1 /* $NetBSD: uvm_fault.c,v 1.208 2019/11/10 20:38:33 chs Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 28 */ 29 30 /* 31 * uvm_fault.c: fault handler 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.208 2019/11/10 20:38:33 chs Exp $"); 36 37 #include "opt_uvmhist.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/mman.h> 43 44 #include <uvm/uvm.h> 45 46 /* 47 * 48 * a word on page faults: 49 * 50 * types of page faults we handle: 51 * 52 * CASE 1: upper layer faults CASE 2: lower layer faults 53 * 54 * CASE 1A CASE 1B CASE 2A CASE 2B 55 * read/write1 write>1 read/write +-cow_write/zero 56 * | | | | 57 * +--|--+ +--|--+ +-----+ + | + | +-----+ 58 * amap | V | | ---------> new | | | | ^ | 59 * +-----+ +-----+ +-----+ + | + | +--|--+ 60 * | | | 61 * +-----+ +-----+ +--|--+ | +--|--+ 62 * uobj | d/c | | d/c | | V | +----+ | 63 * +-----+ +-----+ +-----+ +-----+ 64 * 65 * d/c = don't care 66 * 67 * case [0]: layerless fault 68 * no amap or uobj is present. this is an error. 69 * 70 * case [1]: upper layer fault [anon active] 71 * 1A: [read] or [write with anon->an_ref == 1] 72 * I/O takes place in upper level anon and uobj is not touched. 73 * 1B: [write with anon->an_ref > 1] 74 * new anon is alloc'd and data is copied off ["COW"] 75 * 76 * case [2]: lower layer fault [uobj] 77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 78 * I/O takes place directly in object. 79 * 2B: [write to copy_on_write] or [read on NULL uobj] 80 * data is "promoted" from uobj to a new anon. 81 * if uobj is null, then we zero fill. 82 * 83 * we follow the standard UVM locking protocol ordering: 84 * 85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 86 * we hold a PG_BUSY page if we unlock for I/O 87 * 88 * 89 * the code is structured as follows: 90 * 91 * - init the "IN" params in the ufi structure 92 * ReFault: (ERESTART returned to the loop in uvm_fault_internal) 93 * - do lookups [locks maps], check protection, handle needs_copy 94 * - check for case 0 fault (error) 95 * - establish "range" of fault 96 * - if we have an amap lock it and extract the anons 97 * - if sequential advice deactivate pages behind us 98 * - at the same time check pmap for unmapped areas and anon for pages 99 * that we could map in (and do map it if found) 100 * - check object for resident pages that we could map in 101 * - if (case 2) goto Case2 102 * - >>> handle case 1 103 * - ensure source anon is resident in RAM 104 * - if case 1B alloc new anon and copy from source 105 * - map the correct page in 106 * Case2: 107 * - >>> handle case 2 108 * - ensure source page is resident (if uobj) 109 * - if case 2B alloc new anon and copy from source (could be zero 110 * fill if uobj == NULL) 111 * - map the correct page in 112 * - done! 113 * 114 * note on paging: 115 * if we have to do I/O we place a PG_BUSY page in the correct object, 116 * unlock everything, and do the I/O. when I/O is done we must reverify 117 * the state of the world before assuming that our data structures are 118 * valid. [because mappings could change while the map is unlocked] 119 * 120 * alternative 1: unbusy the page in question and restart the page fault 121 * from the top (ReFault). this is easy but does not take advantage 122 * of the information that we already have from our previous lookup, 123 * although it is possible that the "hints" in the vm_map will help here. 124 * 125 * alternative 2: the system already keeps track of a "version" number of 126 * a map. [i.e. every time you write-lock a map (e.g. to change a 127 * mapping) you bump the version number up by one...] so, we can save 128 * the version number of the map before we release the lock and start I/O. 129 * then when I/O is done we can relock and check the version numbers 130 * to see if anything changed. this might save us some over 1 because 131 * we don't have to unbusy the page and may be less compares(?). 132 * 133 * alternative 3: put in backpointers or a way to "hold" part of a map 134 * in place while I/O is in progress. this could be complex to 135 * implement (especially with structures like amap that can be referenced 136 * by multiple map entries, and figuring out what should wait could be 137 * complex as well...). 138 * 139 * we use alternative 2. given that we are multi-threaded now we may want 140 * to reconsider the choice. 141 */ 142 143 /* 144 * local data structures 145 */ 146 147 struct uvm_advice { 148 int advice; 149 int nback; 150 int nforw; 151 }; 152 153 /* 154 * page range array: 155 * note: index in array must match "advice" value 156 * XXX: borrowed numbers from freebsd. do they work well for us? 157 */ 158 159 static const struct uvm_advice uvmadvice[] = { 160 { UVM_ADV_NORMAL, 3, 4 }, 161 { UVM_ADV_RANDOM, 0, 0 }, 162 { UVM_ADV_SEQUENTIAL, 8, 7}, 163 }; 164 165 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */ 166 167 /* 168 * private prototypes 169 */ 170 171 /* 172 * externs from other modules 173 */ 174 175 extern int start_init_exec; /* Is init_main() done / init running? */ 176 177 /* 178 * inline functions 179 */ 180 181 /* 182 * uvmfault_anonflush: try and deactivate pages in specified anons 183 * 184 * => does not have to deactivate page if it is busy 185 */ 186 187 static inline void 188 uvmfault_anonflush(struct vm_anon **anons, int n) 189 { 190 int lcv; 191 struct vm_page *pg; 192 193 for (lcv = 0; lcv < n; lcv++) { 194 if (anons[lcv] == NULL) 195 continue; 196 KASSERT(mutex_owned(anons[lcv]->an_lock)); 197 pg = anons[lcv]->an_page; 198 if (pg && (pg->flags & PG_BUSY) == 0) { 199 mutex_enter(&uvm_pageqlock); 200 if (pg->wire_count == 0) { 201 uvm_pagedeactivate(pg); 202 } 203 mutex_exit(&uvm_pageqlock); 204 } 205 } 206 } 207 208 /* 209 * normal functions 210 */ 211 212 /* 213 * uvmfault_amapcopy: clear "needs_copy" in a map. 214 * 215 * => called with VM data structures unlocked (usually, see below) 216 * => we get a write lock on the maps and clear needs_copy for a VA 217 * => if we are out of RAM we sleep (waiting for more) 218 */ 219 220 static void 221 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 222 { 223 for (;;) { 224 225 /* 226 * no mapping? give up. 227 */ 228 229 if (uvmfault_lookup(ufi, true) == false) 230 return; 231 232 /* 233 * copy if needed. 234 */ 235 236 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 237 amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT, 238 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 239 240 /* 241 * didn't work? must be out of RAM. unlock and sleep. 242 */ 243 244 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 245 uvmfault_unlockmaps(ufi, true); 246 uvm_wait("fltamapcopy"); 247 continue; 248 } 249 250 /* 251 * got it! unlock and return. 252 */ 253 254 uvmfault_unlockmaps(ufi, true); 255 return; 256 } 257 /*NOTREACHED*/ 258 } 259 260 /* 261 * uvmfault_anonget: get data in an anon into a non-busy, non-released 262 * page in that anon. 263 * 264 * => Map, amap and thus anon should be locked by caller. 265 * => If we fail, we unlock everything and error is returned. 266 * => If we are successful, return with everything still locked. 267 * => We do not move the page on the queues [gets moved later]. If we 268 * allocate a new page [we_own], it gets put on the queues. Either way, 269 * the result is that the page is on the queues at return time 270 * => For pages which are on loan from a uvm_object (and thus are not owned 271 * by the anon): if successful, return with the owning object locked. 272 * The caller must unlock this object when it unlocks everything else. 273 */ 274 275 int 276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 277 struct vm_anon *anon) 278 { 279 struct vm_page *pg; 280 int error; 281 282 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist); 283 KASSERT(mutex_owned(anon->an_lock)); 284 KASSERT(anon->an_lock == amap->am_lock); 285 286 /* Increment the counters.*/ 287 uvmexp.fltanget++; 288 if (anon->an_page) { 289 curlwp->l_ru.ru_minflt++; 290 } else { 291 curlwp->l_ru.ru_majflt++; 292 } 293 error = 0; 294 295 /* 296 * Loop until we get the anon data, or fail. 297 */ 298 299 for (;;) { 300 bool we_own, locked; 301 /* 302 * Note: 'we_own' will become true if we set PG_BUSY on a page. 303 */ 304 we_own = false; 305 pg = anon->an_page; 306 307 /* 308 * If there is a resident page and it is loaned, then anon 309 * may not own it. Call out to uvm_anon_lockloanpg() to 310 * identify and lock the real owner of the page. 311 */ 312 313 if (pg && pg->loan_count) 314 pg = uvm_anon_lockloanpg(anon); 315 316 /* 317 * Is page resident? Make sure it is not busy/released. 318 */ 319 320 if (pg) { 321 322 /* 323 * at this point, if the page has a uobject [meaning 324 * we have it on loan], then that uobject is locked 325 * by us! if the page is busy, we drop all the 326 * locks (including uobject) and try again. 