xref: /netbsd-src/sys/uvm/uvm_fault.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: uvm_fault.c,v 1.129 2009/12/17 01:25:10 rmind Exp $	*/
2 
3 /*
4  *
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35  */
36 
37 /*
38  * uvm_fault.c: fault handler
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.129 2009/12/17 01:25:10 rmind Exp $");
43 
44 #include "opt_uvmhist.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 
53 #include <uvm/uvm.h>
54 
55 /*
56  *
57  * a word on page faults:
58  *
59  * types of page faults we handle:
60  *
61  * CASE 1: upper layer faults                   CASE 2: lower layer faults
62  *
63  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
64  *    read/write1     write>1                  read/write   +-cow_write/zero
65  *         |             |                         |        |
66  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
67  * amap |  V  |       |  ---------> new |          |        | |  ^  |
68  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
69  *                                                 |        |    |
70  *      +-----+       +-----+                   +--|--+     | +--|--+
71  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
72  *      +-----+       +-----+                   +-----+       +-----+
73  *
74  * d/c = don't care
75  *
76  *   case [0]: layerless fault
77  *	no amap or uobj is present.   this is an error.
78  *
79  *   case [1]: upper layer fault [anon active]
80  *     1A: [read] or [write with anon->an_ref == 1]
81  *		I/O takes place in upper level anon and uobj is not touched.
82  *     1B: [write with anon->an_ref > 1]
83  *		new anon is alloc'd and data is copied off ["COW"]
84  *
85  *   case [2]: lower layer fault [uobj]
86  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
87  *		I/O takes place directly in object.
88  *     2B: [write to copy_on_write] or [read on NULL uobj]
89  *		data is "promoted" from uobj to a new anon.
90  *		if uobj is null, then we zero fill.
91  *
92  * we follow the standard UVM locking protocol ordering:
93  *
94  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
95  * we hold a PG_BUSY page if we unlock for I/O
96  *
97  *
98  * the code is structured as follows:
99  *
100  *     - init the "IN" params in the ufi structure
101  *   ReFault:
102  *     - do lookups [locks maps], check protection, handle needs_copy
103  *     - check for case 0 fault (error)
104  *     - establish "range" of fault
105  *     - if we have an amap lock it and extract the anons
106  *     - if sequential advice deactivate pages behind us
107  *     - at the same time check pmap for unmapped areas and anon for pages
108  *	 that we could map in (and do map it if found)
109  *     - check object for resident pages that we could map in
110  *     - if (case 2) goto Case2
111  *     - >>> handle case 1
112  *           - ensure source anon is resident in RAM
113  *           - if case 1B alloc new anon and copy from source
114  *           - map the correct page in
115  *   Case2:
116  *     - >>> handle case 2
117  *           - ensure source page is resident (if uobj)
118  *           - if case 2B alloc new anon and copy from source (could be zero
119  *		fill if uobj == NULL)
120  *           - map the correct page in
121  *     - done!
122  *
123  * note on paging:
124  *   if we have to do I/O we place a PG_BUSY page in the correct object,
125  * unlock everything, and do the I/O.   when I/O is done we must reverify
126  * the state of the world before assuming that our data structures are
127  * valid.   [because mappings could change while the map is unlocked]
128  *
129  *  alternative 1: unbusy the page in question and restart the page fault
130  *    from the top (ReFault).   this is easy but does not take advantage
131  *    of the information that we already have from our previous lookup,
132  *    although it is possible that the "hints" in the vm_map will help here.
133  *
134  * alternative 2: the system already keeps track of a "version" number of
135  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
136  *    mapping) you bump the version number up by one...]   so, we can save
137  *    the version number of the map before we release the lock and start I/O.
138  *    then when I/O is done we can relock and check the version numbers
139  *    to see if anything changed.    this might save us some over 1 because
140  *    we don't have to unbusy the page and may be less compares(?).
141  *
142  * alternative 3: put in backpointers or a way to "hold" part of a map
143  *    in place while I/O is in progress.   this could be complex to
144  *    implement (especially with structures like amap that can be referenced
145  *    by multiple map entries, and figuring out what should wait could be
146  *    complex as well...).
147  *
148  * we use alternative 2.  given that we are multi-threaded now we may want
149  * to reconsider the choice.
150  */
151 
152 /*
153  * local data structures
154  */
155 
156 struct uvm_advice {
157 	int advice;
158 	int nback;
159 	int nforw;
160 };
161 
162 /*
163  * page range array:
164  * note: index in array must match "advice" value
165  * XXX: borrowed numbers from freebsd.   do they work well for us?
166  */
167 
168 static const struct uvm_advice uvmadvice[] = {
169 	{ MADV_NORMAL, 3, 4 },
170 	{ MADV_RANDOM, 0, 0 },
171 	{ MADV_SEQUENTIAL, 8, 7},
172 };
173 
174 #define UVM_MAXRANGE 16	/* must be MAX() of nback+nforw+1 */
175 
176 /*
177  * private prototypes
178  */
179 
180 /*
181  * inline functions
182  */
183 
184 /*
185  * uvmfault_anonflush: try and deactivate pages in specified anons
186  *
187  * => does not have to deactivate page if it is busy
188  */
189 
190 static inline void
191 uvmfault_anonflush(struct vm_anon **anons, int n)
192 {
193 	int lcv;
194 	struct vm_page *pg;
195 
196 	for (lcv = 0 ; lcv < n ; lcv++) {
197 		if (anons[lcv] == NULL)
198 			continue;
199 		mutex_enter(&anons[lcv]->an_lock);
200 		pg = anons[lcv]->an_page;
201 		if (pg && (pg->flags & PG_BUSY) == 0) {
202 			mutex_enter(&uvm_pageqlock);
203 			if (pg->wire_count == 0) {
204 				uvm_pagedeactivate(pg);
205 			}
206 			mutex_exit(&uvm_pageqlock);
207 		}
208 		mutex_exit(&anons[lcv]->an_lock);
209 	}
210 }
211 
212 /*
213  * normal functions
214  */
215 
216 /*
217  * uvmfault_amapcopy: clear "needs_copy" in a map.
218  *
219  * => called with VM data structures unlocked (usually, see below)
220  * => we get a write lock on the maps and clear needs_copy for a VA
221  * => if we are out of RAM we sleep (waiting for more)
222  */
223 
224 static void
225 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
226 {
227 	for (;;) {
228 
229 		/*
230 		 * no mapping?  give up.
231 		 */
232 
233 		if (uvmfault_lookup(ufi, true) == false)
234 			return;
235 
236 		/*
237 		 * copy if needed.
238 		 */
239 
240 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
241 			amap_copy(ufi->map, ufi->entry, AMAP_COPY_NOWAIT,
242 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
243 
244 		/*
245 		 * didn't work?  must be out of RAM.   unlock and sleep.
246 		 */
247 
248 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
249 			uvmfault_unlockmaps(ufi, true);
250 			uvm_wait("fltamapcopy");
251 			continue;
252 		}
253 
254 		/*
255 		 * got it!   unlock and return.
256 		 */
257 
258 		uvmfault_unlockmaps(ufi, true);
259 		return;
260 	}
261 	/*NOTREACHED*/
262 }
263 
264 /*
265  * uvmfault_anonget: get data in an anon into a non-busy, non-released
266  * page in that anon.
267  *
268  * => maps, amap, and anon locked by caller.
269  * => if we fail (result != 0) we unlock everything.
270  * => if we are successful, we return with everything still locked.
271  * => we don't move the page on the queues [gets moved later]
272  * => if we allocate a new page [we_own], it gets put on the queues.
273  *    either way, the result is that the page is on the queues at return time
274  * => for pages which are on loan from a uvm_object (and thus are not
275  *    owned by the anon): if successful, we return with the owning object
276  *    locked.   the caller must unlock this object when it unlocks everything
277  *    else.
