1 /* $NetBSD: uvm_fault.c,v 1.202 2017/11/20 21:06:54 chs Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 28 */ 29 30 /* 31 * uvm_fault.c: fault handler 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.202 2017/11/20 21:06:54 chs Exp $"); 36 37 #include "opt_uvmhist.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/mman.h> 43 44 #include <uvm/uvm.h> 45 46 /* 47 * 48 * a word on page faults: 49 * 50 * types of page faults we handle: 51 * 52 * CASE 1: upper layer faults CASE 2: lower layer faults 53 * 54 * CASE 1A CASE 1B CASE 2A CASE 2B 55 * read/write1 write>1 read/write +-cow_write/zero 56 * | | | | 57 * +--|--+ +--|--+ +-----+ + | + | +-----+ 58 * amap | V | | ---------> new | | | | ^ | 59 * +-----+ +-----+ +-----+ + | + | +--|--+ 60 * | | | 61 * +-----+ +-----+ +--|--+ | +--|--+ 62 * uobj | d/c | | d/c | | V | +----+ | 63 * +-----+ +-----+ +-----+ +-----+ 64 * 65 * d/c = don't care 66 * 67 * case [0]: layerless fault 68 * no amap or uobj is present. this is an error. 69 * 70 * case [1]: upper layer fault [anon active] 71 * 1A: [read] or [write with anon->an_ref == 1] 72 * I/O takes place in upper level anon and uobj is not touched. 73 * 1B: [write with anon->an_ref > 1] 74 * new anon is alloc'd and data is copied off ["COW"] 75 * 76 * case [2]: lower layer fault [uobj] 77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 78 * I/O takes place directly in object. 79 * 2B: [write to copy_on_write] or [read on NULL uobj] 80 * data is "promoted" from uobj to a new anon. 81 * if uobj is null, then we zero fill. 82 * 83 * we follow the standard UVM locking protocol ordering: 84 * 85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 86 * we hold a PG_BUSY page if we unlock for I/O 87 * 88 * 89 * the code is structured as follows: 90 * 91 * - init the "IN" params in the ufi structure 92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal) 93 * - do lookups [locks maps], check protection, handle needs_copy 94 * - check for case 0 fault (error) 95 * - establish "range" of fault 96 * - if we have an amap lock it and extract the anons 97 * - if sequential advice deactivate pages behind us 98 * - at the same time check pmap for unmapped areas and anon for pages 99 * that we could map in (and do map it if found) 100 * - check object for resident pages that we could map in 101 * - if (case 2) goto Case2 102 * - >>> handle case 1 103 * - ensure source anon is resident in RAM 104 * - if case 1B alloc new anon and copy from source 105 * - map the correct page in 106 * Case2: 107 * - >>> handle case 2 108 * - ensure source page is resident (if uobj) 109 * - if case 2B alloc new anon and copy from source (could be zero 110 * fill if uobj == NULL) 111 * - map the correct page in 112 * - done! 113 * 114 * note on paging: 115 * if we have to do I/O we place a PG_BUSY page in the correct object, 116 * unlock everything, and do the I/O. when I/O is done we must reverify 117 * the state of the world before assuming that our data structures are 118 * valid. [because mappings could change while the map is unlocked] 119 * 120 * alternative 1: unbusy the page in question and restart the page fault 121 * from the top (ReFault). this is easy but does not take advantage 122 * of the information that we already have from our previous lookup, 123 * although it is possible that the "hints" in the vm_map will help here. 124 * 125 * alternative 2: the system already keeps track of a "version" number of 126 * a map. [i.e. every time you write-lock a map (e.g. to change a 127 * mapping) you bump the version number up by one...] so, we can save 128 * the version number of the map before we release the lock and start I/O. 129 * then when I/O is done we can relock and check the version numbers 130 * to see if anything changed. this might save us some over 1 because 131 * we don't have to unbusy the page and may be less compares(?). 132 * 133 * alternative 3: put in backpointers or a way to "hold" part of a map 134 * in place while I/O is in progress. this could be complex to 135 * implement (especially with structures like amap that can be referenced 136 * by multiple map entries, and figuring out what should wait could be 137 * complex as well...). 138 * 139 * we use alternative 2. given that we are multi-threaded now we may want 140 * to reconsider the choice. 141 */ 142 143 /* 144 * local data structures 145 */ 146 147 struct uvm_advice { 148 int advice; 149 int nback; 150 int nforw; 151 }; 152 153 /* 154 * page range array: 155 * note: index in array must match "advice" value 156 * XXX: borrowed numbers from freebsd. do they work well for us? 157 */ 158 159 static const struct uvm_advice uvmadvice[] = { 160 { UVM_ADV_NORMAL, 3, 4 }, 161 { UVM_ADV_RANDOM, 0, 0 }, 162 { UVM_ADV_SEQUENTIAL, 8, 7}, 163 }; 164 165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */ 166 167 /* 168 * private prototypes 169 */ 170 171 /* 172 * externs from other modules 173 */ 174 175 extern int start_init_exec; /* Is init_main() done / init running? */ 176 177 /* 178 * inline functions 179 */ 180 181 /* 182 * uvmfault_anonflush: try and deactivate pages in specified anons 183 * 184 * => does not have to deactivate page if it is busy 185 */ 186 187 static inline void 188 uvmfault_anonflush(struct vm_anon **anons, int n) 189 { 190 int lcv; 191 struct vm_page *pg; 192 193 for (lcv = 0; lcv < n; lcv++) { 194 if (anons[lcv] == NULL) 195 continue; 196 KASSERT(mutex_owned(anons[lcv]->an_lock)); 197 pg = anons[lcv]->an_page; 198 if (pg && (pg->flags & PG_BUSY) == 0) { 199 mutex_enter(&uvm_pageqlock); 200 if (pg->wire_count == 0) { 201 uvm_pagedeactivate(pg); 202 } 203 mutex_exit(&uvm_pageqlock); 204 } 205 } 206 } 207 208 /* 209 * normal functions 210 */ 211 212 /* 213 * uvmfault_amapcopy: clear "needs_copy" in a map. 214 * 215 * => called with VM data structures unlocked (usually, see below) 216 * => we get a write lock on the maps and clear needs_copy for a VA 217 * => if we are out of RAM we sleep (waiting for more) 218 */ 219 220 static void 221 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 222 { 223 for (;;) { 224 225 /* 226 * no mapping? give up. 227 */ 228 229 if (uvmfault_lookup(ufi, true) == false) 230 return; 231 232 /* 233 * copy if needed. 234 */ 235 236 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT, 238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 239 240 /* 241 * didn't work? must be out of RAM. unlock and sleep. 242 */ 243 244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 245 uvmfault_unlockmaps(ufi, true); 246 uvm_wait("fltamapcopy"); 247 continue; 248 } 249 250 /* 251 * got it! unlock and return. 252 */ 253 254 uvmfault_unlockmaps(ufi, true); 255 return; 256 } 257 /*NOTREACHED*/ 258 } 259 260 /* 261 * uvmfault_anonget: get data in an anon into a non-busy, non-released 262 * page in that anon. 263 * 264 * => Map, amap and thus anon should be locked by caller. 265 * => If we fail, we unlock everything and error is returned. 266 * => If we are successful, return with everything still locked. 267 * => We do not move the page on the queues [gets moved later]. If we 268 * allocate a new page [we_own], it gets put on the queues. Either way, 269 * the result is that the page is on the queues at return time 270 * => For pages which are on loan from a uvm_object (and thus are not owned 271 * by the anon): if successful, return with the owning object locked. 272 * The caller must unlock this object when it unlocks everything else. 273 */ 274 275 int 276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 277 struct vm_anon *anon) 278 { 279 struct vm_page *pg; 280 int error; 281 282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist); 283 KASSERT(mutex_owned(anon->an_lock)); 284 KASSERT(anon->an_lock == amap->am_lock); 285 286 /* Increment the counters.*/ 287 uvmexp.fltanget++; 288 if (anon->an_page) { 289 curlwp->l_ru.ru_minflt++; 290 } else { 291 curlwp->l_ru.ru_majflt++; 292 } 293 error = 0; 294 295 /* 296 * Loop until we get the anon data, or fail. 297 */ 298 299 for (;;) { 300 bool we_own, locked; 301 /* 302 * Note: 'we_own' will become true if we set PG_BUSY on a page. 303 */ 304 we_own = false; 305 pg = anon->an_page; 306 307 /* 308 * If there is a resident page and it is loaned, then anon 309 * may not own it. Call out to uvm_anon_lockloanpg() to 310 * identify and lock the real owner of the page. 311 */ 312 313 if (pg && pg->loan_count) 314 pg = uvm_anon_lockloanpg(anon); 315 316 /* 317 * Is page resident? Make sure it is not busy/released. 318 */ 319 320 if (pg) { 321 322 /* 323 * at this point, if the page has a uobject [meaning 324 * we have it on loan], then that uobject is locked 325 * by us! if the page is busy, we drop all the 326 * locks (including uobject) and try again. 