xref: /netbsd-src/sys/uvm/uvm_fault.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: uvm_fault.c,v 1.202 2017/11/20 21:06:54 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
28  */
29 
30 /*
31  * uvm_fault.c: fault handler
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.202 2017/11/20 21:06:54 chs Exp $");
36 
37 #include "opt_uvmhist.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/mman.h>
43 
44 #include <uvm/uvm.h>
45 
46 /*
47  *
48  * a word on page faults:
49  *
50  * types of page faults we handle:
51  *
52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
53  *
54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55  *    read/write1     write>1                  read/write   +-cow_write/zero
56  *         |             |                         |        |
57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60  *                                                 |        |    |
61  *      +-----+       +-----+                   +--|--+     | +--|--+
62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63  *      +-----+       +-----+                   +-----+       +-----+
64  *
65  * d/c = don't care
66  *
67  *   case [0]: layerless fault
68  *	no amap or uobj is present.   this is an error.
69  *
70  *   case [1]: upper layer fault [anon active]
71  *     1A: [read] or [write with anon->an_ref == 1]
72  *		I/O takes place in upper level anon and uobj is not touched.
73  *     1B: [write with anon->an_ref > 1]
74  *		new anon is alloc'd and data is copied off ["COW"]
75  *
76  *   case [2]: lower layer fault [uobj]
77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78  *		I/O takes place directly in object.
79  *     2B: [write to copy_on_write] or [read on NULL uobj]
80  *		data is "promoted" from uobj to a new anon.
81  *		if uobj is null, then we zero fill.
82  *
83  * we follow the standard UVM locking protocol ordering:
84  *
85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86  * we hold a PG_BUSY page if we unlock for I/O
87  *
88  *
89  * the code is structured as follows:
90  *
91  *     - init the "IN" params in the ufi structure
92  *   ReFault: (ERESTART returned to the loop in uvm_fault_internal)
93  *     - do lookups [locks maps], check protection, handle needs_copy
94  *     - check for case 0 fault (error)
95  *     - establish "range" of fault
96  *     - if we have an amap lock it and extract the anons
97  *     - if sequential advice deactivate pages behind us
98  *     - at the same time check pmap for unmapped areas and anon for pages
99  *	 that we could map in (and do map it if found)
100  *     - check object for resident pages that we could map in
101  *     - if (case 2) goto Case2
102  *     - >>> handle case 1
103  *           - ensure source anon is resident in RAM
104  *           - if case 1B alloc new anon and copy from source
105  *           - map the correct page in
106  *   Case2:
107  *     - >>> handle case 2
108  *           - ensure source page is resident (if uobj)
109  *           - if case 2B alloc new anon and copy from source (could be zero
110  *		fill if uobj == NULL)
111  *           - map the correct page in
112  *     - done!
113  *
114  * note on paging:
115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
116  * unlock everything, and do the I/O.   when I/O is done we must reverify
117  * the state of the world before assuming that our data structures are
118  * valid.   [because mappings could change while the map is unlocked]
119  *
120  *  alternative 1: unbusy the page in question and restart the page fault
121  *    from the top (ReFault).   this is easy but does not take advantage
122  *    of the information that we already have from our previous lookup,
123  *    although it is possible that the "hints" in the vm_map will help here.
124  *
125  * alternative 2: the system already keeps track of a "version" number of
126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127  *    mapping) you bump the version number up by one...]   so, we can save
128  *    the version number of the map before we release the lock and start I/O.
129  *    then when I/O is done we can relock and check the version numbers
130  *    to see if anything changed.    this might save us some over 1 because
131  *    we don't have to unbusy the page and may be less compares(?).
132  *
133  * alternative 3: put in backpointers or a way to "hold" part of a map
134  *    in place while I/O is in progress.   this could be complex to
135  *    implement (especially with structures like amap that can be referenced
136  *    by multiple map entries, and figuring out what should wait could be
137  *    complex as well...).
138  *
139  * we use alternative 2.  given that we are multi-threaded now we may want
140  * to reconsider the choice.
141  */
142 
143 /*
144  * local data structures
145  */
146 
147 struct uvm_advice {
148 	int advice;
149 	int nback;
150 	int nforw;
151 };
152 
153 /*
154  * page range array:
155  * note: index in array must match "advice" value
156  * XXX: borrowed numbers from freebsd.   do they work well for us?
157  */
158 
159 static const struct uvm_advice uvmadvice[] = {
160 	{ UVM_ADV_NORMAL, 3, 4 },
161 	{ UVM_ADV_RANDOM, 0, 0 },
162 	{ UVM_ADV_SEQUENTIAL, 8, 7},
163 };
164 
165 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
166 
167 /*
168  * private prototypes
169  */
170 
171 /*
172  * externs from other modules
173  */
174 
175 extern int start_init_exec;	/* Is init_main() done / init running? */
176 
177 /*
178  * inline functions
179  */
180 
181 /*
182  * uvmfault_anonflush: try and deactivate pages in specified anons
183  *
184  * => does not have to deactivate page if it is busy
185  */
186 
187 static inline void
188 uvmfault_anonflush(struct vm_anon **anons, int n)
189 {
190 	int lcv;
191 	struct vm_page *pg;
192 
193 	for (lcv = 0; lcv < n; lcv++) {
194 		if (anons[lcv] == NULL)
195 			continue;
196 		KASSERT(mutex_owned(anons[lcv]->an_lock));
197 		pg = anons[lcv]->an_page;
198 		if (pg && (pg->flags & PG_BUSY) == 0) {
199 			mutex_enter(&uvm_pageqlock);
200 			if (pg->wire_count == 0) {
201 				uvm_pagedeactivate(pg);
202 			}
203 			mutex_exit(&uvm_pageqlock);
204 		}
205 	}
206 }
207 
208 /*
209  * normal functions
210  */
211 
212 /*
213  * uvmfault_amapcopy: clear "needs_copy" in a map.
214  *
215  * => called with VM data structures unlocked (usually, see below)
216  * => we get a write lock on the maps and clear needs_copy for a VA
217  * => if we are out of RAM we sleep (waiting for more)
218  */
219 
220 static void
221 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
222 {
223 	for (;;) {
224 
225 		/*
226 		 * no mapping?  give up.
227 		 */
228 
229 		if (uvmfault_lookup(ufi, true) == false)
230 			return;
231 
232 		/*
233 		 * copy if needed.
234 		 */
235 
236 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
238 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
239 
240 		/*
241 		 * didn't work?  must be out of RAM.   unlock and sleep.
242 		 */
243 
244 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
245 			uvmfault_unlockmaps(ufi, true);
246 			uvm_wait("fltamapcopy");
247 			continue;
248 		}
249 
250 		/*
251 		 * got it!   unlock and return.
252 		 */
253 
254 		uvmfault_unlockmaps(ufi, true);
255 		return;
256 	}
257 	/*NOTREACHED*/
258 }
259 
260 /*
261  * uvmfault_anonget: get data in an anon into a non-busy, non-released
262  * page in that anon.
263  *
264  * => Map, amap and thus anon should be locked by caller.
265  * => If we fail, we unlock everything and error is returned.
266  * => If we are successful, return with everything still locked.
267  * => We do not move the page on the queues [gets moved later].  If we
268  *    allocate a new page [we_own], it gets put on the queues.  Either way,
269  *    the result is that the page is on the queues at return time
270  * => For pages which are on loan from a uvm_object (and thus are not owned
271  *    by the anon): if successful, return with the owning object locked.
272  *    The caller must unlock this object when it unlocks everything else.
273  */
274 
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277     struct vm_anon *anon)
278 {
279 	struct vm_page *pg;
280 	int error;
281 
282 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
283 	KASSERT(mutex_owned(anon->an_lock));
284 	KASSERT(anon->an_lock == amap->am_lock);
285 
286 	/* Increment the counters.*/
287 	uvmexp.fltanget++;
288 	if (anon->an_page) {
289 		curlwp->l_ru.ru_minflt++;
290 	} else {
291 		curlwp->l_ru.ru_majflt++;
292 	}
293 	error = 0;
294 
295 	/*
296 	 * Loop until we get the anon data, or fail.
297 	 */
298 
299 	for (;;) {
300 		bool we_own, locked;
301 		/*
302 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
303 		 */
304 		we_own = false;
305 		pg = anon->an_page;
306 
307 		/*
308 		 * If there is a resident page and it is loaned, then anon
309 		 * may not own it.  Call out to uvm_anon_lockloanpg() to
310 		 * identify and lock the real owner of the page.
311 		 */
312 
313 		if (pg && pg->loan_count)
314 			pg = uvm_anon_lockloanpg(anon);
315 
316 		/*
317 		 * Is page resident?  Make sure it is not busy/released.
318 		 */
319 
320 		if (pg) {
321 
322 			/*
323 			 * at this point, if the page has a uobject [meaning
324 			 * we have it on loan], then that uobject is locked
325 			 * by us!   if the page is busy, we drop all the
326 			 * locks (including uobject) and try again.
327 			 */
328 
329 			if ((pg->flags & PG_BUSY) == 0) {
330 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
331 				return 0;
332 			}
333 			pg->flags |= PG_WANTED;
334 			uvmexp.fltpgwait++;
335 
336 			/*
337 			 * The last unlock must be an atomic unlock and wait
338 			 * on the owner of page.