278  */
279 
280 int
281 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
282     struct vm_anon *anon)
283 {
284 	bool we_own;	/* we own anon's page? */
285 	bool locked;	/* did we relock? */
286 	struct vm_page *pg;
287 	int error;
288 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
289 
290 	KASSERT(mutex_owned(&anon->an_lock));
291 
292 	error = 0;
293 	uvmexp.fltanget++;
294         /* bump rusage counters */
295 	if (anon->an_page)
296 		curlwp->l_ru.ru_minflt++;
297 	else
298 		curlwp->l_ru.ru_majflt++;
299 
300 	/*
301 	 * loop until we get it, or fail.
302 	 */
303 
304 	for (;;) {
305 		we_own = false;		/* true if we set PG_BUSY on a page */
306 		pg = anon->an_page;
307 
308 		/*
309 		 * if there is a resident page and it is loaned, then anon
310 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
311 		 * the real owner of the page has been identified and locked.
312 		 */
313 
314 		if (pg && pg->loan_count)
315 			pg = uvm_anon_lockloanpg(anon);
316 
317 		/*
318 		 * page there?   make sure it is not busy/released.
319 		 */
320 
321 		if (pg) {
322 
323 			/*
324 			 * at this point, if the page has a uobject [meaning
325 			 * we have it on loan], then that uobject is locked
326 			 * by us!   if the page is busy, we drop all the
327 			 * locks (including uobject) and try again.
328 			 */
329 
330 			if ((pg->flags & PG_BUSY) == 0) {
331 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
332 				return (0);
333 			}
334 			pg->flags |= PG_WANTED;
335 			uvmexp.fltpgwait++;
336 
337 			/*
338 			 * the last unlock must be an atomic unlock+wait on
339 			 * the owner of page
340 			 */
341 
342 			if (pg->uobject) {	/* owner is uobject ? */
343 				uvmfault_unlockall(ufi, amap, NULL, anon);
344 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
345 				    0,0,0);
346 				UVM_UNLOCK_AND_WAIT(pg,
347 				    &pg->uobject->vmobjlock,
348 				    false, "anonget1",0);
349 			} else {
350 				/* anon owns page */
351 				uvmfault_unlockall(ufi, amap, NULL, NULL);
352 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
353 				    0,0,0);
354 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
355 				    "anonget2",0);
356 			}
357 		} else {
358 #if defined(VMSWAP)
359 
360 			/*
361 			 * no page, we must try and bring it in.
362 			 */
363 
364 			pg = uvm_pagealloc(NULL, 0, anon, 0);
365 			if (pg == NULL) {		/* out of RAM.  */
366 				uvmfault_unlockall(ufi, amap, NULL, anon);
367 				uvmexp.fltnoram++;
368 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
369 				    0,0,0);
370 				if (!uvm_reclaimable()) {
371 					return ENOMEM;
372 				}
373 				uvm_wait("flt_noram1");
374 			} else {
375 				/* we set the PG_BUSY bit */
376 				we_own = true;
377 				uvmfault_unlockall(ufi, amap, NULL, anon);
378 
379 				/*
380 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
381 				 * page into the uvm_swap_get function with
382 				 * all data structures unlocked.  note that
383 				 * it is ok to read an_swslot here because
384 				 * we hold PG_BUSY on the page.
385 				 */
386 				uvmexp.pageins++;
387 				error = uvm_swap_get(pg, anon->an_swslot,
388 				    PGO_SYNCIO);
389 
390 				/*
391 				 * we clean up after the i/o below in the
392 				 * "we_own" case
393 				 */
394 			}
395 #else /* defined(VMSWAP) */
396 			panic("%s: no page", __func__);
397 #endif /* defined(VMSWAP) */
398 		}
399 
400 		/*
401 		 * now relock and try again
402 		 */
403 
404 		locked = uvmfault_relock(ufi);
405 		if (locked && amap != NULL) {
406 			amap_lock(amap);
407 		}
408 		if (locked || we_own)
409 			mutex_enter(&anon->an_lock);
410 
411 		/*
412 		 * if we own the page (i.e. we set PG_BUSY), then we need
413 		 * to clean up after the I/O. there are three cases to
414 		 * consider:
415 		 *   [1] page released during I/O: free anon and ReFault.
416 		 *   [2] I/O not OK.   free the page and cause the fault
417 		 *       to fail.
418 		 *   [3] I/O OK!   activate the page and sync with the
419 		 *       non-we_own case (i.e. drop anon lock if not locked).
420 		 */
421 
422 		if (we_own) {
423 #if defined(VMSWAP)
424 			if (pg->flags & PG_WANTED) {
425 				wakeup(pg);
426 			}
427 			if (error) {
428 
429 				/*
430 				 * remove the swap slot from the anon
431 				 * and mark the anon as having no real slot.
432 				 * don't free the swap slot, thus preventing
433 				 * it from being used again.
434 				 */
435 
436 				if (anon->an_swslot > 0)
437 					uvm_swap_markbad(anon->an_swslot, 1);
438 				anon->an_swslot = SWSLOT_BAD;
439 
440 				if ((pg->flags & PG_RELEASED) != 0)
441 					goto released;
442 
443 				/*
444 				 * note: page was never !PG_BUSY, so it
445 				 * can't be mapped and thus no need to
446 				 * pmap_page_protect it...
447 				 */
448 
449 				mutex_enter(&uvm_pageqlock);
450 				uvm_pagefree(pg);
451 				mutex_exit(&uvm_pageqlock);
452 
453 				if (locked)
454 					uvmfault_unlockall(ufi, amap, NULL,
455 					    anon);
456 				else
457 					mutex_exit(&anon->an_lock);
458 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
459 				return error;
460 			}
461 
462 			if ((pg->flags & PG_RELEASED) != 0) {
463 released:
464 				KASSERT(anon->an_ref == 0);
465 
466 				/*
467 				 * released while we unlocked amap.
468 				 */
469 
470 				if (locked)
471 					uvmfault_unlockall(ufi, amap, NULL,
472 					    NULL);
473 
474 				uvm_anon_release(anon);
475 
476 				if (error) {
477 					UVMHIST_LOG(maphist,
478 					    "<- ERROR/RELEASED", 0,0,0,0);
479 					return error;
480 				}
481 
482 				UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
483 				return ERESTART;
484 			}
485 
486 			/*
487 			 * we've successfully read the page, activate it.
488 			 */
489 
490 			mutex_enter(&uvm_pageqlock);
491 			uvm_pageactivate(pg);
492 			mutex_exit(&uvm_pageqlock);
493 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
494 			UVM_PAGE_OWN(pg, NULL);
495 			if (!locked)
496 				mutex_exit(&anon->an_lock);
497 #else /* defined(VMSWAP) */
498 			panic("%s: we_own", __func__);
499 #endif /* defined(VMSWAP) */
500 		}
501 
502 		/*
503 		 * we were not able to relock.   restart fault.
504 		 */
505 
506 		if (!locked) {
507 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 			return (ERESTART);
509 		}
510 
511 		/*
512 		 * verify no one has touched the amap and moved the anon on us.
513 		 */
514 
515 		if (ufi != NULL &&
516 		    amap_lookup(&ufi->entry->aref,
517 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
518 
519 			uvmfault_unlockall(ufi, amap, NULL, anon);
520 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 			return (ERESTART);
522 		}
523 
524 		/*
525 		 * try it again!
526 		 */
527 
528 		uvmexp.fltanretry++;
529 		continue;
530 	}
531 	/*NOTREACHED*/
532 }
533 
534 /*
535  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
536  *
537  *	1. allocate an anon and a page.
538  *	2. fill its contents.
539  *	3. put it into amap.
540  *
541  * => if we fail (result != 0) we unlock everything.
542  * => on success, return a new locked anon via 'nanon'.
543  *    (*nanon)->an_page will be a resident, locked, dirty page.
