xref: /netbsd-src/sys/uvm/uvm_fault.c (revision 6dffe8d42bd46273f674d7ab834e7be9b1af990e)
1 /*	$NetBSD: uvm_fault.c,v 1.126 2008/12/20 11:33:38 ad Exp $	*/
2 
3 /*
4  *
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35  */
36 
37 /*
38  * uvm_fault.c: fault handler
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.126 2008/12/20 11:33:38 ad Exp $");
43 
44 #include "opt_uvmhist.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53 
54 #include <uvm/uvm.h>
55 
56 /*
57  *
58  * a word on page faults:
59  *
60  * types of page faults we handle:
61  *
62  * CASE 1: upper layer faults                   CASE 2: lower layer faults
63  *
64  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
65  *    read/write1     write>1                  read/write   +-cow_write/zero
66  *         |             |                         |        |
67  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
68  * amap |  V  |       |  ----------->new|          |        | |  ^  |
69  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
70  *                                                 |        |    |
71  *      +-----+       +-----+                   +--|--+     | +--|--+
72  * uobj | d/c |       | d/c |                   |  V  |     +----|  |
73  *      +-----+       +-----+                   +-----+       +-----+
74  *
75  * d/c = don't care
76  *
77  *   case [0]: layerless fault
78  *	no amap or uobj is present.   this is an error.
79  *
80  *   case [1]: upper layer fault [anon active]
81  *     1A: [read] or [write with anon->an_ref == 1]
82  *		I/O takes place in top level anon and uobj is not touched.
83  *     1B: [write with anon->an_ref > 1]
84  *		new anon is alloc'd and data is copied off ["COW"]
85  *
86  *   case [2]: lower layer fault [uobj]
87  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88  *		I/O takes place directly in object.
89  *     2B: [write to copy_on_write] or [read on NULL uobj]
90  *		data is "promoted" from uobj to a new anon.
91  *		if uobj is null, then we zero fill.
92  *
93  * we follow the standard UVM locking protocol ordering:
94  *
95  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96  * we hold a PG_BUSY page if we unlock for I/O
97  *
98  *
99  * the code is structured as follows:
100  *
101  *     - init the "IN" params in the ufi structure
102  *   ReFault:
103  *     - do lookups [locks maps], check protection, handle needs_copy
104  *     - check for case 0 fault (error)
105  *     - establish "range" of fault
106  *     - if we have an amap lock it and extract the anons
107  *     - if sequential advice deactivate pages behind us
108  *     - at the same time check pmap for unmapped areas and anon for pages
109  *	 that we could map in (and do map it if found)
110  *     - check object for resident pages that we could map in
111  *     - if (case 2) goto Case2
112  *     - >>> handle case 1
113  *           - ensure source anon is resident in RAM
114  *           - if case 1B alloc new anon and copy from source
115  *           - map the correct page in
116  *   Case2:
117  *     - >>> handle case 2
118  *           - ensure source page is resident (if uobj)
119  *           - if case 2B alloc new anon and copy from source (could be zero
120  *		fill if uobj == NULL)
121  *           - map the correct page in
122  *     - done!
123  *
124  * note on paging:
125  *   if we have to do I/O we place a PG_BUSY page in the correct object,
126  * unlock everything, and do the I/O.   when I/O is done we must reverify
127  * the state of the world before assuming that our data structures are
128  * valid.   [because mappings could change while the map is unlocked]
129  *
130  *  alternative 1: unbusy the page in question and restart the page fault
131  *    from the top (ReFault).   this is easy but does not take advantage
132  *    of the information that we already have from our previous lookup,
133  *    although it is possible that the "hints" in the vm_map will help here.
134  *
135  * alternative 2: the system already keeps track of a "version" number of
136  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
137  *    mapping) you bump the version number up by one...]   so, we can save
138  *    the version number of the map before we release the lock and start I/O.
139  *    then when I/O is done we can relock and check the version numbers
140  *    to see if anything changed.    this might save us some over 1 because
141  *    we don't have to unbusy the page and may be less compares(?).
142  *
143  * alternative 3: put in backpointers or a way to "hold" part of a map
144  *    in place while I/O is in progress.   this could be complex to
145  *    implement (especially with structures like amap that can be referenced
146  *    by multiple map entries, and figuring out what should wait could be
147  *    complex as well...).
148  *
149  * we use alternative 2.  given that we are multi-threaded now we may want
150  * to reconsider the choice.
151  */
152 
153 /*
154  * local data structures
155  */
156 
157 struct uvm_advice {
158 	int advice;
159 	int nback;
160 	int nforw;
161 };
162 
163 /*
164  * page range array:
165  * note: index in array must match "advice" value
166  * XXX: borrowed numbers from freebsd.   do they work well for us?
167  */
168 
169 static const struct uvm_advice uvmadvice[] = {
170 	{ MADV_NORMAL, 3, 4 },
171 	{ MADV_RANDOM, 0, 0 },
172 	{ MADV_SEQUENTIAL, 8, 7},
173 };
174 
175 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
176 
177 /*
178  * private prototypes
179  */
180 
181 /*
182  * inline functions
183  */
184 
185 /*
186  * uvmfault_anonflush: try and deactivate pages in specified anons
187  *
188  * => does not have to deactivate page if it is busy
189  */
190 
191 static inline void
192 uvmfault_anonflush(struct vm_anon **anons, int n)
193 {
194 	int lcv;
195 	struct vm_page *pg;
196 
197 	for (lcv = 0 ; lcv < n ; lcv++) {
198 		if (anons[lcv] == NULL)
199 			continue;
200 		mutex_enter(&anons[lcv]->an_lock);
201 		pg = anons[lcv]->an_page;
202 		if (pg && (pg->flags & PG_BUSY) == 0) {
203 			mutex_enter(&uvm_pageqlock);
204 			if (pg->wire_count == 0) {
205 				uvm_pagedeactivate(pg);
206 			}
207 			mutex_exit(&uvm_pageqlock);
208 		}
209 		mutex_exit(&anons[lcv]->an_lock);
210 	}
211 }
212 
213 /*
214  * normal functions
215  */
216 
217 /*
218  * uvmfault_amapcopy: clear "needs_copy" in a map.
219  *
220  * => called with VM data structures unlocked (usually, see below)
221  * => we get a write lock on the maps and clear needs_copy for a VA
222  * => if we are out of RAM we sleep (waiting for more)
223  */
224 
225 static void
226 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
227 {
228 	for (;;) {
229 
230 		/*
231 		 * no mapping?  give up.
232 		 */
233 
234 		if (uvmfault_lookup(ufi, true) == false)
235 			return;
236 
237 		/*
238 		 * copy if needed.
239 		 */
240 
241 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
242 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
243 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
244 
245 		/*
246 		 * didn't work?  must be out of RAM.   unlock and sleep.
247 		 */
248 
249 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
250 			uvmfault_unlockmaps(ufi, true);
251 			uvm_wait("fltamapcopy");
252 			continue;
253 		}
254 
255 		/*
256 		 * got it!   unlock and return.
257 		 */
258 
259 		uvmfault_unlockmaps(ufi, true);
260 		return;
261 	}
262 	/*NOTREACHED*/
263 }
264 
265 /*
266  * uvmfault_anonget: get data in an anon into a non-busy, non-released
267  * page in that anon.
268  *
269  * => maps, amap, and anon locked by caller.
270  * => if we fail (result != 0) we unlock everything.
271  * => if we are successful, we return with everything still locked.
272  * => we don't move the page on the queues [gets moved later]
273  * => if we allocate a new page [we_own], it gets put on the queues.