339 			 */
340 
341 			if (pg->uobject) {
342 				/* Owner of page is UVM object. */
343 				uvmfault_unlockall(ufi, amap, NULL);
344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 				    0,0,0);
346 				UVM_UNLOCK_AND_WAIT(pg,
347 				    pg->uobject->vmobjlock,
348 				    false, "anonget1", 0);
349 			} else {
350 				/* Owner of page is anon. */
351 				uvmfault_unlockall(ufi, NULL, NULL);
352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 				    0,0,0);
354 				UVM_UNLOCK_AND_WAIT(pg, anon->an_lock,
355 				    false, "anonget2", 0);
356 			}
357 		} else {
358 #if defined(VMSWAP)
359 			/*
360 			 * No page, therefore allocate one.
361 			 */
362 
363 			pg = uvm_pagealloc(NULL,
364 			    ufi != NULL ? ufi->orig_rvaddr : 0,
365 			    anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0);
366 			if (pg == NULL) {
367 				/* Out of memory.  Wait a little. */
368 				uvmfault_unlockall(ufi, amap, NULL);
369 				uvmexp.fltnoram++;
370 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
371 				    0,0,0);
372 				if (!uvm_reclaimable()) {
373 					return ENOMEM;
374 				}
375 				uvm_wait("flt_noram1");
376 			} else {
377 				/* PG_BUSY bit is set. */
378 				we_own = true;
379 				uvmfault_unlockall(ufi, amap, NULL);
380 
381 				/*
382 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
383 				 * the uvm_swap_get() function with all data
384 				 * structures unlocked.  Note that it is OK
385 				 * to read an_swslot here, because we hold
386 				 * PG_BUSY on the page.
387 				 */
388 				uvmexp.pageins++;
389 				error = uvm_swap_get(pg, anon->an_swslot,
390 				    PGO_SYNCIO);
391 
392 				/*
393 				 * We clean up after the I/O below in the
394 				 * 'we_own' case.
395 				 */
396 			}
397 #else
398 			panic("%s: no page", __func__);
399 #endif /* defined(VMSWAP) */
400 		}
401 
402 		/*
403 		 * Re-lock the map and anon.
404 		 */
405 
406 		locked = uvmfault_relock(ufi);
407 		if (locked || we_own) {
408 			mutex_enter(anon->an_lock);
409 		}
410 
411 		/*
412 		 * If we own the page (i.e. we set PG_BUSY), then we need
413 		 * to clean up after the I/O.  There are three cases to
414 		 * consider:
415 		 *
416 		 * 1) Page was released during I/O: free anon and ReFault.
417 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
418 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
419 		 *    case (i.e. drop anon lock if not locked).
420 		 */
421 
422 		if (we_own) {
423 #if defined(VMSWAP)
424 			if (pg->flags & PG_WANTED) {
425 				wakeup(pg);
426 			}
427 			if (error) {
428 
429 				/*
430 				 * Remove the swap slot from the anon and
431 				 * mark the anon as having no real slot.
432 				 * Do not free the swap slot, thus preventing
433 				 * it from being used again.
434 				 */
435 
436 				if (anon->an_swslot > 0) {
437 					uvm_swap_markbad(anon->an_swslot, 1);
438 				}
439 				anon->an_swslot = SWSLOT_BAD;
440 
441 				if ((pg->flags & PG_RELEASED) != 0) {
442 					goto released;
443 				}
444 
445 				/*
446 				 * Note: page was never !PG_BUSY, so it
447 				 * cannot be mapped and thus no need to
448 				 * pmap_page_protect() it.
449 				 */
450 
451 				mutex_enter(&uvm_pageqlock);
452 				uvm_pagefree(pg);
453 				mutex_exit(&uvm_pageqlock);
454 
455 				if (locked) {
456 					uvmfault_unlockall(ufi, NULL, NULL);
457 				}
458 				mutex_exit(anon->an_lock);
459 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 				return error;
461 			}
462 
463 			if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 				KASSERT(anon->an_ref == 0);
466 
467 				/*
468 				 * Released while we had unlocked amap.
469 				 */
470 
471 				if (locked) {
472 					uvmfault_unlockall(ufi, NULL, NULL);
473 				}
474 				uvm_anon_release(anon);
475 
476 				if (error) {
477 					UVMHIST_LOG(maphist,
478 					    "<- ERROR/RELEASED", 0,0,0,0);
479 					return error;
480 				}
481 
482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 				return ERESTART;
484 			}
485 
486 			/*
487 			 * We have successfully read the page, activate it.
488 			 */
489 
490 			mutex_enter(&uvm_pageqlock);
491 			uvm_pageactivate(pg);
492 			mutex_exit(&uvm_pageqlock);
493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 			UVM_PAGE_OWN(pg, NULL);
495 #else
496 			panic("%s: we_own", __func__);
497 #endif /* defined(VMSWAP) */
498 		}
499 
500 		/*
501 		 * We were not able to re-lock the map - restart the fault.
502 		 */
503 
504 		if (!locked) {
505 			if (we_own) {
506 				mutex_exit(anon->an_lock);
507 			}
508 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 			return ERESTART;
510 		}
511 
512 		/*
513 		 * Verify that no one has touched the amap and moved
514 		 * the anon on us.
515 		 */
516 
517 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
518 		    ufi->orig_rvaddr - ufi->entry->start) != anon) {
519 
520 			uvmfault_unlockall(ufi, amap, NULL);
521 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 			return ERESTART;
523 		}
524 
525 		/*
526 		 * Retry..
527 		 */
528 
529 		uvmexp.fltanretry++;
530 		continue;
531 	}
532 	/*NOTREACHED*/
533 }
534 
535 /*
536  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
537  *
538  *	1. allocate an anon and a page.
539  *	2. fill its contents.
540  *	3. put it into amap.
541  *
542  * => if we fail (result != 0) we unlock everything.
543  * => on success, return a new locked anon via 'nanon'.
544  *    (*nanon)->an_page will be a resident, locked, dirty page.
545  * => it's caller's responsibility to put the promoted nanon->an_page to the
546  *    page queue.
547  */
548 
549 static int
550 uvmfault_promote(struct uvm_faultinfo *ufi,
551     struct vm_anon *oanon,
552     struct vm_page *uobjpage,
553     struct vm_anon **nanon, /* OUT: allocated anon */
554     struct vm_anon **spare)
555 {
556 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
557 	struct uvm_object *uobj;
558 	struct vm_anon *anon;
559 	struct vm_page *pg;
560 	struct vm_page *opg;
561 	int error;
562 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
563 
564 	if (oanon) {
565 		/* anon COW */
566 		opg = oanon->an_page;
567 		KASSERT(opg != NULL);
568 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
569 	} else if (uobjpage != PGO_DONTCARE) {
570 		/* object-backed COW */
571 		opg = uobjpage;
572 	} else {
573 		/* ZFOD */
574 		opg = NULL;
575 	}
576 	if (opg != NULL) {
577 		uobj = opg->uobject;
578 	} else {
579 		uobj = NULL;
580 	}
581 
582 	KASSERT(amap != NULL);
583 	KASSERT(uobjpage != NULL);
584 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
585 	KASSERT(mutex_owned(amap->am_lock));
586 	KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock);
587 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
588 
589 	if (*spare != NULL) {
590 		anon = *spare;
591 		*spare = NULL;
592 	} else {
593 		anon = uvm_analloc();
594 	}
595 	if (anon) {
596 
597 		/*
598 		 * The new anon is locked.
599 		 *
600 		 * if opg == NULL, we want a zero'd, dirty page,
601 		 * so have uvm_pagealloc() do that for us.
602 		 */
603 
604 		KASSERT(anon->an_lock == NULL);
605 		anon->an_lock = amap->am_lock;
606 		pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon,
607 		    UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0));
608 		if (pg == NULL) {
609 			anon->an_lock = NULL;
610 		}
611 	} else {
612 		pg = NULL;
613 	}
614 
615 	/*
616 	 * out of memory resources?
617 	 */
618 
619 	if (pg == NULL) {
620 		/* save anon for the next try. */
621 		if (anon != NULL) {
622 			*spare = anon;
623 		}
624 
625 		/* unlock and fail ... */
626 		uvm_page_unbusy(&uobjpage, 1);
627 		uvmfault_unlockall(ufi, amap, uobj);
628 		if (!uvm_reclaimable()) {
629 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
630 			uvmexp.fltnoanon++;
631 			error = ENOMEM;
632 			goto done;
633 		}
634 
635 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
636 		uvmexp.fltnoram++;
637 		uvm_wait("flt_noram5");
638 		error = ERESTART;
639 		goto done;
640 	}
641 
642 	/* copy page [pg now dirty] */
643 	if (opg) {
644 		uvm_pagecopy(opg, pg);
645 	}
646 
647 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
648 	    oanon != NULL);
649 
650 	*nanon = anon;
651 	error = 0;
652 done:
653 	return error;
654 }
655 
656 
657 /*
658  *   F A U L T   -   m a i n   e n t r y   p o i n t
659  */
660 
661 /*
662  * uvm_fault: page fault handler
663  *
664  * => called from MD code to resolve a page fault
665  * => VM data structures usually should be unlocked.   however, it is
666  *	possible to call here with the main map locked if the caller
667  *	gets a write lock, sets it recusive, and then calls us (c.f.
668  *	uvm_map_pageable).   this should be avoided because it keeps
669  *	the map locked off during I/O.
