xref: /netbsd-src/sys/uvm/uvm_fault.c (revision 62a8debe1dc62962e18a1c918def78666141273b)
1 /*	$NetBSD: uvm_fault.c,v 1.173 2010/02/24 15:58:26 uebayasi Exp $	*/
2 
3 /*
4  *
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35  */
36 
37 /*
38  * uvm_fault.c: fault handler
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.173 2010/02/24 15:58:26 uebayasi Exp $");
43 
44 #include "opt_uvmhist.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 
53 #include <uvm/uvm.h>
54 
55 /*
56  *
57  * a word on page faults:
58  *
59  * types of page faults we handle:
60  *
61  * CASE 1: upper layer faults                   CASE 2: lower layer faults
62  *
63  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
64  *    read/write1     write>1                  read/write   +-cow_write/zero
65  *         |             |                         |        |
66  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
67  * amap |  V  |       |  ---------> new |          |        | |  ^  |
68  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
69  *                                                 |        |    |
70  *      +-----+       +-----+                   +--|--+     | +--|--+
71  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
72  *      +-----+       +-----+                   +-----+       +-----+
73  *
74  * d/c = don't care
75  *
76  *   case [0]: layerless fault
77  *	no amap or uobj is present.   this is an error.
78  *
79  *   case [1]: upper layer fault [anon active]
80  *     1A: [read] or [write with anon->an_ref == 1]
81  *		I/O takes place in upper level anon and uobj is not touched.
82  *     1B: [write with anon->an_ref > 1]
83  *		new anon is alloc'd and data is copied off ["COW"]
84  *
85  *   case [2]: lower layer fault [uobj]
86  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87  *		I/O takes place directly in object.
88  *     2B: [write to copy_on_write] or [read on NULL uobj]
89  *		data is "promoted" from uobj to a new anon.
90  *		if uobj is null, then we zero fill.
91  *
92  * we follow the standard UVM locking protocol ordering:
93  *
94  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95  * we hold a PG_BUSY page if we unlock for I/O
96  *
97  *
98  * the code is structured as follows:
99  *
100  *     - init the "IN" params in the ufi structure
101  *   ReFault:
102  *     - do lookups [locks maps], check protection, handle needs_copy
103  *     - check for case 0 fault (error)
104  *     - establish "range" of fault
105  *     - if we have an amap lock it and extract the anons
106  *     - if sequential advice deactivate pages behind us
107  *     - at the same time check pmap for unmapped areas and anon for pages
108  *	 that we could map in (and do map it if found)
109  *     - check object for resident pages that we could map in
110  *     - if (case 2) goto Case2
111  *     - >>> handle case 1
112  *           - ensure source anon is resident in RAM
113  *           - if case 1B alloc new anon and copy from source
114  *           - map the correct page in
115  *   Case2:
116  *     - >>> handle case 2
117  *           - ensure source page is resident (if uobj)
118  *           - if case 2B alloc new anon and copy from source (could be zero
119  *		fill if uobj == NULL)
120  *           - map the correct page in
121  *     - done!
122  *
123  * note on paging:
124  *   if we have to do I/O we place a PG_BUSY page in the correct object,
125  * unlock everything, and do the I/O.   when I/O is done we must reverify
126  * the state of the world before assuming that our data structures are
127  * valid.   [because mappings could change while the map is unlocked]
128  *
129  *  alternative 1: unbusy the page in question and restart the page fault
130  *    from the top (ReFault).   this is easy but does not take advantage
131  *    of the information that we already have from our previous lookup,
132  *    although it is possible that the "hints" in the vm_map will help here.
133  *
134  * alternative 2: the system already keeps track of a "version" number of
135  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
136  *    mapping) you bump the version number up by one...]   so, we can save
137  *    the version number of the map before we release the lock and start I/O.
138  *    then when I/O is done we can relock and check the version numbers
139  *    to see if anything changed.    this might save us some over 1 because
140  *    we don't have to unbusy the page and may be less compares(?).
141  *
142  * alternative 3: put in backpointers or a way to "hold" part of a map
143  *    in place while I/O is in progress.   this could be complex to
144  *    implement (especially with structures like amap that can be referenced
145  *    by multiple map entries, and figuring out what should wait could be
146  *    complex as well...).
147  *
148  * we use alternative 2.  given that we are multi-threaded now we may want
149  * to reconsider the choice.
150  */
151 
152 /*
153  * local data structures
154  */
155 
156 struct uvm_advice {
157 	int advice;
158 	int nback;
159 	int nforw;
160 };
161 
162 /*
163  * page range array:
164  * note: index in array must match "advice" value
165  * XXX: borrowed numbers from freebsd.   do they work well for us?
166  */
167 
168 static const struct uvm_advice uvmadvice[] = {
169 	{ MADV_NORMAL, 3, 4 },
170 	{ MADV_RANDOM, 0, 0 },
171 	{ MADV_SEQUENTIAL, 8, 7},
172 };
173 
174 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
175 
176 /*
177  * private prototypes
178  */
179 
180 /*
181  * inline functions
182  */
183 
184 /*
185  * uvmfault_anonflush: try and deactivate pages in specified anons
186  *
187  * => does not have to deactivate page if it is busy
188  */
189 
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 	int lcv;
194 	struct vm_page *pg;
195 
196 	for (lcv = 0; lcv < n; lcv++) {
197 		if (anons[lcv] == NULL)
198 			continue;
199 		mutex_enter(&anons[lcv]->an_lock);
200 		pg = anons[lcv]->an_page;
201 		if (pg && (pg->flags & PG_BUSY) == 0) {
202 			mutex_enter(&uvm_pageqlock);
203 			if (pg->wire_count == 0) {
204 				uvm_pagedeactivate(pg);
205 			}
206 			mutex_exit(&uvm_pageqlock);
207 		}
208 		mutex_exit(&anons[lcv]->an_lock);
209 	}
210 }
211 
212 /*
213  * normal functions
214  */
215 
216 /*
217  * uvmfault_amapcopy: clear "needs_copy" in a map.
218  *
219  * => called with VM data structures unlocked (usually, see below)
220  * => we get a write lock on the maps and clear needs_copy for a VA
221  * => if we are out of RAM we sleep (waiting for more)
222  */
223 
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 	for (;;) {
228 
229 		/*
230 		 * no mapping?  give up.
231 		 */
232 
233 		if (uvmfault_lookup(ufi, true) == false)
234 			return;
235 
236 		/*
237 		 * copy if needed.
238 		 */
239 
240 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243 
244 		/*
245 		 * didn't work?  must be out of RAM.   unlock and sleep.
246 		 */
247 
248 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 			uvmfault_unlockmaps(ufi, true);
250 			uvm_wait("fltamapcopy");
251 			continue;
252 		}
253 
254 		/*
255 		 * got it!   unlock and return.
256 		 */
257 
258 		uvmfault_unlockmaps(ufi, true);
259 		return;
260 	}
261 	/*NOTREACHED*/
262 }
263 
264 /*
265  * uvmfault_anonget: get data in an anon into a non-busy, non-released
266  * page in that anon.
267  *
268  * => maps, amap, and anon locked by caller.
269  * => if we fail (result != 0) we unlock everything.
270  * => if we are successful, we return with everything still locked.
271  * => we don't move the page on the queues [gets moved later]
272  * => if we allocate a new page [we_own], it gets put on the queues.
273  *    either way, the result is that the page is on the queues at return time
274  * => for pages which are on loan from a uvm_object (and thus are not
275  *    owned by the anon): if successful, we return with the owning object
276  *    locked.   the caller must unlock this object when it unlocks everything
277  *    else.
278  */
279 
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282     struct vm_anon *anon)
283 {
284 	bool we_own;	/* we own anon's page? */
285 	bool locked;	/* did we relock? */
286 	struct vm_page *pg;
287 	int error;
288 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289 
290 	KASSERT(mutex_owned(&anon->an_lock));
291 
292 	error = 0;
293 	uvmexp.fltanget++;
294         /* bump rusage counters */
295 	if (anon->an_page)
296 		curlwp->l_ru.ru_minflt++;
297 	else
298 		curlwp->l_ru.ru_majflt++;
299 
300 	/*
301 	 * loop until we get it, or fail.
302 	 */
303 
304 	for (;;) {
305 		we_own = false;		/* true if we set PG_BUSY on a page */
306 		pg = anon->an_page;
307 
308 		/*
309 		 * if there is a resident page and it is loaned, then anon
310 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
311 		 * the real owner of the page has been identified and locked.
312 		 */
313 
314 		if (pg && pg->loan_count)
315 			pg = uvm_anon_lockloanpg(anon);
316 
317 		/*
318 		 * page there?   make sure it is not busy/released.
319 		 */
320 
321 		if (pg) {
322 
323 			/*
324 			 * at this point, if the page has a uobject [meaning
325 			 * we have it on loan], then that uobject is locked
326 			 * by us!   if the page is busy, we drop all the
327 			 * locks (including uobject) and try again.