544  */
545 
546 static int
547 uvmfault_promote(struct uvm_faultinfo *ufi,
548     struct vm_anon *oanon,
549     struct vm_page *uobjpage,
550     struct vm_anon **nanon, /* OUT: allocated anon */
551     struct vm_anon **spare)
552 {
553 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
554 	struct uvm_object *uobj;
555 	struct vm_anon *anon;
556 	struct vm_page *pg;
557 	struct vm_page *opg;
558 	int error;
559 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560 
561 	if (oanon) {
562 		/* anon COW */
563 		opg = oanon->an_page;
564 		KASSERT(opg != NULL);
565 		KASSERT(opg->uobject == NULL || opg->loan_count > 0);
566 	} else if (uobjpage != PGO_DONTCARE) {
567 		/* object-backed COW */
568 		opg = uobjpage;
569 	} else {
570 		/* ZFOD */
571 		opg = NULL;
572 	}
573 	if (opg != NULL) {
574 		uobj = opg->uobject;
575 	} else {
576 		uobj = NULL;
577 	}
578 
579 	KASSERT(amap != NULL);
580 	KASSERT(uobjpage != NULL);
581 	KASSERT(uobjpage == PGO_DONTCARE || (uobjpage->flags & PG_BUSY) != 0);
582 	KASSERT(mutex_owned(&amap->am_l));
583 	KASSERT(oanon == NULL || mutex_owned(&oanon->an_lock));
584 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
585 #if 0
586 	KASSERT(*spare == NULL || !mutex_owned(&(*spare)->an_lock));
587 #endif
588 
589 	if (*spare != NULL) {
590 		anon = *spare;
591 		*spare = NULL;
592 		mutex_enter(&anon->an_lock);
593 	} else if (ufi->map != kernel_map) {
594 		anon = uvm_analloc();
595 	} else {
596 		UVMHIST_LOG(maphist, "kernel_map, unlock and retry", 0,0,0,0);
597 
598 		/*
599 		 * we can't allocate anons with kernel_map locked.
600 		 */
601 
602 		uvm_page_unbusy(&uobjpage, 1);
603 		uvmfault_unlockall(ufi, amap, uobj, oanon);
604 
605 		*spare = uvm_analloc();
606 		if (*spare == NULL) {
607 			goto nomem;
608 		}
609 		mutex_exit(&(*spare)->an_lock);
610 		error = ERESTART;
611 		goto done;
612 	}
613 	if (anon) {
614 
615 		/*
616 		 * The new anon is locked.
617 		 *
618 		 * if opg == NULL, we want a zero'd, dirty page,
619 		 * so have uvm_pagealloc() do that for us.
620 		 */
621 
622 		pg = uvm_pagealloc(NULL, 0, anon,
623 		    (opg == NULL) ? UVM_PGA_ZERO : 0);
624 	} else {
625 		pg = NULL;
626 	}
627 
628 	/*
629 	 * out of memory resources?
630 	 */
631 
632 	if (pg == NULL) {
633 		/* save anon for the next try. */
634 		if (anon != NULL) {
635 			mutex_exit(&anon->an_lock);
636 			*spare = anon;
637 		}
638 
639 		/* unlock and fail ... */
640 		uvm_page_unbusy(&uobjpage, 1);
641 		uvmfault_unlockall(ufi, amap, uobj, oanon);
642 nomem:
643 		if (!uvm_reclaimable()) {
644 			UVMHIST_LOG(maphist, "out of VM", 0,0,0,0);
645 			uvmexp.fltnoanon++;
646 			error = ENOMEM;
647 			goto done;
648 		}
649 
650 		UVMHIST_LOG(maphist, "out of RAM, waiting for more", 0,0,0,0);
651 		uvmexp.fltnoram++;
652 		uvm_wait("flt_noram5");
653 		error = ERESTART;
654 		goto done;
655 	}
656 
657 	/* copy page [pg now dirty] */
658 	if (opg) {
659 		uvm_pagecopy(opg, pg);
660 	}
661 
662 	amap_add(&ufi->entry->aref, ufi->orig_rvaddr - ufi->entry->start, anon,
663 	    oanon != NULL);
664 
665 	*nanon = anon;
666 	error = 0;
667 done:
668 	return error;
669 }
670 
671 
672 /*
673  *   F A U L T   -   m a i n   e n t r y   p o i n t
674  */
675 
676 /*
677  * uvm_fault: page fault handler
678  *
679  * => called from MD code to resolve a page fault
680  * => VM data structures usually should be unlocked.   however, it is
681  *	possible to call here with the main map locked if the caller
682  *	gets a write lock, sets it recusive, and then calls us (c.f.
683  *	uvm_map_pageable).   this should be avoided because it keeps
684  *	the map locked off during I/O.
685  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
686  */
687 
688 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
689 			 ~VM_PROT_WRITE : VM_PROT_ALL)
690 
691 /* fault_flag values passed from uvm_fault_wire to uvm_fault_internal */
692 #define UVM_FAULT_WIRE 1
693 #define UVM_FAULT_WIREMAX 2
694 
695 int
696 uvm_fault_internal(struct vm_map *orig_map, vaddr_t vaddr,
697     vm_prot_t access_type, int fault_flag)
698 {
699 	struct uvm_faultinfo ufi;
700 	vm_prot_t enter_prot, check_prot;
701 	bool wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
702 	int npages, nback, nforw, centeridx, error, lcv, gotpages;
703 	vaddr_t startva, currva;
704 	voff_t uoff;
705 	struct vm_amap *amap;
706 	struct uvm_object *uobj;
707 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
708 	struct vm_anon *anon_spare;
709 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
710 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
711 
712 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, at=%d, ff=%d)",
713 	      orig_map, vaddr, access_type, fault_flag);
714 
715 	anon = anon_spare = NULL;
716 	pg = NULL;
717 
718 	uvmexp.faults++;	/* XXX: locking? */
719 
720 	/*
721 	 * init the IN parameters in the ufi
722 	 */
723 
724 	ufi.orig_map = orig_map;
725 	ufi.orig_rvaddr = trunc_page(vaddr);
726 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
727 	wire_fault = (fault_flag > 0);
728 	if (wire_fault)
729 		narrow = true;		/* don't look for neighborhood
730 					 * pages on wire */
731 	else
732 		narrow = false;		/* normal fault */
733 
734 	/*
735 	 * "goto ReFault" means restart the page fault from ground zero.
736 	 */
737 ReFault:
738 
739 	/*
740 	 * lookup and lock the maps
741 	 */
742 
743 	if (uvmfault_lookup(&ufi, false) == false) {
744 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
745 		error = EFAULT;
746 		goto done;
747 	}
748 	/* locked: maps(read) */
749 
750 #ifdef DIAGNOSTIC
751 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
752 		printf("Page fault on non-pageable map:\n");
753 		printf("ufi.map = %p\n", ufi.map);
754 		printf("ufi.orig_map = %p\n", ufi.orig_map);
755 		printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
756 		panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
757 	}
758 #endif
759 
760 	/*
761 	 * check protection
762 	 */
763 
764 	check_prot = fault_flag == UVM_FAULT_WIREMAX ?
765 	    ufi.entry->max_protection : ufi.entry->protection;
766 	if ((check_prot & access_type) != access_type) {
767 		UVMHIST_LOG(maphist,
768 		    "<- protection failure (prot=0x%x, access=0x%x)",
769 		    ufi.entry->protection, access_type, 0, 0);
770 		uvmfault_unlockmaps(&ufi, false);
771 		error = EACCES;
772 		goto done;
773 	}
774 
775 	/*
776 	 * "enter_prot" is the protection we want to enter the page in at.
777 	 * for certain pages (e.g. copy-on-write pages) this protection can
778 	 * be more strict than ufi.entry->protection.  "wired" means either
779 	 * the entry is wired or we are fault-wiring the pg.