670  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
671  */
672 
673 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
674 			 ~VM_PROT_WRITE : VM_PROT_ALL)
675 
676 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
677 #define UVM_FAULT_WIRE		(1 << 0)
678 #define UVM_FAULT_MAXPROT	(1 << 1)
679 
680 struct uvm_faultctx {
681 
682 	/*
683 	 * the following members are set up by uvm_fault_check() and
684 	 * read-only after that.
685 	 *
686 	 * note that narrow is used by uvm_fault_check() to change
687 	 * the behaviour after ERESTART.
688 	 *
689 	 * most of them might change after RESTART if the underlying
690 	 * map entry has been changed behind us.  an exception is
691 	 * wire_paging, which does never change.
692 	 */
693 	vm_prot_t access_type;
694 	vaddr_t startva;
695 	int npages;
696 	int centeridx;
697 	bool narrow;		/* work on a single requested page only */
698 	bool wire_mapping;	/* request a PMAP_WIRED mapping
699 				   (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */
700 	bool wire_paging;	/* request uvm_pagewire
701 				   (true for UVM_FAULT_WIRE) */
702 	bool cow_now;		/* VM_PROT_WRITE is actually requested
703 				   (ie. should break COW and page loaning) */
704 
705 	/*
706 	 * enter_prot is set up by uvm_fault_check() and clamped
707 	 * (ie. drop the VM_PROT_WRITE bit) in various places in case
708 	 * of !cow_now.
709 	 */
710 	vm_prot_t enter_prot;	/* prot at which we want to enter pages in */
711 
712 	/*
713 	 * the following member is for uvmfault_promote() and ERESTART.
714 	 */
715 	struct vm_anon *anon_spare;
716 
717 	/*
718 	 * the folloing is actually a uvm_fault_lower() internal.
719 	 * it's here merely for debugging.
720 	 * (or due to the mechanical separation of the function?)
721 	 */
722 	bool promote;
723 };
724 
725 static inline int	uvm_fault_check(
726 			    struct uvm_faultinfo *, struct uvm_faultctx *,
727 			    struct vm_anon ***, bool);
728 
729 static int		uvm_fault_upper(
730 			    struct uvm_faultinfo *, struct uvm_faultctx *,
731 			    struct vm_anon **);
732 static inline int	uvm_fault_upper_lookup(
733 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
734 			    struct vm_anon **, struct vm_page **);
735 static inline void	uvm_fault_upper_neighbor(
736 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
737 			    vaddr_t, struct vm_page *, bool);
738 static inline int	uvm_fault_upper_loan(
739 			    struct uvm_faultinfo *, struct uvm_faultctx *,
740 			    struct vm_anon *, struct uvm_object **);
741 static inline int	uvm_fault_upper_promote(
742 			    struct uvm_faultinfo *, struct uvm_faultctx *,
743 			    struct uvm_object *, struct vm_anon *);
744 static inline int	uvm_fault_upper_direct(
745 			    struct uvm_faultinfo *, struct uvm_faultctx *,
746 			    struct uvm_object *, struct vm_anon *);
747 static int		uvm_fault_upper_enter(
748 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
749 			    struct uvm_object *, struct vm_anon *,
750 			    struct vm_page *, struct vm_anon *);
751 static inline void	uvm_fault_upper_done(
752 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
753 			    struct vm_anon *, struct vm_page *);
754 
755 static int		uvm_fault_lower(
756 			    struct uvm_faultinfo *, struct uvm_faultctx *,
757 			    struct vm_page **);
758 static inline void	uvm_fault_lower_lookup(
759 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
760 			    struct vm_page **);
761 static inline void	uvm_fault_lower_neighbor(
762 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
763 			    vaddr_t, struct vm_page *, bool);
764 static inline int	uvm_fault_lower_io(
765 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
766 			    struct uvm_object **, struct vm_page **);
767 static inline int	uvm_fault_lower_direct(
768 			    struct uvm_faultinfo *, struct uvm_faultctx *,
769 			    struct uvm_object *, struct vm_page *);
770 static inline int	uvm_fault_lower_direct_loan(
771 			    struct uvm_faultinfo *, struct uvm_faultctx *,
772 			    struct uvm_object *, struct vm_page **,
773 			    struct vm_page **);
774 static inline int	uvm_fault_lower_promote(
775 			    struct uvm_faultinfo *, struct uvm_faultctx *,
776 			    struct uvm_object *, struct vm_page *);
777 static int		uvm_fault_lower_enter(
778 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
779 			    struct uvm_object *,
780 			    struct vm_anon *, struct vm_page *);
781 static inline void	uvm_fault_lower_done(
782 			    struct uvm_faultinfo *, const struct uvm_faultctx *,
783 			    struct uvm_object *, struct vm_page *);
784 
785 int
786 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
787     vm_prot_t access_type, int fault_flag)
788 {
789 	struct cpu_data *cd;
790 	struct uvm_cpu *ucpu;
791 	struct uvm_faultinfo ufi;
792 	struct uvm_faultctx flt = {
793 		.access_type = access_type,
794 
795 		/* don't look for neighborhood * pages on "wire" fault */
796 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
797 
798 		/* "wire" fault causes wiring of both mapping and paging */
799 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
800 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
801 	};
802 	const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0;
803 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
804 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
805 	int error;
806 
807 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
808 
809 	UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)",
810 	      (uintptr_t)orig_map, vaddr, access_type, fault_flag);
811 
812 	cd = &(curcpu()->ci_data);
813 	cd->cpu_nfault++;
814 	ucpu = cd->cpu_uvm;
815 
816 	/* Don't flood RNG subsystem with samples. */
817 	if (cd->cpu_nfault % 503)
818 		goto norng;
819 
820 	/* Don't count anything until user interaction is possible */
821 	if (__predict_true(start_init_exec)) {
822 		kpreempt_disable();
823 		rnd_add_uint32(&ucpu->rs,
824 			       sizeof(vaddr_t) == sizeof(uint32_t) ?
825 			       (uint32_t)vaddr : sizeof(vaddr_t) ==
826 			       sizeof(uint64_t) ?
827 			       (uint32_t)(vaddr & 0x00000000ffffffff) :
828 			       (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff));
829 		kpreempt_enable();
830 	}
831 norng:
832 	/*
833 	 * init the IN parameters in the ufi
834 	 */
835 
836 	ufi.orig_map = orig_map;
837 	ufi.orig_rvaddr = trunc_page(vaddr);
838 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
839 
840 	error = ERESTART;
841 	while (error == ERESTART) { /* ReFault: */
842 		anons = anons_store;
843 		pages = pages_store;
844 
845 		error = uvm_fault_check(&ufi, &flt, &anons, maxprot);
846 		if (error != 0)
847 			continue;
848 
849 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
850 		if (error != 0)
851 			continue;
852 
853 		if (pages[flt.centeridx] == PGO_DONTCARE)
854 			error = uvm_fault_upper(&ufi, &flt, anons);
855 		else {
856 			struct uvm_object * const uobj =
857 			    ufi.entry->object.uvm_obj;
858 
859 			if (uobj && uobj->pgops->pgo_fault != NULL) {
860 				/*
861 				 * invoke "special" fault routine.
862 				 */
863 				mutex_enter(uobj->vmobjlock);
864 				/* locked: maps(read), amap(if there), uobj */
865 				error = uobj->pgops->pgo_fault(&ufi,
866 				    flt.startva, pages, flt.npages,
867 				    flt.centeridx, flt.access_type,
868 				    PGO_LOCKED|PGO_SYNCIO);
869 
870 				/*
871 				 * locked: nothing, pgo_fault has unlocked
872 				 * everything
873 				 */
874 
875 				/*
876 				 * object fault routine responsible for
877 				 * pmap_update().
878 				 */
879 			} else {
880 				error = uvm_fault_lower(&ufi, &flt, pages);
881 			}
882 		}
883 	}
884 
885 	if (flt.anon_spare != NULL) {
886 		flt.anon_spare->an_ref--;
887 		KASSERT(flt.anon_spare->an_ref == 0);
888 		KASSERT(flt.anon_spare->an_lock == NULL);
889 		uvm_anon_free(flt.anon_spare);
890 	}
891 	return error;
892 }
893 
894 /*
895  * uvm_fault_check: check prot, handle needs-copy, etc.
896  *
897  *	1. lookup entry.
898  *	2. check protection.
899  *	3. adjust fault condition (mainly for simulated fault).
900  *	4. handle needs-copy (lazy amap copy).
901  *	5. establish range of interest for neighbor fault (aka pre-fault).
902  *	6. look up anons (if amap exists).
903  *	7. flush pages (if MADV_SEQUENTIAL)
904  *
905  * => called with nothing locked.
906  * => if we fail (result != 0) we unlock everything.
907  * => initialize/adjust many members of flt.
908  */
909 
910 static int
911 uvm_fault_check(
912 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
913 	struct vm_anon ***ranons, bool maxprot)
914 {
915 	struct vm_amap *amap;
916 	struct uvm_object *uobj;
917 	vm_prot_t check_prot;
918 	int nback, nforw;
919 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
920 
921 	/*
922 	 * lookup and lock the maps
923 	 */
924 
925 	if (uvmfault_lookup(ufi, false) == false) {
926 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr,
927 		    0,0,0);
928 		return EFAULT;
929 	}
930 	/* locked: maps(read) */
931 
932 #ifdef DIAGNOSTIC
933 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
934 		printf("Page fault on non-pageable map:\n");
935 		printf("ufi->map = %p\n", ufi->map);
936 		printf("ufi->orig_map = %p\n", ufi->orig_map);
937 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
938 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
939 	}
940 #endif
941 
942 	/*
943 	 * check protection
944 	 */
945 
946 	check_prot = maxprot ?