327 */ 328 329 if ((pg->flags & PG_BUSY) == 0) { 330 UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 331 return 0; 332 } 333 pg->flags |= PG_WANTED; 334 uvmexp.fltpgwait++; 335 336 /* 337 * The last unlock must be an atomic unlock and wait 338 * on the owner of page. 339 */ 340 341 if (pg->uobject) { 342 /* Owner of page is UVM object. */ 343 uvmfault_unlockall(ufi, amap, NULL); 344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 345 0,0,0); 346 UVM_UNLOCK_AND_WAIT(pg, 347 pg->uobject->vmobjlock, 348 false, "anonget1", 0); 349 } else { 350 /* Owner of page is anon. */ 351 uvmfault_unlockall(ufi, NULL, NULL); 352 UVMHIST_LOG(maphist, " unlock+wait on anon",0, 353 0,0,0); 354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock, 355 false, "anonget2", 0); 356 } 357 } else { 358 #if defined(VMSWAP) 359 /* 360 * No page, therefore allocate one. 361 */ 362 363 pg = uvm_pagealloc(NULL, 364 ufi != NULL ? ufi->orig_rvaddr : 0, 365 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0); 366 if (pg == NULL) { 367 /* Out of memory. Wait a little. */ 368 uvmfault_unlockall(ufi, amap, NULL); 369 uvmexp.fltnoram++; 370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 371 0,0,0); 372 if (!uvm_reclaimable()) { 373 return ENOMEM; 374 } 375 uvm_wait("flt_noram1"); 376 } else { 377 /* PG_BUSY bit is set. */ 378 we_own = true; 379 uvmfault_unlockall(ufi, amap, NULL); 380 381 /* 382 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into 383 * the uvm_swap_get() function with all data 384 * structures unlocked. Note that it is OK 385 * to read an_swslot here, because we hold 386 * PG_BUSY on the page. 387 */ 388 uvmexp.pageins++; 389 error = uvm_swap_get(pg, anon->an_swslot, 390 PGO_SYNCIO); 391 392 /* 393 * We clean up after the I/O below in the 394 * 'we_own' case. 395 */ 396 } 397 #else 398 panic("%s: no page", __func__); 399 #endif /* defined(VMSWAP) */ 400 } 401 402 /* 403 * Re-lock the map and anon. 404 */ 405 406 locked = uvmfault_relock(ufi); 407 if (locked || we_own) { 408 mutex_enter(anon->an_lock); 409 } 410 411 /* 412 * If we own the page (i.e. we set PG_BUSY), then we need 413 * to clean up after the I/O. There are three cases to 414 * consider: 415 * 416 * 1) Page was released during I/O: free anon and ReFault. 417 * 2) I/O not OK. Free the page and cause the fault to fail. 418 * 3) I/O OK! Activate the page and sync with the non-we_own 419 * case (i.e. drop anon lock if not locked). 420 */ 421 422 if (we_own) { 423 #if defined(VMSWAP) 424 if (pg->flags & PG_WANTED) { 425 wakeup(pg); 426 } 427 if (error) { 428 429 /* 430 * Remove the swap slot from the anon and 431 * mark the anon as having no real slot. 432 * Do not free the swap slot, thus preventing 433 * it from being used again. 434 */ 435 436 if (anon->an_swslot > 0) { 437 uvm_swap_markbad(anon->an_swslot, 1); 438 } 439 anon->an_swslot = SWSLOT_BAD; 440 441 if ((pg->flags & PG_RELEASED) != 0) { 442 goto released; 443 } 444 445 /* 446 * Note: page was never !PG_BUSY, so it 447 * cannot be mapped and thus no need to 448 * pmap_page_protect() it. 449 */ 450 451 mutex_enter(&uvm_pageqlock); 452 uvm_pagefree(pg); 453 mutex_exit(&uvm_pageqlock); 454 455 if (locked) { 456 uvmfault_unlockall(ufi, NULL, NULL); 457 } 458 mutex_exit(anon->an_lock); 459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 460 return error; 461 } 462 463 if ((pg->flags & PG_RELEASED) != 0) { 464 released: 465 KASSERT(anon->an_ref == 0); 466 467 /* 468 * Released while we had unlocked amap. 469 */ 470 471 if (locked) { 472 uvmfault_unlockall(ufi, NULL, NULL); 473 } 474 uvm_anon_release(anon); 475 476 if (error) { 477 UVMHIST_LOG(maphist, 478 "<- ERROR/RELEASED", 0,0,0,0); 479 return error; 480 } 481 482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0); 483 return ERESTART; 484 } 485 486 /* 487 * We have successfully read the page, activate it. 488 */ 489 490 mutex_enter(&uvm_pageqlock); 491 uvm_pageactivate(pg); 492 mutex_exit(&uvm_pageqlock); 493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 494 UVM_PAGE_OWN(pg, NULL); 495 #else 496 panic("%s: we_own", __func__); 497 #endif /* defined(VMSWAP) */ 498 } 499 500 /* 501 * We were not able to re-lock the map - restart the fault. 502 */ 503 504 if (!locked) { 505 if (we_own) { 506 mutex_exit(anon->an_lock); 507 } 508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 509 return ERESTART; 510 } 511 512 /* 513 * Verify that no one has touched the amap and moved 514 * the anon on us. 515 */ 516 517 if (ufi != NULL && amap_lookup(&ufi->entry->aref, 518 ufi->orig_rvaddr - ufi->entry->start) != anon) { 519 520 uvmfault_unlockall(ufi, amap, NULL); 521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 522 return ERESTART; 523 } 524 525 /* 526 * Retry.. 527 */ 528 529 uvmexp.fltanretry++; 530 continue; 531 } 532 /*NOTREACHED*/ 533 } 534 535 /* 536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B. 537 * 538 * 1. allocate an anon and a page. 539 * 2. fill its contents. 540 * 3. put it into amap. 541 * 542 * => if we fail (result != 0) we unlock everything. 543 * => on success, return a new locked anon via 'nanon'. 544 * (*nanon)->an_page will be a resident, locked, dirty page. 545 * => it's caller's responsibility to put the promoted nanon->an_page to the 546 * page queue. 547 */ 548 549 static int 550 uvmfault_promote(struct uvm_faultinfo *ufi, 551 struct vm_anon *oanon, 552 struct vm_page *uobjpage, 553 struct vm_anon **nanon, /* OUT: allocated anon */ 554 struct vm_anon **spare) 555 { 556 struct vm_amap *amap = ufi->entry->aref.ar_amap; 557 struct uvm_object *uobj; 558 struct vm_anon *anon; 559 struct vm_page *pg; 560 struct vm_page *opg; 561 int error; 562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 563 564 if (oanon) { 565 /* anon COW */ 566 opg = oanon->an_page; 567 KASSERT(opg != NULL); 568 KASSERT(opg->uobject == NULL || opg->loan_count > 0); 569 } else if (uobjpage != PGO_DONTCARE) { 570 /* object-backed COW */ 571 opg = uobjpage; 572 } else { 573 /* ZFOD */ 574 opg = NULL; 575 } 576 if (opg != NULL) { 577 uobj = opg->uobject; 578 } else { 579 uobj = NULL; 580 } 581 582 KASSERT(amap != NULL); 583 KASSERT(uobjpage != NULL); 584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0); 585 KASSERT(mutex_owned(amap->am_lock)); 586 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock); 587 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 588 589 if (*spare != NULL) { 590 anon = *spare; 591 *spare = NULL; 592 } else { 593 anon = uvm_analloc(); 594 } 595 if (anon) { 596 597 /* 598 * The new anon is locked. 599 * 600 * if opg == NULL, we want a zero'd, dirty page, 601 * so have uvm_pagealloc() do that for us. 602 */ 603 604 KASSERT(anon->an_lock == NULL); 605 anon->an_lock = amap->am_lock; 606 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon, 607 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0)); 608 if (pg == NULL) { 609 anon->an_lock = NULL; 610 } 611 } else { 612 pg = NULL; 613 } 614 615 /* 616 * out of memory resources? 617 */ 618 619 if (pg == NULL) { 620 /* save anon for the next try. */ 621 if (anon != NULL) { 622 *spare = anon; 623 } 624 625 /* unlock and fail ... */ 626 uvm_page_unbusy(&uobjpage, 1); 627 uvmfault_unlockall(ufi, amap, uobj); 628 if (!uvm_reclaimable()) { 629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0); 630 uvmexp.fltnoanon++; 631 error = ENOMEM; 632 goto done; 633 } 634 635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0); 636 uvmexp.fltnoram++; 637 uvm_wait("flt_noram5"); 638 error = ERESTART; 639 goto done; 640 } 641 642 /* copy page [pg now dirty] */ 643 if (opg) { 644 uvm_pagecopy(opg, pg); 645 } 646 647 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon, 648 oanon != NULL); 649 650 *nanon = anon; 651 error = 0; 652 done: 653 return error; 654 } 655 656 657 /* 658 * F A U L T - m a i n e n t r y p o i n t 659 */ 660 661 /* 662 * uvm_fault: page fault handler 663 * 664 * => called from MD code to resolve a page fault 665 * => VM data structures usually should be unlocked. however, it is 666 * possible to call here with the main map locked if the caller 667 * gets a write lock, sets it recusive, and then calls us (c.f. 668 * uvm_map_pageable). this should be avoided because it keeps 669 * the map locked off during I/O. 670 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT 671 */ 672 673 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 674 ~VM_PROT_WRITE : VM_PROT_ALL) 675 676 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */ 677 #define UVM_FAULT_WIRE (1 << 0) 678 #define UVM_FAULT_MAXPROT (1 << 1) 679 680 struct uvm_faultctx { 681 682 /* 683 * the following members are set up by uvm_fault_check() and 684 * read-only after that. 685 * 686 * note that narrow is used by uvm_fault_check() to change 687 * the behaviour after ERESTART. 