328 			 */
329 
330 			if ((pg->flags & PG_BUSY) == 0) {
331 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 				return (0);
333 			}
334 			pg->flags |= PG_WANTED;
335 			uvmexp.fltpgwait++;
336 
337 			/*
338 			 * the last unlock must be an atomic unlock+wait on
339 			 * the owner of page
340 			 */
341 
342 			if (pg->uobject) {	/* owner is uobject ? */
343 				uvmfault_unlockall(ufi, amap, NULL, anon);
344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 				    0,0,0);
346 				UVM_UNLOCK_AND_WAIT(pg,
347 				    &pg->uobject->vmobjlock,
348 				    false, "anonget1",0);
349 			} else {
350 				/* anon owns page */
351 				uvmfault_unlockall(ufi, amap, NULL, NULL);
352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 				    0,0,0);
354 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 				    "anonget2",0);
356 			}
357 		} else {
358 #if defined(VMSWAP)
359 
360 			/*
361 			 * no page, we must try and bring it in.
362 			 */
363 
364 			pg = uvm_pagealloc(NULL, 0, anon, 0);
365 			if (pg == NULL) {		/* out of RAM.  */
366 				uvmfault_unlockall(ufi, amap, NULL, anon);
367 				uvmexp.fltnoram++;
368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
369 				    0,0,0);
370 				if (!uvm_reclaimable()) {
371 					return ENOMEM;
372 				}
373 				uvm_wait("flt_noram1");
374 			} else {
375 				/* we set the PG_BUSY bit */
376 				we_own = true;
377 				uvmfault_unlockall(ufi, amap, NULL, anon);
378 
379 				/*
380 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 				 * page into the uvm_swap_get function with
382 				 * all data structures unlocked.  note that
383 				 * it is ok to read an_swslot here because
384 				 * we hold PG_BUSY on the page.
385 				 */
386 				uvmexp.pageins++;
387 				error = uvm_swap_get(pg, anon->an_swslot,
388 				    PGO_SYNCIO);
389 
390 				/*
391 				 * we clean up after the i/o below in the
392 				 * "we_own" case
393 				 */
394 			}
395 #else /* defined(VMSWAP) */
396 			panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 		}
399 
400 		/*
401 		 * now relock and try again
402 		 */
403 
404 		locked = uvmfault_relock(ufi);
405 		if (locked && amap != NULL) {
406 			amap_lock(amap);
407 		}
408 		if (locked || we_own)
409 			mutex_enter(&anon->an_lock);
410 
411 		/*
412 		 * if we own the page (i.e. we set PG_BUSY), then we need
413 		 * to clean up after the I/O. there are three cases to
414 		 * consider:
415 		 *   [1] page released during I/O: free anon and ReFault.
416 		 *   [2] I/O not OK.   free the page and cause the fault
417 		 *       to fail.
418 		 *   [3] I/O OK!   activate the page and sync with the
419 		 *       non-we_own case (i.e. drop anon lock if not locked).
420 		 */
421 
422 		if (we_own) {
423 #if defined(VMSWAP)
424 			if (pg->flags & PG_WANTED) {
425 				wakeup(pg);
426 			}
427 			if (error) {
428 
429 				/*
430 				 * remove the swap slot from the anon
431 				 * and mark the anon as having no real slot.
432 				 * don't free the swap slot, thus preventing
433 				 * it from being used again.
434 				 */
435 
436 				if (anon->an_swslot > 0)
437 					uvm_swap_markbad(anon->an_swslot, 1);
438 				anon->an_swslot = SWSLOT_BAD;
439 
440 				if ((pg->flags & PG_RELEASED) != 0)
441 					goto released;
442 
443 				/*
444 				 * note: page was never !PG_BUSY, so it
445 				 * can't be mapped and thus no need to
446 				 * pmap_page_protect it...
447 				 */
448 
449 				mutex_enter(&uvm_pageqlock);
450 				uvm_pagefree(pg);
451 				mutex_exit(&uvm_pageqlock);
452 
453 				if (locked)
454 					uvmfault_unlockall(ufi, amap, NULL,
455 					    anon);
456 				else
457 					mutex_exit(&anon->an_lock);
458 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 				return error;
460 			}
461 
462 			if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 				KASSERT(anon->an_ref == 0);
465 
466 				/*
467 				 * released while we unlocked amap.
468 				 */
469 
470 				if (locked)
471 					uvmfault_unlockall(ufi, amap, NULL,
472 					    NULL);
473 
474 				uvm_anon_release(anon);
475 
476 				if (error) {
477 					UVMHIST_LOG(maphist,
478 					    "<- ERROR/RELEASED", 0,0,0,0);
479 					return error;
480 				}
481 
482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 				return ERESTART;
484 			}
485 
486 			/*
487 			 * we've successfully read the page, activate it.
488 			 */
489 
490 			mutex_enter(&uvm_pageqlock);
491 			uvm_pageactivate(pg);
492 			mutex_exit(&uvm_pageqlock);
493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 			UVM_PAGE_OWN(pg, NULL);
495 			if (!locked)
496 				mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 			panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 		}
501 
502 		/*
503 		 * we were not able to relock.   restart fault.
504 		 */
505 
506 		if (!locked) {
507 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 			return (ERESTART);
509 		}
510 
511 		/*
512 		 * verify no one has touched the amap and moved the anon on us.
513 		 */
514 
515 		if (ufi != NULL &&
516 		    amap_lookup(&ufi->entry->aref,
517 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
518 
519 			uvmfault_unlockall(ufi, amap, NULL, anon);
520 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 			return (ERESTART);
522 		}
523 
524 		/*
525 		 * try it again!
526 		 */
527 
528 		uvmexp.fltanretry++;
529 		continue;
530 	}
531 	/*NOTREACHED*/
532 }
533 
534 /*
535  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
536  *
537  *	1. allocate an anon and a page.
538  *	2. fill its contents.
539  *	3. put it into amap.
540  *
541  * => if we fail (result != 0) we unlock everything.
542  * => on success, return a new locked anon via 'nanon'.
543  *    (*nanon)->an_page will be a resident, locked, dirty page.
544  */
545 
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548     struct vm_anon *oanon,
549     struct vm_page *uobjpage,
550     struct vm_anon **nanon, /* OUT: allocated anon */
551     struct vm_anon **spare)
552 {
553 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 	struct uvm_object *uobj;
555 	struct vm_anon *anon;
556 	struct vm_page *pg;
557 	struct vm_page *opg;
558 	int error;
559 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560 
561 	if (oanon) {
562 		/* anon COW */
563 		opg = oanon->an_page;
564 		KASSERT(opg != NULL);
565 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 	} else if (uobjpage != PGO_DONTCARE) {
567 		/* object-backed COW */
568 		opg = uobjpage;
569 	} else {
570 		/* ZFOD */
571 		opg = NULL;
572 	}
573 	if (opg != NULL) {
574 		uobj = opg->uobject;
575 	} else {
576 		uobj = NULL;
577 	}
578 
579 	KASSERT(amap != NULL);
580 	KASSERT(uobjpage != NULL);
581 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 	KASSERT(mutex_owned(&amap->am_l));
583 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588 
589 	if (*spare != NULL) {
590 		anon = *spare;
591 		*spare = NULL;
592 		mutex_enter(&anon->an_lock);
593 	} else if (ufi->map != kernel_map) {
594 		anon = uvm_analloc();
595 	} else {
596 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597 
598 		/*
599 		 * we can't allocate anons with kernel_map locked.
600 		 */
601 
602 		uvm_page_unbusy(&uobjpage, 1);
603 		uvmfault_unlockall(ufi, amap, uobj, oanon);
604 
605 		*spare = uvm_analloc();
606 		if (*spare == NULL) {
607 			goto nomem;
608 		}
609 		mutex_exit(&(*spare)->an_lock);
610 		error = ERESTART;
611 		goto done;
612 	}
613 	if (anon) {
614 
615 		/*
616 		 * The new anon is locked.
617 		 *
618 		 * if opg == NULL, we want a zero'd, dirty page,
619 		 * so have uvm_pagealloc() do that for us.
620 		 */
621 
622 		pg = uvm_pagealloc(NULL, 0, anon,
623 		    (opg == NULL) ? UVM_PGA_ZERO : 0);
624 	} else {
625 		pg = NULL;
626 	}
627 
628 	/*
629 	 * out of memory resources?
630 	 */
631 
632 	if (pg == NULL) {
633 		/* save anon for the next try. */
634 		if (anon != NULL) {
635 			mutex_exit(&anon->an_lock);
636 			*spare = anon;
637 		}
638 
639 		/* unlock and fail ... */
640 		uvm_page_unbusy(&uobjpage, 1);
641 		uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 		if (!uvm_reclaimable()) {
644 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 			uvmexp.fltnoanon++;
646 			error = ENOMEM;
647 			goto done;
648 		}
649 
650 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 		uvmexp.fltnoram++;
652 		uvm_wait("flt_noram5");
653 		error = ERESTART;
654 		goto done;
655 	}
656 
657 	/* copy page [pg now dirty] */
658 	if (opg) {
659 		uvm_pagecopy(opg, pg);
660 	}
661 
662 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 	    oanon != NULL);
664 
665 	*nanon = anon;
666 	error = 0;
667 done:
668 	return error;
669 }
670 
671 
672 /*
673  *   F A U L T   -   m a i n   e n t r y   p o i n t
674  */
675 
676 /*
677  * uvm_fault: page fault handler
678  *
679  * => called from MD code to resolve a page fault
680  * => VM data structures usually should be unlocked.   however, it is
681  *	possible to call here with the main map locked if the caller
682  *	gets a write lock, sets it recusive, and then calls us (c.f.