274  *    either way, the result is that the page is on the queues at return time
275  * => for pages which are on loan from a uvm_object (and thus are not
276  *    owned by the anon): if successful, we return with the owning object
277  *    locked.   the caller must unlock this object when it unlocks everything
278  *    else.
279  */
280 
281 int
282 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
283     struct vm_anon *anon)
284 {
285 	bool we_own;	/* we own anon's page? */
286 	bool locked;	/* did we relock? */
287 	struct vm_page *pg;
288 	int error;
289 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
290 
291 	KASSERT(mutex_owned(&anon->an_lock));
292 
293 	error = 0;
294 	uvmexp.fltanget++;
295         /* bump rusage counters */
296 	if (anon->an_page)
297 		curlwp->l_ru.ru_minflt++;
298 	else
299 		curlwp->l_ru.ru_majflt++;
300 
301 	/*
302 	 * loop until we get it, or fail.
303 	 */
304 
305 	for (;;) {
306 		we_own = false;		/* true if we set PG_BUSY on a page */
307 		pg = anon->an_page;
308 
309 		/*
310 		 * if there is a resident page and it is loaned, then anon
311 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
312 		 * the real owner of the page has been identified and locked.
313 		 */
314 
315 		if (pg && pg->loan_count)
316 			pg = uvm_anon_lockloanpg(anon);
317 
318 		/*
319 		 * page there?   make sure it is not busy/released.
320 		 */
321 
322 		if (pg) {
323 
324 			/*
325 			 * at this point, if the page has a uobject [meaning
326 			 * we have it on loan], then that uobject is locked
327 			 * by us!   if the page is busy, we drop all the
328 			 * locks (including uobject) and try again.
329 			 */
330 
331 			if ((pg->flags & PG_BUSY) == 0) {
332 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
333 				return (0);
334 			}
335 			pg->flags |= PG_WANTED;
336 			uvmexp.fltpgwait++;
337 
338 			/*
339 			 * the last unlock must be an atomic unlock+wait on
340 			 * the owner of page
341 			 */
342 
343 			if (pg->uobject) {	/* owner is uobject ? */
344 				uvmfault_unlockall(ufi, amap, NULL, anon);
345 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
346 				    0,0,0);
347 				UVM_UNLOCK_AND_WAIT(pg,
348 				    &pg->uobject->vmobjlock,
349 				    false, "anonget1",0);
350 			} else {
351 				/* anon owns page */
352 				uvmfault_unlockall(ufi, amap, NULL, NULL);
353 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
354 				    0,0,0);
355 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
356 				    "anonget2",0);
357 			}
358 		} else {
359 #if defined(VMSWAP)
360 
361 			/*
362 			 * no page, we must try and bring it in.
363 			 */
364 
365 			pg = uvm_pagealloc(NULL, 0, anon, 0);
366 			if (pg == NULL) {		/* out of RAM.  */
367 				uvmfault_unlockall(ufi, amap, NULL, anon);
368 				uvmexp.fltnoram++;
369 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
370 				    0,0,0);
371 				if (!uvm_reclaimable()) {
372 					return ENOMEM;
373 				}
374 				uvm_wait("flt_noram1");
375 			} else {
376 				/* we set the PG_BUSY bit */
377 				we_own = true;
378 				uvmfault_unlockall(ufi, amap, NULL, anon);
379 
380 				/*
381 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
382 				 * page into the uvm_swap_get function with
383 				 * all data structures unlocked.  note that
384 				 * it is ok to read an_swslot here because
385 				 * we hold PG_BUSY on the page.
386 				 */
387 				uvmexp.pageins++;
388 				error = uvm_swap_get(pg, anon->an_swslot,
389 				    PGO_SYNCIO);
390 
391 				/*
392 				 * we clean up after the i/o below in the
393 				 * "we_own" case
394 				 */
395 			}
396 #else /* defined(VMSWAP) */
397 			panic("%s: no page", __func__);
398 #endif /* defined(VMSWAP) */
399 		}
400 
401 		/*
402 		 * now relock and try again
403 		 */
404 
405 		locked = uvmfault_relock(ufi);
406 		if (locked && amap != NULL) {
407 			amap_lock(amap);
408 		}
409 		if (locked || we_own)
410 			mutex_enter(&anon->an_lock);
411 
412 		/*
413 		 * if we own the page (i.e. we set PG_BUSY), then we need
414 		 * to clean up after the I/O. there are three cases to
415 		 * consider:
416 		 *   [1] page released during I/O: free anon and ReFault.
417 		 *   [2] I/O not OK.   free the page and cause the fault
418 		 *       to fail.
419 		 *   [3] I/O OK!   activate the page and sync with the
420 		 *       non-we_own case (i.e. drop anon lock if not locked).
421 		 */
422 
423 		if (we_own) {
424 #if defined(VMSWAP)
425 			if (pg->flags & PG_WANTED) {
426 				wakeup(pg);
427 			}
428 			if (error) {
429 
430 				/*
431 				 * remove the swap slot from the anon
432 				 * and mark the anon as having no real slot.
433 				 * don't free the swap slot, thus preventing
434 				 * it from being used again.
435 				 */
436 
437 				if (anon->an_swslot > 0)
438 					uvm_swap_markbad(anon->an_swslot, 1);
439 				anon->an_swslot = SWSLOT_BAD;
440 
441 				if ((pg->flags & PG_RELEASED) != 0)
442 					goto released;
443 
444 				/*
445 				 * note: page was never !PG_BUSY, so it
446 				 * can't be mapped and thus no need to
447 				 * pmap_page_protect it...
448 				 */
449 
450 				mutex_enter(&uvm_pageqlock);
451 				uvm_pagefree(pg);
452 				mutex_exit(&uvm_pageqlock);
453 
454 				if (locked)
455 					uvmfault_unlockall(ufi, amap, NULL,
456 					    anon);
457 				else
458 					mutex_exit(&anon->an_lock);
459 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 				return error;
461 			}
462 
463 			if ((pg->flags & PG_RELEASED) != 0) {
464 released:
465 				KASSERT(anon->an_ref == 0);
466 
467 				/*
468 				 * released while we unlocked amap.
469 				 */
470 
471 				if (locked)
472 					uvmfault_unlockall(ufi, amap, NULL,
473 					    NULL);
474 
475 				uvm_anon_release(anon);
476 
477 				if (error) {
478 					UVMHIST_LOG(maphist,
479 					    "<- ERROR/RELEASED", 0,0,0,0);
480 					return error;
481 				}
482 
483 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
484 				return ERESTART;
485 			}
486 
487 			/*
488 			 * we've successfully read the page, activate it.
489 			 */
490 
491 			mutex_enter(&uvm_pageqlock);
492 			uvm_pageactivate(pg);
493 			mutex_exit(&uvm_pageqlock);
494 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
495 			UVM_PAGE_OWN(pg, NULL);
496 			if (!locked)
497 				mutex_exit(&anon->an_lock);
498 #else /* defined(VMSWAP) */
499 			panic("%s: we_own", __func__);
500 #endif /* defined(VMSWAP) */
501 		}
502 
503 		/*
504 		 * we were not able to relock.   restart fault.
505 		 */
506 
507 		if (!locked) {
508 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
509 			return (ERESTART);
510 		}
511 
512 		/*
513 		 * verify no one has touched the amap and moved the anon on us.
514 		 */
515 
516 		if (ufi != NULL &&
517 		    amap_lookup(&ufi->entry->aref,
518 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
519 
520 			uvmfault_unlockall(ufi, amap, NULL, anon);
521 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
522 			return (ERESTART);
523 		}
524 
525 		/*
526 		 * try it again!