947 	    ufi->entry->max_protection : ufi->entry->protection;
948 	if ((check_prot & flt->access_type) != flt->access_type) {
949 		UVMHIST_LOG(maphist,
950 		    "<- protection failure (prot=%#jx, access=%#jx)",
951 		    ufi->entry->protection, flt->access_type, 0, 0);
952 		uvmfault_unlockmaps(ufi, false);
953 		return EFAULT;
954 	}
955 
956 	/*
957 	 * "enter_prot" is the protection we want to enter the page in at.
958 	 * for certain pages (e.g. copy-on-write pages) this protection can
959 	 * be more strict than ufi->entry->protection.  "wired" means either
960 	 * the entry is wired or we are fault-wiring the pg.
961 	 */
962 
963 	flt->enter_prot = ufi->entry->protection;
964 	if (VM_MAPENT_ISWIRED(ufi->entry))
965 		flt->wire_mapping = true;
966 
967 	if (flt->wire_mapping) {
968 		flt->access_type = flt->enter_prot; /* full access for wired */
969 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
970 	} else {
971 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
972 	}
973 
974 	flt->promote = false;
975 
976 	/*
977 	 * handle "needs_copy" case.   if we need to copy the amap we will
978 	 * have to drop our readlock and relock it with a write lock.  (we
979 	 * need a write lock to change anything in a map entry [e.g.
980 	 * needs_copy]).
981 	 */
982 
983 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
984 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
985 			KASSERT(!maxprot);
986 			/* need to clear */
987 			UVMHIST_LOG(maphist,
988 			    "  need to clear needs_copy and refault",0,0,0,0);
989 			uvmfault_unlockmaps(ufi, false);
990 			uvmfault_amapcopy(ufi);
991 			uvmexp.fltamcopy++;
992 			return ERESTART;
993 
994 		} else {
995 
996 			/*
997 			 * ensure that we pmap_enter page R/O since
998 			 * needs_copy is still true
999 			 */
1000 
1001 			flt->enter_prot &= ~VM_PROT_WRITE;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * identify the players
1007 	 */
1008 
1009 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
1010 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
1011 
1012 	/*
1013 	 * check for a case 0 fault.  if nothing backing the entry then
1014 	 * error now.
1015 	 */
1016 
1017 	if (amap == NULL && uobj == NULL) {
1018 		uvmfault_unlockmaps(ufi, false);
1019 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
1020 		return EFAULT;
1021 	}
1022 
1023 	/*
1024 	 * establish range of interest based on advice from mapper
1025 	 * and then clip to fit map entry.   note that we only want
1026 	 * to do this the first time through the fault.   if we
1027 	 * ReFault we will disable this by setting "narrow" to true.
1028 	 */
1029 
1030 	if (flt->narrow == false) {
1031 
1032 		/* wide fault (!narrow) */
1033 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
1034 			 ufi->entry->advice);
1035 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
1036 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
1037 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
1038 		/*
1039 		 * note: "-1" because we don't want to count the
1040 		 * faulting page as forw
1041 		 */
1042 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
1043 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
1044 			     PAGE_SHIFT) - 1);
1045 		flt->npages = nback + nforw + 1;
1046 		flt->centeridx = nback;
1047 
1048 		flt->narrow = true;	/* ensure only once per-fault */
1049 
1050 	} else {
1051 
1052 		/* narrow fault! */
1053 		nback = nforw = 0;
1054 		flt->startva = ufi->orig_rvaddr;
1055 		flt->npages = 1;
1056 		flt->centeridx = 0;
1057 
1058 	}
1059 	/* offset from entry's start to pgs' start */
1060 	const voff_t eoff = flt->startva - ufi->entry->start;
1061 
1062 	/* locked: maps(read) */
1063 	UVMHIST_LOG(maphist, "  narrow=%jd, back=%jd, forw=%jd, startva=%#jx",
1064 		    flt->narrow, nback, nforw, flt->startva);
1065 	UVMHIST_LOG(maphist, "  entry=%#jx, amap=%#jx, obj=%#jx",
1066 	    (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0);
1067 
1068 	/*
1069 	 * if we've got an amap, lock it and extract current anons.
1070 	 */
1071 
1072 	if (amap) {
1073 		amap_lock(amap);
1074 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1075 	} else {
1076 		*ranons = NULL;	/* to be safe */
1077 	}
1078 
1079 	/* locked: maps(read), amap(if there) */
1080 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1081 
1082 	/*
1083 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1084 	 * now and then forget about them (for the rest of the fault).
1085 	 */
1086 
1087 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1088 
1089 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
1090 		    0,0,0,0);
1091 		/* flush back-page anons? */
1092 		if (amap)
1093 			uvmfault_anonflush(*ranons, nback);
1094 
1095 		/* flush object? */
1096 		if (uobj) {
1097 			voff_t uoff;
1098 
1099 			uoff = ufi->entry->offset + eoff;
1100 			mutex_enter(uobj->vmobjlock);
1101 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1102 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1103 		}
1104 
1105 		/* now forget about the backpages */
1106 		if (amap)
1107 			*ranons += nback;
1108 		flt->startva += (nback << PAGE_SHIFT);
1109 		flt->npages -= nback;
1110 		flt->centeridx = 0;
1111 	}
1112 	/*
1113 	 * => startva is fixed
1114 	 * => npages is fixed
1115 	 */
1116 	KASSERT(flt->startva <= ufi->orig_rvaddr);
1117 	KASSERT(ufi->orig_rvaddr + ufi->orig_size <=
1118 	    flt->startva + (flt->npages << PAGE_SHIFT));
1119 	return 0;
1120 }
1121 
1122 /*
1123  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1124  *
1125  * iterate range of interest:
1126  *	1. check if h/w mapping exists.  if yes, we don't care
1127  *	2. check if anon exists.  if not, page is lower.
1128  *	3. if anon exists, enter h/w mapping for neighbors.
1129  *
1130  * => called with amap locked (if exists).
1131  */
1132 
1133 static int
1134 uvm_fault_upper_lookup(
1135 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1136 	struct vm_anon **anons, struct vm_page **pages)
1137 {
1138 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1139 	int lcv;
1140 	vaddr_t currva;
1141 	bool shadowed __unused;
1142 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1143 
1144 	/* locked: maps(read), amap(if there) */
1145 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1146 
1147 	/*
1148 	 * map in the backpages and frontpages we found in the amap in hopes
1149 	 * of preventing future faults.    we also init the pages[] array as
1150 	 * we go.
1151 	 */
1152 
1153 	currva = flt->startva;
1154 	shadowed = false;
1155 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1156 		/*
1157 		 * don't play with VAs that are already mapped
1158 		 * (except for center)
1159 		 */
1160 		if (lcv != flt->centeridx &&
1161 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1162 			pages[lcv] = PGO_DONTCARE;
1163 			continue;
1164 		}
1165 
1166 		/*
1167 		 * unmapped or center page.   check if any anon at this level.
1168 		 */
1169 		if (amap == NULL || anons[lcv] == NULL) {
1170 			pages[lcv] = NULL;
1171 			continue;
1172 		}
1173 
1174 		/*
1175 		 * check for present page and map if possible.   re-activate it.
1176 		 */
1177 
1178 		pages[lcv] = PGO_DONTCARE;
1179 		if (lcv == flt->centeridx) {	/* save center for later! */
1180 			shadowed = true;
1181 			continue;
1182 		}
1183 
1184 		struct vm_anon *anon = anons[lcv];
1185 		struct vm_page *pg = anon->an_page;
1186 
1187 		KASSERT(anon->an_lock == amap->am_lock);
1188 
1189 		/* Ignore loaned and busy pages. */
1190 		if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) {
1191 			uvm_fault_upper_neighbor(ufi, flt, currva,
1192 			    pg, anon->an_ref > 1);
1193 		}
1194 	}
1195 
1196 	/* locked: maps(read), amap(if there) */
1197 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1198 	/* (shadowed == true) if there is an anon at the faulting address */
1199 	UVMHIST_LOG(maphist, "  shadowed=%jd, will_get=%jd", shadowed,
1200 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1201 
1202 	/*
1203 	 * note that if we are really short of RAM we could sleep in the above
1204 	 * call to pmap_enter with everything locked.   bad?
1205 	 *
1206 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
1207 	 * XXX case.  --thorpej
1208 	 */
1209 
1210 	return 0;
1211 }
1212 
1213 /*
1214  * uvm_fault_upper_neighbor: enter single upper neighbor page.
1215  *
1216  * => called with amap and anon locked.
1217  */
1218 
1219 static void
1220 uvm_fault_upper_neighbor(
1221 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1222 	vaddr_t currva, struct vm_page *pg, bool readonly)
1223 {
1224 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1225 
1226 	/* locked: amap, anon */
1227 
1228 	mutex_enter(&uvm_pageqlock);
1229 	uvm_pageenqueue(pg);
1230 	mutex_exit(&uvm_pageqlock);
1231 	UVMHIST_LOG(maphist,
1232 	    "  MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx",
1233 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1234 	uvmexp.fltnamap++;
1235 
1236 	/*
1237 	 * Since this page isn't the page that's actually faulting,
1238 	 * ignore pmap_enter() failures; it's not critical that we
1239 	 * enter these right now.