688 * 689 * most of them might change after RESTART if the underlying 690 * map entry has been changed behind us. an exception is 691 * wire_paging, which does never change. 692 */ 693 vm_prot_t access_type; 694 vaddr_t startva; 695 int npages; 696 int centeridx; 697 bool narrow; /* work on a single requested page only */ 698 bool wire_mapping; /* request a PMAP_WIRED mapping 699 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */ 700 bool wire_paging; /* request uvm_pagewire 701 (true for UVM_FAULT_WIRE) */ 702 bool cow_now; /* VM_PROT_WRITE is actually requested 703 (ie. should break COW and page loaning) */ 704 705 /* 706 * enter_prot is set up by uvm_fault_check() and clamped 707 * (ie. drop the VM_PROT_WRITE bit) in various places in case 708 * of !cow_now. 709 */ 710 vm_prot_t enter_prot; /* prot at which we want to enter pages in */ 711 712 /* 713 * the following member is for uvmfault_promote() and ERESTART. 714 */ 715 struct vm_anon *anon_spare; 716 717 /* 718 * the folloing is actually a uvm_fault_lower() internal. 719 * it's here merely for debugging. 720 * (or due to the mechanical separation of the function?) 721 */ 722 bool promote; 723 }; 724 725 static inline int uvm_fault_check( 726 struct uvm_faultinfo *, struct uvm_faultctx *, 727 struct vm_anon ***, bool); 728 729 static int uvm_fault_upper( 730 struct uvm_faultinfo *, struct uvm_faultctx *, 731 struct vm_anon **); 732 static inline int uvm_fault_upper_lookup( 733 struct uvm_faultinfo *, const struct uvm_faultctx *, 734 struct vm_anon **, struct vm_page **); 735 static inline void uvm_fault_upper_neighbor( 736 struct uvm_faultinfo *, const struct uvm_faultctx *, 737 vaddr_t, struct vm_page *, bool); 738 static inline int uvm_fault_upper_loan( 739 struct uvm_faultinfo *, struct uvm_faultctx *, 740 struct vm_anon *, struct uvm_object **); 741 static inline int uvm_fault_upper_promote( 742 struct uvm_faultinfo *, struct uvm_faultctx *, 743 struct uvm_object *, struct vm_anon *); 744 static inline int uvm_fault_upper_direct( 745 struct uvm_faultinfo *, struct uvm_faultctx *, 746 struct uvm_object *, struct vm_anon *); 747 static int uvm_fault_upper_enter( 748 struct uvm_faultinfo *, const struct uvm_faultctx *, 749 struct uvm_object *, struct vm_anon *, 750 struct vm_page *, struct vm_anon *); 751 static inline void uvm_fault_upper_done( 752 struct uvm_faultinfo *, const struct uvm_faultctx *, 753 struct vm_anon *, struct vm_page *); 754 755 static int uvm_fault_lower( 756 struct uvm_faultinfo *, struct uvm_faultctx *, 757 struct vm_page **); 758 static inline void uvm_fault_lower_lookup( 759 struct uvm_faultinfo *, const struct uvm_faultctx *, 760 struct vm_page **); 761 static inline void uvm_fault_lower_neighbor( 762 struct uvm_faultinfo *, const struct uvm_faultctx *, 763 vaddr_t, struct vm_page *, bool); 764 static inline int uvm_fault_lower_io( 765 struct uvm_faultinfo *, const struct uvm_faultctx *, 766 struct uvm_object **, struct vm_page **); 767 static inline int uvm_fault_lower_direct( 768 struct uvm_faultinfo *, struct uvm_faultctx *, 769 struct uvm_object *, struct vm_page *); 770 static inline int uvm_fault_lower_direct_loan( 771 struct uvm_faultinfo *, struct uvm_faultctx *, 772 struct uvm_object *, struct vm_page **, 773 struct vm_page **); 774 static inline int uvm_fault_lower_promote( 775 struct uvm_faultinfo *, struct uvm_faultctx *, 776 struct uvm_object *, struct vm_page *); 777 static int uvm_fault_lower_enter( 778 struct uvm_faultinfo *, const struct uvm_faultctx *, 779 struct uvm_object *, 780 struct vm_anon *, struct vm_page *); 781 static inline void uvm_fault_lower_done( 782 struct uvm_faultinfo *, const struct uvm_faultctx *, 783 struct uvm_object *, struct vm_page *); 784 785 int 786 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr, 787 vm_prot_t access_type, int fault_flag) 788 { 789 struct cpu_data *cd; 790 struct uvm_cpu *ucpu; 791 struct uvm_faultinfo ufi; 792 struct uvm_faultctx flt = { 793 .access_type = access_type, 794 795 /* don't look for neighborhood * pages on "wire" fault */ 796 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0, 797 798 /* "wire" fault causes wiring of both mapping and paging */ 799 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0, 800 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0, 801 }; 802 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0; 803 struct vm_anon *anons_store[UVM_MAXRANGE], **anons; 804 struct vm_page *pages_store[UVM_MAXRANGE], **pages; 805 int error; 806 807 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist); 808 809 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)", 810 (uintptr_t)orig_map, vaddr, access_type, fault_flag); 811 812 cd = &(curcpu()->ci_data); 813 cd->cpu_nfault++; 814 ucpu = cd->cpu_uvm; 815 816 /* Don't flood RNG subsystem with samples. */ 817 if (cd->cpu_nfault % 503) 818 goto norng; 819 820 /* Don't count anything until user interaction is possible */ 821 if (__predict_true(start_init_exec)) { 822 kpreempt_disable(); 823 rnd_add_uint32(&ucpu->rs, 824 sizeof(vaddr_t) == sizeof(uint32_t) ? 825 (uint32_t)vaddr : sizeof(vaddr_t) == 826 sizeof(uint64_t) ? 827 (uint32_t)(vaddr & 0x00000000ffffffff) : 828 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff)); 829 kpreempt_enable(); 830 } 831 norng: 832 /* 833 * init the IN parameters in the ufi 834 */ 835 836 ufi.orig_map = orig_map; 837 ufi.orig_rvaddr = trunc_page(vaddr); 838 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 839 840 error = ERESTART; 841 while (error == ERESTART) { /* ReFault: */ 842 anons = anons_store; 843 pages = pages_store; 844 845 error = uvm_fault_check(&ufi, &flt, &anons, maxprot); 846 if (error != 0) 847 continue; 848 849 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); 850 if (error != 0) 851 continue; 852 853 if (pages[flt.centeridx] == PGO_DONTCARE) 854 error = uvm_fault_upper(&ufi, &flt, anons); 855 else { 856 struct uvm_object * const uobj = 857 ufi.entry->object.uvm_obj; 858 859 if (uobj && uobj->pgops->pgo_fault != NULL) { 860 /* 861 * invoke "special" fault routine. 862 */ 863 mutex_enter(uobj->vmobjlock); 864 /* locked: maps(read), amap(if there), uobj */ 865 error = uobj->pgops->pgo_fault(&ufi, 866 flt.startva, pages, flt.npages, 867 flt.centeridx, flt.access_type, 868 PGO_LOCKED|PGO_SYNCIO); 869 870 /* 871 * locked: nothing, pgo_fault has unlocked 872 * everything 873 */ 874 875 /* 876 * object fault routine responsible for 877 * pmap_update(). 878 */ 879 } else { 880 error = uvm_fault_lower(&ufi, &flt, pages); 881 } 882 } 883 } 884 885 if (flt.anon_spare != NULL) { 886 flt.anon_spare->an_ref--; 887 KASSERT(flt.anon_spare->an_ref == 0); 888 KASSERT(flt.anon_spare->an_lock == NULL); 889 uvm_anon_free(flt.anon_spare); 890 } 891 return error; 892 } 893 894 /* 895 * uvm_fault_check: check prot, handle needs-copy, etc. 896 * 897 * 1. lookup entry. 898 * 2. check protection. 899 * 3. adjust fault condition (mainly for simulated fault). 900 * 4. handle needs-copy (lazy amap copy). 901 * 5. establish range of interest for neighbor fault (aka pre-fault). 902 * 6. look up anons (if amap exists). 903 * 7. flush pages (if MADV_SEQUENTIAL) 904 * 905 * => called with nothing locked. 906 * => if we fail (result != 0) we unlock everything. 907 * => initialize/adjust many members of flt. 908 */ 909 910 static int 911 uvm_fault_check( 912 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 913 struct vm_anon ***ranons, bool maxprot) 914 { 915 struct vm_amap *amap; 916 struct uvm_object *uobj; 917 vm_prot_t check_prot; 918 int nback, nforw; 919 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist); 920 921 /* 922 * lookup and lock the maps 923 */ 924 925 if (uvmfault_lookup(ufi, false) == false) { 926 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr, 927 0,0,0); 928 return EFAULT; 929 } 930 /* locked: maps(read) */ 931 932 #ifdef DIAGNOSTIC 933 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) { 934 printf("Page fault on non-pageable map:\n"); 935 printf("ufi->map = %p\n", ufi->map); 936 printf("ufi->orig_map = %p\n", ufi->orig_map); 937 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr); 938 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0"); 939 } 940 #endif 941 942 /* 943 * check protection 944 */ 945 946 check_prot = maxprot ? 