527 		 */
528 
529 		uvmexp.fltanretry++;
530 		continue;
531 	}
532 	/*NOTREACHED*/
533 }
534 
535 /*
536  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
537  *
538  *	1. allocate an anon and a page.
539  *	2. fill its contents.
540  *	3. put it into amap.
541  *
542  * => if we fail (result != 0) we unlock everything.
543  * => on success, return a new locked anon via 'nanon'.
544  *    (*nanon)->an_page will be a resident, locked, dirty page.
545  */
546 
547 static int
548 uvmfault_promote(struct uvm_faultinfo *ufi,
549     struct vm_anon *oanon,
550     struct vm_page *uobjpage,
551     struct vm_anon **nanon, /* OUT: allocated anon */
552     struct vm_anon **spare)
553 {
554 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
555 	struct uvm_object *uobj;
556 	struct vm_anon *anon;
557 	struct vm_page *pg;
558 	struct vm_page *opg;
559 	int error;
560 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
561 
562 	if (oanon) {
563 		/* anon COW */
564 		opg = oanon->an_page;
565 		KASSERT(opg != NULL);
566 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
567 	} else if (uobjpage != PGO_DONTCARE) {
568 		/* object-backed COW */
569 		opg = uobjpage;
570 	} else {
571 		/* ZFOD */
572 		opg = NULL;
573 	}
574 	if (opg != NULL) {
575 		uobj = opg->uobject;
576 	} else {
577 		uobj = NULL;
578 	}
579 
580 	KASSERT(amap != NULL);
581 	KASSERT(uobjpage != NULL);
582 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
583 	KASSERT(mutex_owned(&amap->am_l));
584 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
585 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
586 #if 0
587 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
588 #endif
589 
590 	if (*spare != NULL) {
591 		anon = *spare;
592 		*spare = NULL;
593 		mutex_enter(&anon->an_lock);
594 	} else if (ufi->map != kernel_map) {
595 		anon = uvm_analloc();
596 	} else {
597 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
598 
599 		/*
600 		 * we can't allocate anons with kernel_map locked.
601 		 */
602 
603 		uvm_page_unbusy(&uobjpage, 1);
604 		uvmfault_unlockall(ufi, amap, uobj, oanon);
605 
606 		*spare = uvm_analloc();
607 		if (*spare == NULL) {
608 			goto nomem;
609 		}
610 		mutex_exit(&(*spare)->an_lock);
611 		error = ERESTART;
612 		goto done;
613 	}
614 	if (anon) {
615 
616 		/*
617 		 * The new anon is locked.
618 		 *
619 		 * if opg == NULL, we want a zero'd, dirty page,
620 		 * so have uvm_pagealloc() do that for us.
621 		 */
622 
623 		pg = uvm_pagealloc(NULL, 0, anon,
624 		    (opg == NULL) ? UVM_PGA_ZERO : 0);
625 	} else {
626 		pg = NULL;
627 	}
628 
629 	/*
630 	 * out of memory resources?
631 	 */
632 
633 	if (pg == NULL) {
634 		/* save anon for the next try. */
635 		if (anon != NULL) {
636 			mutex_exit(&anon->an_lock);
637 			*spare = anon;
638 		}
639 
640 		/* unlock and fail ... */
641 		uvm_page_unbusy(&uobjpage, 1);
642 		uvmfault_unlockall(ufi, amap, uobj, oanon);
643 nomem:
644 		if (!uvm_reclaimable()) {
645 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
646 			uvmexp.fltnoanon++;
647 			error = ENOMEM;
648 			goto done;
649 		}
650 
651 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
652 		uvmexp.fltnoram++;
653 		uvm_wait("flt_noram5");
654 		error = ERESTART;
655 		goto done;
656 	}
657 
658 	/* copy page [pg now dirty] */
659 	if (opg) {
660 		uvm_pagecopy(opg, pg);
661 	}
662 
663 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
664 	    oanon != NULL);
665 
666 	*nanon = anon;
667 	error = 0;
668 done:
669 	return error;
670 }
671 
672 
673 /*
674  *   F A U L T   -   m a i n   e n t r y   p o i n t
675  */
676 
677 /*
678  * uvm_fault: page fault handler
679  *
680  * => called from MD code to resolve a page fault
681  * => VM data structures usually should be unlocked.   however, it is
682  *	possible to call here with the main map locked if the caller
683  *	gets a write lock, sets it recusive, and then calls us (c.f.
684  *	uvm_map_pageable).   this should be avoided because it keeps
685  *	the map locked off during I/O.
686  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
687  */
688 
689 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
690 			 ~VM_PROT_WRITE : VM_PROT_ALL)
691 
692 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
693 #define UVM_FAULT_WIRE 1
694 #define UVM_FAULT_WIREMAX 2
695 
696 int
697 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
698     vm_prot_t access_type, int fault_flag)
699 {
700 	struct uvm_faultinfo ufi;
701 	vm_prot_t enter_prot, check_prot;
702 	bool wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
703 	int npages, nback, nforw, centeridx, error, lcv, gotpages;
704 	vaddr_t startva, currva;
705 	voff_t uoff;
706 	struct vm_amap *amap;
707 	struct uvm_object *uobj;
708 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
709 	struct vm_anon *anon_spare;
710 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
711 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
712 
713 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
714 	      orig_map, vaddr, access_type, fault_flag);
715 
716 	anon = anon_spare = NULL;
717 	pg = NULL;
718 
719 	uvmexp.faults++;	/* XXX: locking? */
720 
721 	/*
722 	 * init the IN parameters in the ufi
723 	 */
724 
725 	ufi.orig_map = orig_map;
726 	ufi.orig_rvaddr = trunc_page(vaddr);
727 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
728 	wire_fault = (fault_flag > 0);
729 	if (wire_fault)
730 		narrow = true;		/* don't look for neighborhood
731 					 * pages on wire */
732 	else
733 		narrow = false;		/* normal fault */
734 
735 	/*
736 	 * "goto ReFault" means restart the page fault from ground zero.
737 	 */
738 ReFault:
739 
740 	/*
741 	 * lookup and lock the maps
742 	 */
743 
744 	if (uvmfault_lookup(&ufi, false) == false) {
745 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
746 		error = EFAULT;
747 		goto done;
748 	}
749 	/* locked: maps(read) */
750 
751 #ifdef DIAGNOSTIC
752 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
753 		printf("Page fault on non-pageable map:\n");
754 		printf("ufi.map = %p\n", ufi.map);
755 		printf("ufi.orig_map = %p\n", ufi.orig_map);
756 		printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
757 		panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
758 	}
759 #endif
760 
761 	/*
762 	 * check protection
763 	 */
764 
765 	check_prot = fault_flag == UVM_FAULT_WIREMAX ?
766 	    ufi.entry->max_protection : ufi.entry->protection;
767 	if ((check_prot & access_type) != access_type) {
768 		UVMHIST_LOG(maphist,
769 		    "<- protection failure (prot=0x%x, access=0x%x)",
770 		    ufi.entry->protection, access_type, 0, 0);
771 		uvmfault_unlockmaps(&ufi, false);
772 		error = EACCES;
773 		goto done;
774 	}
775 
776 	/*
777 	 * "enter_prot" is the protection we want to enter the page in at.
778 	 * for certain pages (e.g. copy-on-write pages) this protection can
779 	 * be more strict than ufi.entry->protection.  "wired" means either
780 	 * the entry is wired or we are fault-wiring the pg.