780 	 */
781 
782 	enter_prot = ufi.entry->protection;
783 	wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
784 	if (wired) {
785 		access_type = enter_prot; /* full access for wired */
786 		cow_now = (check_prot & VM_PROT_WRITE) != 0;
787 	} else {
788 		cow_now = (access_type & VM_PROT_WRITE) != 0;
789 	}
790 
791 	/*
792 	 * handle "needs_copy" case.   if we need to copy the amap we will
793 	 * have to drop our readlock and relock it with a write lock.  (we
794 	 * need a write lock to change anything in a map entry [e.g.
795 	 * needs_copy]).
796 	 */
797 
798 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
799 		if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
800 			KASSERT(fault_flag != UVM_FAULT_WIREMAX);
801 			/* need to clear */
802 			UVMHIST_LOG(maphist,
803 			    "  need to clear needs_copy and refault",0,0,0,0);
804 			uvmfault_unlockmaps(&ufi, false);
805 			uvmfault_amapcopy(&ufi);
806 			uvmexp.fltamcopy++;
807 			goto ReFault;
808 
809 		} else {
810 
811 			/*
812 			 * ensure that we pmap_enter page R/O since
813 			 * needs_copy is still true
814 			 */
815 
816 			enter_prot &= ~VM_PROT_WRITE;
817 		}
818 	}
819 
820 	/*
821 	 * identify the players
822 	 */
823 
824 	amap = ufi.entry->aref.ar_amap;		/* upper layer */
825 	uobj = ufi.entry->object.uvm_obj;	/* lower layer */
826 
827 	/*
828 	 * check for a case 0 fault.  if nothing backing the entry then
829 	 * error now.
830 	 */
831 
832 	if (amap == NULL && uobj == NULL) {
833 		uvmfault_unlockmaps(&ufi, false);
834 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
835 		error = EFAULT;
836 		goto done;
837 	}
838 
839 	/*
840 	 * establish range of interest based on advice from mapper
841 	 * and then clip to fit map entry.   note that we only want
842 	 * to do this the first time through the fault.   if we
843 	 * ReFault we will disable this by setting "narrow" to true.
844 	 */
845 
846 	if (narrow == false) {
847 
848 		/* wide fault (!narrow) */
849 		KASSERT(uvmadvice[ufi.entry->advice].advice ==
850 			 ufi.entry->advice);
851 		nback = MIN(uvmadvice[ufi.entry->advice].nback,
852 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
853 		startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
854 		nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
855 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
856 			     PAGE_SHIFT) - 1);
857 		/*
858 		 * note: "-1" because we don't want to count the
859 		 * faulting page as forw
860 		 */
861 		npages = nback + nforw + 1;
862 		centeridx = nback;
863 
864 		narrow = true;	/* ensure only once per-fault */
865 
866 	} else {
867 
868 		/* narrow fault! */
869 		nback = nforw = 0;
870 		startva = ufi.orig_rvaddr;
871 		npages = 1;
872 		centeridx = 0;
873 
874 	}
875 
876 	/* locked: maps(read) */
877 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
878 		    narrow, nback, nforw, startva);
879 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
880 		    amap, uobj, 0);
881 
882 	/*
883 	 * if we've got an amap, lock it and extract current anons.
884 	 */
885 
886 	if (amap) {
887 		amap_lock(amap);
888 		anons = anons_store;
889 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
890 		    anons, npages);
891 	} else {
892 		anons = NULL;	/* to be safe */
893 	}
894 
895 	/* locked: maps(read), amap(if there) */
896 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
897 
898 	/*
899 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
900 	 * now and then forget about them (for the rest of the fault).
901 	 */
902 
903 	if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
904 
905 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
906 		    0,0,0,0);
907 		/* flush back-page anons? */
908 		if (amap)
909 			uvmfault_anonflush(anons, nback);
910 
911 		/* flush object? */
912 		if (uobj) {
913 			uoff = (startva - ufi.entry->start) + ufi.entry->offset;
914 			mutex_enter(&uobj->vmobjlock);
915 			(void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
916 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
917 		}
918 
919 		/* now forget about the backpages */
920 		if (amap)
921 			anons += nback;
922 		startva += (nback << PAGE_SHIFT);
923 		npages -= nback;
924 		nback = centeridx = 0;
925 	}
926 
927 	/* locked: maps(read), amap(if there) */
928 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
929 
930 	/*
931 	 * map in the backpages and frontpages we found in the amap in hopes
932 	 * of preventing future faults.    we also init the pages[] array as
933 	 * we go.
934 	 */
935 
936 	currva = startva;
937 	shadowed = false;
938 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
939 
940 		/*
941 		 * dont play with VAs that are already mapped
942 		 * except for center)
943 		 */
944 		if (lcv != centeridx &&
945 		    pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
946 			pages[lcv] = PGO_DONTCARE;
947 			continue;
948 		}
949 
950 		/*
951 		 * unmapped or center page.   check if any anon at this level.
952 		 */
953 		if (amap == NULL || anons[lcv] == NULL) {
954 			pages[lcv] = NULL;
955 			continue;
956 		}
957 
958 		/*
959 		 * check for present page and map if possible.   re-activate it.
960 		 */
961 
962 		pages[lcv] = PGO_DONTCARE;
963 		if (lcv == centeridx) {		/* save center for later! */
964 			shadowed = true;
965 			continue;
966 		}
967 		anon = anons[lcv];
968 		mutex_enter(&anon->an_lock);
969 		/* ignore loaned pages */
970 		if (anon->an_page && anon->an_page->loan_count == 0 &&
971 		    (anon->an_page->flags & PG_BUSY) == 0) {
972 			mutex_enter(&uvm_pageqlock);
973 			uvm_pageenqueue(anon->an_page);
974 			mutex_exit(&uvm_pageqlock);
975 			UVMHIST_LOG(maphist,
976 			    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
977 			    ufi.orig_map->pmap, currva, anon->an_page, 0);
978 			uvmexp.fltnamap++;
979 
980 			/*
981 			 * Since this isn't the page that's actually faulting,
982 			 * ignore pmap_enter() failures; it's not critical
983 			 * that we enter these right now.
984 			 */
985 
986 			(void) pmap_enter(ufi.orig_map->pmap, currva,
987 			    VM_PAGE_TO_PHYS(anon->an_page),
988 			    (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
989 			    enter_prot,
990 			    PMAP_CANFAIL |
991 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
992 		}
993 		pmap_update(ufi.orig_map->pmap);
994 		mutex_exit(&anon->an_lock);
995 	}
996 
997 	/* locked: maps(read), amap(if there) */
998 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
999 	/* (shadowed == true) if there is an anon at the faulting address */
1000 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
1001 	    (uobj && shadowed == false),0,0);
1002 
1003 	/*
1004 	 * note that if we are really short of RAM we could sleep in the above
1005 	 * call to pmap_enter with everything locked.   bad?
1006 	 *
1007 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
1008 	 * XXX case.  --thorpej
1009 	 */
1010 
1011 	/*
1012 	 * if the desired page is not shadowed by the amap and we have a
1013 	 * backing object, then we check to see if the backing object would
1014 	 * prefer to handle the fault itself (rather than letting us do it
1015 	 * with the usual pgo_get hook).  the backing object signals this by
1016 	 * providing a pgo_fault routine.
1017 	 */
1018 
1019 	if (uobj && shadowed == false && uobj->pgops->pgo_fault != NULL) {
1020 		mutex_enter(&uobj->vmobjlock);
1021 		/* locked: maps(read), amap (if there), uobj */
1022 		error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
1023 		    centeridx, access_type, PGO_LOCKED|PGO_SYNCIO);
1024 
1025 		/* locked: nothing, pgo_fault has unlocked everything */
1026 
1027 		if (error == ERESTART)
1028 			goto ReFault;		/* try again! */
1029 		/*
1030 		 * object fault routine responsible for pmap_update().