947 ufi->entry->max_protection : ufi->entry->protection; 948 if ((check_prot & flt->access_type) != flt->access_type) { 949 UVMHIST_LOG(maphist, 950 "<- protection failure (prot=%#jx, access=%#jx)", 951 ufi->entry->protection, flt->access_type, 0, 0); 952 uvmfault_unlockmaps(ufi, false); 953 return EFAULT; 954 } 955 956 /* 957 * "enter_prot" is the protection we want to enter the page in at. 958 * for certain pages (e.g. copy-on-write pages) this protection can 959 * be more strict than ufi->entry->protection. "wired" means either 960 * the entry is wired or we are fault-wiring the pg. 961 */ 962 963 flt->enter_prot = ufi->entry->protection; 964 if (VM_MAPENT_ISWIRED(ufi->entry)) 965 flt->wire_mapping = true; 966 967 if (flt->wire_mapping) { 968 flt->access_type = flt->enter_prot; /* full access for wired */ 969 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0; 970 } else { 971 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0; 972 } 973 974 flt->promote = false; 975 976 /* 977 * handle "needs_copy" case. if we need to copy the amap we will 978 * have to drop our readlock and relock it with a write lock. (we 979 * need a write lock to change anything in a map entry [e.g. 980 * needs_copy]). 981 */ 982 983 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 984 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) { 985 KASSERT(!maxprot); 986 /* need to clear */ 987 UVMHIST_LOG(maphist, 988 " need to clear needs_copy and refault",0,0,0,0); 989 uvmfault_unlockmaps(ufi, false); 990 uvmfault_amapcopy(ufi); 991 uvmexp.fltamcopy++; 992 return ERESTART; 993 994 } else { 995 996 /* 997 * ensure that we pmap_enter page R/O since 998 * needs_copy is still true 999 */ 1000 1001 flt->enter_prot &= ~VM_PROT_WRITE; 1002 } 1003 } 1004 1005 /* 1006 * identify the players 1007 */ 1008 1009 amap = ufi->entry->aref.ar_amap; /* upper layer */ 1010 uobj = ufi->entry->object.uvm_obj; /* lower layer */ 1011 1012 /* 1013 * check for a case 0 fault. if nothing backing the entry then 1014 * error now. 1015 */ 1016 1017 if (amap == NULL && uobj == NULL) { 1018 uvmfault_unlockmaps(ufi, false); 1019 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 1020 return EFAULT; 1021 } 1022 1023 /* 1024 * establish range of interest based on advice from mapper 1025 * and then clip to fit map entry. note that we only want 1026 * to do this the first time through the fault. if we 1027 * ReFault we will disable this by setting "narrow" to true. 1028 */ 1029 1030 if (flt->narrow == false) { 1031 1032 /* wide fault (!narrow) */ 1033 KASSERT(uvmadvice[ufi->entry->advice].advice == 1034 ufi->entry->advice); 1035 nback = MIN(uvmadvice[ufi->entry->advice].nback, 1036 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT); 1037 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT); 1038 /* 1039 * note: "-1" because we don't want to count the 1040 * faulting page as forw 1041 */ 1042 nforw = MIN(uvmadvice[ufi->entry->advice].nforw, 1043 ((ufi->entry->end - ufi->orig_rvaddr) >> 1044 PAGE_SHIFT) - 1); 1045 flt->npages = nback + nforw + 1; 1046 flt->centeridx = nback; 1047 1048 flt->narrow = true; /* ensure only once per-fault */ 1049 1050 } else { 1051 1052 /* narrow fault! */ 1053 nback = nforw = 0; 1054 flt->startva = ufi->orig_rvaddr; 1055 flt->npages = 1; 1056 flt->centeridx = 0; 1057 1058 } 1059 /* offset from entry's start to pgs' start */ 1060 const voff_t eoff = flt->startva - ufi->entry->start; 1061 1062 /* locked: maps(read) */ 1063 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx", 1064 flt->narrow, nback, nforw, flt->startva); 1065 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx", 1066 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0); 1067 1068 /* 1069 * if we've got an amap, lock it and extract current anons. 1070 */ 1071 1072 if (amap) { 1073 amap_lock(amap); 1074 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages); 1075 } else { 1076 *ranons = NULL; /* to be safe */ 1077 } 1078 1079 /* locked: maps(read), amap(if there) */ 1080 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1081 1082 /* 1083 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 1084 * now and then forget about them (for the rest of the fault). 1085 */ 1086 1087 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) { 1088 1089 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 1090 0,0,0,0); 1091 /* flush back-page anons? */ 1092 if (amap) 1093 uvmfault_anonflush(*ranons, nback); 1094 1095 /* flush object? */ 1096 if (uobj) { 1097 voff_t uoff; 1098 1099 uoff = ufi->entry->offset + eoff; 1100 mutex_enter(uobj->vmobjlock); 1101 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff + 1102 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 1103 } 1104 1105 /* now forget about the backpages */ 1106 if (amap) 1107 *ranons += nback; 1108 flt->startva += (nback << PAGE_SHIFT); 1109 flt->npages -= nback; 1110 flt->centeridx = 0; 1111 } 1112 /* 1113 * => startva is fixed 1114 * => npages is fixed 1115 */ 1116 KASSERT(flt->startva <= ufi->orig_rvaddr); 1117 KASSERT(ufi->orig_rvaddr + ufi->orig_size <= 1118 flt->startva + (flt->npages << PAGE_SHIFT)); 1119 return 0; 1120 } 1121 1122 /* 1123 * uvm_fault_upper_lookup: look up existing h/w mapping and amap. 1124 * 1125 * iterate range of interest: 1126 * 1. check if h/w mapping exists. if yes, we don't care 1127 * 2. check if anon exists. if not, page is lower. 1128 * 3. if anon exists, enter h/w mapping for neighbors. 1129 * 1130 * => called with amap locked (if exists). 1131 */ 1132 1133 static int 1134 uvm_fault_upper_lookup( 1135 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1136 struct vm_anon **anons, struct vm_page **pages) 1137 { 1138 struct vm_amap *amap = ufi->entry->aref.ar_amap; 1139 int lcv; 1140 vaddr_t currva; 1141 bool shadowed __unused; 1142 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist); 1143 1144 /* locked: maps(read), amap(if there) */ 1145 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1146 1147 /* 1148 * map in the backpages and frontpages we found in the amap in hopes 1149 * of preventing future faults. we also init the pages[] array as 1150 * we go. 1151 */ 1152 1153 currva = flt->startva; 1154 shadowed = false; 1155 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1156 /* 1157 * don't play with VAs that are already mapped 1158 * (except for center) 1159 */ 1160 if (lcv != flt->centeridx && 1161 pmap_extract(ufi->orig_map->pmap, currva, NULL)) { 1162 pages[lcv] = PGO_DONTCARE; 1163 continue; 1164 } 1165 1166 /* 1167 * unmapped or center page. check if any anon at this level. 1168 */ 1169 if (amap == NULL || anons[lcv] == NULL) { 1170 pages[lcv] = NULL; 1171 continue; 1172 } 1173 1174 /* 1175 * check for present page and map if possible. re-activate it. 1176 */ 1177 1178 pages[lcv] = PGO_DONTCARE; 1179 if (lcv == flt->centeridx) { /* save center for later! */ 1180 shadowed = true; 1181 continue; 1182 } 1183 1184 struct vm_anon *anon = anons[lcv]; 1185 struct vm_page *pg = anon->an_page; 1186 1187 KASSERT(anon->an_lock == amap->am_lock); 1188 1189 /* Ignore loaned and busy pages. */ 1190 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) { 1191 uvm_fault_upper_neighbor(ufi, flt, currva, 1192 pg, anon->an_ref > 1); 1193 } 1194 } 1195 1196 /* locked: maps(read), amap(if there) */ 1197 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1198 /* (shadowed == true) if there is an anon at the faulting address */ 1199 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed, 1200 (ufi->entry->object.uvm_obj && shadowed != false),0,0); 1201 1202 /* 1203 * note that if we are really short of RAM we could sleep in the above 1204 * call to pmap_enter with everything locked. bad? 1205 * 1206 * XXX Actually, that is bad; pmap_enter() should just fail in that 1207 * XXX case. --thorpej 1208 */ 1209 1210 return 0; 1211 } 1212 1213 /* 1214 * uvm_fault_upper_neighbor: enter single upper neighbor page. 1215 * 1216 * => called with amap and anon locked. 1217 */ 1218 1219 static void 1220 uvm_fault_upper_neighbor( 1221 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1222 vaddr_t currva, struct vm_page *pg, bool readonly) 1223 { 1224 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist); 1225 1226 /* locked: amap, anon */ 1227 1228 mutex_enter(&uvm_pageqlock); 1229 uvm_pageenqueue(pg); 1230 mutex_exit(&uvm_pageqlock); 1231 UVMHIST_LOG(maphist, 1232 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx", 1233 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 1234 uvmexp.fltnamap++; 1235 1236 /* 1237 * Since this page isn't the page that's actually faulting, 1238 * ignore pmap_enter() failures; it's not critical that we 1239 * enter these right now. 1240 */ 1241 1242 (void) pmap_enter(ufi->orig_map->pmap, currva, 1243 VM_PAGE_TO_PHYS(pg), 1244 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1245 flt->enter_prot, 1246 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)); 1247 1248 pmap_update(ufi->orig_map->pmap); 1249 } 1250 1251 /* 1252 * uvm_fault_upper: handle upper fault. 