781 	 */
782 
783 	enter_prot = ufi.entry->protection;
784 	wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
785 	if (wired) {
786 		access_type = enter_prot; /* full access for wired */
787 		cow_now = (check_prot & VM_PROT_WRITE) != 0;
788 	} else {
789 		cow_now = (access_type & VM_PROT_WRITE) != 0;
790 	}
791 
792 	/*
793 	 * handle "needs_copy" case.   if we need to copy the amap we will
794 	 * have to drop our readlock and relock it with a write lock.  (we
795 	 * need a write lock to change anything in a map entry [e.g.
796 	 * needs_copy]).
797 	 */
798 
799 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
800 		if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
801 			KASSERT(fault_flag != UVM_FAULT_WIREMAX);
802 			/* need to clear */
803 			UVMHIST_LOG(maphist,
804 			    "  need to clear needs_copy and refault",0,0,0,0);
805 			uvmfault_unlockmaps(&ufi, false);
806 			uvmfault_amapcopy(&ufi);
807 			uvmexp.fltamcopy++;
808 			goto ReFault;
809 
810 		} else {
811 
812 			/*
813 			 * ensure that we pmap_enter page R/O since
814 			 * needs_copy is still true
815 			 */
816 
817 			enter_prot &= ~VM_PROT_WRITE;
818 		}
819 	}
820 
821 	/*
822 	 * identify the players
823 	 */
824 
825 	amap = ufi.entry->aref.ar_amap;		/* top layer */
826 	uobj = ufi.entry->object.uvm_obj;	/* bottom layer */
827 
828 	/*
829 	 * check for a case 0 fault.  if nothing backing the entry then
830 	 * error now.
831 	 */
832 
833 	if (amap == NULL && uobj == NULL) {
834 		uvmfault_unlockmaps(&ufi, false);
835 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
836 		error = EFAULT;
837 		goto done;
838 	}
839 
840 	/*
841 	 * establish range of interest based on advice from mapper
842 	 * and then clip to fit map entry.   note that we only want
843 	 * to do this the first time through the fault.   if we
844 	 * ReFault we will disable this by setting "narrow" to true.
845 	 */
846 
847 	if (narrow == false) {
848 
849 		/* wide fault (!narrow) */
850 		KASSERT(uvmadvice[ufi.entry->advice].advice ==
851 			 ufi.entry->advice);
852 		nback = MIN(uvmadvice[ufi.entry->advice].nback,
853 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
854 		startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
855 		nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
856 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
857 			     PAGE_SHIFT) - 1);
858 		/*
859 		 * note: "-1" because we don't want to count the
860 		 * faulting page as forw
861 		 */
862 		npages = nback + nforw + 1;
863 		centeridx = nback;
864 
865 		narrow = true;	/* ensure only once per-fault */
866 
867 	} else {
868 
869 		/* narrow fault! */
870 		nback = nforw = 0;
871 		startva = ufi.orig_rvaddr;
872 		npages = 1;
873 		centeridx = 0;
874 
875 	}
876 
877 	/* locked: maps(read) */
878 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
879 		    narrow, nback, nforw, startva);
880 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
881 		    amap, uobj, 0);
882 
883 	/*
884 	 * if we've got an amap, lock it and extract current anons.
885 	 */
886 
887 	if (amap) {
888 		amap_lock(amap);
889 		anons = anons_store;
890 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
891 		    anons, npages);
892 	} else {
893 		anons = NULL;	/* to be safe */
894 	}
895 
896 	/* locked: maps(read), amap(if there) */
897 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
898 
899 	/*
900 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
901 	 * now and then forget about them (for the rest of the fault).
902 	 */
903 
904 	if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
905 
906 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
907 		    0,0,0,0);
908 		/* flush back-page anons? */
909 		if (amap)
910 			uvmfault_anonflush(anons, nback);
911 
912 		/* flush object? */
913 		if (uobj) {
914 			uoff = (startva - ufi.entry->start) + ufi.entry->offset;
915 			mutex_enter(&uobj->vmobjlock);
916 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
917 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
918 		}
919 
920 		/* now forget about the backpages */
921 		if (amap)
922 			anons += nback;
923 		startva += (nback << PAGE_SHIFT);
924 		npages -= nback;
925 		nback = centeridx = 0;
926 	}
927 
928 	/* locked: maps(read), amap(if there) */
929 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
930 
931 	/*
932 	 * map in the backpages and frontpages we found in the amap in hopes
933 	 * of preventing future faults.    we also init the pages[] array as
934 	 * we go.
935 	 */
936 
937 	currva = startva;
938 	shadowed = false;
939 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
940 
941 		/*
942 		 * dont play with VAs that are already mapped
943 		 * except for center)
944 		 */
945 		if (lcv != centeridx &&
946 		    pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
947 			pages[lcv] = PGO_DONTCARE;
948 			continue;
949 		}
950 
951 		/*
952 		 * unmapped or center page.   check if any anon at this level.
953 		 */
954 		if (amap == NULL || anons[lcv] == NULL) {
955 			pages[lcv] = NULL;
956 			continue;
957 		}
958 
959 		/*
960 		 * check for present page and map if possible.   re-activate it.
961 		 */
962 
963 		pages[lcv] = PGO_DONTCARE;
964 		if (lcv == centeridx) {		/* save center for later! */
965 			shadowed = true;
966 			continue;
967 		}
968 		anon = anons[lcv];
969 		mutex_enter(&anon->an_lock);
970 		/* ignore loaned pages */
971 		if (anon->an_page && anon->an_page->loan_count == 0 &&
972 		    (anon->an_page->flags & PG_BUSY) == 0) {
973 			mutex_enter(&uvm_pageqlock);
974 			uvm_pageenqueue(anon->an_page);
975 			mutex_exit(&uvm_pageqlock);
976 			UVMHIST_LOG(maphist,
977 			    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
978 			    ufi.orig_map->pmap, currva, anon->an_page, 0);
979 			uvmexp.fltnamap++;
980 
981 			/*
982 			 * Since this isn't the page that's actually faulting,
983 			 * ignore pmap_enter() failures; it's not critical
984 			 * that we enter these right now.
985 			 */
986 
987 			(void) pmap_enter(ufi.orig_map->pmap, currva,
988 			    VM_PAGE_TO_PHYS(anon->an_page),
989 			    (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
990 			    enter_prot,
991 			    PMAP_CANFAIL |
992 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
993 		}
994 		pmap_update(ufi.orig_map->pmap);
995 		mutex_exit(&anon->an_lock);
996 	}
997 
998 	/* locked: maps(read), amap(if there) */
999 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1000 	/* (shadowed == true) if there is an anon at the faulting address */
1001 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
1002 	    (uobj && shadowed == false),0,0);
1003 
1004 	/*
1005 	 * note that if we are really short of RAM we could sleep in the above
1006 	 * call to pmap_enter with everything locked.   bad?
1007 	 *
1008 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
1009 	 * XXX case.  --thorpej
1010 	 */
1011 
1012 	/*
1013 	 * if the desired page is not shadowed by the amap and we have a
1014 	 * backing object, then we check to see if the backing object would
1015 	 * prefer to handle the fault itself (rather than letting us do it
1016 	 * with the usual pgo_get hook).  the backing object signals this by
1017 	 * providing a pgo_fault routine.
1018 	 */
1019 
1020 	if (uobj && shadowed == false && uobj->pgops->pgo_fault != NULL) {
1021 		mutex_enter(&uobj->vmobjlock);
1022 		/* locked: maps(read), amap (if there), uobj */
1023 		error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1024 		    centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1025 
1026 		/* locked: nothing, pgo_fault has unlocked everything */
1027 
1028 		if (error == ERESTART)
1029 			goto ReFault;		/* try again! */
1030 		/*
1031 		 * object fault routine responsible for pmap_update().