1240 	 */
1241 
1242 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1243 	    VM_PAGE_TO_PHYS(pg),
1244 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1245 	    flt->enter_prot,
1246 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1247 
1248 	pmap_update(ufi->orig_map->pmap);
1249 }
1250 
1251 /*
1252  * uvm_fault_upper: handle upper fault.
1253  *
1254  *	1. acquire anon lock.
1255  *	2. get anon.  let uvmfault_anonget do the dirty work.
1256  *	3. handle loan.
1257  *	4. dispatch direct or promote handlers.
1258  */
1259 
1260 static int
1261 uvm_fault_upper(
1262 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1263 	struct vm_anon **anons)
1264 {
1265 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1266 	struct vm_anon * const anon = anons[flt->centeridx];
1267 	struct uvm_object *uobj;
1268 	int error;
1269 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1270 
1271 	/* locked: maps(read), amap, anon */
1272 	KASSERT(mutex_owned(amap->am_lock));
1273 	KASSERT(anon->an_lock == amap->am_lock);
1274 
1275 	/*
1276 	 * handle case 1: fault on an anon in our amap
1277 	 */
1278 
1279 	UVMHIST_LOG(maphist, "  case 1 fault: anon=%#jx",
1280 	    (uintptr_t)anon, 0, 0, 0);
1281 
1282 	/*
1283 	 * no matter if we have case 1A or case 1B we are going to need to
1284 	 * have the anon's memory resident.   ensure that now.
1285 	 */
1286 
1287 	/*
1288 	 * let uvmfault_anonget do the dirty work.
1289 	 * if it fails (!OK) it will unlock everything for us.
1290 	 * if it succeeds, locks are still valid and locked.
1291 	 * also, if it is OK, then the anon's page is on the queues.
1292 	 * if the page is on loan from a uvm_object, then anonget will
1293 	 * lock that object for us if it does not fail.
1294 	 */
1295 
1296 	error = uvmfault_anonget(ufi, amap, anon);
1297 	switch (error) {
1298 	case 0:
1299 		break;
1300 
1301 	case ERESTART:
1302 		return ERESTART;
1303 
1304 	case EAGAIN:
1305 		kpause("fltagain1", false, hz/2, NULL);
1306 		return ERESTART;
1307 
1308 	default:
1309 		return error;
1310 	}
1311 
1312 	/*
1313 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1314 	 */
1315 
1316 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1317 
1318 	/* locked: maps(read), amap, anon, uobj(if one) */
1319 	KASSERT(mutex_owned(amap->am_lock));
1320 	KASSERT(anon->an_lock == amap->am_lock);
1321 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1322 
1323 	/*
1324 	 * special handling for loaned pages
1325 	 */
1326 
1327 	if (anon->an_page->loan_count) {
1328 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1329 		if (error != 0)
1330 			return error;
1331 	}
1332 
1333 	/*
1334 	 * if we are case 1B then we will need to allocate a new blank
1335 	 * anon to transfer the data into.   note that we have a lock
1336 	 * on anon, so no one can busy or release the page until we are done.
1337 	 * also note that the ref count can't drop to zero here because
1338 	 * it is > 1 and we are only dropping one ref.
1339 	 *
1340 	 * in the (hopefully very rare) case that we are out of RAM we
1341 	 * will unlock, wait for more RAM, and refault.
1342 	 *
1343 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1344 	 */
1345 
1346 	if (flt->cow_now && anon->an_ref > 1) {
1347 		flt->promote = true;
1348 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1349 	} else {
1350 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1351 	}
1352 	return error;
1353 }
1354 
1355 /*
1356  * uvm_fault_upper_loan: handle loaned upper page.
1357  *
1358  *	1. if not cow'ing now, simply adjust flt->enter_prot.
1359  *	2. if cow'ing now, and if ref count is 1, break loan.
1360  */
1361 
1362 static int
1363 uvm_fault_upper_loan(
1364 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1365 	struct vm_anon *anon, struct uvm_object **ruobj)
1366 {
1367 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1368 	int error = 0;
1369 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1370 
1371 	if (!flt->cow_now) {
1372 
1373 		/*
1374 		 * for read faults on loaned pages we just cap the
1375 		 * protection at read-only.
1376 		 */
1377 
1378 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1379 
1380 	} else {
1381 		/*
1382 		 * note that we can't allow writes into a loaned page!
1383 		 *
1384 		 * if we have a write fault on a loaned page in an
1385 		 * anon then we need to look at the anon's ref count.
1386 		 * if it is greater than one then we are going to do
1387 		 * a normal copy-on-write fault into a new anon (this
1388 		 * is not a problem).  however, if the reference count
1389 		 * is one (a case where we would normally allow a
1390 		 * write directly to the page) then we need to kill
1391 		 * the loan before we continue.
1392 		 */
1393 
1394 		/* >1 case is already ok */
1395 		if (anon->an_ref == 1) {
1396 			error = uvm_loanbreak_anon(anon, *ruobj);
1397 			if (error != 0) {
1398 				uvmfault_unlockall(ufi, amap, *ruobj);
1399 				uvm_wait("flt_noram2");
1400 				return ERESTART;
1401 			}
1402 			/* if we were a loan reciever uobj is gone */
1403 			if (*ruobj)
1404 				*ruobj = NULL;
1405 		}
1406 	}
1407 	return error;
1408 }
1409 
1410 /*
1411  * uvm_fault_upper_promote: promote upper page.
1412  *
1413  *	1. call uvmfault_promote.
1414  *	2. enqueue page.
1415  *	3. deref.
1416  *	4. pass page to uvm_fault_upper_enter.
1417  */
1418 
1419 static int
1420 uvm_fault_upper_promote(
1421 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1422 	struct uvm_object *uobj, struct vm_anon *anon)
1423 {
1424 	struct vm_anon * const oanon = anon;
1425 	struct vm_page *pg;
1426 	int error;
1427 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1428 
1429 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1430 	uvmexp.flt_acow++;
1431 
1432 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon,
1433 	    &flt->anon_spare);
1434 	switch (error) {
1435 	case 0:
1436 		break;
1437 	case ERESTART:
1438 		return ERESTART;
1439 	default:
1440 		return error;
1441 	}
1442 
1443 	KASSERT(anon == NULL || anon->an_lock == oanon->an_lock);
1444 
1445 	pg = anon->an_page;
1446 	mutex_enter(&uvm_pageqlock);
1447 	uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */
1448 	mutex_exit(&uvm_pageqlock);
1449 	pg->flags &= ~(PG_BUSY|PG_FAKE);
1450 	UVM_PAGE_OWN(pg, NULL);
1451 
1452 	/* deref: can not drop to zero here by defn! */
1453 	KASSERT(oanon->an_ref > 1);
1454 	oanon->an_ref--;
1455 
1456 	/*
1457 	 * note: oanon is still locked, as is the new anon.  we
1458 	 * need to check for this later when we unlock oanon; if
1459 	 * oanon != anon, we'll have to unlock anon, too.
1460 	 */
1461 
1462 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1463 }
1464 
1465 /*
1466  * uvm_fault_upper_direct: handle direct fault.
1467  */
1468 
1469 static int
1470 uvm_fault_upper_direct(
1471 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1472 	struct uvm_object *uobj, struct vm_anon *anon)
1473 {
1474 	struct vm_anon * const oanon = anon;
1475 	struct vm_page *pg;
1476 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1477 
1478 	uvmexp.flt_anon++;
1479 	pg = anon->an_page;
1480 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1481 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1482 
1483 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1484 }
1485 
1486 /*
1487  * uvm_fault_upper_enter: enter h/w mapping of upper page.
1488  */
1489 
1490 static int
1491 uvm_fault_upper_enter(
1492 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1493 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1494 	struct vm_anon *oanon)
1495 {
1496 	struct pmap *pmap = ufi->orig_map->pmap;
1497 	vaddr_t va = ufi->orig_rvaddr;
1498 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1499 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1500 
1501 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
1502 	KASSERT(mutex_owned(amap->am_lock));
1503 	KASSERT(anon->an_lock == amap->am_lock);
1504 	KASSERT(oanon->an_lock == amap->am_lock);
1505 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1506 
1507 	/*
1508 	 * now map the page in.
1509 	 */
1510 
1511 	UVMHIST_LOG(maphist,
1512 	    "  MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
1513 	    (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote);
1514 	if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg),
1515 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL |
1516 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
1517 
1518 		/*
1519 		 * If pmap_enter() fails, it must not leave behind an existing
1520 		 * pmap entry.  In particular, a now-stale entry for a different
1521 		 * page would leave the pmap inconsistent with the vm_map.
1522 		 * This is not to imply that pmap_enter() should remove an
1523 		 * existing mapping in such a situation (since that could create
1524 		 * different problems, eg. if the existing mapping is wired),
1525 		 * but rather that the pmap should be designed such that it
1526 		 * never needs to fail when the new mapping is replacing an
1527 		 * existing mapping and the new page has no existing mappings.
1528 		 */
1529 
1530 		KASSERT(!pmap_extract(pmap, va, NULL));
1531 
1532 		/*
1533 		 * No need to undo what we did; we can simply think of
1534 		 * this as the pmap throwing away the mapping information.
1535 		 *
1536 		 * We do, however, have to go through the ReFault path,
1537 		 * as the map may change while we're asleep.