1253 * 1254 * 1. acquire anon lock. 1255 * 2. get anon. let uvmfault_anonget do the dirty work. 1256 * 3. handle loan. 1257 * 4. dispatch direct or promote handlers. 1258 */ 1259 1260 static int 1261 uvm_fault_upper( 1262 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1263 struct vm_anon **anons) 1264 { 1265 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1266 struct vm_anon * const anon = anons[flt->centeridx]; 1267 struct uvm_object *uobj; 1268 int error; 1269 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist); 1270 1271 /* locked: maps(read), amap, anon */ 1272 KASSERT(mutex_owned(amap->am_lock)); 1273 KASSERT(anon->an_lock == amap->am_lock); 1274 1275 /* 1276 * handle case 1: fault on an anon in our amap 1277 */ 1278 1279 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx", 1280 (uintptr_t)anon, 0, 0, 0); 1281 1282 /* 1283 * no matter if we have case 1A or case 1B we are going to need to 1284 * have the anon's memory resident. ensure that now. 1285 */ 1286 1287 /* 1288 * let uvmfault_anonget do the dirty work. 1289 * if it fails (!OK) it will unlock everything for us. 1290 * if it succeeds, locks are still valid and locked. 1291 * also, if it is OK, then the anon's page is on the queues. 1292 * if the page is on loan from a uvm_object, then anonget will 1293 * lock that object for us if it does not fail. 1294 */ 1295 1296 error = uvmfault_anonget(ufi, amap, anon); 1297 switch (error) { 1298 case 0: 1299 break; 1300 1301 case ERESTART: 1302 return ERESTART; 1303 1304 case EAGAIN: 1305 kpause("fltagain1", false, hz/2, NULL); 1306 return ERESTART; 1307 1308 default: 1309 return error; 1310 } 1311 1312 /* 1313 * uobj is non null if the page is on loan from an object (i.e. uobj) 1314 */ 1315 1316 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1317 1318 /* locked: maps(read), amap, anon, uobj(if one) */ 1319 KASSERT(mutex_owned(amap->am_lock)); 1320 KASSERT(anon->an_lock == amap->am_lock); 1321 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1322 1323 /* 1324 * special handling for loaned pages 1325 */ 1326 1327 if (anon->an_page->loan_count) { 1328 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj); 1329 if (error != 0) 1330 return error; 1331 } 1332 1333 /* 1334 * if we are case 1B then we will need to allocate a new blank 1335 * anon to transfer the data into. note that we have a lock 1336 * on anon, so no one can busy or release the page until we are done. 1337 * also note that the ref count can't drop to zero here because 1338 * it is > 1 and we are only dropping one ref. 1339 * 1340 * in the (hopefully very rare) case that we are out of RAM we 1341 * will unlock, wait for more RAM, and refault. 1342 * 1343 * if we are out of anon VM we kill the process (XXX: could wait?). 1344 */ 1345 1346 if (flt->cow_now && anon->an_ref > 1) { 1347 flt->promote = true; 1348 error = uvm_fault_upper_promote(ufi, flt, uobj, anon); 1349 } else { 1350 error = uvm_fault_upper_direct(ufi, flt, uobj, anon); 1351 } 1352 return error; 1353 } 1354 1355 /* 1356 * uvm_fault_upper_loan: handle loaned upper page. 1357 * 1358 * 1. if not cow'ing now, simply adjust flt->enter_prot. 1359 * 2. if cow'ing now, and if ref count is 1, break loan. 1360 */ 1361 1362 static int 1363 uvm_fault_upper_loan( 1364 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1365 struct vm_anon *anon, struct uvm_object **ruobj) 1366 { 1367 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1368 int error = 0; 1369 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist); 1370 1371 if (!flt->cow_now) { 1372 1373 /* 1374 * for read faults on loaned pages we just cap the 1375 * protection at read-only. 1376 */ 1377 1378 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1379 1380 } else { 1381 /* 1382 * note that we can't allow writes into a loaned page! 1383 * 1384 * if we have a write fault on a loaned page in an 1385 * anon then we need to look at the anon's ref count. 1386 * if it is greater than one then we are going to do 1387 * a normal copy-on-write fault into a new anon (this 1388 * is not a problem). however, if the reference count 1389 * is one (a case where we would normally allow a 1390 * write directly to the page) then we need to kill 1391 * the loan before we continue. 1392 */ 1393 1394 /* >1 case is already ok */ 1395 if (anon->an_ref == 1) { 1396 error = uvm_loanbreak_anon(anon, *ruobj); 1397 if (error != 0) { 1398 uvmfault_unlockall(ufi, amap, *ruobj); 1399 uvm_wait("flt_noram2"); 1400 return ERESTART; 1401 } 1402 /* if we were a loan reciever uobj is gone */ 1403 if (*ruobj) 1404 *ruobj = NULL; 1405 } 1406 } 1407 return error; 1408 } 1409 1410 /* 1411 * uvm_fault_upper_promote: promote upper page. 1412 * 1413 * 1. call uvmfault_promote. 1414 * 2. enqueue page. 1415 * 3. deref. 1416 * 4. pass page to uvm_fault_upper_enter. 1417 */ 1418 1419 static int 1420 uvm_fault_upper_promote( 1421 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1422 struct uvm_object *uobj, struct vm_anon *anon) 1423 { 1424 struct vm_anon * const oanon = anon; 1425 struct vm_page *pg; 1426 int error; 1427 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist); 1428 1429 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1430 uvmexp.flt_acow++; 1431 1432 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon, 1433 &flt->anon_spare); 1434 switch (error) { 1435 case 0: 1436 break; 1437 case ERESTART: 1438 return ERESTART; 1439 default: 1440 return error; 1441 } 1442 1443 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock); 1444 1445 pg = anon->an_page; 1446 mutex_enter(&uvm_pageqlock); 1447 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */ 1448 mutex_exit(&uvm_pageqlock); 1449 pg->flags &= ~(PG_BUSY|PG_FAKE); 1450 UVM_PAGE_OWN(pg, NULL); 1451 1452 /* deref: can not drop to zero here by defn! */ 1453 KASSERT(oanon->an_ref > 1); 1454 oanon->an_ref--; 1455 1456 /* 1457 * note: oanon is still locked, as is the new anon. we 1458 * need to check for this later when we unlock oanon; if 1459 * oanon != anon, we'll have to unlock anon, too. 1460 */ 1461 1462 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1463 } 1464 1465 /* 1466 * uvm_fault_upper_direct: handle direct fault. 1467 */ 1468 1469 static int 1470 uvm_fault_upper_direct( 1471 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1472 struct uvm_object *uobj, struct vm_anon *anon) 1473 { 1474 struct vm_anon * const oanon = anon; 1475 struct vm_page *pg; 1476 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist); 1477 1478 uvmexp.flt_anon++; 1479 pg = anon->an_page; 1480 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1481 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1482 1483 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1484 } 1485 1486 /* 1487 * uvm_fault_upper_enter: enter h/w mapping of upper page. 1488 */ 1489 1490 static int 1491 uvm_fault_upper_enter( 1492 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1493 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg, 1494 struct vm_anon *oanon) 1495 { 1496 struct pmap *pmap = ufi->orig_map->pmap; 1497 vaddr_t va = ufi->orig_rvaddr; 1498 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1499 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist); 1500 1501 /* locked: maps(read), amap, oanon, anon(if different from oanon) */ 1502 KASSERT(mutex_owned(amap->am_lock)); 1503 KASSERT(anon->an_lock == amap->am_lock); 1504 KASSERT(oanon->an_lock == amap->am_lock); 1505 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1506 1507 /* 1508 * now map the page in. 1509 */ 1510 1511 UVMHIST_LOG(maphist, 1512 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 1513 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote); 1514 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg), 1515 flt->enter_prot, flt->access_type | PMAP_CANFAIL | 1516 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 1517 1518 /* 1519 * If pmap_enter() fails, it must not leave behind an existing 1520 * pmap entry. In particular, a now-stale entry for a different 1521 * page would leave the pmap inconsistent with the vm_map. 1522 * This is not to imply that pmap_enter() should remove an 1523 * existing mapping in such a situation (since that could create 1524 * different problems, eg. if the existing mapping is wired), 1525 * but rather that the pmap should be designed such that it 1526 * never needs to fail when the new mapping is replacing an 1527 * existing mapping and the new page has no existing mappings. 