1032 		 */
1033 		goto done;
1034 	}
1035 
1036 	/*
1037 	 * now, if the desired page is not shadowed by the amap and we have
1038 	 * a backing object that does not have a special fault routine, then
1039 	 * we ask (with pgo_get) the object for resident pages that we care
1040 	 * about and attempt to map them in.  we do not let pgo_get block
1041 	 * (PGO_LOCKED).
1042 	 */
1043 
1044 	if (uobj && shadowed == false) {
1045 		mutex_enter(&uobj->vmobjlock);
1046 		/* locked (!shadowed): maps(read), amap (if there), uobj */
1047 		/*
1048 		 * the following call to pgo_get does _not_ change locking state
1049 		 */
1050 
1051 		uvmexp.fltlget++;
1052 		gotpages = npages;
1053 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1054 				(startva - ufi.entry->start),
1055 				pages, &gotpages, centeridx,
1056 				access_type & MASK(ufi.entry),
1057 				ufi.entry->advice, PGO_LOCKED);
1058 
1059 		/*
1060 		 * check for pages to map, if we got any
1061 		 */
1062 
1063 		uobjpage = NULL;
1064 
1065 		if (gotpages) {
1066 			currva = startva;
1067 			for (lcv = 0; lcv < npages;
1068 			     lcv++, currva += PAGE_SIZE) {
1069 				struct vm_page *curpg;
1070 				bool readonly;
1071 
1072 				curpg = pages[lcv];
1073 				if (curpg == NULL || curpg == PGO_DONTCARE) {
1074 					continue;
1075 				}
1076 				KASSERT(curpg->uobject == uobj);
1077 
1078 				/*
1079 				 * if center page is resident and not
1080 				 * PG_BUSY|PG_RELEASED then pgo_get
1081 				 * made it PG_BUSY for us and gave
1082 				 * us a handle to it.   remember this
1083 				 * page as "uobjpage." (for later use).
1084 				 */
1085 
1086 				if (lcv == centeridx) {
1087 					uobjpage = curpg;
1088 					UVMHIST_LOG(maphist, "  got uobjpage "
1089 					    "(0x%x) with locked get",
1090 					    uobjpage, 0,0,0);
1091 					continue;
1092 				}
1093 
1094 				/*
1095 				 * calling pgo_get with PGO_LOCKED returns us
1096 				 * pages which are neither busy nor released,
1097 				 * so we don't need to check for this.
1098 				 * we can just directly enter the pages.
1099 				 */
1100 
1101 				mutex_enter(&uvm_pageqlock);
1102 				uvm_pageenqueue(curpg);
1103 				mutex_exit(&uvm_pageqlock);
1104 				UVMHIST_LOG(maphist,
1105 				  "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1106 				  ufi.orig_map->pmap, currva, curpg, 0);
1107 				uvmexp.fltnomap++;
1108 
1109 				/*
1110 				 * Since this page isn't the page that's
1111 				 * actually faulting, ignore pmap_enter()
1112 				 * failures; it's not critical that we
1113 				 * enter these right now.
1114 				 */
1115 				KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1116 				KASSERT((curpg->flags & PG_RELEASED) == 0);
1117 				KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1118 				    (curpg->flags & PG_CLEAN) != 0);
1119 				readonly = (curpg->flags & PG_RDONLY)
1120 				    || (curpg->loan_count > 0)
1121 				    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1122 
1123 				(void) pmap_enter(ufi.orig_map->pmap, currva,
1124 				    VM_PAGE_TO_PHYS(curpg),
1125 				    readonly ?
1126 				    enter_prot & ~VM_PROT_WRITE :
1127 				    enter_prot & MASK(ufi.entry),
1128 				    PMAP_CANFAIL |
1129 				     (wired ? PMAP_WIRED : 0));
1130 
1131 				/*
1132 				 * NOTE: page can't be PG_WANTED or PG_RELEASED
1133 				 * because we've held the lock the whole time
1134 				 * we've had the handle.
1135 				 */
1136 				KASSERT((curpg->flags & PG_WANTED) == 0);
1137 				KASSERT((curpg->flags & PG_RELEASED) == 0);
1138 
1139 				curpg->flags &= ~(PG_BUSY);
1140 				UVM_PAGE_OWN(curpg, NULL);
1141 			}
1142 			pmap_update(ufi.orig_map->pmap);
1143 		}
1144 	} else {
1145 		uobjpage = NULL;
1146 	}
1147 
1148 	/* locked (shadowed): maps(read), amap */
1149 	/* locked (!shadowed): maps(read), amap(if there),
1150 		 uobj(if !null), uobjpage(if !null) */
1151 	if (shadowed) {
1152 		KASSERT(mutex_owned(&amap->am_l));
1153 	} else {
1154 		KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1155 		KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1156 		KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1157 	}
1158 
1159 	/*
1160 	 * note that at this point we are done with any front or back pages.
1161 	 * we are now going to focus on the center page (i.e. the one we've
1162 	 * faulted on).  if we have faulted on the top (anon) layer
1163 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1164 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1165 	 * layer [i.e. case 2] and the page was both present and available,
1166 	 * then we've got a pointer to it as "uobjpage" and we've already
1167 	 * made it BUSY.
1168 	 */
1169 
1170 	/*
1171 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1172 	 */
1173 
1174 	/*
1175 	 * redirect case 2: if we are not shadowed, go to case 2.
1176 	 */
1177 
1178 	if (shadowed == false)
1179 		goto Case2;
1180 
1181 	/* locked: maps(read), amap */
1182 
1183 	/*
1184 	 * handle case 1: fault on an anon in our amap
1185 	 */
1186 
1187 	anon = anons[centeridx];
1188 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
1189 	mutex_enter(&anon->an_lock);
1190 
1191 	/* locked: maps(read), amap, anon */
1192 	KASSERT(mutex_owned(&amap->am_l));
1193 	KASSERT(mutex_owned(&anon->an_lock));
1194 
1195 	/*
1196 	 * no matter if we have case 1A or case 1B we are going to need to
1197 	 * have the anon's memory resident.   ensure that now.
1198 	 */
1199 
1200 	/*
1201 	 * let uvmfault_anonget do the dirty work.
1202 	 * if it fails (!OK) it will unlock everything for us.
1203 	 * if it succeeds, locks are still valid and locked.
1204 	 * also, if it is OK, then the anon's page is on the queues.
1205 	 * if the page is on loan from a uvm_object, then anonget will
1206 	 * lock that object for us if it does not fail.
1207 	 */
1208 
1209 	error = uvmfault_anonget(&ufi, amap, anon);
1210 	switch (error) {
1211 	case 0:
1212 		break;
1213 
1214 	case ERESTART:
1215 		goto ReFault;
1216 
1217 	case EAGAIN:
1218 		tsleep(&lbolt, PVM, "fltagain1", 0);
1219 		goto ReFault;
1220 
1221 	default:
1222 		goto done;
1223 	}
1224 
1225 	/*
1226 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1227 	 */
1228 
1229 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1230 
1231 	/* locked: maps(read), amap, anon, uobj(if one) */
1232 	KASSERT(mutex_owned(&amap->am_l));
1233 	KASSERT(mutex_owned(&anon->an_lock));
1234 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1235 
1236 	/*
1237 	 * special handling for loaned pages
1238 	 */
1239 
1240 	if (anon->an_page->loan_count) {
1241 
1242 		if (!cow_now) {
1243 
1244 			/*
1245 			 * for read faults on loaned pages we just cap the
1246 			 * protection at read-only.
1247 			 */
1248 
1249 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1250 
1251 		} else {
1252 			/*
1253 			 * note that we can't allow writes into a loaned page!
