2129 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2130 {
2131 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2132 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2133 
2134 	mutex_enter(&uvm_pageqlock);
2135 	if (flt->wire_paging) {
2136 		uvm_pagewire(pg);
2137 		if (pg->pqflags & PQ_AOBJ) {
2138 
2139 			/*
2140 			 * since the now-wired page cannot be paged out,
2141 			 * release its swap resources for others to use.
2142 			 * since an aobj page with no swap cannot be PG_CLEAN,
2143 			 * clear its clean flag now.
2144 			 */
2145 
2146 			KASSERT(uobj != NULL);
2147 			pg->flags &= ~(PG_CLEAN);
2148 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2149 		}
2150 	} else {
2151 		uvm_pageactivate(pg);
2152 	}
2153 	mutex_exit(&uvm_pageqlock);
2154 	if (pg->flags & PG_WANTED)
2155 		wakeup(pg);
2156 
2157 	/*
2158 	 * note that pg can't be PG_RELEASED since we did not drop the object
2159 	 * lock since the last time we checked.
2160 	 */
2161 	KASSERT((pg->flags & PG_RELEASED) == 0);
2162 
2163 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2164 	UVM_PAGE_OWN(pg, NULL);
2165 	uvmfault_unlockall(ufi, amap, uobj, anon);
2166 	pmap_update(ufi->orig_map->pmap);
2167 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2168 	return 0;
2169 }
2170 
2171 
2172 /*
2173  * uvm_fault_wire: wire down a range of virtual addresses in a map.
2174  *
2175  * => map may be read-locked by caller, but MUST NOT be write-locked.
2176  * => if map is read-locked, any operations which may cause map to
2177  *	be write-locked in uvm_fault() must be taken care of by
2178  *	the caller.  See uvm_map_pageable().
2179  */
2180 
2181 int
2182 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2183     vm_prot_t access_type, int maxprot)
2184 {
2185 	vaddr_t va;
2186 	int error;
2187 
2188 	/*
2189 	 * now fault it in a page at a time.   if the fault fails then we have
2190 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
2191 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2192 	 */
2193 
2194 	/*
2195 	 * XXX work around overflowing a vaddr_t.  this prevents us from
2196 	 * wiring the last page in the address space, though.
2197 	 */
2198 	if (start > end) {
2199 		return EFAULT;
2200 	}
2201 
2202 	for (va = start; va < end; va += PAGE_SIZE) {
2203 		error = uvm_fault_internal(map, va, access_type,
2204 				(maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2205 		if (error) {
2206 			if (va != start) {
2207 				uvm_fault_unwire(map, start, va);
2208 			}
2209 			return error;
2210 		}
2211 	}
2212 	return 0;
2213 }
2214 
2215 /*
2216  * uvm_fault_unwire(): unwire range of virtual space.
2217  */
2218 
2219 void
2220 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2221 {
2222 	vm_map_lock_read(map);
2223 	uvm_fault_unwire_locked(map, start, end);
2224 	vm_map_unlock_read(map);
2225 }
2226 
2227 /*
2228  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2229  *
2230  * => map must be at least read-locked.
2231  */
2232 
2233 void
2234 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2235 {
2236 	struct vm_map_entry *entry;
2237 	pmap_t pmap = vm_map_pmap(map);
2238 	vaddr_t va;
2239 	paddr_t pa;
2240 	struct vm_page *pg;
2241 
2242 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2243 
2244 	/*
2245 	 * we assume that the area we are unwiring has actually been wired
2246 	 * in the first place.   this means that we should be able to extract
2247 	 * the PAs from the pmap.   we also lock out the page daemon so that
2248 	 * we can call uvm_pageunwire.
2249 	 */
2250 
2251 	mutex_enter(&uvm_pageqlock);
2252 
2253 	/*
2254 	 * find the beginning map entry for the region.
2255 	 */
2256 
2257 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2258 	if (uvm_map_lookup_entry(map, start, &entry) == false)
2259 		panic("uvm_fault_unwire_locked: address not in map");
2260 
2261 	for (va = start; va < end; va += PAGE_SIZE) {
2262 		if (pmap_extract(pmap, va, &pa) == false)
2263 			continue;
2264 
2265 		/*
2266 		 * find the map entry for the current address.
2267 		 */
2268 
2269 		KASSERT(va >= entry->start);
2270 		while (va >= entry->end) {
2271 			KASSERT(entry->next != &map->header &&
2272 				entry->next->start <= entry->end);
2273 			entry = entry->next;
2274 		}
2275 
2276 		/*
2277 		 * if the entry is no longer wired, tell the pmap.
2278 		 */
2279 
2280 		if (VM_MAPENT_ISWIRED(entry) == 0)
2281 			pmap_unwire(pmap, va);
2282 
2283 		pg = PHYS_TO_VM_PAGE(pa);
2284 		if (pg)
2285 			uvm_pageunwire(pg);
2286 	}
2287 
2288 	mutex_exit(&uvm_pageqlock);
2289 }
2290