1528 */ 1529 1530 KASSERT(!pmap_extract(pmap, va, NULL)); 1531 1532 /* 1533 * No need to undo what we did; we can simply think of 1534 * this as the pmap throwing away the mapping information. 1535 * 1536 * We do, however, have to go through the ReFault path, 1537 * as the map may change while we're asleep. 1538 */ 1539 1540 uvmfault_unlockall(ufi, amap, uobj); 1541 if (!uvm_reclaimable()) { 1542 UVMHIST_LOG(maphist, 1543 "<- failed. out of VM",0,0,0,0); 1544 /* XXX instrumentation */ 1545 return ENOMEM; 1546 } 1547 /* XXX instrumentation */ 1548 uvm_wait("flt_pmfail1"); 1549 return ERESTART; 1550 } 1551 1552 uvm_fault_upper_done(ufi, flt, anon, pg); 1553 1554 /* 1555 * done case 1! finish up by unlocking everything and returning success 1556 */ 1557 1558 pmap_update(pmap); 1559 uvmfault_unlockall(ufi, amap, uobj); 1560 return 0; 1561 } 1562 1563 /* 1564 * uvm_fault_upper_done: queue upper center page. 1565 */ 1566 1567 static void 1568 uvm_fault_upper_done( 1569 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1570 struct vm_anon *anon, struct vm_page *pg) 1571 { 1572 const bool wire_paging = flt->wire_paging; 1573 1574 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist); 1575 1576 /* 1577 * ... update the page queues. 1578 */ 1579 1580 mutex_enter(&uvm_pageqlock); 1581 if (wire_paging) { 1582 uvm_pagewire(pg); 1583 1584 /* 1585 * since the now-wired page cannot be paged out, 1586 * release its swap resources for others to use. 1587 * since an anon with no swap cannot be PG_CLEAN, 1588 * clear its clean flag now. 1589 */ 1590 1591 pg->flags &= ~(PG_CLEAN); 1592 1593 } else { 1594 uvm_pageactivate(pg); 1595 } 1596 mutex_exit(&uvm_pageqlock); 1597 1598 if (wire_paging) { 1599 uvm_anon_dropswap(anon); 1600 } 1601 } 1602 1603 /* 1604 * uvm_fault_lower: handle lower fault. 1605 * 1606 * 1. check uobj 1607 * 1.1. if null, ZFOD. 1608 * 1.2. if not null, look up unnmapped neighbor pages. 1609 * 2. for center page, check if promote. 1610 * 2.1. ZFOD always needs promotion. 1611 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode). 1612 * 3. if uobj is not ZFOD and page is not found, do i/o. 1613 * 4. dispatch either direct / promote fault. 1614 */ 1615 1616 static int 1617 uvm_fault_lower( 1618 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1619 struct vm_page **pages) 1620 { 1621 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap; 1622 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1623 struct vm_page *uobjpage; 1624 int error; 1625 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist); 1626 1627 /* 1628 * now, if the desired page is not shadowed by the amap and we have 1629 * a backing object that does not have a special fault routine, then 1630 * we ask (with pgo_get) the object for resident pages that we care 1631 * about and attempt to map them in. we do not let pgo_get block 1632 * (PGO_LOCKED). 1633 */ 1634 1635 if (uobj == NULL) { 1636 /* zero fill; don't care neighbor pages */ 1637 uobjpage = NULL; 1638 } else { 1639 uvm_fault_lower_lookup(ufi, flt, pages); 1640 uobjpage = pages[flt->centeridx]; 1641 } 1642 1643 /* 1644 * note that at this point we are done with any front or back pages. 1645 * we are now going to focus on the center page (i.e. the one we've 1646 * faulted on). if we have faulted on the upper (anon) layer 1647 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 1648 * not touched it yet). if we have faulted on the bottom (uobj) 1649 * layer [i.e. case 2] and the page was both present and available, 1650 * then we've got a pointer to it as "uobjpage" and we've already 1651 * made it BUSY. 1652 */ 1653 1654 /* 1655 * locked: 1656 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1657 */ 1658 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1659 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1660 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0); 1661 1662 /* 1663 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1664 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1665 * have a backing object, check and see if we are going to promote 1666 * the data up to an anon during the fault. 1667 */ 1668 1669 if (uobj == NULL) { 1670 uobjpage = PGO_DONTCARE; 1671 flt->promote = true; /* always need anon here */ 1672 } else { 1673 KASSERT(uobjpage != PGO_DONTCARE); 1674 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry); 1675 } 1676 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd", 1677 flt->promote, (uobj == NULL), 0,0); 1678 1679 /* 1680 * if uobjpage is not null then we do not need to do I/O to get the 1681 * uobjpage. 1682 * 1683 * if uobjpage is null, then we need to unlock and ask the pager to 1684 * get the data for us. once we have the data, we need to reverify 1685 * the state the world. we are currently not holding any resources. 1686 */ 1687 1688 if (uobjpage) { 1689 /* update rusage counters */ 1690 curlwp->l_ru.ru_minflt++; 1691 } else { 1692 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage); 1693 if (error != 0) 1694 return error; 1695 } 1696 1697 /* 1698 * locked: 1699 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1700 */ 1701 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1702 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1703 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 1704 1705 /* 1706 * notes: 1707 * - at this point uobjpage can not be NULL 1708 * - at this point uobjpage can not be PG_RELEASED (since we checked 1709 * for it above) 1710 * - at this point uobjpage could be PG_WANTED (handle later) 1711 */ 1712 1713 KASSERT(uobjpage != NULL); 1714 KASSERT(uobj == NULL || uobj == uobjpage->uobject); 1715 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) || 1716 (uobjpage->flags & PG_CLEAN) != 0); 1717 1718 if (!flt->promote) { 1719 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage); 1720 } else { 1721 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage); 1722 } 1723 return error; 1724 } 1725 1726 /* 1727 * uvm_fault_lower_lookup: look up on-memory uobj pages. 1728 * 1729 * 1. get on-memory pages. 1730 * 2. if failed, give up (get only center page later). 1731 * 3. if succeeded, enter h/w mapping of neighbor pages. 1732 */ 1733 1734 static void 1735 uvm_fault_lower_lookup( 1736 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1737 struct vm_page **pages) 1738 { 1739 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1740 int lcv, gotpages; 1741 vaddr_t currva; 1742 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist); 1743 1744 mutex_enter(uobj->vmobjlock); 1745 /* Locked: maps(read), amap(if there), uobj */ 1746 1747 uvmexp.fltlget++; 1748 gotpages = flt->npages; 1749 (void) uobj->pgops->pgo_get(uobj, 1750 ufi->entry->offset + flt->startva - ufi->entry->start, 1751 pages, &gotpages, flt->centeridx, 1752 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED); 1753 1754 KASSERT(mutex_owned(uobj->vmobjlock)); 1755 1756 /* 1757 * check for pages to map, if we got any 1758 */ 1759 1760 if (gotpages == 0) { 1761 pages[flt->centeridx] = NULL; 1762 return; 1763 } 1764 1765 currva = flt->startva; 1766 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1767 struct vm_page *curpg; 1768 1769 curpg = pages[lcv]; 1770 if (curpg == NULL || curpg == PGO_DONTCARE) { 1771 continue; 1772 } 1773 KASSERT(curpg->uobject == uobj); 1774 1775 /* 1776 * if center page is resident and not PG_BUSY|PG_RELEASED 1777 * then pgo_get made it PG_BUSY for us and gave us a handle 1778 * to it. 1779 */ 1780 1781 if (lcv == flt->centeridx) { 1782 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) " 1783 "with locked get", (uintptr_t)curpg, 0, 0, 0); 1784 } else { 1785 bool readonly = (curpg->flags & PG_RDONLY) 1786 || (curpg->loan_count > 0) 1787 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject); 1788 1789 uvm_fault_lower_neighbor(ufi, flt, 1790 currva, curpg, readonly); 1791 } 1792 } 1793 pmap_update(ufi->orig_map->pmap); 1794 } 1795 1796 /* 1797 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page. 1798 */ 1799 1800 static void 1801 uvm_fault_lower_neighbor( 1802 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1803 vaddr_t currva, struct vm_page *pg, bool readonly) 1804 { 1805 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1806 1807 /* locked: maps(read), amap(if there), uobj */ 1808 1809 /* 1810 * calling pgo_get with PGO_LOCKED returns us pages which 1811 * are neither busy nor released, so we don't need to check 1812 * for this. we can just directly enter the pages. 