683  *	uvm_map_pageable).   this should be avoided because it keeps
684  *	the map locked off during I/O.
685  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686  */
687 
688 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
689 			 ~VM_PROT_WRITE : VM_PROT_ALL)
690 
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE		(1 << 0)
693 #define UVM_FAULT_MAXPROT	(1 << 1)
694 
695 struct uvm_faultctx {
696 	vm_prot_t access_type;
697 	vm_prot_t enter_prot;
698 	vaddr_t startva;
699 	int npages;
700 	int centeridx;
701 	struct vm_anon *anon_spare;
702 	bool wire_mapping;
703 	bool narrow;
704 	bool wire_paging;
705 	bool maxprot;
706 	bool cow_now;
707 	bool promote;
708 };
709 
710 static inline int	uvm_fault_check(
711 			    struct uvm_faultinfo *, struct uvm_faultctx *,
712 			    struct vm_anon ***, struct vm_page ***);
713 
714 static int		uvm_fault_upper(
715 			    struct uvm_faultinfo *, struct uvm_faultctx *,
716 			    struct vm_anon **);
717 static inline int	uvm_fault_upper_lookup(
718 			    struct uvm_faultinfo *, struct uvm_faultctx *,
719 			    struct vm_anon **, struct vm_page **);
720 static inline void	uvm_fault_upper_neighbor(
721 			    struct uvm_faultinfo *, struct uvm_faultctx *,
722 			    vaddr_t, struct vm_page *, bool);
723 static inline int	uvm_fault_upper_loan(
724 			    struct uvm_faultinfo *, struct uvm_faultctx *,
725 			    struct vm_anon *, struct uvm_object **);
726 static inline int	uvm_fault_upper_promote(
727 			    struct uvm_faultinfo *, struct uvm_faultctx *,
728 			    struct uvm_object *, struct vm_anon *);
729 static inline int	uvm_fault_upper_direct(
730 			    struct uvm_faultinfo *, struct uvm_faultctx *,
731 			    struct uvm_object *, struct vm_anon *);
732 static int		uvm_fault_upper_enter(
733 			    struct uvm_faultinfo *, struct uvm_faultctx *,
734 			    struct uvm_object *, struct vm_anon *,
735 			    struct vm_page *, struct vm_anon *);
736 static inline void	uvm_fault_upper_done(
737 			    struct uvm_faultinfo *, struct uvm_faultctx *,
738 			    struct uvm_object *, struct vm_anon *,
739 			    struct vm_page *);
740 
741 static int		uvm_fault_lower(
742 			    struct uvm_faultinfo *, struct uvm_faultctx *,
743 			    struct vm_page **);
744 static inline void	uvm_fault_lower_lookup(
745 			    struct uvm_faultinfo *, struct uvm_faultctx *,
746 			    struct vm_page **);
747 static inline void	uvm_fault_lower_neighbor(
748 			    struct uvm_faultinfo *, struct uvm_faultctx *,
749 			    vaddr_t, struct vm_page *, bool);
750 static inline int	uvm_fault_lower_io(
751 			    struct uvm_faultinfo *, struct uvm_faultctx *,
752 			    struct uvm_object **, struct vm_page **);
753 static inline int	uvm_fault_lower_direct(
754 			    struct uvm_faultinfo *, struct uvm_faultctx *,
755 			    struct uvm_object *, struct vm_page *);
756 static inline int	uvm_fault_lower_direct_loan(
757 			    struct uvm_faultinfo *, struct uvm_faultctx *,
758 			    struct uvm_object *, struct vm_page **,
759 			    struct vm_page **);
760 static inline int	uvm_fault_lower_promote(
761 			    struct uvm_faultinfo *, struct uvm_faultctx *,
762 			    struct uvm_object *, struct vm_page *);
763 static int		uvm_fault_lower_enter(
764 			    struct uvm_faultinfo *, struct uvm_faultctx *,
765 			    struct uvm_object *,
766 			    struct vm_anon *, struct vm_page *,
767 			    struct vm_page *);
768 static inline void	uvm_fault_lower_done(
769 			    struct uvm_faultinfo *, struct uvm_faultctx *,
770 			    struct uvm_object *, struct vm_anon *,
771 			    struct vm_page *);
772 
773 int
774 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
775     vm_prot_t access_type, int fault_flag)
776 {
777 	struct uvm_faultinfo ufi;
778 	struct uvm_faultctx flt = {
779 		.access_type = access_type,
780 
781 		/* don't look for neighborhood * pages on "wire" fault */
782 		.narrow = (fault_flag & UVM_FAULT_WIRE) != 0,
783 
784 		/* "wire" fault causes wiring of both mapping and paging */
785 		.wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0,
786 		.wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0,
787 
788 		.maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0,
789 	};
790 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
791 	struct vm_page *pages_store[UVM_MAXRANGE], **pages;
792 	int error;
793 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
794 
795 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
796 	      orig_map, vaddr, access_type, fault_flag);
797 
798 	uvmexp.faults++;	/* XXX: locking? */
799 
800 	/*
801 	 * init the IN parameters in the ufi
802 	 */
803 
804 	ufi.orig_map = orig_map;
805 	ufi.orig_rvaddr = trunc_page(vaddr);
806 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
807 
808 	error = ERESTART;
809 	while (error == ERESTART) {
810 		anons = anons_store;
811 		pages = pages_store;
812 
813 		error = uvm_fault_check(&ufi, &flt, &anons, &pages);
814 		if (error != 0)
815 			continue;
816 
817 		error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
818 		if (error != 0)
819 			continue;
820 
821 		if (pages[flt.centeridx] == PGO_DONTCARE)
822 			error = uvm_fault_upper(&ufi, &flt, anons);
823 		else {
824 			struct uvm_object * const uobj = ufi.entry->object.uvm_obj;
825 
826 			if (uobj && uobj->pgops->pgo_fault != NULL) {
827 				/*
828 				 * invoke "special" fault routine.
829 				 */
830 				mutex_enter(&uobj->vmobjlock);
831 				/* locked: maps(read), amap(if there), uobj */
832 				error = uobj->pgops->pgo_fault(&ufi,
833 				    flt.startva, pages, flt.npages,
834 				    flt.centeridx, flt.access_type,
835 				    PGO_LOCKED|PGO_SYNCIO);
836 
837 				/* locked: nothing, pgo_fault has unlocked everything */
838 
839 				/*
840 				 * object fault routine responsible for pmap_update().
841 				 */
842 			} else {
843 				error = uvm_fault_lower(&ufi, &flt, pages);
844 			}
845 		}
846 	}
847 
848 	if (flt.anon_spare != NULL) {
849 		flt.anon_spare->an_ref--;
850 		uvm_anfree(flt.anon_spare);
851 	}
852 	return error;
853 }
854 
855 /*
856  * uvm_fault_check: check prot, handle needs-copy, etc.
857  *
858  *	1. lookup entry.
859  *	2. check protection.
860  *	3. adjust fault condition (mainly for simulated fault).
861  *	4. handle needs-copy (lazy amap copy).
862  *	5. establish range of interest for neighbor fault (aka pre-fault).
863  *	6. look up anons (if amap exists).
864  *	7. flush pages (if MADV_SEQUENTIAL)
865  *
866  * => called with nothing locked.
867  * => if we fail (result != 0) we unlock everything.
868  */
869 
870 static int
871 uvm_fault_check(
872 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
873 	struct vm_anon ***ranons, struct vm_page ***rpages)
874 {
875 	struct vm_amap *amap;
876 	struct uvm_object *uobj;
877 	vm_prot_t check_prot;
878 	int nback, nforw;
879 	UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist);
880 
881 	/*
882 	 * lookup and lock the maps
883 	 */
884 
885 	if (uvmfault_lookup(ufi, false) == false) {
886 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", ufi->orig_rvaddr, 0,0,0);
887 		return EFAULT;
888 	}
889 	/* locked: maps(read) */
890 
891 #ifdef DIAGNOSTIC
892 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) {
893 		printf("Page fault on non-pageable map:\n");
894 		printf("ufi->map = %p\n", ufi->map);
895 		printf("ufi->orig_map = %p\n", ufi->orig_map);
896 		printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr);
897 		panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0");
898 	}
899 #endif
900 
901 	/*
902 	 * check protection
903 	 */
904 
905 	check_prot = flt->maxprot ?
906 	    ufi->entry->max_protection : ufi->entry->protection;
907 	if ((check_prot & flt->access_type) != flt->access_type) {
908 		UVMHIST_LOG(maphist,
909 		    "<- protection failure (prot=0x%x, access=0x%x)",
910 		    ufi->entry->protection, flt->access_type, 0, 0);
911 		uvmfault_unlockmaps(ufi, false);
912 		return EACCES;
913 	}
914 
915 	/*
916 	 * "enter_prot" is the protection we want to enter the page in at.
917 	 * for certain pages (e.g. copy-on-write pages) this protection can
918 	 * be more strict than ufi->entry->protection.  "wired" means either
919 	 * the entry is wired or we are fault-wiring the pg.