327 */ 328 329 if ((pg->flags & PG_BUSY) == 0) { 330 UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 331 return 0; 332 } 333 pg->flags |= PG_WANTED; 334 uvmexp.fltpgwait++; 335 336 /* 337 * The last unlock must be an atomic unlock and wait 338 * on the owner of page. 339 */ 340 341 if (pg->uobject) { 342 /* Owner of page is UVM object. */ 343 uvmfault_unlockall(ufi, amap, NULL); 344 UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 345 0,0,0); 346 UVM_UNLOCK_AND_WAIT(pg, 347 pg->uobject->vmobjlock, 348 false, "anonget1", 0); 349 } else { 350 /* Owner of page is anon. */ 351 uvmfault_unlockall(ufi, NULL, NULL); 352 UVMHIST_LOG(maphist, " unlock+wait on anon",0, 353 0,0,0); 354 UVM_UNLOCK_AND_WAIT(pg, anon->an_lock, 355 false, "anonget2", 0); 356 } 357 } else { 358 #if defined(VMSWAP) 359 /* 360 * No page, therefore allocate one. 361 */ 362 363 pg = uvm_pagealloc(NULL, 364 ufi != NULL ? ufi->orig_rvaddr : 0, 365 anon, ufi != NULL ? UVM_FLAG_COLORMATCH : 0); 366 if (pg == NULL) { 367 /* Out of memory. Wait a little. */ 368 uvmfault_unlockall(ufi, amap, NULL); 369 uvmexp.fltnoram++; 370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 371 0,0,0); 372 if (!uvm_reclaimable()) { 373 return ENOMEM; 374 } 375 uvm_wait("flt_noram1"); 376 } else { 377 /* PG_BUSY bit is set. */ 378 we_own = true; 379 uvmfault_unlockall(ufi, amap, NULL); 380 381 /* 382 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into 383 * the uvm_swap_get() function with all data 384 * structures unlocked. Note that it is OK 385 * to read an_swslot here, because we hold 386 * PG_BUSY on the page. 387 */ 388 uvmexp.pageins++; 389 error = uvm_swap_get(pg, anon->an_swslot, 390 PGO_SYNCIO); 391 392 /* 393 * We clean up after the I/O below in the 394 * 'we_own' case. 395 */ 396 } 397 #else 398 panic("%s: no page", __func__); 399 #endif /* defined(VMSWAP) */ 400 } 401 402 /* 403 * Re-lock the map and anon. 404 */ 405 406 locked = uvmfault_relock(ufi); 407 if (locked || we_own) { 408 mutex_enter(anon->an_lock); 409 } 410 411 /* 412 * If we own the page (i.e. we set PG_BUSY), then we need 413 * to clean up after the I/O. There are three cases to 414 * consider: 415 * 416 * 1) Page was released during I/O: free anon and ReFault. 417 * 2) I/O not OK. Free the page and cause the fault to fail. 418 * 3) I/O OK! Activate the page and sync with the non-we_own 419 * case (i.e. drop anon lock if not locked). 420 */ 421 422 if (we_own) { 423 #if defined(VMSWAP) 424 if (pg->flags & PG_WANTED) { 425 wakeup(pg); 426 } 427 if (error) { 428 429 /* 430 * Remove the swap slot from the anon and 431 * mark the anon as having no real slot. 432 * Do not free the swap slot, thus preventing 433 * it from being used again. 434 */ 435 436 if (anon->an_swslot > 0) { 437 uvm_swap_markbad(anon->an_swslot, 1); 438 } 439 anon->an_swslot = SWSLOT_BAD; 440 441 if ((pg->flags & PG_RELEASED) != 0) { 442 goto released; 443 } 444 445 /* 446 * Note: page was never !PG_BUSY, so it 447 * cannot be mapped and thus no need to 448 * pmap_page_protect() it. 449 */ 450 451 mutex_enter(&uvm_pageqlock); 452 uvm_pagefree(pg); 453 mutex_exit(&uvm_pageqlock); 454 455 if (locked) { 456 uvmfault_unlockall(ufi, NULL, NULL); 457 } 458 mutex_exit(anon->an_lock); 459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 460 return error; 461 } 462 463 if ((pg->flags & PG_RELEASED) != 0) { 464 released: 465 KASSERT(anon->an_ref == 0); 466 467 /* 468 * Released while we had unlocked amap. 469 */ 470 471 if (locked) { 472 uvmfault_unlockall(ufi, NULL, NULL); 473 } 474 uvm_anon_release(anon); 475 476 if (error) { 477 UVMHIST_LOG(maphist, 478 "<- ERROR/RELEASED", 0,0,0,0); 479 return error; 480 } 481 482 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0); 483 return ERESTART; 484 } 485 486 /* 487 * We have successfully read the page, activate it. 488 */ 489 490 mutex_enter(&uvm_pageqlock); 491 uvm_pageactivate(pg); 492 mutex_exit(&uvm_pageqlock); 493 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 494 UVM_PAGE_OWN(pg, NULL); 495 #else 496 panic("%s: we_own", __func__); 497 #endif /* defined(VMSWAP) */ 498 } 499 500 /* 501 * We were not able to re-lock the map - restart the fault. 502 */ 503 504 if (!locked) { 505 if (we_own) { 506 mutex_exit(anon->an_lock); 507 } 508 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 509 return ERESTART; 510 } 511 512 /* 513 * Verify that no one has touched the amap and moved 514 * the anon on us. 515 */ 516 517 if (ufi != NULL && amap_lookup(&ufi->entry->aref, 518 ufi->orig_rvaddr - ufi->entry->start) != anon) { 519 520 uvmfault_unlockall(ufi, amap, NULL); 521 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 522 return ERESTART; 523 } 524 525 /* 526 * Retry.. 527 */ 528 529 uvmexp.fltanretry++; 530 continue; 531 } 532 /*NOTREACHED*/ 533 } 534 535 /* 536 * uvmfault_promote: promote data to a new anon. used for 1B and 2B. 537 * 538 * 1. allocate an anon and a page. 539 * 2. fill its contents. 540 * 3. put it into amap. 541 * 542 * => if we fail (result != 0) we unlock everything. 543 * => on success, return a new locked anon via 'nanon'. 544 * (*nanon)->an_page will be a resident, locked, dirty page. 545 * => it's caller's responsibility to put the promoted nanon->an_page to the 546 * page queue. 547 */ 548 549 static int 550 uvmfault_promote(struct uvm_faultinfo *ufi, 551 struct vm_anon *oanon, 552 struct vm_page *uobjpage, 553 struct vm_anon **nanon, /* OUT: allocated anon */ 554 struct vm_anon **spare) 555 { 556 struct vm_amap *amap = ufi->entry->aref.ar_amap; 557 struct uvm_object *uobj; 558 struct vm_anon *anon; 559 struct vm_page *pg; 560 struct vm_page *opg; 561 int error; 562 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 563 564 if (oanon) { 565 /* anon COW */ 566 opg = oanon->an_page; 567 KASSERT(opg != NULL); 568 KASSERT(opg->uobject == NULL || opg->loan_count > 0); 569 } else if (uobjpage != PGO_DONTCARE) { 570 /* object-backed COW */ 571 opg = uobjpage; 572 } else { 573 /* ZFOD */ 574 opg = NULL; 575 } 576 if (opg != NULL) { 577 uobj = opg->uobject; 578 } else { 579 uobj = NULL; 580 } 581 582 KASSERT(amap != NULL); 583 KASSERT(uobjpage != NULL); 584 KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0); 585 KASSERT(mutex_owned(amap->am_lock)); 586 KASSERT(oanon == NULL || amap->am_lock == oanon->an_lock); 587 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 588 589 if (*spare != NULL) { 590 anon = *spare; 591 *spare = NULL; 592 } else { 593 anon = uvm_analloc(); 594 } 595 if (anon) { 596 597 /* 598 * The new anon is locked. 599 * 600 * if opg == NULL, we want a zero'd, dirty page, 601 * so have uvm_pagealloc() do that for us. 602 */ 603 604 KASSERT(anon->an_lock == NULL); 605 anon->an_lock = amap->am_lock; 606 pg = uvm_pagealloc(NULL, ufi->orig_rvaddr, anon, 607 UVM_FLAG_COLORMATCH | (opg == NULL ? UVM_PGA_ZERO : 0)); 608 if (pg == NULL) { 609 anon->an_lock = NULL; 610 } 611 } else { 612 pg = NULL; 613 } 614 615 /* 616 * out of memory resources? 617 */ 618 619 if (pg == NULL) { 620 /* save anon for the next try. */ 621 if (anon != NULL) { 622 *spare = anon; 623 } 624 625 /* unlock and fail ... */ 626 uvm_page_unbusy(&uobjpage, 1); 627 uvmfault_unlockall(ufi, amap, uobj); 628 if (!uvm_reclaimable()) { 629 UVMHIST_LOG(maphist, "out of VM", 0,0,0,0); 630 uvmexp.fltnoanon++; 631 error = ENOMEM; 632 goto done; 633 } 634 635 UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0); 636 uvmexp.fltnoram++; 637 uvm_wait("flt_noram5"); 638 error = ERESTART; 639 goto done; 640 } 641 642 /* copy page [pg now dirty] */ 643 if (opg) { 644 uvm_pagecopy(opg, pg); 645 } 646 647 amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon, 648 oanon != NULL); 649 650 *nanon = anon; 651 error = 0; 652 done: 653 return error; 654 } 655 656 /* 657 * Update statistics after fault resolution. 658 * - maxrss 659 */ 660 void 661 uvmfault_update_stats(struct uvm_faultinfo *ufi) 662 { 663 struct vm_map *map; 664 struct vmspace *vm; 665 struct proc *p; 666 vsize_t res; 667 668 map = ufi->orig_map; 669 670 p = curproc; 671 KASSERT(p != NULL); 672 vm = p->p_vmspace; 673 674 if (&vm->vm_map != map) 675 return; 676 677 res = pmap_resident_count(map->pmap); 678 if (vm->vm_rssmax < res) 679 vm->vm_rssmax = res; 680 } 681 682 /* 683 * F A U L T - m a i n e n t r y p o i n t 684 */ 685 686 /* 687 * uvm_fault: page fault handler 688 * 689 * => called from MD code to resolve a page fault 690 * => VM data structures usually should be unlocked. however, it is 691 * possible to call here with the main map locked if the caller 692 * gets a write lock, sets it recusive, and then calls us (c.f. 693 * uvm_map_pageable). this should be avoided because it keeps 694 * the map locked off during I/O. 695 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT 696 */ 697 698 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 699 ~VM_PROT_WRITE : VM_PROT_ALL) 700 701 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */ 702 #define UVM_FAULT_WIRE (1 << 0) 703 #define UVM_FAULT_MAXPROT (1 << 1) 704 705 struct uvm_faultctx { 706 707 /* 708 * the following members are set up by uvm_fault_check() and 709 * read-only after that. 710 * 711 * note that narrow is used by uvm_fault_check() to change 712 * the behaviour after ERESTART. 