1813 */ 1814 1815 mutex_enter(&uvm_pageqlock); 1816 uvm_pageenqueue(pg); 1817 mutex_exit(&uvm_pageqlock); 1818 UVMHIST_LOG(maphist, 1819 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx", 1820 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 1821 uvmexp.fltnomap++; 1822 1823 /* 1824 * Since this page isn't the page that's actually faulting, 1825 * ignore pmap_enter() failures; it's not critical that we 1826 * enter these right now. 1827 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've 1828 * held the lock the whole time we've had the handle. 1829 */ 1830 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1831 KASSERT((pg->flags & PG_RELEASED) == 0); 1832 KASSERT((pg->flags & PG_WANTED) == 0); 1833 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0); 1834 pg->flags &= ~(PG_BUSY); 1835 UVM_PAGE_OWN(pg, NULL); 1836 1837 KASSERT(mutex_owned(pg->uobject->vmobjlock)); 1838 1839 const vm_prot_t mapprot = 1840 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1841 flt->enter_prot & MASK(ufi->entry); 1842 const u_int mapflags = 1843 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0); 1844 (void) pmap_enter(ufi->orig_map->pmap, currva, 1845 VM_PAGE_TO_PHYS(pg), mapprot, mapflags); 1846 } 1847 1848 /* 1849 * uvm_fault_lower_io: get lower page from backing store. 1850 * 1851 * 1. unlock everything, because i/o will block. 1852 * 2. call pgo_get. 1853 * 3. if failed, recover. 1854 * 4. if succeeded, relock everything and verify things. 1855 */ 1856 1857 static int 1858 uvm_fault_lower_io( 1859 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1860 struct uvm_object **ruobj, struct vm_page **ruobjpage) 1861 { 1862 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1863 struct uvm_object *uobj = *ruobj; 1864 struct vm_page *pg; 1865 bool locked; 1866 int gotpages; 1867 int error; 1868 voff_t uoff; 1869 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist); 1870 1871 /* update rusage counters */ 1872 curlwp->l_ru.ru_majflt++; 1873 1874 /* Locked: maps(read), amap(if there), uobj */ 1875 uvmfault_unlockall(ufi, amap, NULL); 1876 1877 /* Locked: uobj */ 1878 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1879 1880 uvmexp.fltget++; 1881 gotpages = 1; 1882 pg = NULL; 1883 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; 1884 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages, 1885 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice, 1886 PGO_SYNCIO); 1887 /* locked: pg(if no error) */ 1888 1889 /* 1890 * recover from I/O 1891 */ 1892 1893 if (error) { 1894 if (error == EAGAIN) { 1895 UVMHIST_LOG(maphist, 1896 " pgo_get says TRY AGAIN!",0,0,0,0); 1897 kpause("fltagain2", false, hz/2, NULL); 1898 return ERESTART; 1899 } 1900 1901 #if 0 1902 KASSERT(error != ERESTART); 1903 #else 1904 /* XXXUEBS don't re-fault? */ 1905 if (error == ERESTART) 1906 error = EIO; 1907 #endif 1908 1909 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)", 1910 error, 0,0,0); 1911 return error; 1912 } 1913 1914 /* 1915 * re-verify the state of the world by first trying to relock 1916 * the maps. always relock the object. 1917 */ 1918 1919 locked = uvmfault_relock(ufi); 1920 if (locked && amap) 1921 amap_lock(amap); 1922 1923 /* might be changed */ 1924 uobj = pg->uobject; 1925 1926 mutex_enter(uobj->vmobjlock); 1927 KASSERT((pg->flags & PG_BUSY) != 0); 1928 1929 mutex_enter(&uvm_pageqlock); 1930 uvm_pageactivate(pg); 1931 mutex_exit(&uvm_pageqlock); 1932 1933 /* locked(locked): maps(read), amap(if !null), uobj, pg */ 1934 /* locked(!locked): uobj, pg */ 1935 1936 /* 1937 * verify that the page has not be released and re-verify 1938 * that amap slot is still free. if there is a problem, 1939 * we unlock and clean up. 1940 */ 1941 1942 if ((pg->flags & PG_RELEASED) != 0 || 1943 (locked && amap && amap_lookup(&ufi->entry->aref, 1944 ufi->orig_rvaddr - ufi->entry->start))) { 1945 if (locked) 1946 uvmfault_unlockall(ufi, amap, NULL); 1947 locked = false; 1948 } 1949 1950 /* 1951 * didn't get the lock? release the page and retry. 1952 */ 1953 1954 if (locked == false) { 1955 UVMHIST_LOG(maphist, 1956 " wasn't able to relock after fault: retry", 1957 0,0,0,0); 1958 if (pg->flags & PG_WANTED) { 1959 wakeup(pg); 1960 } 1961 if ((pg->flags & PG_RELEASED) == 0) { 1962 pg->flags &= ~(PG_BUSY | PG_WANTED); 1963 UVM_PAGE_OWN(pg, NULL); 1964 } else { 1965 uvmexp.fltpgrele++; 1966 uvm_pagefree(pg); 1967 } 1968 mutex_exit(uobj->vmobjlock); 1969 return ERESTART; 1970 } 1971 1972 /* 1973 * we have the data in pg which is busy and 1974 * not released. we are holding object lock (so the page 1975 * can't be released on us). 1976 */ 1977 1978 /* locked: maps(read), amap(if !null), uobj, pg */ 1979 1980 *ruobj = uobj; 1981 *ruobjpage = pg; 1982 return 0; 1983 } 1984 1985 /* 1986 * uvm_fault_lower_direct: fault lower center page 1987 * 1988 * 1. adjust flt->enter_prot. 1989 * 2. if page is loaned, resolve. 1990 */ 1991 1992 int 1993 uvm_fault_lower_direct( 1994 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1995 struct uvm_object *uobj, struct vm_page *uobjpage) 1996 { 1997 struct vm_page *pg; 1998 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist); 1999 2000 /* 2001 * we are not promoting. if the mapping is COW ensure that we 2002 * don't give more access than we should (e.g. when doing a read 2003 * fault on a COPYONWRITE mapping we want to map the COW page in 2004 * R/O even though the entry protection could be R/W). 2005 * 2006 * set "pg" to the page we want to map in (uobjpage, usually) 2007 */ 2008 2009 uvmexp.flt_obj++; 2010 if (UVM_ET_ISCOPYONWRITE(ufi->entry) || 2011 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject)) 2012 flt->enter_prot &= ~VM_PROT_WRITE; 2013 pg = uobjpage; /* map in the actual object */ 2014 2015 KASSERT(uobjpage != PGO_DONTCARE); 2016 2017 /* 2018 * we are faulting directly on the page. be careful 2019 * about writing to loaned pages... 2020 */ 2021 2022 if (uobjpage->loan_count) { 2023 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage); 2024 } 2025 KASSERT(pg == uobjpage); 2026 2027 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 2028 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg); 2029 } 2030 2031 /* 2032 * uvm_fault_lower_direct_loan: resolve loaned page. 2033 * 2034 * 1. if not cow'ing, adjust flt->enter_prot. 2035 * 2. if cow'ing, break loan. 2036 */ 2037 2038 static int 2039 uvm_fault_lower_direct_loan( 2040 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2041 struct uvm_object *uobj, struct vm_page **rpg, 2042 struct vm_page **ruobjpage) 2043 { 2044 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2045 struct vm_page *pg; 2046 struct vm_page *uobjpage = *ruobjpage; 2047 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist); 2048 2049 if (!flt->cow_now) { 2050 /* read fault: cap the protection at readonly */ 2051 /* cap! */ 2052 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 2053 } else { 2054 /* write fault: must break the loan here */ 2055 2056 pg = uvm_loanbreak(uobjpage); 2057 if (pg == NULL) { 2058 2059 /* 2060 * drop ownership of page, it can't be released 2061 */ 2062 2063 if (uobjpage->flags & PG_WANTED) 2064 wakeup(uobjpage); 2065 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 2066 UVM_PAGE_OWN(uobjpage, NULL); 2067 2068 uvmfault_unlockall(ufi, amap, uobj); 2069 UVMHIST_LOG(maphist, 2070 " out of RAM breaking loan, waiting", 2071 0,0,0,0); 2072 uvmexp.fltnoram++; 2073 uvm_wait("flt_noram4"); 2074 return ERESTART; 2075 } 2076 *rpg = pg; 2077 *ruobjpage = pg; 2078 } 2079 return 0; 2080 } 2081 2082 /* 2083 * uvm_fault_lower_promote: promote lower page. 2084 * 2085 * 1. call uvmfault_promote. 2086 * 2. fill in data. 2087 * 3. if not ZFOD, dispose old page. 2088 */ 2089 2090 int 2091 uvm_fault_lower_promote( 2092 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2093 struct uvm_object *uobj, struct vm_page *uobjpage) 2094 { 2095 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2096 struct vm_anon *anon; 2097 struct vm_page *pg; 2098 int error; 2099 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist); 2100 2101 KASSERT(amap != NULL); 2102 2103 /* 2104 * If we are going to promote the data to an anon we 2105 * allocate a blank anon here and plug it into our amap. 2106 */ 2107 error = uvmfault_promote(ufi, NULL, uobjpage, 2108 &anon, &flt->anon_spare); 2109 switch (error) { 2110 case 0: 2111 break; 2112 case ERESTART: 2113 return ERESTART; 2114 default: 2115 return error; 2116 } 2117 2118 pg = anon->an_page; 2119 2120 /* 2121 * Fill in the data. 2122 */ 2123 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 2124 2125 if (uobjpage != PGO_DONTCARE) { 2126 uvmexp.flt_prcopy++; 2127 2128 /* 2129 * promote to shared amap? make sure all sharing 2130 * procs see it 2131 */ 2132 2133 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 2134 pmap_page_protect(uobjpage, VM_PROT_NONE); 2135 /* 2136 * XXX: PAGE MIGHT BE WIRED! 