920 	 */
921 
922 	flt->enter_prot = ufi->entry->protection;
923 	if (VM_MAPENT_ISWIRED(ufi->entry))
924 		flt->wire_mapping = true;
925 
926 	if (flt->wire_mapping) {
927 		flt->access_type = flt->enter_prot; /* full access for wired */
928 		flt->cow_now = (check_prot & VM_PROT_WRITE) != 0;
929 	} else {
930 		flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0;
931 	}
932 
933 	flt->promote = false;
934 
935 	/*
936 	 * handle "needs_copy" case.   if we need to copy the amap we will
937 	 * have to drop our readlock and relock it with a write lock.  (we
938 	 * need a write lock to change anything in a map entry [e.g.
939 	 * needs_copy]).
940 	 */
941 
942 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
943 		if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) {
944 			KASSERT(!flt->maxprot);
945 			/* need to clear */
946 			UVMHIST_LOG(maphist,
947 			    "  need to clear needs_copy and refault",0,0,0,0);
948 			uvmfault_unlockmaps(ufi, false);
949 			uvmfault_amapcopy(ufi);
950 			uvmexp.fltamcopy++;
951 			return ERESTART;
952 
953 		} else {
954 
955 			/*
956 			 * ensure that we pmap_enter page R/O since
957 			 * needs_copy is still true
958 			 */
959 
960 			flt->enter_prot &= ~VM_PROT_WRITE;
961 		}
962 	}
963 
964 	/*
965 	 * identify the players
966 	 */
967 
968 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
969 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
970 
971 	/*
972 	 * check for a case 0 fault.  if nothing backing the entry then
973 	 * error now.
974 	 */
975 
976 	if (amap == NULL && uobj == NULL) {
977 		uvmfault_unlockmaps(ufi, false);
978 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
979 		return EFAULT;
980 	}
981 
982 	/*
983 	 * establish range of interest based on advice from mapper
984 	 * and then clip to fit map entry.   note that we only want
985 	 * to do this the first time through the fault.   if we
986 	 * ReFault we will disable this by setting "narrow" to true.
987 	 */
988 
989 	if (flt->narrow == false) {
990 
991 		/* wide fault (!narrow) */
992 		KASSERT(uvmadvice[ufi->entry->advice].advice ==
993 			 ufi->entry->advice);
994 		nback = MIN(uvmadvice[ufi->entry->advice].nback,
995 			    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
996 		flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT);
997 		nforw = MIN(uvmadvice[ufi->entry->advice].nforw,
998 			    ((ufi->entry->end - ufi->orig_rvaddr) >>
999 			     PAGE_SHIFT) - 1);
1000 		/*
1001 		 * note: "-1" because we don't want to count the
1002 		 * faulting page as forw
1003 		 */
1004 		flt->npages = nback + nforw + 1;
1005 		flt->centeridx = nback;
1006 
1007 		flt->narrow = true;	/* ensure only once per-fault */
1008 
1009 	} else {
1010 
1011 		/* narrow fault! */
1012 		nback = nforw = 0;
1013 		flt->startva = ufi->orig_rvaddr;
1014 		flt->npages = 1;
1015 		flt->centeridx = 0;
1016 
1017 	}
1018 	/* offset from entry's start to pgs' start */
1019 	const voff_t eoff = flt->startva - ufi->entry->start;
1020 
1021 	/* locked: maps(read) */
1022 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
1023 		    flt->narrow, nback, nforw, flt->startva);
1024 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi->entry,
1025 		    amap, uobj, 0);
1026 
1027 	/*
1028 	 * if we've got an amap, lock it and extract current anons.
1029 	 */
1030 
1031 	if (amap) {
1032 		amap_lock(amap);
1033 		amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages);
1034 	} else {
1035 		*ranons = NULL;	/* to be safe */
1036 	}
1037 
1038 	/* locked: maps(read), amap(if there) */
1039 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1040 
1041 	/*
1042 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
1043 	 * now and then forget about them (for the rest of the fault).
1044 	 */
1045 
1046 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
1047 
1048 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
1049 		    0,0,0,0);
1050 		/* flush back-page anons? */
1051 		if (amap)
1052 			uvmfault_anonflush(*ranons, nback);
1053 
1054 		/* flush object? */
1055 		if (uobj) {
1056 			voff_t uoff;
1057 
1058 			uoff = ufi->entry->offset + eoff;
1059 			mutex_enter(&uobj->vmobjlock);
1060 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
1061 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
1062 		}
1063 
1064 		/* now forget about the backpages */
1065 		if (amap)
1066 			*ranons += nback;
1067 		flt->startva += (nback << PAGE_SHIFT);
1068 		flt->npages -= nback;
1069 		flt->centeridx = 0;
1070 	}
1071 	/*
1072 	 * => startva is fixed
1073 	 * => npages is fixed
1074 	 */
1075 
1076 	return 0;
1077 }
1078 
1079 /*
1080  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
1081  *
1082  * iterate range of interest:
1083  *	1. check if h/w mapping exists.  if yes, we don't care
1084  *	2. check if anon exists.  if not, page is lower.
1085  *	3. if anon exists, enter h/w mapping for neighbors.
1086  *
1087  * => called with amap locked (if exists).
1088  */
1089 
1090 static int
1091 uvm_fault_upper_lookup(
1092 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1093 	struct vm_anon **anons, struct vm_page **pages)
1094 {
1095 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1096 	int lcv;
1097 	vaddr_t currva;
1098 	bool shadowed;
1099 	UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist);
1100 
1101 	/* locked: maps(read), amap(if there) */
1102 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1103 
1104 	/*
1105 	 * map in the backpages and frontpages we found in the amap in hopes
1106 	 * of preventing future faults.    we also init the pages[] array as
1107 	 * we go.
1108 	 */
1109 
1110 	currva = flt->startva;
1111 	shadowed = false;
1112 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1113 		/*
1114 		 * dont play with VAs that are already mapped
1115 		 * except for center)
1116 		 */
1117 		if (lcv != flt->centeridx &&
1118 		    pmap_extract(ufi->orig_map->pmap, currva, NULL)) {
1119 			pages[lcv] = PGO_DONTCARE;
1120 			continue;
1121 		}
1122 
1123 		/*
1124 		 * unmapped or center page.   check if any anon at this level.
1125 		 */
1126 		if (amap == NULL || anons[lcv] == NULL) {
1127 			pages[lcv] = NULL;
1128 			continue;
1129 		}
1130 
1131 		/*
1132 		 * check for present page and map if possible.   re-activate it.
1133 		 */
1134 
1135 		pages[lcv] = PGO_DONTCARE;
1136 		if (lcv == flt->centeridx) {		/* save center for later! */
1137 			shadowed = true;
1138 		} else {
1139 			struct vm_anon *anon = anons[lcv];
1140 
1141 			mutex_enter(&anon->an_lock);
1142 			struct vm_page *pg = anon->an_page;
1143 
1144 			/* ignore loaned and busy pages */
1145 			if (pg != NULL && pg->loan_count == 0 &&
1146 			    (pg->flags & PG_BUSY) == 0)
1147 				uvm_fault_upper_neighbor(ufi, flt, currva,
1148 				    pg, anon->an_ref > 1);
1149 			mutex_exit(&anon->an_lock);
1150 		}
1151 	}
1152 
1153 	/* locked: maps(read), amap(if there) */
1154 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1155 	/* (shadowed == true) if there is an anon at the faulting address */
1156 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
1157 	    (ufi->entry->object.uvm_obj && shadowed != false),0,0);
1158 
1159 	/*
1160 	 * note that if we are really short of RAM we could sleep in the above
1161 	 * call to pmap_enter with everything locked.   bad?
1162 	 *
1163 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
1164 	 * XXX case.  --thorpej
1165 	 */
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * uvm_fault_upper_neighbor: enter single lower neighbor page.
1172  *
1173  * => called with amap and anon locked.
1174  */
1175 
1176 static void
1177 uvm_fault_upper_neighbor(
1178 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1179 	vaddr_t currva, struct vm_page *pg, bool readonly)
1180 {
1181 	UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist);
1182 
1183 	/* locked: amap, anon */
1184 
1185 	mutex_enter(&uvm_pageqlock);
1186 	uvm_pageenqueue(pg);
1187 	mutex_exit(&uvm_pageqlock);
1188 	UVMHIST_LOG(maphist,
1189 	    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
1190 	    ufi->orig_map->pmap, currva, pg, 0);
1191 	uvmexp.fltnamap++;
1192 
1193 	/*
1194 	 * Since this page isn't the page that's actually faulting,
1195 	 * ignore pmap_enter() failures; it's not critical that we
1196 	 * enter these right now.
1197 	 */
1198 
1199 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1200 	    VM_PAGE_TO_PHYS(pg),
1201 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1202 	    flt->enter_prot,
1203 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1204 
1205 	pmap_update(ufi->orig_map->pmap);
1206 }
1207 
1208 /*
1209  * uvm_fault_upper: handle upper fault.
1210  *
1211  *	1. acquire anon lock.
1212  *	2. get anon.  let uvmfault_anonget do the dirty work.
1213  *	3. handle loan.
1214  *	4. dispatch direct or promote handlers.