713 * 714 * most of them might change after RESTART if the underlying 715 * map entry has been changed behind us. an exception is 716 * wire_paging, which does never change. 717 */ 718 vm_prot_t access_type; 719 vaddr_t startva; 720 int npages; 721 int centeridx; 722 bool narrow; /* work on a single requested page only */ 723 bool wire_mapping; /* request a PMAP_WIRED mapping 724 (UVM_FAULT_WIRE or VM_MAPENT_ISWIRED) */ 725 bool wire_paging; /* request uvm_pagewire 726 (true for UVM_FAULT_WIRE) */ 727 bool cow_now; /* VM_PROT_WRITE is actually requested 728 (ie. should break COW and page loaning) */ 729 730 /* 731 * enter_prot is set up by uvm_fault_check() and clamped 732 * (ie. drop the VM_PROT_WRITE bit) in various places in case 733 * of !cow_now. 734 */ 735 vm_prot_t enter_prot; /* prot at which we want to enter pages in */ 736 737 /* 738 * the following member is for uvmfault_promote() and ERESTART. 739 */ 740 struct vm_anon *anon_spare; 741 742 /* 743 * the folloing is actually a uvm_fault_lower() internal. 744 * it's here merely for debugging. 745 * (or due to the mechanical separation of the function?) 746 */ 747 bool promote; 748 }; 749 750 static inline int uvm_fault_check( 751 struct uvm_faultinfo *, struct uvm_faultctx *, 752 struct vm_anon ***, bool); 753 754 static int uvm_fault_upper( 755 struct uvm_faultinfo *, struct uvm_faultctx *, 756 struct vm_anon **); 757 static inline int uvm_fault_upper_lookup( 758 struct uvm_faultinfo *, const struct uvm_faultctx *, 759 struct vm_anon **, struct vm_page **); 760 static inline void uvm_fault_upper_neighbor( 761 struct uvm_faultinfo *, const struct uvm_faultctx *, 762 vaddr_t, struct vm_page *, bool); 763 static inline int uvm_fault_upper_loan( 764 struct uvm_faultinfo *, struct uvm_faultctx *, 765 struct vm_anon *, struct uvm_object **); 766 static inline int uvm_fault_upper_promote( 767 struct uvm_faultinfo *, struct uvm_faultctx *, 768 struct uvm_object *, struct vm_anon *); 769 static inline int uvm_fault_upper_direct( 770 struct uvm_faultinfo *, struct uvm_faultctx *, 771 struct uvm_object *, struct vm_anon *); 772 static int uvm_fault_upper_enter( 773 struct uvm_faultinfo *, const struct uvm_faultctx *, 774 struct uvm_object *, struct vm_anon *, 775 struct vm_page *, struct vm_anon *); 776 static inline void uvm_fault_upper_done( 777 struct uvm_faultinfo *, const struct uvm_faultctx *, 778 struct vm_anon *, struct vm_page *); 779 780 static int uvm_fault_lower( 781 struct uvm_faultinfo *, struct uvm_faultctx *, 782 struct vm_page **); 783 static inline void uvm_fault_lower_lookup( 784 struct uvm_faultinfo *, const struct uvm_faultctx *, 785 struct vm_page **); 786 static inline void uvm_fault_lower_neighbor( 787 struct uvm_faultinfo *, const struct uvm_faultctx *, 788 vaddr_t, struct vm_page *, bool); 789 static inline int uvm_fault_lower_io( 790 struct uvm_faultinfo *, const struct uvm_faultctx *, 791 struct uvm_object **, struct vm_page **); 792 static inline int uvm_fault_lower_direct( 793 struct uvm_faultinfo *, struct uvm_faultctx *, 794 struct uvm_object *, struct vm_page *); 795 static inline int uvm_fault_lower_direct_loan( 796 struct uvm_faultinfo *, struct uvm_faultctx *, 797 struct uvm_object *, struct vm_page **, 798 struct vm_page **); 799 static inline int uvm_fault_lower_promote( 800 struct uvm_faultinfo *, struct uvm_faultctx *, 801 struct uvm_object *, struct vm_page *); 802 static int uvm_fault_lower_enter( 803 struct uvm_faultinfo *, const struct uvm_faultctx *, 804 struct uvm_object *, 805 struct vm_anon *, struct vm_page *); 806 static inline void uvm_fault_lower_done( 807 struct uvm_faultinfo *, const struct uvm_faultctx *, 808 struct uvm_object *, struct vm_page *); 809 810 int 811 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr, 812 vm_prot_t access_type, int fault_flag) 813 { 814 struct cpu_data *cd; 815 struct uvm_cpu *ucpu; 816 struct uvm_faultinfo ufi; 817 struct uvm_faultctx flt = { 818 .access_type = access_type, 819 820 /* don't look for neighborhood * pages on "wire" fault */ 821 .narrow = (fault_flag & UVM_FAULT_WIRE) != 0, 822 823 /* "wire" fault causes wiring of both mapping and paging */ 824 .wire_mapping = (fault_flag & UVM_FAULT_WIRE) != 0, 825 .wire_paging = (fault_flag & UVM_FAULT_WIRE) != 0, 826 }; 827 const bool maxprot = (fault_flag & UVM_FAULT_MAXPROT) != 0; 828 struct vm_anon *anons_store[UVM_MAXRANGE], **anons; 829 struct vm_page *pages_store[UVM_MAXRANGE], **pages; 830 int error; 831 832 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist); 833 834 UVMHIST_LOG(maphist, "(map=%#jx, vaddr=%#jx, at=%jd, ff=%jd)", 835 (uintptr_t)orig_map, vaddr, access_type, fault_flag); 836 837 cd = &(curcpu()->ci_data); 838 cd->cpu_nfault++; 839 ucpu = cd->cpu_uvm; 840 841 /* Don't flood RNG subsystem with samples. */ 842 if (cd->cpu_nfault % 503) 843 goto norng; 844 845 /* Don't count anything until user interaction is possible */ 846 if (__predict_true(start_init_exec)) { 847 kpreempt_disable(); 848 rnd_add_uint32(&ucpu->rs, 849 sizeof(vaddr_t) == sizeof(uint32_t) ? 850 (uint32_t)vaddr : sizeof(vaddr_t) == 851 sizeof(uint64_t) ? 852 (uint32_t)(vaddr & 0x00000000ffffffff) : 853 (uint32_t)(cd->cpu_nfault & 0x00000000ffffffff)); 854 kpreempt_enable(); 855 } 856 norng: 857 /* 858 * init the IN parameters in the ufi 859 */ 860 861 ufi.orig_map = orig_map; 862 ufi.orig_rvaddr = trunc_page(vaddr); 863 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 864 865 error = ERESTART; 866 while (error == ERESTART) { /* ReFault: */ 867 anons = anons_store; 868 pages = pages_store; 869 870 error = uvm_fault_check(&ufi, &flt, &anons, maxprot); 871 if (error != 0) 872 continue; 873 874 error = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); 875 if (error != 0) 876 continue; 877 878 if (pages[flt.centeridx] == PGO_DONTCARE) 879 error = uvm_fault_upper(&ufi, &flt, anons); 880 else { 881 struct uvm_object * const uobj = 882 ufi.entry->object.uvm_obj; 883 884 if (uobj && uobj->pgops->pgo_fault != NULL) { 885 /* 886 * invoke "special" fault routine. 887 */ 888 mutex_enter(uobj->vmobjlock); 889 /* locked: maps(read), amap(if there), uobj */ 890 error = uobj->pgops->pgo_fault(&ufi, 891 flt.startva, pages, flt.npages, 892 flt.centeridx, flt.access_type, 893 PGO_LOCKED|PGO_SYNCIO); 894 895 /* 896 * locked: nothing, pgo_fault has unlocked 897 * everything 898 */ 899 900 /* 901 * object fault routine responsible for 902 * pmap_update(). 903 */ 904 905 /* 906 * Wake up the pagedaemon if the fault method 907 * failed for lack of memory but some can be 908 * reclaimed. 909 */ 910 if (error == ENOMEM && uvm_reclaimable()) { 911 uvm_wait("pgo_fault"); 912 error = ERESTART; 913 } 914 } else { 915 error = uvm_fault_lower(&ufi, &flt, pages); 916 } 917 } 918 } 919 920 if (flt.anon_spare != NULL) { 921 flt.anon_spare->an_ref--; 922 KASSERT(flt.anon_spare->an_ref == 0); 923 KASSERT(flt.anon_spare->an_lock == NULL); 924 uvm_anon_free(flt.anon_spare); 925 } 926 return error; 927 } 928 929 /* 930 * uvm_fault_check: check prot, handle needs-copy, etc. 931 * 932 * 1. lookup entry. 933 * 2. check protection. 934 * 3. adjust fault condition (mainly for simulated fault). 935 * 4. handle needs-copy (lazy amap copy). 936 * 5. establish range of interest for neighbor fault (aka pre-fault). 937 * 6. look up anons (if amap exists). 938 * 7. flush pages (if MADV_SEQUENTIAL) 939 * 940 * => called with nothing locked. 941 * => if we fail (result != 0) we unlock everything. 942 * => initialize/adjust many members of flt. 943 */ 944 945 static int 946 uvm_fault_check( 947 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 948 struct vm_anon ***ranons, bool maxprot) 949 { 950 struct vm_amap *amap; 951 struct uvm_object *uobj; 952 vm_prot_t check_prot; 953 int nback, nforw; 954 UVMHIST_FUNC("uvm_fault_check"); UVMHIST_CALLED(maphist); 955 956 /* 957 * lookup and lock the maps 958 */ 959 960 if (uvmfault_lookup(ufi, false) == false) { 961 UVMHIST_LOG(maphist, "<- no mapping @ 0x%#jx", ufi->orig_rvaddr, 962 0,0,0); 963 return EFAULT; 964 } 965 /* locked: maps(read) */ 966 967 #ifdef DIAGNOSTIC 968 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) { 969 printf("Page fault on non-pageable map:\n"); 970 printf("ufi->map = %p\n", ufi->map); 971 printf("ufi->orig_map = %p\n", ufi->orig_map); 972 printf("ufi->orig_rvaddr = 0x%lx\n", (u_long) ufi->orig_rvaddr); 973 panic("uvm_fault: (ufi->map->flags & VM_MAP_PAGEABLE) == 0"); 974 } 975 #endif 976 977 /* 978 * check protection 979 */ 980 981 check_prot = maxprot ? 