2137 */ 2138 } 2139 2140 /* 2141 * dispose of uobjpage. it can't be PG_RELEASED 2142 * since we still hold the object lock. 2143 */ 2144 2145 if (uobjpage->flags & PG_WANTED) { 2146 /* still have the obj lock */ 2147 wakeup(uobjpage); 2148 } 2149 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 2150 UVM_PAGE_OWN(uobjpage, NULL); 2151 2152 UVMHIST_LOG(maphist, 2153 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx", 2154 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0); 2155 2156 } else { 2157 uvmexp.flt_przero++; 2158 2159 /* 2160 * Page is zero'd and marked dirty by 2161 * uvmfault_promote(). 2162 */ 2163 2164 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx", 2165 (uintptr_t)anon, (uintptr_t)pg, 0, 0); 2166 } 2167 2168 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg); 2169 } 2170 2171 /* 2172 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted 2173 * from the lower page. 2174 */ 2175 2176 int 2177 uvm_fault_lower_enter( 2178 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2179 struct uvm_object *uobj, 2180 struct vm_anon *anon, struct vm_page *pg) 2181 { 2182 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2183 int error; 2184 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist); 2185 2186 /* 2187 * Locked: 2188 * 2189 * maps(read), amap(if !null), uobj(if !null), 2190 * anon(if !null), pg(if anon), unlock_uobj(if !null) 2191 * 2192 * Note: pg is either the uobjpage or the new page in the new anon. 2193 */ 2194 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 2195 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 2196 KASSERT(anon == NULL || anon->an_lock == amap->am_lock); 2197 KASSERT((pg->flags & PG_BUSY) != 0); 2198 2199 /* 2200 * all resources are present. we can now map it in and free our 2201 * resources. 2202 */ 2203 2204 UVMHIST_LOG(maphist, 2205 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 2206 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr, 2207 (uintptr_t)pg, flt->promote); 2208 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || 2209 (pg->flags & PG_RDONLY) == 0); 2210 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 2211 VM_PAGE_TO_PHYS(pg), 2212 (pg->flags & PG_RDONLY) != 0 ? 2213 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot, 2214 flt->access_type | PMAP_CANFAIL | 2215 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 2216 2217 /* 2218 * No need to undo what we did; we can simply think of 2219 * this as the pmap throwing away the mapping information. 2220 * 2221 * We do, however, have to go through the ReFault path, 2222 * as the map may change while we're asleep. 2223 */ 2224 2225 /* 2226 * ensure that the page is queued in the case that 2227 * we just promoted the page. 2228 */ 2229 2230 mutex_enter(&uvm_pageqlock); 2231 uvm_pageenqueue(pg); 2232 mutex_exit(&uvm_pageqlock); 2233 2234 if (pg->flags & PG_WANTED) 2235 wakeup(pg); 2236 2237 /* 2238 * note that pg can't be PG_RELEASED since we did not drop 2239 * the object lock since the last time we checked. 2240 */ 2241 KASSERT((pg->flags & PG_RELEASED) == 0); 2242 2243 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2244 UVM_PAGE_OWN(pg, NULL); 2245 2246 uvmfault_unlockall(ufi, amap, uobj); 2247 if (!uvm_reclaimable()) { 2248 UVMHIST_LOG(maphist, 2249 "<- failed. out of VM",0,0,0,0); 2250 /* XXX instrumentation */ 2251 error = ENOMEM; 2252 return error; 2253 } 2254 /* XXX instrumentation */ 2255 uvm_wait("flt_pmfail2"); 2256 return ERESTART; 2257 } 2258 2259 uvm_fault_lower_done(ufi, flt, uobj, pg); 2260 2261 /* 2262 * note that pg can't be PG_RELEASED since we did not drop the object 2263 * lock since the last time we checked. 2264 */ 2265 KASSERT((pg->flags & PG_RELEASED) == 0); 2266 if (pg->flags & PG_WANTED) 2267 wakeup(pg); 2268 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2269 UVM_PAGE_OWN(pg, NULL); 2270 2271 pmap_update(ufi->orig_map->pmap); 2272 uvmfault_unlockall(ufi, amap, uobj); 2273 2274 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 2275 return 0; 2276 } 2277 2278 /* 2279 * uvm_fault_lower_done: queue lower center page. 2280 */ 2281 2282 void 2283 uvm_fault_lower_done( 2284 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2285 struct uvm_object *uobj, struct vm_page *pg) 2286 { 2287 bool dropswap = false; 2288 2289 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist); 2290 2291 mutex_enter(&uvm_pageqlock); 2292 if (flt->wire_paging) { 2293 uvm_pagewire(pg); 2294 if (pg->pqflags & PQ_AOBJ) { 2295 2296 /* 2297 * since the now-wired page cannot be paged out, 2298 * release its swap resources for others to use. 2299 * since an aobj page with no swap cannot be PG_CLEAN, 2300 * clear its clean flag now. 2301 */ 2302 2303 KASSERT(uobj != NULL); 2304 pg->flags &= ~(PG_CLEAN); 2305 dropswap = true; 2306 } 2307 } else { 2308 uvm_pageactivate(pg); 2309 } 2310 mutex_exit(&uvm_pageqlock); 2311 2312 if (dropswap) { 2313 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 2314 } 2315 } 2316 2317 2318 /* 2319 * uvm_fault_wire: wire down a range of virtual addresses in a map. 2320 * 2321 * => map may be read-locked by caller, but MUST NOT be write-locked. 2322 * => if map is read-locked, any operations which may cause map to 2323 * be write-locked in uvm_fault() must be taken care of by 2324 * the caller. See uvm_map_pageable(). 2325 */ 2326 2327 int 2328 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end, 2329 vm_prot_t access_type, int maxprot) 2330 { 2331 vaddr_t va; 2332 int error; 2333 2334 /* 2335 * now fault it in a page at a time. if the fault fails then we have 2336 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 2337 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 2338 */ 2339 2340 /* 2341 * XXX work around overflowing a vaddr_t. this prevents us from 2342 * wiring the last page in the address space, though. 2343 */ 2344 if (start > end) { 2345 return EFAULT; 2346 } 2347 2348 for (va = start; va < end; va += PAGE_SIZE) { 2349 error = uvm_fault_internal(map, va, access_type, 2350 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE); 2351 if (error) { 2352 if (va != start) { 2353 uvm_fault_unwire(map, start, va); 2354 } 2355 return error; 2356 } 2357 } 2358 return 0; 2359 } 2360 2361 /* 2362 * uvm_fault_unwire(): unwire range of virtual space. 2363 */ 2364 2365 void 2366 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end) 2367 { 2368 vm_map_lock_read(map); 2369 uvm_fault_unwire_locked(map, start, end); 2370 vm_map_unlock_read(map); 2371 } 2372 2373 /* 2374 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 2375 * 2376 * => map must be at least read-locked. 2377 */ 2378 2379 void 2380 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end) 2381 { 2382 struct vm_map_entry *entry, *oentry; 2383 pmap_t pmap = vm_map_pmap(map); 2384 vaddr_t va; 2385 paddr_t pa; 2386 struct vm_page *pg; 2387 2388 /* 2389 * we assume that the area we are unwiring has actually been wired 2390 * in the first place. this means that we should be able to extract 2391 * the PAs from the pmap. we also lock out the page daemon so that 2392 * we can call uvm_pageunwire. 2393 */ 2394 2395 /* 2396 * find the beginning map entry for the region. 2397 */ 2398 2399 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 2400 if (uvm_map_lookup_entry(map, start, &entry) == false) 2401 panic("uvm_fault_unwire_locked: address not in map"); 2402 2403 oentry = NULL; 2404 for (va = start; va < end; va += PAGE_SIZE) { 2405 if (pmap_extract(pmap, va, &pa) == false) 2406 continue; 2407 2408 /* 2409 * find the map entry for the current address. 2410 */ 2411 2412 KASSERT(va >= entry->start); 2413 while (va >= entry->end) { 2414 KASSERT(entry->next != &map->header && 2415 entry->next->start <= entry->end); 2416 entry = entry->next; 2417 } 2418 2419 /* 2420 * lock it. 2421 */ 2422 2423 if (entry != oentry) { 2424 if (oentry != NULL) { 2425 mutex_exit(&uvm_pageqlock); 2426 uvm_map_unlock_entry(oentry); 2427 } 2428 uvm_map_lock_entry(entry); 2429 mutex_enter(&uvm_pageqlock); 2430 oentry = entry; 2431 } 2432 2433 /* 2434 * if the entry is no longer wired, tell the pmap. 2435 */ 2436 2437 if (VM_MAPENT_ISWIRED(entry) == 0) 2438 pmap_unwire(pmap, va); 2439 2440 pg = PHYS_TO_VM_PAGE(pa); 2441 if (pg) 2442 uvm_pageunwire(pg); 2443 } 2444 2445 if (oentry != NULL) { 2446 mutex_exit(&uvm_pageqlock); 2447 uvm_map_unlock_entry(entry); 2448 } 2449 } 2450