1215  */
1216 
1217 static int
1218 uvm_fault_upper(
1219 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1220 	struct vm_anon **anons)
1221 {
1222 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1223 	struct vm_anon * const anon = anons[flt->centeridx];
1224 	struct uvm_object *uobj;
1225 	int error;
1226 	UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist);
1227 
1228 	/* locked: maps(read), amap */
1229 	KASSERT(mutex_owned(&amap->am_l));
1230 
1231 	/*
1232 	 * handle case 1: fault on an anon in our amap
1233 	 */
1234 
1235 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
1236 	mutex_enter(&anon->an_lock);
1237 
1238 	/* locked: maps(read), amap, anon */
1239 	KASSERT(mutex_owned(&amap->am_l));
1240 	KASSERT(mutex_owned(&anon->an_lock));
1241 
1242 	/*
1243 	 * no matter if we have case 1A or case 1B we are going to need to
1244 	 * have the anon's memory resident.   ensure that now.
1245 	 */
1246 
1247 	/*
1248 	 * let uvmfault_anonget do the dirty work.
1249 	 * if it fails (!OK) it will unlock everything for us.
1250 	 * if it succeeds, locks are still valid and locked.
1251 	 * also, if it is OK, then the anon's page is on the queues.
1252 	 * if the page is on loan from a uvm_object, then anonget will
1253 	 * lock that object for us if it does not fail.
1254 	 */
1255 
1256 	error = uvmfault_anonget(ufi, amap, anon);
1257 	switch (error) {
1258 	case 0:
1259 		break;
1260 
1261 	case ERESTART:
1262 		return ERESTART;
1263 
1264 	case EAGAIN:
1265 		kpause("fltagain1", false, hz/2, NULL);
1266 		return ERESTART;
1267 
1268 	default:
1269 		return error;
1270 	}
1271 
1272 	/*
1273 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1274 	 */
1275 
1276 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1277 
1278 	/* locked: maps(read), amap, anon, uobj(if one) */
1279 	KASSERT(mutex_owned(&amap->am_l));
1280 	KASSERT(mutex_owned(&anon->an_lock));
1281 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1282 
1283 	/*
1284 	 * special handling for loaned pages
1285 	 */
1286 
1287 	if (anon->an_page->loan_count) {
1288 		error = uvm_fault_upper_loan(ufi, flt, anon, &uobj);
1289 		if (error != 0)
1290 			return error;
1291 	}
1292 
1293 	/*
1294 	 * if we are case 1B then we will need to allocate a new blank
1295 	 * anon to transfer the data into.   note that we have a lock
1296 	 * on anon, so no one can busy or release the page until we are done.
1297 	 * also note that the ref count can't drop to zero here because
1298 	 * it is > 1 and we are only dropping one ref.
1299 	 *
1300 	 * in the (hopefully very rare) case that we are out of RAM we
1301 	 * will unlock, wait for more RAM, and refault.
1302 	 *
1303 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1304 	 */
1305 
1306 	if (flt->cow_now && anon->an_ref > 1) {
1307 		flt->promote = true;
1308 		error = uvm_fault_upper_promote(ufi, flt, uobj, anon);
1309 	} else {
1310 		error = uvm_fault_upper_direct(ufi, flt, uobj, anon);
1311 	}
1312 	return error;
1313 }
1314 
1315 /*
1316  * uvm_fault_upper_loan: handle loaned upper page.
1317  *
1318  *	1. if not cow'ing now, just mark enter_prot as read-only.
1319  *	2. if cow'ing now, and if ref count is 1, break loan.
1320  */
1321 
1322 static int
1323 uvm_fault_upper_loan(
1324 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1325 	struct vm_anon *anon, struct uvm_object **ruobj)
1326 {
1327 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1328 	int error = 0;
1329 	UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist);
1330 
1331 	if (!flt->cow_now) {
1332 
1333 		/*
1334 		 * for read faults on loaned pages we just cap the
1335 		 * protection at read-only.
1336 		 */
1337 
1338 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1339 
1340 	} else {
1341 		/*
1342 		 * note that we can't allow writes into a loaned page!
1343 		 *
1344 		 * if we have a write fault on a loaned page in an
1345 		 * anon then we need to look at the anon's ref count.
1346 		 * if it is greater than one then we are going to do
1347 		 * a normal copy-on-write fault into a new anon (this
1348 		 * is not a problem).  however, if the reference count
1349 		 * is one (a case where we would normally allow a
1350 		 * write directly to the page) then we need to kill
1351 		 * the loan before we continue.
1352 		 */
1353 
1354 		/* >1 case is already ok */
1355 		if (anon->an_ref == 1) {
1356 			error = uvm_loanbreak_anon(anon, *ruobj);
1357 			if (error != 0) {
1358 				uvmfault_unlockall(ufi, amap, *ruobj, anon);
1359 				uvm_wait("flt_noram2");
1360 				return ERESTART;
1361 			}
1362 			/* if we were a loan reciever uobj is gone */
1363 			if (*ruobj)
1364 				*ruobj = NULL;
1365 		}
1366 	}
1367 	return error;
1368 }
1369 
1370 /*
1371  * uvm_fault_upper_promote: promote upper page.
1372  *
1373  *	1. call uvmfault_promote.
1374  *	2. enqueue page.
1375  *	3. deref.
1376  *	4. pass page to uvm_fault_upper_enter.
1377  */
1378 
1379 static int
1380 uvm_fault_upper_promote(
1381 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1382 	struct uvm_object *uobj, struct vm_anon *anon)
1383 {
1384 	struct vm_anon * const oanon = anon;
1385 	struct vm_page *pg;
1386 	int error;
1387 	UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist);
1388 
1389 	UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1390 	uvmexp.flt_acow++;
1391 
1392 	error = uvmfault_promote(ufi, oanon, PGO_DONTCARE,
1393 	    &anon, &flt->anon_spare);
1394 	switch (error) {
1395 	case 0:
1396 		break;
1397 	case ERESTART:
1398 		return ERESTART;
1399 	default:
1400 		return error;
1401 	}
1402 
1403 	pg = anon->an_page;
1404 	mutex_enter(&uvm_pageqlock);
1405 	uvm_pageactivate(pg);
1406 	mutex_exit(&uvm_pageqlock);
1407 	pg->flags &= ~(PG_BUSY|PG_FAKE);
1408 	UVM_PAGE_OWN(pg, NULL);
1409 
1410 	/* deref: can not drop to zero here by defn! */
1411 	oanon->an_ref--;
1412 
1413 	/*
1414 	 * note: oanon is still locked, as is the new anon.  we
1415 	 * need to check for this later when we unlock oanon; if
1416 	 * oanon != anon, we'll have to unlock anon, too.
1417 	 */
1418 
1419 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1420 }
1421 
1422 /*
1423  * uvm_fault_upper_direct: handle direct fault.
1424  */
1425 
1426 static int
1427 uvm_fault_upper_direct(
1428 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1429 	struct uvm_object *uobj, struct vm_anon *anon)
1430 {
1431 	struct vm_anon * const oanon = anon;
1432 	struct vm_page *pg;
1433 	UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist);
1434 
1435 	uvmexp.flt_anon++;
1436 	pg = anon->an_page;
1437 	if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1438 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1439 
1440 	return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon);
1441 }
1442 
1443 /*
1444  * uvm_fault_upper_enter: enter h/w mapping of upper page.
1445  */
1446 
1447 static int
1448 uvm_fault_upper_enter(
1449 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1450 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg,
1451 	struct vm_anon *oanon)
1452 {
1453 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1454 	UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist);
1455 
1456 	/* locked: maps(read), amap, oanon, anon(if different from oanon) */
1457 	KASSERT(mutex_owned(&amap->am_l));
1458 	KASSERT(mutex_owned(&anon->an_lock));
1459 	KASSERT(mutex_owned(&oanon->an_lock));
1460 
1461 	/*
1462 	 * now map the page in.
1463 	 */
1464 
1465 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1466 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
1467 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1468 	    flt->enter_prot, flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0))
1469 	    != 0) {
1470 
1471 		/*
1472 		 * No need to undo what we did; we can simply think of
1473 		 * this as the pmap throwing away the mapping information.
1474 		 *
1475 		 * We do, however, have to go through the ReFault path,
1476 		 * as the map may change while we're asleep.
1477 		 */
1478 
1479 		if (anon != oanon)
1480 			mutex_exit(&anon->an_lock);
1481 		uvmfault_unlockall(ufi, amap, uobj, oanon);
1482 		if (!uvm_reclaimable()) {
1483 			UVMHIST_LOG(maphist,
1484 			    "<- failed.  out of VM",0,0,0,0);
1485 			/* XXX instrumentation */
1486 			return ENOMEM;
1487 		}
1488 		/* XXX instrumentation */
1489 		uvm_wait("flt_pmfail1");
1490 		return ERESTART;
1491 	}
1492 
1493 	uvm_fault_upper_done(ufi, flt, uobj, anon, pg);
1494 
1495 	/*
1496 	 * done case 1!  finish up by unlocking everything and returning success
1497 	 */
1498 
1499 	if (anon != oanon)
1500 		mutex_exit(&anon->an_lock);
1501 	uvmfault_unlockall(ufi, amap, uobj, oanon);
1502 	pmap_update(ufi->orig_map->pmap);
1503 	return 0;
1504 }
1505 
1506 /*
1507  * uvm_fault_upper_done: queue upper center page.