982 ufi->entry->max_protection : ufi->entry->protection; 983 if ((check_prot & flt->access_type) != flt->access_type) { 984 UVMHIST_LOG(maphist, 985 "<- protection failure (prot=%#jx, access=%#jx)", 986 ufi->entry->protection, flt->access_type, 0, 0); 987 uvmfault_unlockmaps(ufi, false); 988 return EFAULT; 989 } 990 991 /* 992 * "enter_prot" is the protection we want to enter the page in at. 993 * for certain pages (e.g. copy-on-write pages) this protection can 994 * be more strict than ufi->entry->protection. "wired" means either 995 * the entry is wired or we are fault-wiring the pg. 996 */ 997 998 flt->enter_prot = ufi->entry->protection; 999 if (VM_MAPENT_ISWIRED(ufi->entry)) { 1000 flt->wire_mapping = true; 1001 flt->wire_paging = true; 1002 flt->narrow = true; 1003 } 1004 1005 if (flt->wire_mapping) { 1006 flt->access_type = flt->enter_prot; /* full access for wired */ 1007 flt->cow_now = (check_prot & VM_PROT_WRITE) != 0; 1008 } else { 1009 flt->cow_now = (flt->access_type & VM_PROT_WRITE) != 0; 1010 } 1011 1012 flt->promote = false; 1013 1014 /* 1015 * handle "needs_copy" case. if we need to copy the amap we will 1016 * have to drop our readlock and relock it with a write lock. (we 1017 * need a write lock to change anything in a map entry [e.g. 1018 * needs_copy]). 1019 */ 1020 1021 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 1022 if (flt->cow_now || (ufi->entry->object.uvm_obj == NULL)) { 1023 KASSERT(!maxprot); 1024 /* need to clear */ 1025 UVMHIST_LOG(maphist, 1026 " need to clear needs_copy and refault",0,0,0,0); 1027 uvmfault_unlockmaps(ufi, false); 1028 uvmfault_amapcopy(ufi); 1029 uvmexp.fltamcopy++; 1030 return ERESTART; 1031 1032 } else { 1033 1034 /* 1035 * ensure that we pmap_enter page R/O since 1036 * needs_copy is still true 1037 */ 1038 1039 flt->enter_prot &= ~VM_PROT_WRITE; 1040 } 1041 } 1042 1043 /* 1044 * identify the players 1045 */ 1046 1047 amap = ufi->entry->aref.ar_amap; /* upper layer */ 1048 uobj = ufi->entry->object.uvm_obj; /* lower layer */ 1049 1050 /* 1051 * check for a case 0 fault. if nothing backing the entry then 1052 * error now. 1053 */ 1054 1055 if (amap == NULL && uobj == NULL) { 1056 uvmfault_unlockmaps(ufi, false); 1057 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 1058 return EFAULT; 1059 } 1060 1061 /* 1062 * establish range of interest based on advice from mapper 1063 * and then clip to fit map entry. note that we only want 1064 * to do this the first time through the fault. if we 1065 * ReFault we will disable this by setting "narrow" to true. 1066 */ 1067 1068 if (flt->narrow == false) { 1069 1070 /* wide fault (!narrow) */ 1071 KASSERT(uvmadvice[ufi->entry->advice].advice == 1072 ufi->entry->advice); 1073 nback = MIN(uvmadvice[ufi->entry->advice].nback, 1074 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT); 1075 flt->startva = ufi->orig_rvaddr - (nback << PAGE_SHIFT); 1076 /* 1077 * note: "-1" because we don't want to count the 1078 * faulting page as forw 1079 */ 1080 nforw = MIN(uvmadvice[ufi->entry->advice].nforw, 1081 ((ufi->entry->end - ufi->orig_rvaddr) >> 1082 PAGE_SHIFT) - 1); 1083 flt->npages = nback + nforw + 1; 1084 flt->centeridx = nback; 1085 1086 flt->narrow = true; /* ensure only once per-fault */ 1087 1088 } else { 1089 1090 /* narrow fault! */ 1091 nback = nforw = 0; 1092 flt->startva = ufi->orig_rvaddr; 1093 flt->npages = 1; 1094 flt->centeridx = 0; 1095 1096 } 1097 /* offset from entry's start to pgs' start */ 1098 const voff_t eoff = flt->startva - ufi->entry->start; 1099 1100 /* locked: maps(read) */ 1101 UVMHIST_LOG(maphist, " narrow=%jd, back=%jd, forw=%jd, startva=%#jx", 1102 flt->narrow, nback, nforw, flt->startva); 1103 UVMHIST_LOG(maphist, " entry=%#jx, amap=%#jx, obj=%#jx", 1104 (uintptr_t)ufi->entry, (uintptr_t)amap, (uintptr_t)uobj, 0); 1105 1106 /* 1107 * if we've got an amap, lock it and extract current anons. 1108 */ 1109 1110 if (amap) { 1111 amap_lock(amap); 1112 amap_lookups(&ufi->entry->aref, eoff, *ranons, flt->npages); 1113 } else { 1114 *ranons = NULL; /* to be safe */ 1115 } 1116 1117 /* locked: maps(read), amap(if there) */ 1118 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1119 1120 /* 1121 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 1122 * now and then forget about them (for the rest of the fault). 1123 */ 1124 1125 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) { 1126 1127 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 1128 0,0,0,0); 1129 /* flush back-page anons? */ 1130 if (amap) 1131 uvmfault_anonflush(*ranons, nback); 1132 1133 /* flush object? */ 1134 if (uobj) { 1135 voff_t uoff; 1136 1137 uoff = ufi->entry->offset + eoff; 1138 mutex_enter(uobj->vmobjlock); 1139 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff + 1140 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 1141 } 1142 1143 /* now forget about the backpages */ 1144 if (amap) 1145 *ranons += nback; 1146 flt->startva += (nback << PAGE_SHIFT); 1147 flt->npages -= nback; 1148 flt->centeridx = 0; 1149 } 1150 /* 1151 * => startva is fixed 1152 * => npages is fixed 1153 */ 1154 KASSERT(flt->startva <= ufi->orig_rvaddr); 1155 KASSERT(ufi->orig_rvaddr + ufi->orig_size <= 1156 flt->startva + (flt->npages << PAGE_SHIFT)); 1157 return 0; 1158 } 1159 1160 /* 1161 * uvm_fault_upper_lookup: look up existing h/w mapping and amap. 1162 * 1163 * iterate range of interest: 1164 * 1. check if h/w mapping exists. if yes, we don't care 1165 * 2. check if anon exists. if not, page is lower. 1166 * 3. if anon exists, enter h/w mapping for neighbors. 1167 * 1168 * => called with amap locked (if exists). 1169 */ 1170 1171 static int 1172 uvm_fault_upper_lookup( 1173 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1174 struct vm_anon **anons, struct vm_page **pages) 1175 { 1176 struct vm_amap *amap = ufi->entry->aref.ar_amap; 1177 int lcv; 1178 vaddr_t currva; 1179 bool shadowed __unused; 1180 UVMHIST_FUNC("uvm_fault_upper_lookup"); UVMHIST_CALLED(maphist); 1181 1182 /* locked: maps(read), amap(if there) */ 1183 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1184 1185 /* 1186 * map in the backpages and frontpages we found in the amap in hopes 1187 * of preventing future faults. we also init the pages[] array as 1188 * we go. 1189 */ 1190 1191 currva = flt->startva; 1192 shadowed = false; 1193 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1194 /* 1195 * don't play with VAs that are already mapped 1196 * (except for center) 1197 */ 1198 if (lcv != flt->centeridx && 1199 pmap_extract(ufi->orig_map->pmap, currva, NULL)) { 1200 pages[lcv] = PGO_DONTCARE; 1201 continue; 1202 } 1203 1204 /* 1205 * unmapped or center page. check if any anon at this level. 1206 */ 1207 if (amap == NULL || anons[lcv] == NULL) { 1208 pages[lcv] = NULL; 1209 continue; 1210 } 1211 1212 /* 1213 * check for present page and map if possible. re-activate it. 1214 */ 1215 1216 pages[lcv] = PGO_DONTCARE; 1217 if (lcv == flt->centeridx) { /* save center for later! */ 1218 shadowed = true; 1219 continue; 1220 } 1221 1222 struct vm_anon *anon = anons[lcv]; 1223 struct vm_page *pg = anon->an_page; 1224 1225 KASSERT(anon->an_lock == amap->am_lock); 1226 1227 /* Ignore loaned and busy pages. */ 1228 if (pg && pg->loan_count == 0 && (pg->flags & PG_BUSY) == 0) { 1229 uvm_fault_upper_neighbor(ufi, flt, currva, 1230 pg, anon->an_ref > 1); 1231 } 1232 } 1233 1234 /* locked: maps(read), amap(if there) */ 1235 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1236 /* (shadowed == true) if there is an anon at the faulting address */ 1237 UVMHIST_LOG(maphist, " shadowed=%jd, will_get=%jd", shadowed, 1238 (ufi->entry->object.uvm_obj && shadowed != false),0,0); 1239 1240 /* 1241 * note that if we are really short of RAM we could sleep in the above 1242 * call to pmap_enter with everything locked. bad? 1243 * 1244 * XXX Actually, that is bad; pmap_enter() should just fail in that 1245 * XXX case. --thorpej 1246 */ 1247 1248 return 0; 1249 } 1250 1251 /* 1252 * uvm_fault_upper_neighbor: enter single upper neighbor page. 1253 * 1254 * => called with amap and anon locked. 