1031 		 */
1032 		goto done;
1033 	}
1034 
1035 	/*
1036 	 * now, if the desired page is not shadowed by the amap and we have
1037 	 * a backing object that does not have a special fault routine, then
1038 	 * we ask (with pgo_get) the object for resident pages that we care
1039 	 * about and attempt to map them in.  we do not let pgo_get block
1040 	 * (PGO_LOCKED).
1041 	 */
1042 
1043 	if (uobj && shadowed == false) {
1044 		mutex_enter(&uobj->vmobjlock);
1045 		/* locked (!shadowed): maps(read), amap (if there), uobj */
1046 		/*
1047 		 * the following call to pgo_get does _not_ change locking state
1048 		 */
1049 
1050 		uvmexp.fltlget++;
1051 		gotpages = npages;
1052 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
1053 				(startva - ufi.entry->start),
1054 				pages, &gotpages, centeridx,
1055 				access_type & MASK(ufi.entry),
1056 				ufi.entry->advice, PGO_LOCKED);
1057 
1058 		/*
1059 		 * check for pages to map, if we got any
1060 		 */
1061 
1062 		uobjpage = NULL;
1063 
1064 		if (gotpages) {
1065 			currva = startva;
1066 			for (lcv = 0; lcv < npages;
1067 			     lcv++, currva += PAGE_SIZE) {
1068 				struct vm_page *curpg;
1069 				bool readonly;
1070 
1071 				curpg = pages[lcv];
1072 				if (curpg == NULL || curpg == PGO_DONTCARE) {
1073 					continue;
1074 				}
1075 				KASSERT(curpg->uobject == uobj);
1076 
1077 				/*
1078 				 * if center page is resident and not
1079 				 * PG_BUSY|PG_RELEASED then pgo_get
1080 				 * made it PG_BUSY for us and gave
1081 				 * us a handle to it.   remember this
1082 				 * page as "uobjpage." (for later use).
1083 				 */
1084 
1085 				if (lcv == centeridx) {
1086 					uobjpage = curpg;
1087 					UVMHIST_LOG(maphist, "  got uobjpage "
1088 					    "(0x%x) with locked get",
1089 					    uobjpage, 0,0,0);
1090 					continue;
1091 				}
1092 
1093 				/*
1094 				 * calling pgo_get with PGO_LOCKED returns us
1095 				 * pages which are neither busy nor released,
1096 				 * so we don't need to check for this.
1097 				 * we can just directly enter the pages.
1098 				 */
1099 
1100 				mutex_enter(&uvm_pageqlock);
1101 				uvm_pageenqueue(curpg);
1102 				mutex_exit(&uvm_pageqlock);
1103 				UVMHIST_LOG(maphist,
1104 				  "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
1105 				  ufi.orig_map->pmap, currva, curpg, 0);
1106 				uvmexp.fltnomap++;
1107 
1108 				/*
1109 				 * Since this page isn't the page that's
1110 				 * actually faulting, ignore pmap_enter()
1111 				 * failures; it's not critical that we
1112 				 * enter these right now.
1113 				 */
1114 				KASSERT((curpg->flags & PG_PAGEOUT) == 0);
1115 				KASSERT((curpg->flags & PG_RELEASED) == 0);
1116 				KASSERT(!UVM_OBJ_IS_CLEAN(curpg->uobject) ||
1117 				    (curpg->flags & PG_CLEAN) != 0);
1118 				readonly = (curpg->flags & PG_RDONLY)
1119 				    || (curpg->loan_count > 0)
1120 				    || UVM_OBJ_NEEDS_WRITEFAULT(curpg->uobject);
1121 
1122 				(void) pmap_enter(ufi.orig_map->pmap, currva,
1123 				    VM_PAGE_TO_PHYS(curpg),
1124 				    readonly ?
1125 				    enter_prot & ~VM_PROT_WRITE :
1126 				    enter_prot & MASK(ufi.entry),
1127 				    PMAP_CANFAIL |
1128 				     (wired ? PMAP_WIRED : 0));
1129 
1130 				/*
1131 				 * NOTE: page can't be PG_WANTED or PG_RELEASED
1132 				 * because we've held the lock the whole time
1133 				 * we've had the handle.
1134 				 */
1135 				KASSERT((curpg->flags & PG_WANTED) == 0);
1136 				KASSERT((curpg->flags & PG_RELEASED) == 0);
1137 
1138 				curpg->flags &= ~(PG_BUSY);
1139 				UVM_PAGE_OWN(curpg, NULL);
1140 			}
1141 			pmap_update(ufi.orig_map->pmap);
1142 		}
1143 	} else {
1144 		uobjpage = NULL;
1145 	}
1146 
1147 	/* locked (shadowed): maps(read), amap */
1148 	/* locked (!shadowed): maps(read), amap(if there),
1149 		 uobj(if !null), uobjpage(if !null) */
1150 	if (shadowed) {
1151 		KASSERT(mutex_owned(&amap->am_l));
1152 	} else {
1153 		KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1154 		KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1155 		KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1156 	}
1157 
1158 	/*
1159 	 * note that at this point we are done with any front or back pages.
1160 	 * we are now going to focus on the center page (i.e. the one we've
1161 	 * faulted on).  if we have faulted on the upper (anon) layer
1162 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1163 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1164 	 * layer [i.e. case 2] and the page was both present and available,
1165 	 * then we've got a pointer to it as "uobjpage" and we've already
1166 	 * made it BUSY.
1167 	 */
1168 
1169 	/*
1170 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1171 	 */
1172 
1173 	/*
1174 	 * redirect case 2: if we are not shadowed, go to case 2.
1175 	 */
1176 
1177 	if (shadowed == false)
1178 		goto Case2;
1179 
1180 	/* locked: maps(read), amap */
1181 
1182 	/*
1183 	 * handle case 1: fault on an anon in our amap
1184 	 */
1185 
1186 	anon = anons[centeridx];
1187 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
1188 	mutex_enter(&anon->an_lock);
1189 
1190 	/* locked: maps(read), amap, anon */
1191 	KASSERT(mutex_owned(&amap->am_l));
1192 	KASSERT(mutex_owned(&anon->an_lock));
1193 
1194 	/*
1195 	 * no matter if we have case 1A or case 1B we are going to need to
1196 	 * have the anon's memory resident.   ensure that now.
1197 	 */
1198 
1199 	/*
1200 	 * let uvmfault_anonget do the dirty work.
1201 	 * if it fails (!OK) it will unlock everything for us.
1202 	 * if it succeeds, locks are still valid and locked.
1203 	 * also, if it is OK, then the anon's page is on the queues.
1204 	 * if the page is on loan from a uvm_object, then anonget will
1205 	 * lock that object for us if it does not fail.
1206 	 */
1207 
1208 	error = uvmfault_anonget(&ufi, amap, anon);
1209 	switch (error) {
1210 	case 0:
1211 		break;
1212 
1213 	case ERESTART:
1214 		goto ReFault;
1215 
1216 	case EAGAIN:
1217 		kpause("fltagain1", false, hz/2, NULL);
1218 		goto ReFault;
1219 
1220 	default:
1221 		goto done;
1222 	}
1223 
1224 	/*
1225 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1226 	 */
1227 
1228 	uobj = anon->an_page->uobject;	/* locked by anonget if !NULL */
1229 
1230 	/* locked: maps(read), amap, anon, uobj(if one) */
1231 	KASSERT(mutex_owned(&amap->am_l));
1232 	KASSERT(mutex_owned(&anon->an_lock));
1233 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1234 
1235 	/*
1236 	 * special handling for loaned pages
1237 	 */
1238 
1239 	if (anon->an_page->loan_count) {
1240 
1241 		if (!cow_now) {
1242 
1243 			/*
1244 			 * for read faults on loaned pages we just cap the
1245 			 * protection at read-only.