1254 			 *
1255 			 * if we have a write fault on a loaned page in an
1256 			 * anon then we need to look at the anon's ref count.
1257 			 * if it is greater than one then we are going to do
1258 			 * a normal copy-on-write fault into a new anon (this
1259 			 * is not a problem).  however, if the reference count
1260 			 * is one (a case where we would normally allow a
1261 			 * write directly to the page) then we need to kill
1262 			 * the loan before we continue.
1263 			 */
1264 
1265 			/* >1 case is already ok */
1266 			if (anon->an_ref == 1) {
1267 
1268 				/* get new un-owned replacement page */
1269 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1270 				if (pg == NULL) {
1271 					uvmfault_unlockall(&ufi, amap, uobj,
1272 					    anon);
1273 					uvm_wait("flt_noram2");
1274 					goto ReFault;
1275 				}
1276 
1277 				/*
1278 				 * copy data, kill loan, and drop uobj lock
1279 				 * (if any)
1280 				 */
1281 				/* copy old -> new */
1282 				uvm_pagecopy(anon->an_page, pg);
1283 
1284 				/* force reload */
1285 				pmap_page_protect(anon->an_page, VM_PROT_NONE);
1286 				mutex_enter(&uvm_pageqlock);	  /* KILL loan */
1287 
1288 				anon->an_page->uanon = NULL;
1289 				/* in case we owned */
1290 				anon->an_page->pqflags &= ~PQ_ANON;
1291 
1292 				if (uobj) {
1293 					/* if we were receiver of loan */
1294 					anon->an_page->loan_count--;
1295 				} else {
1296 					/*
1297 					 * we were the lender (A->K); need
1298 					 * to remove the page from pageq's.
1299 					 */
1300 					uvm_pagedequeue(anon->an_page);
1301 				}
1302 
1303 				if (uobj) {
1304 					mutex_exit(&uobj->vmobjlock);
1305 					uobj = NULL;
1306 				}
1307 
1308 				/* install new page in anon */
1309 				anon->an_page = pg;
1310 				pg->uanon = anon;
1311 				pg->pqflags |= PQ_ANON;
1312 
1313 				uvm_pageactivate(pg);
1314 				mutex_exit(&uvm_pageqlock);
1315 
1316 				pg->flags &= ~(PG_BUSY|PG_FAKE);
1317 				UVM_PAGE_OWN(pg, NULL);
1318 
1319 				/* done! */
1320 			}     /* ref == 1 */
1321 		}       /* write fault */
1322 	}         /* loan count */
1323 
1324 	/*
1325 	 * if we are case 1B then we will need to allocate a new blank
1326 	 * anon to transfer the data into.   note that we have a lock
1327 	 * on anon, so no one can busy or release the page until we are done.
1328 	 * also note that the ref count can't drop to zero here because
1329 	 * it is > 1 and we are only dropping one ref.
1330 	 *
1331 	 * in the (hopefully very rare) case that we are out of RAM we
1332 	 * will unlock, wait for more RAM, and refault.
1333 	 *
1334 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1335 	 */
1336 
1337 	if (cow_now && anon->an_ref > 1) {
1338 
1339 		UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1340 		uvmexp.flt_acow++;
1341 		oanon = anon;		/* oanon = old, locked anon */
1342 
1343 		error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1344 		    &anon, &anon_spare);
1345 		switch (error) {
1346 		case 0:
1347 			break;
1348 		case ERESTART:
1349 			goto ReFault;
1350 		default:
1351 			goto done;
1352 		}
1353 
1354 		pg = anon->an_page;
1355 		mutex_enter(&uvm_pageqlock);
1356 		uvm_pageactivate(pg);
1357 		mutex_exit(&uvm_pageqlock);
1358 		pg->flags &= ~(PG_BUSY|PG_FAKE);
1359 		UVM_PAGE_OWN(pg, NULL);
1360 
1361 		/* deref: can not drop to zero here by defn! */
1362 		oanon->an_ref--;
1363 
1364 		/*
1365 		 * note: oanon is still locked, as is the new anon.  we
1366 		 * need to check for this later when we unlock oanon; if
1367 		 * oanon != anon, we'll have to unlock anon, too.
1368 		 */
1369 
1370 	} else {
1371 
1372 		uvmexp.flt_anon++;
1373 		oanon = anon;		/* old, locked anon is same as anon */
1374 		pg = anon->an_page;
1375 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1376 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1377 
1378 	}
1379 
1380 	/* locked: maps(read), amap, oanon, anon (if different from oanon) */
1381 	KASSERT(mutex_owned(&amap->am_l));
1382 	KASSERT(mutex_owned(&anon->an_lock));
1383 	KASSERT(mutex_owned(&oanon->an_lock));
1384 
1385 	/*
1386 	 * now map the page in.
1387 	 */
1388 
1389 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1390 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1391 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1392 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1393 	    != 0) {
1394 
1395 		/*
1396 		 * No need to undo what we did; we can simply think of
1397 		 * this as the pmap throwing away the mapping information.
1398 		 *
1399 		 * We do, however, have to go through the ReFault path,
1400 		 * as the map may change while we're asleep.
1401 		 */
1402 
1403 		if (anon != oanon)
1404 			mutex_exit(&anon->an_lock);
1405 		uvmfault_unlockall(&ufi, amap, uobj, oanon);
1406 		if (!uvm_reclaimable()) {
1407 			UVMHIST_LOG(maphist,
1408 			    "<- failed.  out of VM",0,0,0,0);
1409 			/* XXX instrumentation */
1410 			error = ENOMEM;
1411 			goto done;
1412 		}
1413 		/* XXX instrumentation */
1414 		uvm_wait("flt_pmfail1");
1415 		goto ReFault;
1416 	}
1417 
1418 	/*
1419 	 * ... update the page queues.
1420 	 */
1421 
1422 	mutex_enter(&uvm_pageqlock);
1423 	if (wire_fault) {
1424 		uvm_pagewire(pg);
1425 
1426 		/*
1427 		 * since the now-wired page cannot be paged out,
1428 		 * release its swap resources for others to use.
1429 		 * since an anon with no swap cannot be PG_CLEAN,
1430 		 * clear its clean flag now.
1431 		 */
1432 
1433 		pg->flags &= ~(PG_CLEAN);
1434 		uvm_anon_dropswap(anon);
1435 	} else {
1436 		uvm_pageactivate(pg);
1437 	}
1438 	mutex_exit(&uvm_pageqlock);
1439 
1440 	/*
1441 	 * done case 1!  finish up by unlocking everything and returning success
1442 	 */
1443 
1444 	if (anon != oanon)
1445 		mutex_exit(&anon->an_lock);
1446 	uvmfault_unlockall(&ufi, amap, uobj, oanon);
1447 	pmap_update(ufi.orig_map->pmap);
1448 	error = 0;
1449 	goto done;
1450 
1451 Case2:
1452 	/*
1453 	 * handle case 2: faulting on backing object or zero fill
1454 	 */
1455 
1456 	/*
1457 	 * locked:
1458 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1459 	 */
1460 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1461 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1462 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1463 
1464 	/*
1465 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1466 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1467 	 * have a backing object, check and see if we are going to promote
1468 	 * the data up to an anon during the fault.
1469 	 */
1470 
1471 	if (uobj == NULL) {
1472 		uobjpage = PGO_DONTCARE;
1473 		promote = true;		/* always need anon here */
1474 	} else {
1475 		KASSERT(uobjpage != PGO_DONTCARE);
1476 		promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1477 	}
1478 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
1479 	    promote, (uobj == NULL), 0,0);
1480 
1481 	/*
1482 	 * if uobjpage is not null then we do not need to do I/O to get the
1483 	 * uobjpage.