1538 		 */
1539 
1540 		uvmfault_unlockall(ufi, amap, uobj);
1541 		if (!uvm_reclaimable()) {
1542 			UVMHIST_LOG(maphist,
1543 			    "<- failed.  out of VM",0,0,0,0);
1544 			/* XXX instrumentation */
1545 			return ENOMEM;
1546 		}
1547 		/* XXX instrumentation */
1548 		uvm_wait("flt_pmfail1");
1549 		return ERESTART;
1550 	}
1551 
1552 	uvm_fault_upper_done(ufi, flt, anon, pg);
1553 
1554 	/*
1555 	 * done case 1!  finish up by unlocking everything and returning success
1556 	 */
1557 
1558 	pmap_update(pmap);
1559 	uvmfault_unlockall(ufi, amap, uobj);
1560 	return 0;
1561 }
1562 
1563 /*
1564  * uvm_fault_upper_done: queue upper center page.
1565  */
1566 
1567 static void
1568 uvm_fault_upper_done(
1569 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1570 	struct vm_anon *anon, struct vm_page *pg)
1571 {
1572 	const bool wire_paging = flt->wire_paging;
1573 
1574 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1575 
1576 	/*
1577 	 * ... update the page queues.
1578 	 */
1579 
1580 	mutex_enter(&uvm_pageqlock);
1581 	if (wire_paging) {
1582 		uvm_pagewire(pg);
1583 
1584 		/*
1585 		 * since the now-wired page cannot be paged out,
1586 		 * release its swap resources for others to use.
1587 		 * since an anon with no swap cannot be PG_CLEAN,
1588 		 * clear its clean flag now.
1589 		 */
1590 
1591 		pg->flags &= ~(PG_CLEAN);
1592 
1593 	} else {
1594 		uvm_pageactivate(pg);
1595 	}
1596 	mutex_exit(&uvm_pageqlock);
1597 
1598 	if (wire_paging) {
1599 		uvm_anon_dropswap(anon);
1600 	}
1601 }
1602 
1603 /*
1604  * uvm_fault_lower: handle lower fault.
1605  *
1606  *	1. check uobj
1607  *	1.1. if null, ZFOD.
1608  *	1.2. if not null, look up unnmapped neighbor pages.
1609  *	2. for center page, check if promote.
1610  *	2.1. ZFOD always needs promotion.
1611  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1612  *	3. if uobj is not ZFOD and page is not found, do i/o.
1613  *	4. dispatch either direct / promote fault.
1614  */
1615 
1616 static int
1617 uvm_fault_lower(
1618 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1619 	struct vm_page **pages)
1620 {
1621 	struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap;
1622 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1623 	struct vm_page *uobjpage;
1624 	int error;
1625 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1626 
1627 	/*
1628 	 * now, if the desired page is not shadowed by the amap and we have
1629 	 * a backing object that does not have a special fault routine, then
1630 	 * we ask (with pgo_get) the object for resident pages that we care
1631 	 * about and attempt to map them in.  we do not let pgo_get block
1632 	 * (PGO_LOCKED).
1633 	 */
1634 
1635 	if (uobj == NULL) {
1636 		/* zero fill; don't care neighbor pages */
1637 		uobjpage = NULL;
1638 	} else {
1639 		uvm_fault_lower_lookup(ufi, flt, pages);
1640 		uobjpage = pages[flt->centeridx];
1641 	}
1642 
1643 	/*
1644 	 * note that at this point we are done with any front or back pages.
1645 	 * we are now going to focus on the center page (i.e. the one we've
1646 	 * faulted on).  if we have faulted on the upper (anon) layer
1647 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1648 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1649 	 * layer [i.e. case 2] and the page was both present and available,
1650 	 * then we've got a pointer to it as "uobjpage" and we've already
1651 	 * made it BUSY.
1652 	 */
1653 
1654 	/*
1655 	 * locked:
1656 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1657 	 */
1658 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1659 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1660 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1661 
1662 	/*
1663 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1664 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1665 	 * have a backing object, check and see if we are going to promote
1666 	 * the data up to an anon during the fault.
1667 	 */
1668 
1669 	if (uobj == NULL) {
1670 		uobjpage = PGO_DONTCARE;
1671 		flt->promote = true;		/* always need anon here */
1672 	} else {
1673 		KASSERT(uobjpage != PGO_DONTCARE);
1674 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1675 	}
1676 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%jd, zfill=%jd",
1677 	    flt->promote, (uobj == NULL), 0,0);
1678 
1679 	/*
1680 	 * if uobjpage is not null then we do not need to do I/O to get the
1681 	 * uobjpage.
1682 	 *
1683 	 * if uobjpage is null, then we need to unlock and ask the pager to
1684 	 * get the data for us.   once we have the data, we need to reverify
1685 	 * the state the world.   we are currently not holding any resources.
1686 	 */
1687 
1688 	if (uobjpage) {
1689 		/* update rusage counters */
1690 		curlwp->l_ru.ru_minflt++;
1691 	} else {
1692 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1693 		if (error != 0)
1694 			return error;
1695 	}
1696 
1697 	/*
1698 	 * locked:
1699 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1700 	 */
1701 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
1702 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1703 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1704 
1705 	/*
1706 	 * notes:
1707 	 *  - at this point uobjpage can not be NULL
1708 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1709 	 *  for it above)
1710 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1711 	 */
1712 
1713 	KASSERT(uobjpage != NULL);
1714 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1715 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1716 	    (uobjpage->flags & PG_CLEAN) != 0);
1717 
1718 	if (!flt->promote) {
1719 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1720 	} else {
1721 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1722 	}
1723 	return error;
1724 }
1725 
1726 /*
1727  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1728  *
1729  *	1. get on-memory pages.
1730  *	2. if failed, give up (get only center page later).
1731  *	3. if succeeded, enter h/w mapping of neighbor pages.
1732  */
1733 
1734 static void
1735 uvm_fault_lower_lookup(
1736 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1737 	struct vm_page **pages)
1738 {
1739 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1740 	int lcv, gotpages;
1741 	vaddr_t currva;
1742 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1743 
1744 	mutex_enter(uobj->vmobjlock);
1745 	/* Locked: maps(read), amap(if there), uobj */
1746 
1747 	uvmexp.fltlget++;
1748 	gotpages = flt->npages;
1749 	(void) uobj->pgops->pgo_get(uobj,
1750 	    ufi->entry->offset + flt->startva - ufi->entry->start,
1751 	    pages, &gotpages, flt->centeridx,
1752 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1753 
1754 	KASSERT(mutex_owned(uobj->vmobjlock));
1755 
1756 	/*
1757 	 * check for pages to map, if we got any
1758 	 */
1759 
1760 	if (gotpages == 0) {
1761 		pages[flt->centeridx] = NULL;
1762 		return;
1763 	}
1764 
1765 	currva = flt->startva;
1766 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1767 		struct vm_page *curpg;
1768 
1769 		curpg = pages[lcv];
1770 		if (curpg == NULL || curpg == PGO_DONTCARE) {
1771 			continue;
1772 		}
1773 		KASSERT(curpg->uobject == uobj);
1774 
1775 		/*
1776 		 * if center page is resident and not PG_BUSY|PG_RELEASED
1777 		 * then pgo_get made it PG_BUSY for us and gave us a handle
1778 		 * to it.
1779 		 */
1780 
1781 		if (lcv == flt->centeridx) {
1782 			UVMHIST_LOG(maphist, "  got uobjpage (0x%#jx) "
1783 			    "with locked get", (uintptr_t)curpg, 0, 0, 0);
1784 		} else {
1785 			bool readonly = (curpg->flags & PG_RDONLY)
1786 			    || (curpg->loan_count > 0)
1787 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1788 
1789 			uvm_fault_lower_neighbor(ufi, flt,
1790 			    currva, curpg, readonly);
1791 		}
1792 	}
1793 	pmap_update(ufi->orig_map->pmap);
1794 }
1795 
1796 /*
1797  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1798  */
1799 
1800 static void
1801 uvm_fault_lower_neighbor(
1802 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1803 	vaddr_t currva, struct vm_page *pg, bool readonly)
1804 {
1805 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
1806 
1807 	/* locked: maps(read), amap(if there), uobj */
1808 
1809 	/*
1810 	 * calling pgo_get with PGO_LOCKED returns us pages which
1811 	 * are neither busy nor released, so we don't need to check
1812 	 * for this.  we can just directly enter the pages.
1813 	 */
1814 
1815 	mutex_enter(&uvm_pageqlock);
1816 	uvm_pageenqueue(pg);
1817 	mutex_exit(&uvm_pageqlock);
1818 	UVMHIST_LOG(maphist,
1819 	    "  MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx",
1820 	    (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0);
1821 	uvmexp.fltnomap++;
1822 
1823 	/*
1824 	 * Since this page isn't the page that's actually faulting,
1825 	 * ignore pmap_enter() failures; it's not critical that we
1826 	 * enter these right now.
1827 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1828 	 * held the lock the whole time we've had the handle.
1829 	 */
1830 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1831 	KASSERT((pg->flags & PG_RELEASED) == 0);
1832 	KASSERT((pg->flags & PG_WANTED) == 0);
1833 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0);
1834 	pg->flags &= ~(PG_BUSY);
1835 	UVM_PAGE_OWN(pg, NULL);
1836 
1837 	KASSERT(mutex_owned(pg->uobject->vmobjlock));
1838 
1839 	const vm_prot_t mapprot =
1840 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1841 	    flt->enter_prot & MASK(ufi->entry);
1842 	const u_int mapflags =
1843 	    PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0);
1844 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1845 	    VM_PAGE_TO_PHYS(pg), mapprot, mapflags);
1846 }
1847 
1848 /*
1849  * uvm_fault_lower_io: get lower page from backing store.