1246 			 */
1247 
1248 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1249 
1250 		} else {
1251 			/*
1252 			 * note that we can't allow writes into a loaned page!
1253 			 *
1254 			 * if we have a write fault on a loaned page in an
1255 			 * anon then we need to look at the anon's ref count.
1256 			 * if it is greater than one then we are going to do
1257 			 * a normal copy-on-write fault into a new anon (this
1258 			 * is not a problem).  however, if the reference count
1259 			 * is one (a case where we would normally allow a
1260 			 * write directly to the page) then we need to kill
1261 			 * the loan before we continue.
1262 			 */
1263 
1264 			/* >1 case is already ok */
1265 			if (anon->an_ref == 1) {
1266 
1267 				/* get new un-owned replacement page */
1268 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1269 				if (pg == NULL) {
1270 					uvmfault_unlockall(&ufi, amap, uobj,
1271 					    anon);
1272 					uvm_wait("flt_noram2");
1273 					goto ReFault;
1274 				}
1275 
1276 				/*
1277 				 * copy data, kill loan, and drop uobj lock
1278 				 * (if any)
1279 				 */
1280 				/* copy old -> new */
1281 				uvm_pagecopy(anon->an_page, pg);
1282 
1283 				/* force reload */
1284 				pmap_page_protect(anon->an_page, VM_PROT_NONE);
1285 				mutex_enter(&uvm_pageqlock);	  /* KILL loan */
1286 
1287 				anon->an_page->uanon = NULL;
1288 				/* in case we owned */
1289 				anon->an_page->pqflags &= ~PQ_ANON;
1290 
1291 				if (uobj) {
1292 					/* if we were receiver of loan */
1293 					anon->an_page->loan_count--;
1294 				} else {
1295 					/*
1296 					 * we were the lender (A->K); need
1297 					 * to remove the page from pageq's.
1298 					 */
1299 					uvm_pagedequeue(anon->an_page);
1300 				}
1301 
1302 				if (uobj) {
1303 					mutex_exit(&uobj->vmobjlock);
1304 					uobj = NULL;
1305 				}
1306 
1307 				/* install new page in anon */
1308 				anon->an_page = pg;
1309 				pg->uanon = anon;
1310 				pg->pqflags |= PQ_ANON;
1311 
1312 				uvm_pageactivate(pg);
1313 				mutex_exit(&uvm_pageqlock);
1314 
1315 				pg->flags &= ~(PG_BUSY|PG_FAKE);
1316 				UVM_PAGE_OWN(pg, NULL);
1317 
1318 				/* done! */
1319 			}     /* ref == 1 */
1320 		}       /* write fault */
1321 	}         /* loan count */
1322 
1323 	/*
1324 	 * if we are case 1B then we will need to allocate a new blank
1325 	 * anon to transfer the data into.   note that we have a lock
1326 	 * on anon, so no one can busy or release the page until we are done.
1327 	 * also note that the ref count can't drop to zero here because
1328 	 * it is > 1 and we are only dropping one ref.
1329 	 *
1330 	 * in the (hopefully very rare) case that we are out of RAM we
1331 	 * will unlock, wait for more RAM, and refault.
1332 	 *
1333 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1334 	 */
1335 
1336 	if (cow_now && anon->an_ref > 1) {
1337 
1338 		UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1339 		uvmexp.flt_acow++;
1340 		oanon = anon;		/* oanon = old, locked anon */
1341 
1342 		error = uvmfault_promote(&ufi, oanon, PGO_DONTCARE,
1343 		    &anon, &anon_spare);
1344 		switch (error) {
1345 		case 0:
1346 			break;
1347 		case ERESTART:
1348 			goto ReFault;
1349 		default:
1350 			goto done;
1351 		}
1352 
1353 		pg = anon->an_page;
1354 		mutex_enter(&uvm_pageqlock);
1355 		uvm_pageactivate(pg);
1356 		mutex_exit(&uvm_pageqlock);
1357 		pg->flags &= ~(PG_BUSY|PG_FAKE);
1358 		UVM_PAGE_OWN(pg, NULL);
1359 
1360 		/* deref: can not drop to zero here by defn! */
1361 		oanon->an_ref--;
1362 
1363 		/*
1364 		 * note: oanon is still locked, as is the new anon.  we
1365 		 * need to check for this later when we unlock oanon; if
1366 		 * oanon != anon, we'll have to unlock anon, too.
1367 		 */
1368 
1369 	} else {
1370 
1371 		uvmexp.flt_anon++;
1372 		oanon = anon;		/* old, locked anon is same as anon */
1373 		pg = anon->an_page;
1374 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1375 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1376 
1377 	}
1378 
1379 	/* locked: maps(read), amap, oanon, anon (if different from oanon) */
1380 	KASSERT(mutex_owned(&amap->am_l));
1381 	KASSERT(mutex_owned(&anon->an_lock));
1382 	KASSERT(mutex_owned(&oanon->an_lock));
1383 
1384 	/*
1385 	 * now map the page in.
1386 	 */
1387 
1388 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1389 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1390 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1391 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1392 	    != 0) {
1393 
1394 		/*
1395 		 * No need to undo what we did; we can simply think of
1396 		 * this as the pmap throwing away the mapping information.
1397 		 *
1398 		 * We do, however, have to go through the ReFault path,
1399 		 * as the map may change while we're asleep.
1400 		 */
1401 
1402 		if (anon != oanon)
1403 			mutex_exit(&anon->an_lock);
1404 		uvmfault_unlockall(&ufi, amap, uobj, oanon);
1405 		if (!uvm_reclaimable()) {
1406 			UVMHIST_LOG(maphist,
1407 			    "<- failed.  out of VM",0,0,0,0);
1408 			/* XXX instrumentation */
1409 			error = ENOMEM;
1410 			goto done;
1411 		}
1412 		/* XXX instrumentation */
1413 		uvm_wait("flt_pmfail1");
1414 		goto ReFault;
1415 	}
1416 
1417 	/*
1418 	 * ... update the page queues.
1419 	 */
1420 
1421 	mutex_enter(&uvm_pageqlock);
1422 	if (wire_fault) {
1423 		uvm_pagewire(pg);
1424 
1425 		/*
1426 		 * since the now-wired page cannot be paged out,
1427 		 * release its swap resources for others to use.
1428 		 * since an anon with no swap cannot be PG_CLEAN,
1429 		 * clear its clean flag now.
1430 		 */
1431 
1432 		pg->flags &= ~(PG_CLEAN);
1433 		uvm_anon_dropswap(anon);
1434 	} else {
1435 		uvm_pageactivate(pg);
1436 	}
1437 	mutex_exit(&uvm_pageqlock);
1438 
1439 	/*
1440 	 * done case 1!  finish up by unlocking everything and returning success
1441 	 */
1442 
1443 	if (anon != oanon)
1444 		mutex_exit(&anon->an_lock);
1445 	uvmfault_unlockall(&ufi, amap, uobj, oanon);
1446 	pmap_update(ufi.orig_map->pmap);
1447 	error = 0;
1448 	goto done;
1449 
1450 Case2:
1451 	/*
1452 	 * handle case 2: faulting on backing object or zero fill
1453 	 */
1454 
1455 	/*
1456 	 * locked:
1457 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1458 	 */
1459 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1460 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1461 	KASSERT(uobjpage == NULL || (uobjpage->flags & PG_BUSY) != 0);
1462 
1463 	/*
1464 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1465 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1466 	 * have a backing object, check and see if we are going to promote
1467 	 * the data up to an anon during the fault.
1468 	 */
1469 
1470 	if (uobj == NULL) {
1471 		uobjpage = PGO_DONTCARE;
1472 		promote = true;		/* always need anon here */
1473 	} else {
1474 		KASSERT(uobjpage != PGO_DONTCARE);
1475 		promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1476 	}
1477 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
1478 	    promote, (uobj == NULL), 0,0);
1479 
1480 	/*
1481 	 * if uobjpage is not null then we do not need to do I/O to get the
1482 	 * uobjpage.