1255 */ 1256 1257 static void 1258 uvm_fault_upper_neighbor( 1259 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1260 vaddr_t currva, struct vm_page *pg, bool readonly) 1261 { 1262 UVMHIST_FUNC("uvm_fault_upper_neighbor"); UVMHIST_CALLED(maphist); 1263 1264 /* locked: amap, anon */ 1265 1266 mutex_enter(&uvm_pageqlock); 1267 uvm_pageenqueue(pg); 1268 mutex_exit(&uvm_pageqlock); 1269 UVMHIST_LOG(maphist, 1270 " MAPPING: n anon: pm=%#jx, va=%#jx, pg=%#jx", 1271 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 1272 uvmexp.fltnamap++; 1273 1274 /* 1275 * Since this page isn't the page that's actually faulting, 1276 * ignore pmap_enter() failures; it's not critical that we 1277 * enter these right now. 1278 */ 1279 1280 (void) pmap_enter(ufi->orig_map->pmap, currva, 1281 VM_PAGE_TO_PHYS(pg), 1282 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1283 flt->enter_prot, 1284 PMAP_CANFAIL | (flt->wire_mapping ? PMAP_WIRED : 0)); 1285 1286 pmap_update(ufi->orig_map->pmap); 1287 } 1288 1289 /* 1290 * uvm_fault_upper: handle upper fault. 1291 * 1292 * 1. acquire anon lock. 1293 * 2. get anon. let uvmfault_anonget do the dirty work. 1294 * 3. handle loan. 1295 * 4. dispatch direct or promote handlers. 1296 */ 1297 1298 static int 1299 uvm_fault_upper( 1300 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1301 struct vm_anon **anons) 1302 { 1303 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1304 struct vm_anon * const anon = anons[flt->centeridx]; 1305 struct uvm_object *uobj; 1306 int error; 1307 UVMHIST_FUNC("uvm_fault_upper"); UVMHIST_CALLED(maphist); 1308 1309 /* locked: maps(read), amap, anon */ 1310 KASSERT(mutex_owned(amap->am_lock)); 1311 KASSERT(anon->an_lock == amap->am_lock); 1312 1313 /* 1314 * handle case 1: fault on an anon in our amap 1315 */ 1316 1317 UVMHIST_LOG(maphist, " case 1 fault: anon=%#jx", 1318 (uintptr_t)anon, 0, 0, 0); 1319 1320 /* 1321 * no matter if we have case 1A or case 1B we are going to need to 1322 * have the anon's memory resident. ensure that now. 1323 */ 1324 1325 /* 1326 * let uvmfault_anonget do the dirty work. 1327 * if it fails (!OK) it will unlock everything for us. 1328 * if it succeeds, locks are still valid and locked. 1329 * also, if it is OK, then the anon's page is on the queues. 1330 * if the page is on loan from a uvm_object, then anonget will 1331 * lock that object for us if it does not fail. 1332 */ 1333 1334 error = uvmfault_anonget(ufi, amap, anon); 1335 switch (error) { 1336 case 0: 1337 break; 1338 1339 case ERESTART: 1340 return ERESTART; 1341 1342 case EAGAIN: 1343 kpause("fltagain1", false, hz/2, NULL); 1344 return ERESTART; 1345 1346 default: 1347 return error; 1348 } 1349 1350 /* 1351 * uobj is non null if the page is on loan from an object (i.e. uobj) 1352 */ 1353 1354 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1355 1356 /* locked: maps(read), amap, anon, uobj(if one) */ 1357 KASSERT(mutex_owned(amap->am_lock)); 1358 KASSERT(anon->an_lock == amap->am_lock); 1359 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1360 1361 /* 1362 * special handling for loaned pages 1363 */ 1364 1365 if (anon->an_page->loan_count) { 1366 error = uvm_fault_upper_loan(ufi, flt, anon, &uobj); 1367 if (error != 0) 1368 return error; 1369 } 1370 1371 /* 1372 * if we are case 1B then we will need to allocate a new blank 1373 * anon to transfer the data into. note that we have a lock 1374 * on anon, so no one can busy or release the page until we are done. 1375 * also note that the ref count can't drop to zero here because 1376 * it is > 1 and we are only dropping one ref. 1377 * 1378 * in the (hopefully very rare) case that we are out of RAM we 1379 * will unlock, wait for more RAM, and refault. 1380 * 1381 * if we are out of anon VM we kill the process (XXX: could wait?). 1382 */ 1383 1384 if (flt->cow_now && anon->an_ref > 1) { 1385 flt->promote = true; 1386 error = uvm_fault_upper_promote(ufi, flt, uobj, anon); 1387 } else { 1388 error = uvm_fault_upper_direct(ufi, flt, uobj, anon); 1389 } 1390 return error; 1391 } 1392 1393 /* 1394 * uvm_fault_upper_loan: handle loaned upper page. 1395 * 1396 * 1. if not cow'ing now, simply adjust flt->enter_prot. 1397 * 2. if cow'ing now, and if ref count is 1, break loan. 1398 */ 1399 1400 static int 1401 uvm_fault_upper_loan( 1402 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1403 struct vm_anon *anon, struct uvm_object **ruobj) 1404 { 1405 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1406 int error = 0; 1407 UVMHIST_FUNC("uvm_fault_upper_loan"); UVMHIST_CALLED(maphist); 1408 1409 if (!flt->cow_now) { 1410 1411 /* 1412 * for read faults on loaned pages we just cap the 1413 * protection at read-only. 1414 */ 1415 1416 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1417 1418 } else { 1419 /* 1420 * note that we can't allow writes into a loaned page! 1421 * 1422 * if we have a write fault on a loaned page in an 1423 * anon then we need to look at the anon's ref count. 1424 * if it is greater than one then we are going to do 1425 * a normal copy-on-write fault into a new anon (this 1426 * is not a problem). however, if the reference count 1427 * is one (a case where we would normally allow a 1428 * write directly to the page) then we need to kill 1429 * the loan before we continue. 1430 */ 1431 1432 /* >1 case is already ok */ 1433 if (anon->an_ref == 1) { 1434 error = uvm_loanbreak_anon(anon, *ruobj); 1435 if (error != 0) { 1436 uvmfault_unlockall(ufi, amap, *ruobj); 1437 uvm_wait("flt_noram2"); 1438 return ERESTART; 1439 } 1440 /* if we were a loan receiver uobj is gone */ 1441 if (*ruobj) 1442 *ruobj = NULL; 1443 } 1444 } 1445 return error; 1446 } 1447 1448 /* 1449 * uvm_fault_upper_promote: promote upper page. 1450 * 1451 * 1. call uvmfault_promote. 1452 * 2. enqueue page. 1453 * 3. deref. 1454 * 4. pass page to uvm_fault_upper_enter. 1455 */ 1456 1457 static int 1458 uvm_fault_upper_promote( 1459 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1460 struct uvm_object *uobj, struct vm_anon *anon) 1461 { 1462 struct vm_anon * const oanon = anon; 1463 struct vm_page *pg; 1464 int error; 1465 UVMHIST_FUNC("uvm_fault_upper_promote"); UVMHIST_CALLED(maphist); 1466 1467 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1468 uvmexp.flt_acow++; 1469 1470 error = uvmfault_promote(ufi, oanon, PGO_DONTCARE, &anon, 1471 &flt->anon_spare); 1472 switch (error) { 1473 case 0: 1474 break; 1475 case ERESTART: 1476 return ERESTART; 1477 default: 1478 return error; 1479 } 1480 1481 KASSERT(anon == NULL || anon->an_lock == oanon->an_lock); 1482 1483 pg = anon->an_page; 1484 mutex_enter(&uvm_pageqlock); 1485 uvm_pageenqueue(pg); /* uvm_fault_upper_done will activate the page */ 1486 mutex_exit(&uvm_pageqlock); 1487 pg->flags &= ~(PG_BUSY|PG_FAKE); 1488 UVM_PAGE_OWN(pg, NULL); 1489 1490 /* deref: can not drop to zero here by defn! */ 1491 KASSERT(oanon->an_ref > 1); 1492 oanon->an_ref--; 1493 1494 /* 1495 * note: oanon is still locked, as is the new anon. we 1496 * need to check for this later when we unlock oanon; if 1497 * oanon != anon, we'll have to unlock anon, too. 1498 */ 1499 1500 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1501 } 1502 1503 /* 1504 * uvm_fault_upper_direct: handle direct fault. 1505 */ 1506 1507 static int 1508 uvm_fault_upper_direct( 1509 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1510 struct uvm_object *uobj, struct vm_anon *anon) 1511 { 1512 struct vm_anon * const oanon = anon; 1513 struct vm_page *pg; 1514 UVMHIST_FUNC("uvm_fault_upper_direct"); UVMHIST_CALLED(maphist); 1515 1516 uvmexp.flt_anon++; 1517 pg = anon->an_page; 1518 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1519 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 1520 1521 return uvm_fault_upper_enter(ufi, flt, uobj, anon, pg, oanon); 1522 } 1523 1524 /* 1525 * uvm_fault_upper_enter: enter h/w mapping of upper page. 1526 */ 1527 1528 static int 1529 uvm_fault_upper_enter( 1530 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1531 struct uvm_object *uobj, struct vm_anon *anon, struct vm_page *pg, 1532 struct vm_anon *oanon) 1533 { 1534 struct pmap *pmap = ufi->orig_map->pmap; 1535 vaddr_t va = ufi->orig_rvaddr; 1536 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1537 UVMHIST_FUNC("uvm_fault_upper_enter"); UVMHIST_CALLED(maphist); 1538 1539 /* locked: maps(read), amap, oanon, anon(if different from oanon) */ 1540 KASSERT(mutex_owned(amap->am_lock)); 1541 KASSERT(anon->an_lock == amap->am_lock); 1542 KASSERT(oanon->an_lock == amap->am_lock); 1543 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1544 1545 /* 1546 * now map the page in. 1547 */ 1548 1549 UVMHIST_LOG(maphist, 1550 " MAPPING: anon: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 1551 (uintptr_t)pmap, va, (uintptr_t)pg, flt->promote); 1552 if (pmap_enter(pmap, va, VM_PAGE_TO_PHYS(pg), 1553 flt->enter_prot, flt->access_type | PMAP_CANFAIL | 1554 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 1555 1556 /* 1557 * If pmap_enter() fails, it must not leave behind an existing 1558 * pmap entry. In particular, a now-stale entry for a different 1559 * page would leave the pmap inconsistent with the vm_map. 1560 * This is not to imply that pmap_enter() should remove an 1561 * existing mapping in such a situation (since that could create 1562 * different problems, eg. if the existing mapping is wired), 1563 * but rather that the pmap should be designed such that it 1564 * never needs to fail when the new mapping is replacing an 1565 * existing mapping and the new page has no existing mappings. 