1484 	 *
1485 	 * if uobjpage is null, then we need to unlock and ask the pager to
1486 	 * get the data for us.   once we have the data, we need to reverify
1487 	 * the state the world.   we are currently not holding any resources.
1488 	 */
1489 
1490 	if (uobjpage) {
1491 		/* update rusage counters */
1492 		curlwp->l_ru.ru_minflt++;
1493 	} else {
1494 		/* update rusage counters */
1495 		curlwp->l_ru.ru_majflt++;
1496 
1497 		/* locked: maps(read), amap(if there), uobj */
1498 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1499 		/* locked: uobj */
1500 
1501 		uvmexp.fltget++;
1502 		gotpages = 1;
1503 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1504 		error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1505 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1506 		    PGO_SYNCIO);
1507 		/* locked: uobjpage(if no error) */
1508 		KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1509 
1510 		/*
1511 		 * recover from I/O
1512 		 */
1513 
1514 		if (error) {
1515 			if (error == EAGAIN) {
1516 				UVMHIST_LOG(maphist,
1517 				    "  pgo_get says TRY AGAIN!",0,0,0,0);
1518 				tsleep(&lbolt, PVM, "fltagain2", 0);
1519 				goto ReFault;
1520 			}
1521 
1522 			UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1523 			    error, 0,0,0);
1524 			goto done;
1525 		}
1526 
1527 		/* locked: uobjpage */
1528 
1529 		mutex_enter(&uvm_pageqlock);
1530 		uvm_pageactivate(uobjpage);
1531 		mutex_exit(&uvm_pageqlock);
1532 
1533 		/*
1534 		 * re-verify the state of the world by first trying to relock
1535 		 * the maps.  always relock the object.
1536 		 */
1537 
1538 		locked = uvmfault_relock(&ufi);
1539 		if (locked && amap)
1540 			amap_lock(amap);
1541 		uobj = uobjpage->uobject;
1542 		mutex_enter(&uobj->vmobjlock);
1543 
1544 		/* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1545 		/* locked(!locked): uobj, uobjpage */
1546 
1547 		/*
1548 		 * verify that the page has not be released and re-verify
1549 		 * that amap slot is still free.   if there is a problem,
1550 		 * we unlock and clean up.
1551 		 */
1552 
1553 		if ((uobjpage->flags & PG_RELEASED) != 0 ||
1554 		    (locked && amap &&
1555 		    amap_lookup(&ufi.entry->aref,
1556 		      ufi.orig_rvaddr - ufi.entry->start))) {
1557 			if (locked)
1558 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1559 			locked = false;
1560 		}
1561 
1562 		/*
1563 		 * didn't get the lock?   release the page and retry.
1564 		 */
1565 
1566 		if (locked == false) {
1567 			UVMHIST_LOG(maphist,
1568 			    "  wasn't able to relock after fault: retry",
1569 			    0,0,0,0);
1570 			if (uobjpage->flags & PG_WANTED)
1571 				wakeup(uobjpage);
1572 			if (uobjpage->flags & PG_RELEASED) {
1573 				uvmexp.fltpgrele++;
1574 				uvm_pagefree(uobjpage);
1575 				goto ReFault;
1576 			}
1577 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1578 			UVM_PAGE_OWN(uobjpage, NULL);
1579 			mutex_exit(&uobj->vmobjlock);
1580 			goto ReFault;
1581 		}
1582 
1583 		/*
1584 		 * we have the data in uobjpage which is busy and
1585 		 * not released.  we are holding object lock (so the page
1586 		 * can't be released on us).
1587 		 */
1588 
1589 		/* locked: maps(read), amap(if !null), uobj, uobjpage */
1590 	}
1591 
1592 	/*
1593 	 * locked:
1594 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1595 	 */
1596 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1597 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1598 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1599 
1600 	/*
1601 	 * notes:
1602 	 *  - at this point uobjpage can not be NULL
1603 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1604 	 *  for it above)
1605 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1606 	 */
1607 
1608 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1609 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1610 	    (uobjpage->flags & PG_CLEAN) != 0);
1611 	if (promote == false) {
1612 
1613 		/*
1614 		 * we are not promoting.   if the mapping is COW ensure that we
1615 		 * don't give more access than we should (e.g. when doing a read
1616 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1617 		 * R/O even though the entry protection could be R/W).
1618 		 *
1619 		 * set "pg" to the page we want to map in (uobjpage, usually)
1620 		 */
1621 
1622 		/* no anon in this case. */
1623 		anon = NULL;
1624 
1625 		uvmexp.flt_obj++;
1626 		if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1627 		    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1628 			enter_prot &= ~VM_PROT_WRITE;
1629 		pg = uobjpage;		/* map in the actual object */
1630 
1631 		KASSERT(uobjpage != PGO_DONTCARE);
1632 
1633 		/*
1634 		 * we are faulting directly on the page.   be careful
1635 		 * about writing to loaned pages...
1636 		 */
1637 
1638 		if (uobjpage->loan_count) {
1639 			if (!cow_now) {
1640 				/* read fault: cap the protection at readonly */
1641 				/* cap! */
1642 				enter_prot = enter_prot & ~VM_PROT_WRITE;
1643 			} else {
1644 				/* write fault: must break the loan here */
1645 
1646 				pg = uvm_loanbreak(uobjpage);
1647 				if (pg == NULL) {
1648 
1649 					/*
1650 					 * drop ownership of page, it can't
1651 					 * be released
1652 					 */
1653 
1654 					if (uobjpage->flags & PG_WANTED)
1655 						wakeup(uobjpage);
1656 					uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1657 					UVM_PAGE_OWN(uobjpage, NULL);
1658 
1659 					uvmfault_unlockall(&ufi, amap, uobj,
1660 					  NULL);
1661 					UVMHIST_LOG(maphist,
1662 					  "  out of RAM breaking loan, waiting",
1663 					  0,0,0,0);
1664 					uvmexp.fltnoram++;
1665 					uvm_wait("flt_noram4");
1666 					goto ReFault;
1667 				}
1668 				uobjpage = pg;
1669 			}
1670 		}
1671 	} else {
1672 
1673 		/*
1674 		 * if we are going to promote the data to an anon we
1675 		 * allocate a blank anon here and plug it into our amap.
1676 		 */
1677 #if DIAGNOSTIC
1678 		if (amap == NULL)
1679 			panic("uvm_fault: want to promote data, but no anon");
1680 #endif
1681 		error = uvmfault_promote(&ufi, NULL, uobjpage,
1682 		    &anon, &anon_spare);
1683 		switch (error) {
1684 		case 0:
1685 			break;
1686 		case ERESTART:
1687 			goto ReFault;
1688 		default:
1689 			goto done;
1690 		}
1691 
1692 		pg = anon->an_page;
1693 
1694 		/*
1695 		 * fill in the data
1696 		 */
1697 
1698 		if (uobjpage != PGO_DONTCARE) {
1699 			uvmexp.flt_prcopy++;
1700 
1701 			/*
1702 			 * promote to shared amap?  make sure all sharing
1703 			 * procs see it
1704 			 */
1705 
1706 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1707 				pmap_page_protect(uobjpage, VM_PROT_NONE);
1708 				/*
1709 				 * XXX: PAGE MIGHT BE WIRED!
1710 				 */
1711 			}
1712 
1713 			/*
1714 			 * dispose of uobjpage.  it can't be PG_RELEASED
1715 			 * since we still hold the object lock.
1716 			 * drop handle to uobj as well.