1483 	 *
1484 	 * if uobjpage is null, then we need to unlock and ask the pager to
1485 	 * get the data for us.   once we have the data, we need to reverify
1486 	 * the state the world.   we are currently not holding any resources.
1487 	 */
1488 
1489 	if (uobjpage) {
1490 		/* update rusage counters */
1491 		curlwp->l_ru.ru_minflt++;
1492 	} else {
1493 		/* update rusage counters */
1494 		curlwp->l_ru.ru_majflt++;
1495 
1496 		/* locked: maps(read), amap(if there), uobj */
1497 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1498 		/* locked: uobj */
1499 
1500 		uvmexp.fltget++;
1501 		gotpages = 1;
1502 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1503 		error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1504 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1505 		    PGO_SYNCIO);
1506 		/* locked: uobjpage(if no error) */
1507 		KASSERT(error != 0 || (uobjpage->flags & PG_BUSY) != 0);
1508 
1509 		/*
1510 		 * recover from I/O
1511 		 */
1512 
1513 		if (error) {
1514 			if (error == EAGAIN) {
1515 				UVMHIST_LOG(maphist,
1516 				    "  pgo_get says TRY AGAIN!",0,0,0,0);
1517 				kpause("fltagain2", false, hz/2, NULL);
1518 				goto ReFault;
1519 			}
1520 
1521 			UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1522 			    error, 0,0,0);
1523 			goto done;
1524 		}
1525 
1526 		/* locked: uobjpage */
1527 
1528 		mutex_enter(&uvm_pageqlock);
1529 		uvm_pageactivate(uobjpage);
1530 		mutex_exit(&uvm_pageqlock);
1531 
1532 		/*
1533 		 * re-verify the state of the world by first trying to relock
1534 		 * the maps.  always relock the object.
1535 		 */
1536 
1537 		locked = uvmfault_relock(&ufi);
1538 		if (locked && amap)
1539 			amap_lock(amap);
1540 		uobj = uobjpage->uobject;
1541 		mutex_enter(&uobj->vmobjlock);
1542 
1543 		/* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1544 		/* locked(!locked): uobj, uobjpage */
1545 
1546 		/*
1547 		 * verify that the page has not be released and re-verify
1548 		 * that amap slot is still free.   if there is a problem,
1549 		 * we unlock and clean up.
1550 		 */
1551 
1552 		if ((uobjpage->flags & PG_RELEASED) != 0 ||
1553 		    (locked && amap &&
1554 		    amap_lookup(&ufi.entry->aref,
1555 		      ufi.orig_rvaddr - ufi.entry->start))) {
1556 			if (locked)
1557 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1558 			locked = false;
1559 		}
1560 
1561 		/*
1562 		 * didn't get the lock?   release the page and retry.
1563 		 */
1564 
1565 		if (locked == false) {
1566 			UVMHIST_LOG(maphist,
1567 			    "  wasn't able to relock after fault: retry",
1568 			    0,0,0,0);
1569 			if (uobjpage->flags & PG_WANTED)
1570 				wakeup(uobjpage);
1571 			if (uobjpage->flags & PG_RELEASED) {
1572 				uvmexp.fltpgrele++;
1573 				uvm_pagefree(uobjpage);
1574 				goto ReFault;
1575 			}
1576 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1577 			UVM_PAGE_OWN(uobjpage, NULL);
1578 			mutex_exit(&uobj->vmobjlock);
1579 			goto ReFault;
1580 		}
1581 
1582 		/*
1583 		 * we have the data in uobjpage which is busy and
1584 		 * not released.  we are holding object lock (so the page
1585 		 * can't be released on us).
1586 		 */
1587 
1588 		/* locked: maps(read), amap(if !null), uobj, uobjpage */
1589 	}
1590 
1591 	/*
1592 	 * locked:
1593 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1594 	 */
1595 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1596 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1597 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1598 
1599 	/*
1600 	 * notes:
1601 	 *  - at this point uobjpage can not be NULL
1602 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1603 	 *  for it above)
1604 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1605 	 */
1606 
1607 	KASSERT(uobj == NULL || uobj == uobjpage->uobject);
1608 	KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobjpage->uobject) ||
1609 	    (uobjpage->flags & PG_CLEAN) != 0);
1610 	if (promote == false) {
1611 
1612 		/*
1613 		 * we are not promoting.   if the mapping is COW ensure that we
1614 		 * don't give more access than we should (e.g. when doing a read
1615 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1616 		 * R/O even though the entry protection could be R/W).
1617 		 *
1618 		 * set "pg" to the page we want to map in (uobjpage, usually)
1619 		 */
1620 
1621 		/* no anon in this case. */
1622 		anon = NULL;
1623 
1624 		uvmexp.flt_obj++;
1625 		if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1626 		    UVM_OBJ_NEEDS_WRITEFAULT(uobjpage->uobject))
1627 			enter_prot &= ~VM_PROT_WRITE;
1628 		pg = uobjpage;		/* map in the actual object */
1629 
1630 		KASSERT(uobjpage != PGO_DONTCARE);
1631 
1632 		/*
1633 		 * we are faulting directly on the page.   be careful
1634 		 * about writing to loaned pages...
1635 		 */
1636 
1637 		if (uobjpage->loan_count) {
1638 			if (!cow_now) {
1639 				/* read fault: cap the protection at readonly */
1640 				/* cap! */
1641 				enter_prot = enter_prot & ~VM_PROT_WRITE;
1642 			} else {
1643 				/* write fault: must break the loan here */
1644 
1645 				pg = uvm_loanbreak(uobjpage);
1646 				if (pg == NULL) {
1647 
1648 					/*
1649 					 * drop ownership of page, it can't
1650 					 * be released
1651 					 */
1652 
1653 					if (uobjpage->flags & PG_WANTED)
1654 						wakeup(uobjpage);
1655 					uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1656 					UVM_PAGE_OWN(uobjpage, NULL);
1657 
1658 					uvmfault_unlockall(&ufi, amap, uobj,
1659 					  NULL);
1660 					UVMHIST_LOG(maphist,
1661 					  "  out of RAM breaking loan, waiting",
1662 					  0,0,0,0);
1663 					uvmexp.fltnoram++;
1664 					uvm_wait("flt_noram4");
1665 					goto ReFault;
1666 				}
1667 				uobjpage = pg;
1668 			}
1669 		}
1670 	} else {
1671 
1672 		/*
1673 		 * if we are going to promote the data to an anon we
1674 		 * allocate a blank anon here and plug it into our amap.
1675 		 */
1676 #if DIAGNOSTIC
1677 		if (amap == NULL)
1678 			panic("uvm_fault: want to promote data, but no anon");
1679 #endif
1680 		error = uvmfault_promote(&ufi, NULL, uobjpage,
1681 		    &anon, &anon_spare);
1682 		switch (error) {
1683 		case 0:
1684 			break;
1685 		case ERESTART:
1686 			goto ReFault;
1687 		default:
1688 			goto done;
1689 		}
1690 
1691 		pg = anon->an_page;
1692 
1693 		/*
1694 		 * fill in the data
1695 		 */
1696 
1697 		if (uobjpage != PGO_DONTCARE) {
1698 			uvmexp.flt_prcopy++;
1699 
1700 			/*
1701 			 * promote to shared amap?  make sure all sharing
1702 			 * procs see it
1703 			 */
1704 
1705 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1706 				pmap_page_protect(uobjpage, VM_PROT_NONE);
1707 				/*
1708 				 * XXX: PAGE MIGHT BE WIRED!
1709 				 */
1710 			}
1711 
1712 			/*
1713 			 * dispose of uobjpage.  it can't be PG_RELEASED
1714 			 * since we still hold the object lock.
1715 			 * drop handle to uobj as well.