1566 */ 1567 1568 KASSERT(!pmap_extract(pmap, va, NULL)); 1569 1570 /* 1571 * No need to undo what we did; we can simply think of 1572 * this as the pmap throwing away the mapping information. 1573 * 1574 * We do, however, have to go through the ReFault path, 1575 * as the map may change while we're asleep. 1576 */ 1577 1578 uvmfault_unlockall(ufi, amap, uobj); 1579 if (!uvm_reclaimable()) { 1580 UVMHIST_LOG(maphist, 1581 "<- failed. out of VM",0,0,0,0); 1582 /* XXX instrumentation */ 1583 return ENOMEM; 1584 } 1585 /* XXX instrumentation */ 1586 uvm_wait("flt_pmfail1"); 1587 return ERESTART; 1588 } 1589 1590 uvm_fault_upper_done(ufi, flt, anon, pg); 1591 1592 /* 1593 * done case 1! finish up by unlocking everything and returning success 1594 */ 1595 1596 pmap_update(pmap); 1597 uvmfault_unlockall(ufi, amap, uobj); 1598 return 0; 1599 } 1600 1601 /* 1602 * uvm_fault_upper_done: queue upper center page. 1603 */ 1604 1605 static void 1606 uvm_fault_upper_done( 1607 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1608 struct vm_anon *anon, struct vm_page *pg) 1609 { 1610 const bool wire_paging = flt->wire_paging; 1611 1612 UVMHIST_FUNC("uvm_fault_upper_done"); UVMHIST_CALLED(maphist); 1613 1614 /* 1615 * ... update the page queues. 1616 */ 1617 1618 mutex_enter(&uvm_pageqlock); 1619 if (wire_paging) { 1620 uvm_pagewire(pg); 1621 1622 /* 1623 * since the now-wired page cannot be paged out, 1624 * release its swap resources for others to use. 1625 * since an anon with no swap cannot be PG_CLEAN, 1626 * clear its clean flag now. 1627 */ 1628 1629 pg->flags &= ~(PG_CLEAN); 1630 1631 } else { 1632 uvm_pageactivate(pg); 1633 } 1634 mutex_exit(&uvm_pageqlock); 1635 1636 if (wire_paging) { 1637 uvm_anon_dropswap(anon); 1638 } 1639 } 1640 1641 /* 1642 * uvm_fault_lower: handle lower fault. 1643 * 1644 * 1. check uobj 1645 * 1.1. if null, ZFOD. 1646 * 1.2. if not null, look up unnmapped neighbor pages. 1647 * 2. for center page, check if promote. 1648 * 2.1. ZFOD always needs promotion. 1649 * 2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode). 1650 * 3. if uobj is not ZFOD and page is not found, do i/o. 1651 * 4. dispatch either direct / promote fault. 1652 */ 1653 1654 static int 1655 uvm_fault_lower( 1656 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1657 struct vm_page **pages) 1658 { 1659 struct vm_amap *amap __diagused = ufi->entry->aref.ar_amap; 1660 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1661 struct vm_page *uobjpage; 1662 int error; 1663 UVMHIST_FUNC("uvm_fault_lower"); UVMHIST_CALLED(maphist); 1664 1665 /* 1666 * now, if the desired page is not shadowed by the amap and we have 1667 * a backing object that does not have a special fault routine, then 1668 * we ask (with pgo_get) the object for resident pages that we care 1669 * about and attempt to map them in. we do not let pgo_get block 1670 * (PGO_LOCKED). 1671 */ 1672 1673 if (uobj == NULL) { 1674 /* zero fill; don't care neighbor pages */ 1675 uobjpage = NULL; 1676 } else { 1677 uvm_fault_lower_lookup(ufi, flt, pages); 1678 uobjpage = pages[flt->centeridx]; 1679 } 1680 1681 /* 1682 * note that at this point we are done with any front or back pages. 1683 * we are now going to focus on the center page (i.e. the one we've 1684 * faulted on). if we have faulted on the upper (anon) layer 1685 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 1686 * not touched it yet). if we have faulted on the bottom (uobj) 1687 * layer [i.e. case 2] and the page was both present and available, 1688 * then we've got a pointer to it as "uobjpage" and we've already 1689 * made it BUSY. 1690 */ 1691 1692 /* 1693 * locked: 1694 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1695 */ 1696 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1697 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1698 KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0); 1699 1700 /* 1701 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1702 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1703 * have a backing object, check and see if we are going to promote 1704 * the data up to an anon during the fault. 1705 */ 1706 1707 if (uobj == NULL) { 1708 uobjpage = PGO_DONTCARE; 1709 flt->promote = true; /* always need anon here */ 1710 } else { 1711 KASSERT(uobjpage != PGO_DONTCARE); 1712 flt->promote = flt->cow_now && UVM_ET_ISCOPYONWRITE(ufi->entry); 1713 } 1714 UVMHIST_LOG(maphist, " case 2 fault: promote=%jd, zfill=%jd", 1715 flt->promote, (uobj == NULL), 0,0); 1716 1717 /* 1718 * if uobjpage is not null then we do not need to do I/O to get the 1719 * uobjpage. 1720 * 1721 * if uobjpage is null, then we need to unlock and ask the pager to 1722 * get the data for us. once we have the data, we need to reverify 1723 * the state the world. we are currently not holding any resources. 1724 */ 1725 1726 if (uobjpage) { 1727 /* update rusage counters */ 1728 curlwp->l_ru.ru_minflt++; 1729 } else { 1730 error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage); 1731 if (error != 0) 1732 return error; 1733 } 1734 1735 /* 1736 * locked: 1737 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1738 */ 1739 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 1740 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1741 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 1742 1743 /* 1744 * notes: 1745 * - at this point uobjpage can not be NULL 1746 * - at this point uobjpage can not be PG_RELEASED (since we checked 1747 * for it above) 1748 * - at this point uobjpage could be PG_WANTED (handle later) 1749 */ 1750 1751 KASSERT(uobjpage != NULL); 1752 KASSERT(uobj == NULL || uobj == uobjpage->uobject); 1753 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) || 1754 (uobjpage->flags & PG_CLEAN) != 0); 1755 1756 if (!flt->promote) { 1757 error = uvm_fault_lower_direct(ufi, flt, uobj, uobjpage); 1758 } else { 1759 error = uvm_fault_lower_promote(ufi, flt, uobj, uobjpage); 1760 } 1761 return error; 1762 } 1763 1764 /* 1765 * uvm_fault_lower_lookup: look up on-memory uobj pages. 1766 * 1767 * 1. get on-memory pages. 1768 * 2. if failed, give up (get only center page later). 1769 * 3. if succeeded, enter h/w mapping of neighbor pages. 1770 */ 1771 1772 static void 1773 uvm_fault_lower_lookup( 1774 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1775 struct vm_page **pages) 1776 { 1777 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1778 int lcv, gotpages; 1779 vaddr_t currva; 1780 UVMHIST_FUNC("uvm_fault_lower_lookup"); UVMHIST_CALLED(maphist); 1781 1782 mutex_enter(uobj->vmobjlock); 1783 /* Locked: maps(read), amap(if there), uobj */ 1784 1785 uvmexp.fltlget++; 1786 gotpages = flt->npages; 1787 (void) uobj->pgops->pgo_get(uobj, 1788 ufi->entry->offset + flt->startva - ufi->entry->start, 1789 pages, &gotpages, flt->centeridx, 1790 flt->access_type & MASK(ufi->entry), ufi->entry->advice, PGO_LOCKED); 1791 1792 KASSERT(mutex_owned(uobj->vmobjlock)); 1793 1794 /* 1795 * check for pages to map, if we got any 1796 */ 1797 1798 if (gotpages == 0) { 1799 pages[flt->centeridx] = NULL; 1800 return; 1801 } 1802 1803 currva = flt->startva; 1804 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1805 struct vm_page *curpg; 1806 1807 curpg = pages[lcv]; 1808 if (curpg == NULL || curpg == PGO_DONTCARE) { 1809 continue; 1810 } 1811 KASSERT(curpg->uobject == uobj); 1812 1813 /* 1814 * if center page is resident and not PG_BUSY|PG_RELEASED 1815 * then pgo_get made it PG_BUSY for us and gave us a handle 1816 * to it. 1817 */ 1818 1819 if (lcv == flt->centeridx) { 1820 UVMHIST_LOG(maphist, " got uobjpage (0x%#jx) " 1821 "with locked get", (uintptr_t)curpg, 0, 0, 0); 1822 } else { 1823 bool readonly = (curpg->flags & PG_RDONLY) 1824 || (curpg->loan_count > 0) 1825 || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject); 1826 1827 uvm_fault_lower_neighbor(ufi, flt, 1828 currva, curpg, readonly); 1829 } 1830 } 1831 pmap_update(ufi->orig_map->pmap); 1832 } 1833 1834 /* 1835 * uvm_fault_lower_neighbor: enter h/w mapping of lower neighbor page. 1836 */ 1837 1838 static void 1839 uvm_fault_lower_neighbor( 1840 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1841 vaddr_t currva, struct vm_page *pg, bool readonly) 1842 { 1843 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1844 1845 /* locked: maps(read), amap(if there), uobj */ 1846 1847 /* 1848 * calling pgo_get with PGO_LOCKED returns us pages which 1849 * are neither busy nor released, so we don't need to check 1850 * for this. we can just directly enter the pages. 