1850  *
1851  *	1. unlock everything, because i/o will block.
1852  *	2. call pgo_get.
1853  *	3. if failed, recover.
1854  *	4. if succeeded, relock everything and verify things.
1855  */
1856 
1857 static int
1858 uvm_fault_lower_io(
1859 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1860 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
1861 {
1862 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1863 	struct uvm_object *uobj = *ruobj;
1864 	struct vm_page *pg;
1865 	bool locked;
1866 	int gotpages;
1867 	int error;
1868 	voff_t uoff;
1869 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1870 
1871 	/* update rusage counters */
1872 	curlwp->l_ru.ru_majflt++;
1873 
1874 	/* Locked: maps(read), amap(if there), uobj */
1875 	uvmfault_unlockall(ufi, amap, NULL);
1876 
1877 	/* Locked: uobj */
1878 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
1879 
1880 	uvmexp.fltget++;
1881 	gotpages = 1;
1882 	pg = NULL;
1883 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1884 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1885 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1886 	    PGO_SYNCIO);
1887 	/* locked: pg(if no error) */
1888 
1889 	/*
1890 	 * recover from I/O
1891 	 */
1892 
1893 	if (error) {
1894 		if (error == EAGAIN) {
1895 			UVMHIST_LOG(maphist,
1896 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
1897 			kpause("fltagain2", false, hz/2, NULL);
1898 			return ERESTART;
1899 		}
1900 
1901 #if 0
1902 		KASSERT(error != ERESTART);
1903 #else
1904 		/* XXXUEBS don't re-fault? */
1905 		if (error == ERESTART)
1906 			error = EIO;
1907 #endif
1908 
1909 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)",
1910 		    error, 0,0,0);
1911 		return error;
1912 	}
1913 
1914 	/*
1915 	 * re-verify the state of the world by first trying to relock
1916 	 * the maps.  always relock the object.
1917 	 */
1918 
1919 	locked = uvmfault_relock(ufi);
1920 	if (locked && amap)
1921 		amap_lock(amap);
1922 
1923 	/* might be changed */
1924 	uobj = pg->uobject;
1925 
1926 	mutex_enter(uobj->vmobjlock);
1927 	KASSERT((pg->flags & PG_BUSY) != 0);
1928 
1929 	mutex_enter(&uvm_pageqlock);
1930 	uvm_pageactivate(pg);
1931 	mutex_exit(&uvm_pageqlock);
1932 
1933 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
1934 	/* locked(!locked): uobj, pg */
1935 
1936 	/*
1937 	 * verify that the page has not be released and re-verify
1938 	 * that amap slot is still free.   if there is a problem,
1939 	 * we unlock and clean up.
1940 	 */
1941 
1942 	if ((pg->flags & PG_RELEASED) != 0 ||
1943 	    (locked && amap && amap_lookup(&ufi->entry->aref,
1944 	      ufi->orig_rvaddr - ufi->entry->start))) {
1945 		if (locked)
1946 			uvmfault_unlockall(ufi, amap, NULL);
1947 		locked = false;
1948 	}
1949 
1950 	/*
1951 	 * didn't get the lock?   release the page and retry.
1952 	 */
1953 
1954 	if (locked == false) {
1955 		UVMHIST_LOG(maphist,
1956 		    "  wasn't able to relock after fault: retry",
1957 		    0,0,0,0);
1958 		if (pg->flags & PG_WANTED) {
1959 			wakeup(pg);
1960 		}
1961 		if ((pg->flags & PG_RELEASED) == 0) {
1962 			pg->flags &= ~(PG_BUSY | PG_WANTED);
1963 			UVM_PAGE_OWN(pg, NULL);
1964 		} else {
1965 			uvmexp.fltpgrele++;
1966 			uvm_pagefree(pg);
1967 		}
1968 		mutex_exit(uobj->vmobjlock);
1969 		return ERESTART;
1970 	}
1971 
1972 	/*
1973 	 * we have the data in pg which is busy and
1974 	 * not released.  we are holding object lock (so the page
1975 	 * can't be released on us).
1976 	 */
1977 
1978 	/* locked: maps(read), amap(if !null), uobj, pg */
1979 
1980 	*ruobj = uobj;
1981 	*ruobjpage = pg;
1982 	return 0;
1983 }
1984 
1985 /*
1986  * uvm_fault_lower_direct: fault lower center page
1987  *
1988  *	1. adjust flt->enter_prot.
1989  *	2. if page is loaned, resolve.
1990  */
1991 
1992 int
1993 uvm_fault_lower_direct(
1994 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1995 	struct uvm_object *uobj, struct vm_page *uobjpage)
1996 {
1997 	struct vm_page *pg;
1998 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1999 
2000 	/*
2001 	 * we are not promoting.   if the mapping is COW ensure that we
2002 	 * don't give more access than we should (e.g. when doing a read
2003 	 * fault on a COPYONWRITE mapping we want to map the COW page in
2004 	 * R/O even though the entry protection could be R/W).
2005 	 *
2006 	 * set "pg" to the page we want to map in (uobjpage, usually)
2007 	 */
2008 
2009 	uvmexp.flt_obj++;
2010 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
2011 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
2012 		flt->enter_prot &= ~VM_PROT_WRITE;
2013 	pg = uobjpage;		/* map in the actual object */
2014 
2015 	KASSERT(uobjpage != PGO_DONTCARE);
2016 
2017 	/*
2018 	 * we are faulting directly on the page.   be careful
2019 	 * about writing to loaned pages...
2020 	 */
2021 
2022 	if (uobjpage->loan_count) {
2023 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
2024 	}
2025 	KASSERT(pg == uobjpage);
2026 
2027 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2028 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg);
2029 }
2030 
2031 /*
2032  * uvm_fault_lower_direct_loan: resolve loaned page.
2033  *
2034  *	1. if not cow'ing, adjust flt->enter_prot.
2035  *	2. if cow'ing, break loan.
2036  */
2037 
2038 static int
2039 uvm_fault_lower_direct_loan(
2040 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2041 	struct uvm_object *uobj, struct vm_page **rpg,
2042 	struct vm_page **ruobjpage)
2043 {
2044 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2045 	struct vm_page *pg;
2046 	struct vm_page *uobjpage = *ruobjpage;
2047 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
2048 
2049 	if (!flt->cow_now) {
2050 		/* read fault: cap the protection at readonly */
2051 		/* cap! */
2052 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
2053 	} else {
2054 		/* write fault: must break the loan here */
2055 
2056 		pg = uvm_loanbreak(uobjpage);
2057 		if (pg == NULL) {
2058 
2059 			/*
2060 			 * drop ownership of page, it can't be released
2061 			 */
2062 
2063 			if (uobjpage->flags & PG_WANTED)
2064 				wakeup(uobjpage);
2065 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2066 			UVM_PAGE_OWN(uobjpage, NULL);
2067 
2068 			uvmfault_unlockall(ufi, amap, uobj);
2069 			UVMHIST_LOG(maphist,
2070 			  "  out of RAM breaking loan, waiting",
2071 			  0,0,0,0);
2072 			uvmexp.fltnoram++;
2073 			uvm_wait("flt_noram4");
2074 			return ERESTART;
2075 		}
2076 		*rpg = pg;
2077 		*ruobjpage = pg;
2078 	}
2079 	return 0;
2080 }
2081 
2082 /*
2083  * uvm_fault_lower_promote: promote lower page.
2084  *
2085  *	1. call uvmfault_promote.
2086  *	2. fill in data.
2087  *	3. if not ZFOD, dispose old page.
2088  */
2089 
2090 int
2091 uvm_fault_lower_promote(
2092 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2093 	struct uvm_object *uobj, struct vm_page *uobjpage)
2094 {
2095 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2096 	struct vm_anon *anon;
2097 	struct vm_page *pg;
2098 	int error;
2099 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2100 
2101 	KASSERT(amap != NULL);
2102 
2103 	/*
2104 	 * If we are going to promote the data to an anon we
2105 	 * allocate a blank anon here and plug it into our amap.
2106 	 */
2107 	error = uvmfault_promote(ufi, NULL, uobjpage,
2108 	    &anon, &flt->anon_spare);
2109 	switch (error) {
2110 	case 0:
2111 		break;
2112 	case ERESTART:
2113 		return ERESTART;
2114 	default:
2115 		return error;
2116 	}
2117 
2118 	pg = anon->an_page;
2119 
2120 	/*
2121 	 * Fill in the data.
2122 	 */
2123 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2124 
2125 	if (uobjpage != PGO_DONTCARE) {
2126 		uvmexp.flt_prcopy++;
2127 
2128 		/*
2129 		 * promote to shared amap?  make sure all sharing
2130 		 * procs see it
2131 		 */
2132 
2133 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2134 			pmap_page_protect(uobjpage, VM_PROT_NONE);
2135 			/*
2136 			 * XXX: PAGE MIGHT BE WIRED!
2137 			 */
2138 		}
2139 
2140 		/*
2141 		 * dispose of uobjpage.  it can't be PG_RELEASED
2142 		 * since we still hold the object lock.