1508  */
1509 
1510 static void
1511 uvm_fault_upper_done(
1512 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1513 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
1514 {
1515 	UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist);
1516 
1517 	/*
1518 	 * ... update the page queues.
1519 	 */
1520 
1521 	mutex_enter(&uvm_pageqlock);
1522 	if (flt->wire_paging) {
1523 		uvm_pagewire(pg);
1524 
1525 		/*
1526 		 * since the now-wired page cannot be paged out,
1527 		 * release its swap resources for others to use.
1528 		 * since an anon with no swap cannot be PG_CLEAN,
1529 		 * clear its clean flag now.
1530 		 */
1531 
1532 		pg->flags &= ~(PG_CLEAN);
1533 		uvm_anon_dropswap(anon);
1534 	} else {
1535 		uvm_pageactivate(pg);
1536 	}
1537 	mutex_exit(&uvm_pageqlock);
1538 }
1539 
1540 /*
1541  * uvm_fault_lower: handle lower fault.
1542  *
1543  *	1. check uobj
1544  *	1.1. if null, ZFOD.
1545  *	1.2. if not null, look up unnmapped neighbor pages.
1546  *	2. for center page, check if promote.
1547  *	2.1. ZFOD always needs promotion.
1548  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1549  *	3. if uobj is not ZFOD and page is not found, do i/o.
1550  *	4. dispatch either direct / promote fault.
1551  */
1552 
1553 static int
1554 uvm_fault_lower(
1555 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1556 	struct vm_page **pages)
1557 {
1558 #ifdef DIAGNOSTIC
1559 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1560 #endif
1561 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1562 	struct vm_page *uobjpage;
1563 	int error;
1564 	UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist);
1565 
1566 	/* locked: maps(read), amap(if there), uobj(if !null) */
1567 
1568 	/*
1569 	 * now, if the desired page is not shadowed by the amap and we have
1570 	 * a backing object that does not have a special fault routine, then
1571 	 * we ask (with pgo_get) the object for resident pages that we care
1572 	 * about and attempt to map them in.  we do not let pgo_get block
1573 	 * (PGO_LOCKED).
1574 	 */
1575 
1576 	if (uobj == NULL) {
1577 		/* zero fill; don't care neighbor pages */
1578 		uobjpage = NULL;
1579 	} else {
1580 		uvm_fault_lower_lookup(ufi, flt, pages);
1581 		uobjpage = pages[flt->centeridx];
1582 	}
1583 
1584 	/* locked: maps(read), amap(if there), uobj(if !null), uobjpage(if !null) */
1585 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1586 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1587 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1588 
1589 	/*
1590 	 * note that at this point we are done with any front or back pages.
1591 	 * we are now going to focus on the center page (i.e. the one we've
1592 	 * faulted on).  if we have faulted on the upper (anon) layer
1593 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1594 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1595 	 * layer [i.e. case 2] and the page was both present and available,
1596 	 * then we've got a pointer to it as "uobjpage" and we've already
1597 	 * made it BUSY.
1598 	 */
1599 
1600 	/*
1601 	 * locked:
1602 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1603 	 */
1604 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1605 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1606 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1607 
1608 	/*
1609 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1610 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1611 	 * have a backing object, check and see if we are going to promote
1612 	 * the data up to an anon during the fault.
1613 	 */
1614 
1615 	if (uobj == NULL) {
1616 		uobjpage = PGO_DONTCARE;
1617 		flt->promote = true;		/* always need anon here */
1618 	} else {
1619 		KASSERT(uobjpage != PGO_DONTCARE);
1620 		flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry);
1621 	}
1622 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
1623 	    flt->promote, (uobj == NULL), 0,0);
1624 
1625 	/*
1626 	 * if uobjpage is not null then we do not need to do I/O to get the
1627 	 * uobjpage.
1628 	 *
1629 	 * if uobjpage is null, then we need to unlock and ask the pager to
1630 	 * get the data for us.   once we have the data, we need to reverify
1631 	 * the state the world.   we are currently not holding any resources.
1632 	 */
1633 
1634 	if (uobjpage) {
1635 		/* update rusage counters */
1636 		curlwp->l_ru.ru_minflt++;
1637 	} else {
1638 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1639 		if (error != 0)
1640 			return error;
1641 	}
1642 
1643 	/*
1644 	 * locked:
1645 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1646 	 */
1647 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1648 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1649 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1650 
1651 	/*
1652 	 * notes:
1653 	 *  - at this point uobjpage can not be NULL
1654 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1655 	 *  for it above)
1656 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1657 	 */
1658 
1659 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1660 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1661 	    (uobjpage->flags & PG_CLEAN) != 0);
1662 
1663 	if (flt->promote == false) {
1664 		error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage);
1665 	} else {
1666 		error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage);
1667 	}
1668 	return error;
1669 }
1670 
1671 /*
1672  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1673  *
1674  *	1. get on-memory pages.
1675  *	2. if failed, give up (get only center page later).
1676  *	3. if succeeded, enter h/w mapping of neighbor pages.
1677  */
1678 
1679 static void
1680 uvm_fault_lower_lookup(
1681 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1682 	struct vm_page **pages)
1683 {
1684 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1685 	int lcv, gotpages;
1686 	vaddr_t currva;
1687 	UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist);
1688 
1689 	mutex_enter(&uobj->vmobjlock);
1690 	/* locked: maps(read), amap(if there), uobj */
1691 	/*
1692 	 * the following call to pgo_get does _not_ change locking state
1693 	 */
1694 
1695 	uvmexp.fltlget++;
1696 	gotpages = flt->npages;
1697 	(void) uobj->pgops->pgo_get(uobj,
1698 	    ufi->entry->offset + flt->startva - ufi->entry->start,
1699 	    pages, &gotpages, flt->centeridx,
1700 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED);
1701 
1702 	/*
1703 	 * check for pages to map, if we got any
1704 	 */
1705 
1706 	if (gotpages == 0) {
1707 		pages[flt->centeridx] = NULL;
1708 		return;
1709 	}
1710 
1711 	currva = flt->startva;
1712 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1713 		struct vm_page *curpg;
1714 
1715 		curpg = pages[lcv];
1716 		if (curpg == NULL || curpg == PGO_DONTCARE) {
1717 			continue;
1718 		}
1719 		KASSERT(curpg->uobject == uobj);
1720 
1721 		/*
1722 		 * if center page is resident and not PG_BUSY|PG_RELEASED
1723 		 * then pgo_get made it PG_BUSY for us and gave us a handle
1724 		 * to it.
1725 		 */
1726 
1727 		if (lcv == flt->centeridx) {
1728 			UVMHIST_LOG(maphist, "  got uobjpage "
1729 			    "(0x%x) with locked get",
1730 			    curpg, 0,0,0);
1731 		} else {
1732 			bool readonly = (curpg->flags & PG_RDONLY)
1733 			    || (curpg->loan_count > 0)
1734 			    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1735 
1736 			uvm_fault_lower_neighbor(ufi, flt,
1737 			    currva, curpg, readonly);
1738 		}
1739 	}
1740 	pmap_update(ufi->orig_map->pmap);
1741 }
1742 
1743 /*
1744  * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page.
1745  */
1746 
1747 static void
1748 uvm_fault_lower_neighbor(
1749 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1750 	vaddr_t currva, struct vm_page *pg, bool readonly)
1751 {
1752 	UVMHIST_FUNC("uvm_fault_lower_neighor"); UVMHIST_CALLED(maphist);
1753 
1754 	/* locked: maps(read), amap(if there), uobj */
1755 
1756 	/*
1757 	 * calling pgo_get with PGO_LOCKED returns us pages which
1758 	 * are neither busy nor released, so we don't need to check
1759 	 * for this.  we can just directly enter the pages.
1760 	 */
1761 
1762 	mutex_enter(&uvm_pageqlock);
1763 	uvm_pageenqueue(pg);
1764 	mutex_exit(&uvm_pageqlock);
1765 	UVMHIST_LOG(maphist,
1766 	    "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1767 	    ufi->orig_map->pmap, currva, pg, 0);
1768 	uvmexp.fltnomap++;
1769 
1770 	/*
1771 	 * Since this page isn't the page that's actually faulting,
1772 	 * ignore pmap_enter() failures; it's not critical that we
1773 	 * enter these right now.
1774 	 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1775 	 * held the lock the whole time we've had the handle.
1776 	 */
1777 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1778 	KASSERT((pg->flags & PG_RELEASED) == 0);
1779 	KASSERT((pg->flags & PG_WANTED) == 0);
1780 	KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) ||
1781 	    (pg->flags & PG_CLEAN) != 0);
1782 	pg->flags &= ~(PG_BUSY);
1783 	UVM_PAGE_OWN(pg, NULL);
1784 
1785 	(void) pmap_enter(ufi->orig_map->pmap, currva,
1786 	    VM_PAGE_TO_PHYS(pg),
1787 	    readonly ? (flt->enter_prot & ~VM_PROT_WRITE) :
1788 	    flt->enter_prot & MASK(ufi->entry),
1789 	    PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0));
1790 }
1791 
1792 /*
1793  * uvm_fault_lower_io: get lower page from backing store.