1851 */ 1852 1853 mutex_enter(&uvm_pageqlock); 1854 uvm_pageenqueue(pg); 1855 mutex_exit(&uvm_pageqlock); 1856 UVMHIST_LOG(maphist, 1857 " MAPPING: n obj: pm=%#jx, va=%#jx, pg=%#jx", 1858 (uintptr_t)ufi->orig_map->pmap, currva, (uintptr_t)pg, 0); 1859 uvmexp.fltnomap++; 1860 1861 /* 1862 * Since this page isn't the page that's actually faulting, 1863 * ignore pmap_enter() failures; it's not critical that we 1864 * enter these right now. 1865 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've 1866 * held the lock the whole time we've had the handle. 1867 */ 1868 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1869 KASSERT((pg->flags & PG_RELEASED) == 0); 1870 KASSERT((pg->flags & PG_WANTED) == 0); 1871 KASSERT(!UVM_OBJ_IS_CLEAN(pg->uobject) || (pg->flags & PG_CLEAN) != 0); 1872 pg->flags &= ~(PG_BUSY); 1873 UVM_PAGE_OWN(pg, NULL); 1874 1875 KASSERT(mutex_owned(pg->uobject->vmobjlock)); 1876 1877 const vm_prot_t mapprot = 1878 readonly ? (flt->enter_prot & ~VM_PROT_WRITE) : 1879 flt->enter_prot & MASK(ufi->entry); 1880 const u_int mapflags = 1881 PMAP_CANFAIL | (flt->wire_mapping ? (mapprot | PMAP_WIRED) : 0); 1882 (void) pmap_enter(ufi->orig_map->pmap, currva, 1883 VM_PAGE_TO_PHYS(pg), mapprot, mapflags); 1884 } 1885 1886 /* 1887 * uvm_fault_lower_io: get lower page from backing store. 1888 * 1889 * 1. unlock everything, because i/o will block. 1890 * 2. call pgo_get. 1891 * 3. if failed, recover. 1892 * 4. if succeeded, relock everything and verify things. 1893 */ 1894 1895 static int 1896 uvm_fault_lower_io( 1897 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1898 struct uvm_object **ruobj, struct vm_page **ruobjpage) 1899 { 1900 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 1901 struct uvm_object *uobj = *ruobj; 1902 struct vm_page *pg; 1903 bool locked; 1904 int gotpages; 1905 int error; 1906 voff_t uoff; 1907 vm_prot_t access_type; 1908 int advice; 1909 UVMHIST_FUNC("uvm_fault_lower_io"); UVMHIST_CALLED(maphist); 1910 1911 /* update rusage counters */ 1912 curlwp->l_ru.ru_majflt++; 1913 1914 /* grab everything we need from the entry before we unlock */ 1915 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; 1916 access_type = flt->access_type & MASK(ufi->entry); 1917 advice = ufi->entry->advice; 1918 1919 /* Locked: maps(read), amap(if there), uobj */ 1920 uvmfault_unlockall(ufi, amap, NULL); 1921 1922 /* Locked: uobj */ 1923 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 1924 1925 uvmexp.fltget++; 1926 gotpages = 1; 1927 pg = NULL; 1928 error = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages, 1929 0, access_type, advice, PGO_SYNCIO); 1930 /* locked: pg(if no error) */ 1931 1932 /* 1933 * recover from I/O 1934 */ 1935 1936 if (error) { 1937 if (error == EAGAIN) { 1938 UVMHIST_LOG(maphist, 1939 " pgo_get says TRY AGAIN!",0,0,0,0); 1940 kpause("fltagain2", false, hz/2, NULL); 1941 return ERESTART; 1942 } 1943 1944 #if 0 1945 KASSERT(error != ERESTART); 1946 #else 1947 /* XXXUEBS don't re-fault? */ 1948 if (error == ERESTART) 1949 error = EIO; 1950 #endif 1951 1952 UVMHIST_LOG(maphist, "<- pgo_get failed (code %jd)", 1953 error, 0,0,0); 1954 return error; 1955 } 1956 1957 /* 1958 * re-verify the state of the world by first trying to relock 1959 * the maps. always relock the object. 1960 */ 1961 1962 locked = uvmfault_relock(ufi); 1963 if (locked && amap) 1964 amap_lock(amap); 1965 1966 /* might be changed */ 1967 uobj = pg->uobject; 1968 1969 mutex_enter(uobj->vmobjlock); 1970 KASSERT((pg->flags & PG_BUSY) != 0); 1971 1972 mutex_enter(&uvm_pageqlock); 1973 uvm_pageactivate(pg); 1974 mutex_exit(&uvm_pageqlock); 1975 1976 /* locked(locked): maps(read), amap(if !null), uobj, pg */ 1977 /* locked(!locked): uobj, pg */ 1978 1979 /* 1980 * verify that the page has not be released and re-verify 1981 * that amap slot is still free. if there is a problem, 1982 * we unlock and clean up. 1983 */ 1984 1985 if ((pg->flags & PG_RELEASED) != 0 || 1986 (locked && amap && amap_lookup(&ufi->entry->aref, 1987 ufi->orig_rvaddr - ufi->entry->start))) { 1988 if (locked) 1989 uvmfault_unlockall(ufi, amap, NULL); 1990 locked = false; 1991 } 1992 1993 /* 1994 * didn't get the lock? release the page and retry. 1995 */ 1996 1997 if (locked == false) { 1998 UVMHIST_LOG(maphist, 1999 " wasn't able to relock after fault: retry", 2000 0,0,0,0); 2001 if (pg->flags & PG_WANTED) { 2002 wakeup(pg); 2003 } 2004 if ((pg->flags & PG_RELEASED) == 0) { 2005 pg->flags &= ~(PG_BUSY | PG_WANTED); 2006 UVM_PAGE_OWN(pg, NULL); 2007 } else { 2008 uvmexp.fltpgrele++; 2009 uvm_pagefree(pg); 2010 } 2011 mutex_exit(uobj->vmobjlock); 2012 return ERESTART; 2013 } 2014 2015 /* 2016 * we have the data in pg which is busy and 2017 * not released. we are holding object lock (so the page 2018 * can't be released on us). 2019 */ 2020 2021 /* locked: maps(read), amap(if !null), uobj, pg */ 2022 2023 *ruobj = uobj; 2024 *ruobjpage = pg; 2025 return 0; 2026 } 2027 2028 /* 2029 * uvm_fault_lower_direct: fault lower center page 2030 * 2031 * 1. adjust flt->enter_prot. 2032 * 2. if page is loaned, resolve. 2033 */ 2034 2035 int 2036 uvm_fault_lower_direct( 2037 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2038 struct uvm_object *uobj, struct vm_page *uobjpage) 2039 { 2040 struct vm_page *pg; 2041 UVMHIST_FUNC("uvm_fault_lower_direct"); UVMHIST_CALLED(maphist); 2042 2043 /* 2044 * we are not promoting. if the mapping is COW ensure that we 2045 * don't give more access than we should (e.g. when doing a read 2046 * fault on a COPYONWRITE mapping we want to map the COW page in 2047 * R/O even though the entry protection could be R/W). 2048 * 2049 * set "pg" to the page we want to map in (uobjpage, usually) 2050 */ 2051 2052 uvmexp.flt_obj++; 2053 if (UVM_ET_ISCOPYONWRITE(ufi->entry) || 2054 UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject)) 2055 flt->enter_prot &= ~VM_PROT_WRITE; 2056 pg = uobjpage; /* map in the actual object */ 2057 2058 KASSERT(uobjpage != PGO_DONTCARE); 2059 2060 /* 2061 * we are faulting directly on the page. be careful 2062 * about writing to loaned pages... 2063 */ 2064 2065 if (uobjpage->loan_count) { 2066 uvm_fault_lower_direct_loan(ufi, flt, uobj, &pg, &uobjpage); 2067 } 2068 KASSERT(pg == uobjpage); 2069 2070 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 2071 return uvm_fault_lower_enter(ufi, flt, uobj, NULL, pg); 2072 } 2073 2074 /* 2075 * uvm_fault_lower_direct_loan: resolve loaned page. 2076 * 2077 * 1. if not cow'ing, adjust flt->enter_prot. 2078 * 2. if cow'ing, break loan. 2079 */ 2080 2081 static int 2082 uvm_fault_lower_direct_loan( 2083 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2084 struct uvm_object *uobj, struct vm_page **rpg, 2085 struct vm_page **ruobjpage) 2086 { 2087 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2088 struct vm_page *pg; 2089 struct vm_page *uobjpage = *ruobjpage; 2090 UVMHIST_FUNC("uvm_fault_lower_direct_loan"); UVMHIST_CALLED(maphist); 2091 2092 if (!flt->cow_now) { 2093 /* read fault: cap the protection at readonly */ 2094 /* cap! */ 2095 flt->enter_prot = flt->enter_prot & ~VM_PROT_WRITE; 2096 } else { 2097 /* write fault: must break the loan here */ 2098 2099 pg = uvm_loanbreak(uobjpage); 2100 if (pg == NULL) { 2101 2102 /* 2103 * drop ownership of page, it can't be released 2104 */ 2105 2106 if (uobjpage->flags & PG_WANTED) 2107 wakeup(uobjpage); 2108 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 2109 UVM_PAGE_OWN(uobjpage, NULL); 2110 2111 uvmfault_unlockall(ufi, amap, uobj); 2112 UVMHIST_LOG(maphist, 2113 " out of RAM breaking loan, waiting", 2114 0,0,0,0); 2115 uvmexp.fltnoram++; 2116 uvm_wait("flt_noram4"); 2117 return ERESTART; 2118 } 2119 *rpg = pg; 2120 *ruobjpage = pg; 2121 } 2122 return 0; 2123 } 2124 2125 /* 2126 * uvm_fault_lower_promote: promote lower page. 2127 * 2128 * 1. call uvmfault_promote. 2129 * 2. fill in data. 2130 * 3. if not ZFOD, dispose old page. 2131 */ 2132 2133 int 2134 uvm_fault_lower_promote( 2135 struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 2136 struct uvm_object *uobj, struct vm_page *uobjpage) 2137 { 2138 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2139 struct vm_anon *anon; 2140 struct vm_page *pg; 2141 int error; 2142 UVMHIST_FUNC("uvm_fault_lower_promote"); UVMHIST_CALLED(maphist); 2143 2144 KASSERT(amap != NULL); 2145 2146 /* 2147 * If we are going to promote the data to an anon we 2148 * allocate a blank anon here and plug it into our amap. 2149 */ 2150 error = uvmfault_promote(ufi, NULL, uobjpage, 2151 &anon, &flt->anon_spare); 2152 switch (error) { 2153 case 0: 2154 break; 2155 case ERESTART: 2156 return ERESTART; 2157 default: 2158 return error; 2159 } 2160 2161 pg = anon->an_page; 2162 2163 /* 2164 * Fill in the data. 2165 */ 2166 KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0); 2167 2168 if (uobjpage != PGO_DONTCARE) { 2169 uvmexp.flt_prcopy++; 2170 2171 /* 2172 * promote to shared amap? make sure all sharing 2173 * procs see it 2174 */ 2175 2176 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 2177 pmap_page_protect(uobjpage, VM_PROT_NONE); 2178 /* 2179 * XXX: PAGE MIGHT BE WIRED! 