2143 		 */
2144 
2145 		if (uobjpage->flags & PG_WANTED) {
2146 			/* still have the obj lock */
2147 			wakeup(uobjpage);
2148 		}
2149 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2150 		UVM_PAGE_OWN(uobjpage, NULL);
2151 
2152 		UVMHIST_LOG(maphist,
2153 		    "  promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx",
2154 		    (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0);
2155 
2156 	} else {
2157 		uvmexp.flt_przero++;
2158 
2159 		/*
2160 		 * Page is zero'd and marked dirty by
2161 		 * uvmfault_promote().
2162 		 */
2163 
2164 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%#jx/0%#jx",
2165 		    (uintptr_t)anon, (uintptr_t)pg, 0, 0);
2166 	}
2167 
2168 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg);
2169 }
2170 
2171 /*
2172  * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted
2173  * from the lower page.
2174  */
2175 
2176 int
2177 uvm_fault_lower_enter(
2178 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2179 	struct uvm_object *uobj,
2180 	struct vm_anon *anon, struct vm_page *pg)
2181 {
2182 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2183 	int error;
2184 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2185 
2186 	/*
2187 	 * Locked:
2188 	 *
2189 	 *	maps(read), amap(if !null), uobj(if !null),
2190 	 *	anon(if !null), pg(if anon), unlock_uobj(if !null)
2191 	 *
2192 	 * Note: pg is either the uobjpage or the new page in the new anon.
2193 	 */
2194 	KASSERT(amap == NULL || mutex_owned(amap->am_lock));
2195 	KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock));
2196 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
2197 	KASSERT((pg->flags & PG_BUSY) != 0);
2198 
2199 	/*
2200 	 * all resources are present.   we can now map it in and free our
2201 	 * resources.
2202 	 */
2203 
2204 	UVMHIST_LOG(maphist,
2205 	    "  MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd",
2206 	    (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr,
2207 	    (uintptr_t)pg, flt->promote);
2208 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2209 		(pg->flags & PG_RDONLY) == 0);
2210 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
2211 	    VM_PAGE_TO_PHYS(pg),
2212 	    (pg->flags & PG_RDONLY) != 0 ?
2213 	    flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2214 	    flt->access_type | PMAP_CANFAIL |
2215 	    (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2216 
2217 		/*
2218 		 * No need to undo what we did; we can simply think of
2219 		 * this as the pmap throwing away the mapping information.
2220 		 *
2221 		 * We do, however, have to go through the ReFault path,
2222 		 * as the map may change while we're asleep.
2223 		 */
2224 
2225 		/*
2226 		 * ensure that the page is queued in the case that
2227 		 * we just promoted the page.
2228 		 */
2229 
2230 		mutex_enter(&uvm_pageqlock);
2231 		uvm_pageenqueue(pg);
2232 		mutex_exit(&uvm_pageqlock);
2233 
2234 		if (pg->flags & PG_WANTED)
2235 			wakeup(pg);
2236 
2237 		/*
2238 		 * note that pg can't be PG_RELEASED since we did not drop
2239 		 * the object lock since the last time we checked.
2240 		 */
2241 		KASSERT((pg->flags & PG_RELEASED) == 0);
2242 
2243 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2244 		UVM_PAGE_OWN(pg, NULL);
2245 
2246 		uvmfault_unlockall(ufi, amap, uobj);
2247 		if (!uvm_reclaimable()) {
2248 			UVMHIST_LOG(maphist,
2249 			    "<- failed.  out of VM",0,0,0,0);
2250 			/* XXX instrumentation */
2251 			error = ENOMEM;
2252 			return error;
2253 		}
2254 		/* XXX instrumentation */
2255 		uvm_wait("flt_pmfail2");
2256 		return ERESTART;
2257 	}
2258 
2259 	uvm_fault_lower_done(ufi, flt, uobj, pg);
2260 
2261 	/*
2262 	 * note that pg can't be PG_RELEASED since we did not drop the object
2263 	 * lock since the last time we checked.
2264 	 */
2265 	KASSERT((pg->flags & PG_RELEASED) == 0);
2266 	if (pg->flags & PG_WANTED)
2267 		wakeup(pg);
2268 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2269 	UVM_PAGE_OWN(pg, NULL);
2270 
2271 	pmap_update(ufi->orig_map->pmap);
2272 	uvmfault_unlockall(ufi, amap, uobj);
2273 
2274 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2275 	return 0;
2276 }
2277 
2278 /*
2279  * uvm_fault_lower_done: queue lower center page.
2280  */
2281 
2282 void
2283 uvm_fault_lower_done(
2284 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
2285 	struct uvm_object *uobj, struct vm_page *pg)
2286 {
2287 	bool dropswap = false;
2288 
2289 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2290 
2291 	mutex_enter(&uvm_pageqlock);
2292 	if (flt->wire_paging) {
2293 		uvm_pagewire(pg);
2294 		if (pg->pqflags & PQ_AOBJ) {
2295 
2296 			/*
2297 			 * since the now-wired page cannot be paged out,
2298 			 * release its swap resources for others to use.
2299 			 * since an aobj page with no swap cannot be PG_CLEAN,
2300 			 * clear its clean flag now.
2301 			 */
2302 
2303 			KASSERT(uobj != NULL);
2304 			pg->flags &= ~(PG_CLEAN);
2305 			dropswap = true;
2306 		}
2307 	} else {
2308 		uvm_pageactivate(pg);
2309 	}
2310 	mutex_exit(&uvm_pageqlock);
2311 
2312 	if (dropswap) {
2313 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2314 	}
2315 }
2316 
2317 
2318 /*
2319  * uvm_fault_wire: wire down a range of virtual addresses in a map.
2320  *
2321  * => map may be read-locked by caller, but MUST NOT be write-locked.
2322  * => if map is read-locked, any operations which may cause map to
2323  *	be write-locked in uvm_fault() must be taken care of by
2324  *	the caller.  See uvm_map_pageable().
2325  */
2326 
2327 int
2328 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2329     vm_prot_t access_type, int maxprot)
2330 {
2331 	vaddr_t va;
2332 	int error;
2333 
2334 	/*
2335 	 * now fault it in a page at a time.   if the fault fails then we have
2336 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
2337 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2338 	 */
2339 
2340 	/*
2341 	 * XXX work around overflowing a vaddr_t.  this prevents us from
2342 	 * wiring the last page in the address space, though.
2343 	 */
2344 	if (start > end) {
2345 		return EFAULT;
2346 	}
2347 
2348 	for (va = start; va < end; va += PAGE_SIZE) {
2349 		error = uvm_fault_internal(map, va, access_type,
2350 		    (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2351 		if (error) {
2352 			if (va != start) {
2353 				uvm_fault_unwire(map, start, va);
2354 			}
2355 			return error;
2356 		}
2357 	}
2358 	return 0;
2359 }
2360 
2361 /*
2362  * uvm_fault_unwire(): unwire range of virtual space.
2363  */
2364 
2365 void
2366 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2367 {
2368 	vm_map_lock_read(map);
2369 	uvm_fault_unwire_locked(map, start, end);
2370 	vm_map_unlock_read(map);
2371 }
2372 
2373 /*
2374  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2375  *
2376  * => map must be at least read-locked.
2377  */
2378 
2379 void
2380 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2381 {
2382 	struct vm_map_entry *entry, *oentry;
2383 	pmap_t pmap = vm_map_pmap(map);
2384 	vaddr_t va;
2385 	paddr_t pa;
2386 	struct vm_page *pg;
2387 
2388 	/*
2389 	 * we assume that the area we are unwiring has actually been wired
2390 	 * in the first place.   this means that we should be able to extract
2391 	 * the PAs from the pmap.   we also lock out the page daemon so that
2392 	 * we can call uvm_pageunwire.
2393 	 */
2394 
2395 	/*
2396 	 * find the beginning map entry for the region.
2397 	 */
2398 
2399 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2400 	if (uvm_map_lookup_entry(map, start, &entry) == false)
2401 		panic("uvm_fault_unwire_locked: address not in map");
2402 
2403 	oentry = NULL;
2404 	for (va = start; va < end; va += PAGE_SIZE) {
2405 		if (pmap_extract(pmap, va, &pa) == false)
2406 			continue;
2407 
2408 		/*
2409 		 * find the map entry for the current address.
2410 		 */
2411 
2412 		KASSERT(va >= entry->start);
2413 		while (va >= entry->end) {
2414 			KASSERT(entry->next != &map->header &&
2415 				entry->next->start <= entry->end);
2416 			entry = entry->next;
2417 		}
2418 
2419 		/*
2420 		 * lock it.
2421 		 */
2422 
2423 		if (entry != oentry) {
2424 			if (oentry != NULL) {
2425 				mutex_exit(&uvm_pageqlock);
2426 				uvm_map_unlock_entry(oentry);
2427 			}
2428 			uvm_map_lock_entry(entry);
2429 			mutex_enter(&uvm_pageqlock);
2430 			oentry = entry;
2431 		}
2432 
2433 		/*
2434 		 * if the entry is no longer wired, tell the pmap.
2435 		 */
2436 
2437 		if (VM_MAPENT_ISWIRED(entry) == 0)
2438 			pmap_unwire(pmap, va);
2439 
2440 		pg = PHYS_TO_VM_PAGE(pa);
2441 		if (pg)
2442 			uvm_pageunwire(pg);
2443 	}
2444 
2445 	if (oentry != NULL) {
2446 		mutex_exit(&uvm_pageqlock);
2447 		uvm_map_unlock_entry(entry);
2448 	}
2449 }
2450