1794  *
1795  *	1. unlock everything, because i/o will block.
1796  *	2. call pgo_get.
1797  *	3. if failed, recover.
1798  *	4. if succeeded, relock everything and verify things.
1799  */
1800 
1801 static int
1802 uvm_fault_lower_io(
1803 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1804 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
1805 {
1806 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1807 	struct uvm_object *uobj = *ruobj;
1808 	struct vm_page *pg;
1809 	bool locked;
1810 	int gotpages;
1811 	int error;
1812 	voff_t uoff;
1813 	UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist);
1814 
1815 	/* update rusage counters */
1816 	curlwp->l_ru.ru_majflt++;
1817 
1818 	/* locked: maps(read), amap(if there), uobj */
1819 	uvmfault_unlockall(ufi, amap, NULL, NULL);
1820 	/* locked: uobj */
1821 
1822 	uvmexp.fltget++;
1823 	gotpages = 1;
1824 	pg = NULL;
1825 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1826 	error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1827 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1828 	    PGO_SYNCIO);
1829 	/* locked: pg(if no error) */
1830 
1831 	/*
1832 	 * recover from I/O
1833 	 */
1834 
1835 	if (error) {
1836 		if (error == EAGAIN) {
1837 			UVMHIST_LOG(maphist,
1838 			    "  pgo_get says TRY AGAIN!",0,0,0,0);
1839 			kpause("fltagain2", false, hz/2, NULL);
1840 			return ERESTART;
1841 		}
1842 
1843 #if 0
1844 		KASSERT(error != ERESTART);
1845 #else
1846 		/* XXXUEBS don't re-fault? */
1847 		if (error == ERESTART)
1848 			error = EIO;
1849 #endif
1850 
1851 		UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1852 		    error, 0,0,0);
1853 		return error;
1854 	}
1855 
1856 	/* locked: pg */
1857 
1858 	KASSERT((pg->flags & PG_BUSY) != 0);
1859 
1860 	mutex_enter(&uvm_pageqlock);
1861 	uvm_pageactivate(pg);
1862 	mutex_exit(&uvm_pageqlock);
1863 
1864 	/*
1865 	 * re-verify the state of the world by first trying to relock
1866 	 * the maps.  always relock the object.
1867 	 */
1868 
1869 	locked = uvmfault_relock(ufi);
1870 	if (locked && amap)
1871 		amap_lock(amap);
1872 
1873 	/* might be changed */
1874 	uobj = pg->uobject;
1875 
1876 	mutex_enter(&uobj->vmobjlock);
1877 
1878 	/* locked(locked): maps(read), amap(if !null), uobj, pg */
1879 	/* locked(!locked): uobj, pg */
1880 
1881 	/*
1882 	 * verify that the page has not be released and re-verify
1883 	 * that amap slot is still free.   if there is a problem,
1884 	 * we unlock and clean up.
1885 	 */
1886 
1887 	if ((pg->flags & PG_RELEASED) != 0 ||
1888 	    (locked && amap && amap_lookup(&ufi->entry->aref,
1889 	      ufi->orig_rvaddr - ufi->entry->start))) {
1890 		if (locked)
1891 			uvmfault_unlockall(ufi, amap, NULL, NULL);
1892 		locked = false;
1893 	}
1894 
1895 	/*
1896 	 * didn't get the lock?   release the page and retry.
1897 	 */
1898 
1899 	if (locked == false) {
1900 		UVMHIST_LOG(maphist,
1901 		    "  wasn't able to relock after fault: retry",
1902 		    0,0,0,0);
1903 		if (pg->flags & PG_WANTED) {
1904 			wakeup(pg);
1905 		}
1906 		if (pg->flags & PG_RELEASED) {
1907 			uvmexp.fltpgrele++;
1908 			uvm_pagefree(pg);
1909 			mutex_exit(&uobj->vmobjlock);
1910 			return ERESTART;
1911 		}
1912 		pg->flags &= ~(PG_BUSY|PG_WANTED);
1913 		UVM_PAGE_OWN(pg, NULL);
1914 		mutex_exit(&uobj->vmobjlock);
1915 		return ERESTART;
1916 	}
1917 
1918 	/*
1919 	 * we have the data in pg which is busy and
1920 	 * not released.  we are holding object lock (so the page
1921 	 * can't be released on us).
1922 	 */
1923 
1924 	/* locked: maps(read), amap(if !null), uobj, pg */
1925 
1926 	*ruobj = uobj;
1927 	*ruobjpage = pg;
1928 	return 0;
1929 }
1930 
1931 /*
1932  * uvm_fault_lower_direct: fault lower center page
1933  *
1934  *	1. adjust h/w mapping protection.
1935  *	2. if page is loaned, resolve.
1936  */
1937 
1938 int
1939 uvm_fault_lower_direct(
1940 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1941 	struct uvm_object *uobj, struct vm_page *uobjpage)
1942 {
1943 	struct vm_page *pg;
1944 	UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist);
1945 
1946 	/*
1947 	 * we are not promoting.   if the mapping is COW ensure that we
1948 	 * don't give more access than we should (e.g. when doing a read
1949 	 * fault on a COPYONWRITE mapping we want to map the COW page in
1950 	 * R/O even though the entry protection could be R/W).
1951 	 *
1952 	 * set "pg" to the page we want to map in (uobjpage, usually)
1953 	 */
1954 
1955 	uvmexp.flt_obj++;
1956 	if (UVM_ET_ISCOPYONWRITE(ufi->entry) ||
1957 	    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1958 		flt->enter_prot &= ~VM_PROT_WRITE;
1959 	pg = uobjpage;		/* map in the actual object */
1960 
1961 	KASSERT(uobjpage != PGO_DONTCARE);
1962 
1963 	/*
1964 	 * we are faulting directly on the page.   be careful
1965 	 * about writing to loaned pages...
1966 	 */
1967 
1968 	if (uobjpage->loan_count) {
1969 		uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage);
1970 	}
1971 	KASSERT(pg == uobjpage);
1972 
1973 	return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg, uobjpage);
1974 }
1975 
1976 /*
1977  * uvm_fault_lower_direct_loan: resolve loaned page.
1978  *
1979  *	1. if not cow'ing, adjust h/w mapping protection.
1980  *	2. if cow'ing, break loan.
1981  */
1982 
1983 static int
1984 uvm_fault_lower_direct_loan(
1985 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1986 	struct uvm_object *uobj, struct vm_page **rpg, struct vm_page **ruobjpage)
1987 {
1988 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1989 	struct vm_page *pg;
1990 	struct vm_page *uobjpage = *ruobjpage;
1991 	UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist);
1992 
1993 	if (!flt->cow_now) {
1994 		/* read fault: cap the protection at readonly */
1995 		/* cap! */
1996 		flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE;
1997 	} else {
1998 		/* write fault: must break the loan here */
1999 
2000 		pg = uvm_loanbreak(uobjpage);
2001 		if (pg == NULL) {
2002 
2003 			/*
2004 			 * drop ownership of page, it can't be released
2005 			 */
2006 
2007 			if (uobjpage->flags & PG_WANTED)
2008 				wakeup(uobjpage);
2009 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2010 			UVM_PAGE_OWN(uobjpage, NULL);
2011 
2012 			uvmfault_unlockall(ufi, amap, uobj, NULL);
2013 			UVMHIST_LOG(maphist,
2014 			  "  out of RAM breaking loan, waiting",
2015 			  0,0,0,0);
2016 			uvmexp.fltnoram++;
2017 			uvm_wait("flt_noram4");
2018 			return ERESTART;
2019 		}
2020 		*rpg = pg;
2021 		*ruobjpage = pg;
2022 	}
2023 	return 0;
2024 }
2025 
2026 /*
2027  * uvm_fault_lower_promote: promote lower page.
2028  *
2029  *	1. call uvmfault_promote.
2030  *	2. fill in data.
2031  *	3. if not ZFOD, dispose old page.
2032  */
2033 
2034 int
2035 uvm_fault_lower_promote(
2036 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2037 	struct uvm_object *uobj, struct vm_page *uobjpage)
2038 {
2039 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2040 	struct vm_anon *anon;
2041 	struct vm_page *pg;
2042 	int error;
2043 	UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist);
2044 
2045 	/*
2046 	 * if we are going to promote the data to an anon we
2047 	 * allocate a blank anon here and plug it into our amap.
2048 	 */
2049 #if DIAGNOSTIC
2050 	if (amap == NULL)
2051 		panic("uvm_fault: want to promote data, but no anon");
2052 #endif
2053 	error = uvmfault_promote(ufi, NULL, uobjpage,
2054 	    &anon, &flt->anon_spare);
2055 	switch (error) {
2056 	case 0:
2057 		break;
2058 	case ERESTART:
2059 		return ERESTART;
2060 	default:
2061 		return error;
2062 	}
2063 
2064 	pg = anon->an_page;
2065 
2066 	/*
2067 	 * fill in the data
2068 	 */
2069 
2070 	if (uobjpage != PGO_DONTCARE) {
2071 		uvmexp.flt_prcopy++;
2072 
2073 		/*
2074 		 * promote to shared amap?  make sure all sharing
2075 		 * procs see it
2076 		 */
2077 
2078 		if ((amap_flags(amap) & AMAP_SHARED) != 0) {
2079 			pmap_page_protect(uobjpage, VM_PROT_NONE);
2080 			/*
2081 			 * XXX: PAGE MIGHT BE WIRED!