2180 */ 2181 } 2182 2183 /* 2184 * dispose of uobjpage. it can't be PG_RELEASED 2185 * since we still hold the object lock. 2186 */ 2187 2188 if (uobjpage->flags & PG_WANTED) { 2189 /* still have the obj lock */ 2190 wakeup(uobjpage); 2191 } 2192 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 2193 UVM_PAGE_OWN(uobjpage, NULL); 2194 2195 UVMHIST_LOG(maphist, 2196 " promote uobjpage 0x%#jx to anon/page 0x%#jx/0x%#jx", 2197 (uintptr_t)uobjpage, (uintptr_t)anon, (uintptr_t)pg, 0); 2198 2199 } else { 2200 uvmexp.flt_przero++; 2201 2202 /* 2203 * Page is zero'd and marked dirty by 2204 * uvmfault_promote(). 2205 */ 2206 2207 UVMHIST_LOG(maphist," zero fill anon/page 0x%#jx/0%#jx", 2208 (uintptr_t)anon, (uintptr_t)pg, 0, 0); 2209 } 2210 2211 return uvm_fault_lower_enter(ufi, flt, uobj, anon, pg); 2212 } 2213 2214 /* 2215 * uvm_fault_lower_enter: enter h/w mapping of lower page or anon page promoted 2216 * from the lower page. 2217 */ 2218 2219 int 2220 uvm_fault_lower_enter( 2221 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2222 struct uvm_object *uobj, 2223 struct vm_anon *anon, struct vm_page *pg) 2224 { 2225 struct vm_amap * const amap = ufi->entry->aref.ar_amap; 2226 int error; 2227 UVMHIST_FUNC("uvm_fault_lower_enter"); UVMHIST_CALLED(maphist); 2228 2229 /* 2230 * Locked: 2231 * 2232 * maps(read), amap(if !null), uobj(if !null), 2233 * anon(if !null), pg(if anon), unlock_uobj(if !null) 2234 * 2235 * Note: pg is either the uobjpage or the new page in the new anon. 2236 */ 2237 KASSERT(amap == NULL || mutex_owned(amap->am_lock)); 2238 KASSERT(uobj == NULL || mutex_owned(uobj->vmobjlock)); 2239 KASSERT(anon == NULL || anon->an_lock == amap->am_lock); 2240 KASSERT((pg->flags & PG_BUSY) != 0); 2241 2242 /* 2243 * all resources are present. we can now map it in and free our 2244 * resources. 2245 */ 2246 2247 UVMHIST_LOG(maphist, 2248 " MAPPING: case2: pm=%#jx, va=%#jx, pg=%#jx, promote=%jd", 2249 (uintptr_t)ufi->orig_map->pmap, ufi->orig_rvaddr, 2250 (uintptr_t)pg, flt->promote); 2251 KASSERT((flt->access_type & VM_PROT_WRITE) == 0 || 2252 (pg->flags & PG_RDONLY) == 0); 2253 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 2254 VM_PAGE_TO_PHYS(pg), 2255 (pg->flags & PG_RDONLY) != 0 ? 2256 flt->enter_prot & ~VM_PROT_WRITE : flt->enter_prot, 2257 flt->access_type | PMAP_CANFAIL | 2258 (flt->wire_mapping ? PMAP_WIRED : 0)) != 0) { 2259 2260 /* 2261 * No need to undo what we did; we can simply think of 2262 * this as the pmap throwing away the mapping information. 2263 * 2264 * We do, however, have to go through the ReFault path, 2265 * as the map may change while we're asleep. 2266 */ 2267 2268 /* 2269 * ensure that the page is queued in the case that 2270 * we just promoted the page. 2271 */ 2272 2273 mutex_enter(&uvm_pageqlock); 2274 uvm_pageenqueue(pg); 2275 mutex_exit(&uvm_pageqlock); 2276 2277 if (pg->flags & PG_WANTED) 2278 wakeup(pg); 2279 2280 /* 2281 * note that pg can't be PG_RELEASED since we did not drop 2282 * the object lock since the last time we checked. 2283 */ 2284 KASSERT((pg->flags & PG_RELEASED) == 0); 2285 2286 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2287 UVM_PAGE_OWN(pg, NULL); 2288 2289 uvmfault_unlockall(ufi, amap, uobj); 2290 if (!uvm_reclaimable()) { 2291 UVMHIST_LOG(maphist, 2292 "<- failed. out of VM",0,0,0,0); 2293 /* XXX instrumentation */ 2294 error = ENOMEM; 2295 return error; 2296 } 2297 /* XXX instrumentation */ 2298 uvm_wait("flt_pmfail2"); 2299 return ERESTART; 2300 } 2301 2302 uvm_fault_lower_done(ufi, flt, uobj, pg); 2303 2304 /* 2305 * note that pg can't be PG_RELEASED since we did not drop the object 2306 * lock since the last time we checked. 2307 */ 2308 KASSERT((pg->flags & PG_RELEASED) == 0); 2309 if (pg->flags & PG_WANTED) 2310 wakeup(pg); 2311 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 2312 UVM_PAGE_OWN(pg, NULL); 2313 2314 pmap_update(ufi->orig_map->pmap); 2315 uvmfault_unlockall(ufi, amap, uobj); 2316 2317 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 2318 return 0; 2319 } 2320 2321 /* 2322 * uvm_fault_lower_done: queue lower center page. 2323 */ 2324 2325 void 2326 uvm_fault_lower_done( 2327 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 2328 struct uvm_object *uobj, struct vm_page *pg) 2329 { 2330 bool dropswap = false; 2331 2332 UVMHIST_FUNC("uvm_fault_lower_done"); UVMHIST_CALLED(maphist); 2333 2334 mutex_enter(&uvm_pageqlock); 2335 if (flt->wire_paging) { 2336 uvm_pagewire(pg); 2337 if (pg->pqflags & PQ_AOBJ) { 2338 2339 /* 2340 * since the now-wired page cannot be paged out, 2341 * release its swap resources for others to use. 2342 * since an aobj page with no swap cannot be PG_CLEAN, 2343 * clear its clean flag now. 2344 */ 2345 2346 KASSERT(uobj != NULL); 2347 pg->flags &= ~(PG_CLEAN); 2348 dropswap = true; 2349 } 2350 } else { 2351 uvm_pageactivate(pg); 2352 } 2353 mutex_exit(&uvm_pageqlock); 2354 2355 if (dropswap) { 2356 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 2357 } 2358 } 2359 2360 2361 /* 2362 * uvm_fault_wire: wire down a range of virtual addresses in a map. 2363 * 2364 * => map may be read-locked by caller, but MUST NOT be write-locked. 2365 * => if map is read-locked, any operations which may cause map to 2366 * be write-locked in uvm_fault() must be taken care of by 2367 * the caller. See uvm_map_pageable(). 2368 */ 2369 2370 int 2371 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end, 2372 vm_prot_t access_type, int maxprot) 2373 { 2374 vaddr_t va; 2375 int error; 2376 2377 /* 2378 * now fault it in a page at a time. if the fault fails then we have 2379 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 2380 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 2381 */ 2382 2383 /* 2384 * XXX work around overflowing a vaddr_t. this prevents us from 2385 * wiring the last page in the address space, though. 2386 */ 2387 if (start > end) { 2388 return EFAULT; 2389 } 2390 2391 for (va = start; va < end; va += PAGE_SIZE) { 2392 error = uvm_fault_internal(map, va, access_type, 2393 (maxprot ? UVM_FAULT_MAXPROT : 0) | UVM_FAULT_WIRE); 2394 if (error) { 2395 if (va != start) { 2396 uvm_fault_unwire(map, start, va); 2397 } 2398 return error; 2399 } 2400 } 2401 return 0; 2402 } 2403 2404 /* 2405 * uvm_fault_unwire(): unwire range of virtual space. 2406 */ 2407 2408 void 2409 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end) 2410 { 2411 vm_map_lock_read(map); 2412 uvm_fault_unwire_locked(map, start, end); 2413 vm_map_unlock_read(map); 2414 } 2415 2416 /* 2417 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 2418 * 2419 * => map must be at least read-locked. 2420 */ 2421 2422 void 2423 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end) 2424 { 2425 struct vm_map_entry *entry, *oentry; 2426 pmap_t pmap = vm_map_pmap(map); 2427 vaddr_t va; 2428 paddr_t pa; 2429 struct vm_page *pg; 2430 2431 /* 2432 * we assume that the area we are unwiring has actually been wired 2433 * in the first place. this means that we should be able to extract 2434 * the PAs from the pmap. we also lock out the page daemon so that 2435 * we can call uvm_pageunwire. 2436 */ 2437 2438 /* 2439 * find the beginning map entry for the region. 2440 */ 2441 2442 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 2443 if (uvm_map_lookup_entry(map, start, &entry) == false) 2444 panic("uvm_fault_unwire_locked: address not in map"); 2445 2446 oentry = NULL; 2447 for (va = start; va < end; va += PAGE_SIZE) { 2448 2449 /* 2450 * find the map entry for the current address. 2451 */ 2452 2453 KASSERT(va >= entry->start); 2454 while (va >= entry->end) { 2455 KASSERT(entry->next != &map->header && 2456 entry->next->start <= entry->end); 2457 entry = entry->next; 2458 } 2459 2460 /* 2461 * lock it. 2462 */ 2463 2464 if (entry != oentry) { 2465 if (oentry != NULL) { 2466 mutex_exit(&uvm_pageqlock); 2467 uvm_map_unlock_entry(oentry); 2468 } 2469 uvm_map_lock_entry(entry); 2470 mutex_enter(&uvm_pageqlock); 2471 oentry = entry; 2472 } 2473 2474 /* 2475 * if the entry is no longer wired, tell the pmap. 2476 */ 2477 2478 if (!pmap_extract(pmap, va, &pa)) 2479 continue; 2480 2481 if (VM_MAPENT_ISWIRED(entry) == 0) 2482 pmap_unwire(pmap, va); 2483 2484 pg = PHYS_TO_VM_PAGE(pa); 2485 if (pg) 2486 uvm_pageunwire(pg); 2487 } 2488 2489 if (oentry != NULL) { 2490 mutex_exit(&uvm_pageqlock); 2491 uvm_map_unlock_entry(entry); 2492 } 2493 } 2494