1716 			 */
1717 
1718 			if (uobjpage->flags & PG_WANTED)
1719 				/* still have the obj lock */
1720 				wakeup(uobjpage);
1721 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1722 			UVM_PAGE_OWN(uobjpage, NULL);
1723 			mutex_exit(&uobj->vmobjlock);
1724 			uobj = NULL;
1725 
1726 			UVMHIST_LOG(maphist,
1727 			    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1728 			    uobjpage, anon, pg, 0);
1729 
1730 		} else {
1731 			uvmexp.flt_przero++;
1732 
1733 			/*
1734 			 * Page is zero'd and marked dirty by
1735 			 * uvmfault_promote().
1736 			 */
1737 
1738 			UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
1739 			    anon, pg, 0, 0);
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * locked:
1745 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1746 	 *   anon(if !null), pg(if anon)
1747 	 *
1748 	 * note: pg is either the uobjpage or the new page in the new anon
1749 	 */
1750 	KASSERT(amap == NULL || mutex_owned(&amap->am_l));
1751 	KASSERT(uobj == NULL || mutex_owned(&uobj->vmobjlock));
1752 	KASSERT(uobj == NULL || (uobjpage->flags & PG_BUSY) != 0);
1753 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1754 	KASSERT((pg->flags & PG_BUSY) != 0);
1755 
1756 	/*
1757 	 * all resources are present.   we can now map it in and free our
1758 	 * resources.
1759 	 */
1760 
1761 	UVMHIST_LOG(maphist,
1762 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1763 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1764 	KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1765 		(pg->flags & PG_RDONLY) == 0);
1766 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1767 	    pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1768 	    access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1769 
1770 		/*
1771 		 * No need to undo what we did; we can simply think of
1772 		 * this as the pmap throwing away the mapping information.
1773 		 *
1774 		 * We do, however, have to go through the ReFault path,
1775 		 * as the map may change while we're asleep.
1776 		 */
1777 
1778 		if (pg->flags & PG_WANTED)
1779 			wakeup(pg);
1780 
1781 		/*
1782 		 * note that pg can't be PG_RELEASED since we did not drop
1783 		 * the object lock since the last time we checked.
1784 		 */
1785 		KASSERT((pg->flags & PG_RELEASED) == 0);
1786 
1787 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1788 		UVM_PAGE_OWN(pg, NULL);
1789 		uvmfault_unlockall(&ufi, amap, uobj, anon);
1790 		if (!uvm_reclaimable()) {
1791 			UVMHIST_LOG(maphist,
1792 			    "<- failed.  out of VM",0,0,0,0);
1793 			/* XXX instrumentation */
1794 			error = ENOMEM;
1795 			goto done;
1796 		}
1797 		/* XXX instrumentation */
1798 		uvm_wait("flt_pmfail2");
1799 		goto ReFault;
1800 	}
1801 
1802 	mutex_enter(&uvm_pageqlock);
1803 	if (wire_fault) {
1804 		uvm_pagewire(pg);
1805 		if (pg->pqflags & PQ_AOBJ) {
1806 
1807 			/*
1808 			 * since the now-wired page cannot be paged out,
1809 			 * release its swap resources for others to use.
1810 			 * since an aobj page with no swap cannot be PG_CLEAN,
1811 			 * clear its clean flag now.
1812 			 */
1813 
1814 			KASSERT(uobj != NULL);
1815 			pg->flags &= ~(PG_CLEAN);
1816 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1817 		}
1818 	} else {
1819 		uvm_pageactivate(pg);
1820 	}
1821 	mutex_exit(&uvm_pageqlock);
1822 	if (pg->flags & PG_WANTED)
1823 		wakeup(pg);
1824 
1825 	/*
1826 	 * note that pg can't be PG_RELEASED since we did not drop the object
1827 	 * lock since the last time we checked.
1828 	 */
1829 	KASSERT((pg->flags & PG_RELEASED) == 0);
1830 
1831 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1832 	UVM_PAGE_OWN(pg, NULL);
1833 	uvmfault_unlockall(&ufi, amap, uobj, anon);
1834 	pmap_update(ufi.orig_map->pmap);
1835 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1836 	error = 0;
1837 done:
1838 	if (anon_spare != NULL) {
1839 		anon_spare->an_ref--;
1840 		uvm_anfree(anon_spare);
1841 	}
1842 	return error;
1843 }
1844 
1845 
1846 /*
1847  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1848  *
1849  * => map may be read-locked by caller, but MUST NOT be write-locked.
1850  * => if map is read-locked, any operations which may cause map to
1851  *	be write-locked in uvm_fault() must be taken care of by
1852  *	the caller.  See uvm_map_pageable().
1853  */
1854 
1855 int
1856 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1857     vm_prot_t access_type, int wiremax)
1858 {
1859 	vaddr_t va;
1860 	int error;
1861 
1862 	/*
1863 	 * now fault it in a page at a time.   if the fault fails then we have
1864 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
1865 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1866 	 */
1867 
1868 	/*
1869 	 * XXX work around overflowing a vaddr_t.  this prevents us from
1870 	 * wiring the last page in the address space, though.
1871 	 */
1872 	if (start > end) {
1873 		return EFAULT;
1874 	}
1875 
1876 	for (va = start ; va < end ; va += PAGE_SIZE) {
1877 		error = uvm_fault_internal(map, va, access_type,
1878 				wiremax ? UVM_FAULT_WIREMAX : UVM_FAULT_WIRE);
1879 		if (error) {
1880 			if (va != start) {
1881 				uvm_fault_unwire(map, start, va);
1882 			}
1883 			return error;
1884 		}
1885 	}
1886 	return 0;
1887 }
1888 
1889 /*
1890  * uvm_fault_unwire(): unwire range of virtual space.
1891  */
1892 
1893 void
1894 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1895 {
1896 	vm_map_lock_read(map);
1897 	uvm_fault_unwire_locked(map, start, end);
1898 	vm_map_unlock_read(map);
1899 }
1900 
1901 /*
1902  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1903  *
1904  * => map must be at least read-locked.
1905  */
1906 
1907 void
1908 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1909 {
1910 	struct vm_map_entry *entry;
1911 	pmap_t pmap = vm_map_pmap(map);
1912 	vaddr_t va;
1913 	paddr_t pa;
1914 	struct vm_page *pg;
1915 
1916 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1917 
1918 	/*
1919 	 * we assume that the area we are unwiring has actually been wired
1920 	 * in the first place.   this means that we should be able to extract
1921 	 * the PAs from the pmap.   we also lock out the page daemon so that
1922 	 * we can call uvm_pageunwire.
1923 	 */
1924 
1925 	mutex_enter(&uvm_pageqlock);
1926 
1927 	/*
1928 	 * find the beginning map entry for the region.
1929 	 */
1930 
1931 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1932 	if (uvm_map_lookup_entry(map, start, &entry) == false)
1933 		panic("uvm_fault_unwire_locked: address not in map");
1934 
1935 	for (va = start; va < end; va += PAGE_SIZE) {
1936 		if (pmap_extract(pmap, va, &pa) == false)
1937 			continue;
1938 
1939 		/*
1940 		 * find the map entry for the current address.
1941 		 */
1942 
1943 		KASSERT(va >= entry->start);
1944 		while (va >= entry->end) {
1945 			KASSERT(entry->next != &map->header &&
1946 				entry->next->start <= entry->end);
1947 			entry = entry->next;
1948 		}
1949 
1950 		/*
1951 		 * if the entry is no longer wired, tell the pmap.
1952 		 */
1953 
1954 		if (VM_MAPENT_ISWIRED(entry) == 0)
1955 			pmap_unwire(pmap, va);
1956 
1957 		pg = PHYS_TO_VM_PAGE(pa);
1958 		if (pg)
1959 			uvm_pageunwire(pg);
1960 	}
1961 
1962 	mutex_exit(&uvm_pageqlock);
1963 }
1964