2082 			 */
2083 		}
2084 
2085 		/*
2086 		 * dispose of uobjpage.  it can't be PG_RELEASED
2087 		 * since we still hold the object lock.
2088 		 * drop handle to uobj as well.
2089 		 */
2090 
2091 		if (uobjpage->flags & PG_WANTED)
2092 			/* still have the obj lock */
2093 			wakeup(uobjpage);
2094 		uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
2095 		UVM_PAGE_OWN(uobjpage, NULL);
2096 		mutex_exit(&uobj->vmobjlock);
2097 		uobj = NULL;
2098 
2099 		UVMHIST_LOG(maphist,
2100 		    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
2101 		    uobjpage, anon, pg, 0);
2102 
2103 	} else {
2104 		uvmexp.flt_przero++;
2105 
2106 		/*
2107 		 * Page is zero'd and marked dirty by
2108 		 * uvmfault_promote().
2109 		 */
2110 
2111 		UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
2112 		    anon, pg, 0, 0);
2113 	}
2114 
2115 	return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg, uobjpage);
2116 }
2117 
2118 /*
2119  * uvm_fault_lower_enter: enter h/w mapping of lower page.
2120  */
2121 
2122 int
2123 uvm_fault_lower_enter(
2124 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2125 	struct uvm_object *uobj,
2126 	struct vm_anon *anon, struct vm_page *pg, struct vm_page *uobjpage)
2127 {
2128 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
2129 	int error;
2130 	UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist);
2131 
2132 	/*
2133 	 * locked:
2134 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
2135 	 *   anon(if !null), pg(if anon)
2136 	 *
2137 	 * note: pg is either the uobjpage or the new page in the new anon
2138 	 */
2139 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
2140 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
2141 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
2142 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
2143 	KASSERT((pg->flags & PG_BUSY) != 0);
2144 
2145 	/*
2146 	 * all resources are present.   we can now map it in and free our
2147 	 * resources.
2148 	 */
2149 
2150 	UVMHIST_LOG(maphist,
2151 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
2152 	    ufi->orig_map->pmap, ufi->orig_rvaddr, pg, flt->promote);
2153 	KASSERT((flt->access_type & VM_PROT_WRITE) == 0 ||
2154 		(pg->flags & PG_RDONLY) == 0);
2155 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, VM_PAGE_TO_PHYS(pg),
2156 	    pg->flags & PG_RDONLY ? flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot,
2157 	    flt->access_type | PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) {
2158 
2159 		/*
2160 		 * No need to undo what we did; we can simply think of
2161 		 * this as the pmap throwing away the mapping information.
2162 		 *
2163 		 * We do, however, have to go through the ReFault path,
2164 		 * as the map may change while we're asleep.
2165 		 */
2166 
2167 		if (pg->flags & PG_WANTED)
2168 			wakeup(pg);
2169 
2170 		/*
2171 		 * note that pg can't be PG_RELEASED since we did not drop
2172 		 * the object lock since the last time we checked.
2173 		 */
2174 		KASSERT((pg->flags & PG_RELEASED) == 0);
2175 
2176 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2177 		UVM_PAGE_OWN(pg, NULL);
2178 
2179 		uvmfault_unlockall(ufi, amap, uobj, anon);
2180 		if (!uvm_reclaimable()) {
2181 			UVMHIST_LOG(maphist,
2182 			    "<- failed.  out of VM",0,0,0,0);
2183 			/* XXX instrumentation */
2184 			error = ENOMEM;
2185 			return error;
2186 		}
2187 		/* XXX instrumentation */
2188 		uvm_wait("flt_pmfail2");
2189 		return ERESTART;
2190 	}
2191 
2192 	uvm_fault_lower_done(ufi, flt, uobj, anon, pg);
2193 
2194 	uvmfault_unlockall(ufi, amap, uobj, anon);
2195 	pmap_update(ufi->orig_map->pmap);
2196 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
2197 	return 0;
2198 }
2199 
2200 /*
2201  * uvm_fault_lower_done: queue lower center page.
2202  */
2203 
2204 void
2205 uvm_fault_lower_done(
2206 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
2207 	struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg)
2208 {
2209 	UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist);
2210 
2211 	mutex_enter(&uvm_pageqlock);
2212 	if (flt->wire_paging) {
2213 		uvm_pagewire(pg);
2214 		if (pg->pqflags & PQ_AOBJ) {
2215 
2216 			/*
2217 			 * since the now-wired page cannot be paged out,
2218 			 * release its swap resources for others to use.
2219 			 * since an aobj page with no swap cannot be PG_CLEAN,
2220 			 * clear its clean flag now.
2221 			 */
2222 
2223 			KASSERT(uobj != NULL);
2224 			pg->flags &= ~(PG_CLEAN);
2225 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
2226 		}
2227 	} else {
2228 		uvm_pageactivate(pg);
2229 	}
2230 	mutex_exit(&uvm_pageqlock);
2231 
2232 	if (pg->flags & PG_WANTED)
2233 		wakeup(pg);
2234 
2235 	/*
2236 	 * note that pg can't be PG_RELEASED since we did not drop the object
2237 	 * lock since the last time we checked.
2238 	 */
2239 	KASSERT((pg->flags & PG_RELEASED) == 0);
2240 
2241 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
2242 	UVM_PAGE_OWN(pg, NULL);
2243 }
2244 
2245 
2246 /*
2247  * uvm_fault_wire: wire down a range of virtual addresses in a map.
2248  *
2249  * => map may be read-locked by caller, but MUST NOT be write-locked.
2250  * => if map is read-locked, any operations which may cause map to
2251  *	be write-locked in uvm_fault() must be taken care of by
2252  *	the caller.  See uvm_map_pageable().
2253  */
2254 
2255 int
2256 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
2257     vm_prot_t access_type, int maxprot)
2258 {
2259 	vaddr_t va;
2260 	int error;
2261 
2262 	/*
2263 	 * now fault it in a page at a time.   if the fault fails then we have
2264 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
2265 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
2266 	 */
2267 
2268 	/*
2269 	 * XXX work around overflowing a vaddr_t.  this prevents us from
2270 	 * wiring the last page in the address space, though.
2271 	 */
2272 	if (start > end) {
2273 		return EFAULT;
2274 	}
2275 
2276 	for (va = start; va < end; va += PAGE_SIZE) {
2277 		error = uvm_fault_internal(map, va, access_type,
2278 				(maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE);
2279 		if (error) {
2280 			if (va != start) {
2281 				uvm_fault_unwire(map, start, va);
2282 			}
2283 			return error;
2284 		}
2285 	}
2286 	return 0;
2287 }
2288 
2289 /*
2290  * uvm_fault_unwire(): unwire range of virtual space.
2291  */
2292 
2293 void
2294 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
2295 {
2296 	vm_map_lock_read(map);
2297 	uvm_fault_unwire_locked(map, start, end);
2298 	vm_map_unlock_read(map);
2299 }
2300 
2301 /*
2302  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
2303  *
2304  * => map must be at least read-locked.
2305  */
2306 
2307 void
2308 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
2309 {
2310 	struct vm_map_entry *entry;
2311 	pmap_t pmap = vm_map_pmap(map);
2312 	vaddr_t va;
2313 	paddr_t pa;
2314 	struct vm_page *pg;
2315 
2316 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2317 
2318 	/*
2319 	 * we assume that the area we are unwiring has actually been wired
2320 	 * in the first place.   this means that we should be able to extract
2321 	 * the PAs from the pmap.   we also lock out the page daemon so that
2322 	 * we can call uvm_pageunwire.
2323 	 */
2324 
2325 	mutex_enter(&uvm_pageqlock);
2326 
2327 	/*
2328 	 * find the beginning map entry for the region.
2329 	 */
2330 
2331 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
2332 	if (uvm_map_lookup_entry(map, start, &entry) == false)
2333 		panic("uvm_fault_unwire_locked: address not in map");
2334 
2335 	for (va = start; va < end; va += PAGE_SIZE) {
2336 		if (pmap_extract(pmap, va, &pa) == false)
2337 			continue;
2338 
2339 		/*
2340 		 * find the map entry for the current address.
2341 		 */
2342 
2343 		KASSERT(va >= entry->start);
2344 		while (va >= entry->end) {
2345 			KASSERT(entry->next != &map->header &&
2346 				entry->next->start <= entry->end);
2347 			entry = entry->next;
2348 		}
2349 
2350 		/*
2351 		 * if the entry is no longer wired, tell the pmap.
2352 		 */
2353 
2354 		if (VM_MAPENT_ISWIRED(entry) == 0)
2355 			pmap_unwire(pmap, va);
2356 
2357 		pg = PHYS_TO_VM_PAGE(pa);
2358 		if (pg)
2359 			uvm_pageunwire(pg);
2360 	}
2361 
2362 	mutex_exit(&uvm_pageqlock);
2363 }
2364