1717 			 */
1718 
1719 			if (uobjpage->flags & PG_WANTED)
1720 				/* still have the obj lock */
1721 				wakeup(uobjpage);
1722 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1723 			UVM_PAGE_OWN(uobjpage, NULL);
1724 			mutex_exit(&uobj->vmobjlock);
1725 			uobj = NULL;
1726 
1727 			UVMHIST_LOG(maphist,
1728 			    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1729 			    uobjpage, anon, pg, 0);
1730 
1731 		} else {
1732 			uvmexp.flt_przero++;
1733 
1734 			/*
1735 			 * Page is zero'd and marked dirty by
1736 			 * uvmfault_promote().
1737 			 */
1738 
1739 			UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
1740 			    anon, pg, 0, 0);
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * locked:
1746 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1747 	 *   anon(if !null), pg(if anon)
1748 	 *
1749 	 * note: pg is either the uobjpage or the new page in the new anon
1750 	 */
1751 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1752 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1753 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1754 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1755 	KASSERT((pg->flags & PG_BUSY) != 0);
1756 
1757 	/*
1758 	 * all resources are present.   we can now map it in and free our
1759 	 * resources.
1760 	 */
1761 
1762 	UVMHIST_LOG(maphist,
1763 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1764 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1765 	KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1766 		(pg->flags & PG_RDONLY) == 0);
1767 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1768 	    pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1769 	    access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1770 
1771 		/*
1772 		 * No need to undo what we did; we can simply think of
1773 		 * this as the pmap throwing away the mapping information.
1774 		 *
1775 		 * We do, however, have to go through the ReFault path,
1776 		 * as the map may change while we're asleep.
1777 		 */
1778 
1779 		if (pg->flags & PG_WANTED)
1780 			wakeup(pg);
1781 
1782 		/*
1783 		 * note that pg can't be PG_RELEASED since we did not drop
1784 		 * the object lock since the last time we checked.
1785 		 */
1786 		KASSERT((pg->flags & PG_RELEASED) == 0);
1787 
1788 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1789 		UVM_PAGE_OWN(pg, NULL);
1790 		uvmfault_unlockall(&ufi, amap, uobj, anon);
1791 		if (!uvm_reclaimable()) {
1792 			UVMHIST_LOG(maphist,
1793 			    "<- failed.  out of VM",0,0,0,0);
1794 			/* XXX instrumentation */
1795 			error = ENOMEM;
1796 			goto done;
1797 		}
1798 		/* XXX instrumentation */
1799 		uvm_wait("flt_pmfail2");
1800 		goto ReFault;
1801 	}
1802 
1803 	mutex_enter(&uvm_pageqlock);
1804 	if (wire_fault) {
1805 		uvm_pagewire(pg);
1806 		if (pg->pqflags & PQ_AOBJ) {
1807 
1808 			/*
1809 			 * since the now-wired page cannot be paged out,
1810 			 * release its swap resources for others to use.
1811 			 * since an aobj page with no swap cannot be PG_CLEAN,
1812 			 * clear its clean flag now.
1813 			 */
1814 
1815 			KASSERT(uobj != NULL);
1816 			pg->flags &= ~(PG_CLEAN);
1817 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1818 		}
1819 	} else {
1820 		uvm_pageactivate(pg);
1821 	}
1822 	mutex_exit(&uvm_pageqlock);
1823 	if (pg->flags & PG_WANTED)
1824 		wakeup(pg);
1825 
1826 	/*
1827 	 * note that pg can't be PG_RELEASED since we did not drop the object
1828 	 * lock since the last time we checked.
1829 	 */
1830 	KASSERT((pg->flags & PG_RELEASED) == 0);
1831 
1832 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1833 	UVM_PAGE_OWN(pg, NULL);
1834 	uvmfault_unlockall(&ufi, amap, uobj, anon);
1835 	pmap_update(ufi.orig_map->pmap);
1836 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1837 	error = 0;
1838 done:
1839 	if (anon_spare != NULL) {
1840 		anon_spare->an_ref--;
1841 		uvm_anfree(anon_spare);
1842 	}
1843 	return error;
1844 }
1845 
1846 
1847 /*
1848  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1849  *
1850  * => map may be read-locked by caller, but MUST NOT be write-locked.
1851  * => if map is read-locked, any operations which may cause map to
1852  *	be write-locked in uvm_fault() must be taken care of by
1853  *	the caller.  See uvm_map_pageable().
1854  */
1855 
1856 int
1857 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1858     vm_prot_t access_type, int wiremax)
1859 {
1860 	vaddr_t va;
1861 	int error;
1862 
1863 	/*
1864 	 * now fault it in a page at a time.   if the fault fails then we have
1865 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
1866 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1867 	 */
1868 
1869 	/*
1870 	 * XXX work around overflowing a vaddr_t.  this prevents us from
1871 	 * wiring the last page in the address space, though.
1872 	 */
1873 	if (start > end) {
1874 		return EFAULT;
1875 	}
1876 
1877 	for (va = start ; va < end ; va += PAGE_SIZE) {
1878 		error = uvm_fault_internal(map, va, access_type,
1879 				wiremax ? UVM_FAULT_WIREMAX : UVM_FAULT_WIRE);
1880 		if (error) {
1881 			if (va != start) {
1882 				uvm_fault_unwire(map, start, va);
1883 			}
1884 			return error;
1885 		}
1886 	}
1887 	return 0;
1888 }
1889 
1890 /*
1891  * uvm_fault_unwire(): unwire range of virtual space.
1892  */
1893 
1894 void
1895 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1896 {
1897 	vm_map_lock_read(map);
1898 	uvm_fault_unwire_locked(map, start, end);
1899 	vm_map_unlock_read(map);
1900 }
1901 
1902 /*
1903  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1904  *
1905  * => map must be at least read-locked.
1906  */
1907 
1908 void
1909 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1910 {
1911 	struct vm_map_entry *entry;
1912 	pmap_t pmap = vm_map_pmap(map);
1913 	vaddr_t va;
1914 	paddr_t pa;
1915 	struct vm_page *pg;
1916 
1917 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1918 
1919 	/*
1920 	 * we assume that the area we are unwiring has actually been wired
1921 	 * in the first place.   this means that we should be able to extract
1922 	 * the PAs from the pmap.   we also lock out the page daemon so that
1923 	 * we can call uvm_pageunwire.
1924 	 */
1925 
1926 	mutex_enter(&uvm_pageqlock);
1927 
1928 	/*
1929 	 * find the beginning map entry for the region.
1930 	 */
1931 
1932 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1933 	if (uvm_map_lookup_entry(map, start, &entry) == false)
1934 		panic("uvm_fault_unwire_locked: address not in map");
1935 
1936 	for (va = start; va < end; va += PAGE_SIZE) {
1937 		if (pmap_extract(pmap, va, &pa) == false)
1938 			continue;
1939 
1940 		/*
1941 		 * find the map entry for the current address.
1942 		 */
1943 
1944 		KASSERT(va >= entry->start);
1945 		while (va >= entry->end) {
1946 			KASSERT(entry->next != &map->header &&
1947 				entry->next->start <= entry->end);
1948 			entry = entry->next;
1949 		}
1950 
1951 		/*
1952 		 * if the entry is no longer wired, tell the pmap.
1953 		 */
1954 
1955 		if (VM_MAPENT_ISWIRED(entry) == 0)
1956 			pmap_unwire(pmap, va);
1957 
1958 		pg = PHYS_TO_VM_PAGE(pa);
1959 		if (pg)
1960 			uvm_pageunwire(pg);
1961 	}
1962 
1963 	mutex_exit(&uvm_pageqlock);
1964 }
1965