1 /* $NetBSD: uvm_aobj.c,v 1.139 2020/03/22 18:32:42 ad Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and 5 * Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp 29 */ 30 31 /* 32 * uvm_aobj.c: anonymous memory uvm_object pager 33 * 34 * author: Chuck Silvers <chuq@chuq.com> 35 * started: Jan-1998 36 * 37 * - design mostly from Chuck Cranor 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.139 2020/03/22 18:32:42 ad Exp $"); 42 43 #ifdef _KERNEL_OPT 44 #include "opt_uvmhist.h" 45 #endif 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/kmem.h> 51 #include <sys/pool.h> 52 #include <sys/atomic.h> 53 54 #include <uvm/uvm.h> 55 #include <uvm/uvm_page_array.h> 56 57 /* 58 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to 59 * keeping the list of resident pages, it may also keep a list of allocated 60 * swap blocks. Depending on the size of the object, this list is either 61 * stored in an array (small objects) or in a hash table (large objects). 62 * 63 * Lock order 64 * 65 * uao_list_lock -> 66 * uvm_object::vmobjlock 67 */ 68 69 /* 70 * Note: for hash tables, we break the address space of the aobj into blocks 71 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two. 72 */ 73 74 #define UAO_SWHASH_CLUSTER_SHIFT 4 75 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT) 76 77 /* Get the "tag" for this page index. */ 78 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT) 79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \ 80 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1)) 81 82 /* Given an ELT and a page index, find the swap slot. */ 83 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \ 84 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)]) 85 86 /* Given an ELT, return its pageidx base. */ 87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \ 88 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT) 89 90 /* The hash function. */ 91 #define UAO_SWHASH_HASH(aobj, idx) \ 92 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \ 93 & (aobj)->u_swhashmask)]) 94 95 /* 96 * The threshold which determines whether we will use an array or a 97 * hash table to store the list of allocated swap blocks. 98 */ 99 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4) 100 #define UAO_USES_SWHASH(aobj) \ 101 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD) 102 103 /* The number of buckets in a hash, with an upper bound. */ 104 #define UAO_SWHASH_MAXBUCKETS 256 105 #define UAO_SWHASH_BUCKETS(aobj) \ 106 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS)) 107 108 /* 109 * uao_swhash_elt: when a hash table is being used, this structure defines 110 * the format of an entry in the bucket list. 111 */ 112 113 struct uao_swhash_elt { 114 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */ 115 voff_t tag; /* our 'tag' */ 116 int count; /* our number of active slots */ 117 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */ 118 }; 119 120 /* 121 * uao_swhash: the swap hash table structure 122 */ 123 124 LIST_HEAD(uao_swhash, uao_swhash_elt); 125 126 /* 127 * uao_swhash_elt_pool: pool of uao_swhash_elt structures. 128 * Note: pages for this pool must not come from a pageable kernel map. 129 */ 130 static struct pool uao_swhash_elt_pool __cacheline_aligned; 131 132 /* 133 * uvm_aobj: the actual anon-backed uvm_object 134 * 135 * => the uvm_object is at the top of the structure, this allows 136 * (struct uvm_aobj *) == (struct uvm_object *) 137 * => only one of u_swslots and u_swhash is used in any given aobj 138 */ 139 140 struct uvm_aobj { 141 struct uvm_object u_obj; /* has: lock, pgops, #pages, #refs */ 142 pgoff_t u_pages; /* number of pages in entire object */ 143 int u_flags; /* the flags (see uvm_aobj.h) */ 144 int *u_swslots; /* array of offset->swapslot mappings */ 145 /* 146 * hashtable of offset->swapslot mappings 147 * (u_swhash is an array of bucket heads) 148 */ 149 struct uao_swhash *u_swhash; 150 u_long u_swhashmask; /* mask for hashtable */ 151 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */ 152 int u_freelist; /* freelist to allocate pages from */ 153 }; 154 155 static void uao_free(struct uvm_aobj *); 156 static int uao_get(struct uvm_object *, voff_t, struct vm_page **, 157 int *, int, vm_prot_t, int, int); 158 static int uao_put(struct uvm_object *, voff_t, voff_t, int); 159 160 #if defined(VMSWAP) 161 static struct uao_swhash_elt *uao_find_swhash_elt 162 (struct uvm_aobj *, int, bool); 163 164 static bool uao_pagein(struct uvm_aobj *, int, int); 165 static bool uao_pagein_page(struct uvm_aobj *, int); 166 #endif /* defined(VMSWAP) */ 167 168 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int); 169 170 /* 171 * aobj_pager 172 * 173 * note that some functions (e.g. put) are handled elsewhere 174 */ 175 176 const struct uvm_pagerops aobj_pager = { 177 .pgo_reference = uao_reference, 178 .pgo_detach = uao_detach, 179 .pgo_get = uao_get, 180 .pgo_put = uao_put, 181 }; 182 183 /* 184 * uao_list: global list of active aobjs, locked by uao_list_lock 185 */ 186 187 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned; 188 static kmutex_t uao_list_lock __cacheline_aligned; 189 190 /* 191 * hash table/array related functions 192 */ 193 194 #if defined(VMSWAP) 195 196 /* 197 * uao_find_swhash_elt: find (or create) a hash table entry for a page 198 * offset. 199 * 200 * => the object should be locked by the caller 201 */ 202 203 static struct uao_swhash_elt * 204 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create) 205 { 206 struct uao_swhash *swhash; 207 struct uao_swhash_elt *elt; 208 voff_t page_tag; 209 210 swhash = UAO_SWHASH_HASH(aobj, pageidx); 211 page_tag = UAO_SWHASH_ELT_TAG(pageidx); 212 213 /* 214 * now search the bucket for the requested tag 215 */ 216 217 LIST_FOREACH(elt, swhash, list) { 218 if (elt->tag == page_tag) { 219 return elt; 220 } 221 } 222 if (!create) { 223 return NULL; 224 } 225 226 /* 227 * allocate a new entry for the bucket and init/insert it in 228 */ 229 230 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT); 231 if (elt == NULL) { 232 return NULL; 233 } 234 LIST_INSERT_HEAD(swhash, elt, list); 235 elt->tag = page_tag; 236 elt->count = 0; 237 memset(elt->slots, 0, sizeof(elt->slots)); 238 return elt; 239 } 240 241 /* 242 * uao_find_swslot: find the swap slot number for an aobj/pageidx 243 * 244 * => object must be locked by caller 245 */ 246 247 int 248 uao_find_swslot(struct uvm_object *uobj, int pageidx) 249 { 250 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 251 struct uao_swhash_elt *elt; 252 253 /* 254 * if noswap flag is set, then we never return a slot 255 */ 256 257 if (aobj->u_flags & UAO_FLAG_NOSWAP) 258 return 0; 259 260 /* 261 * if hashing, look in hash table. 262 */ 263 264 if (UAO_USES_SWHASH(aobj)) { 265 elt = uao_find_swhash_elt(aobj, pageidx, false); 266 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0; 267 } 268 269 /* 270 * otherwise, look in the array 271 */ 272 273 return aobj->u_swslots[pageidx]; 274 } 275 276 /* 277 * uao_set_swslot: set the swap slot for a page in an aobj. 278 * 279 * => setting a slot to zero frees the slot 280 * => object must be locked by caller 281 * => we return the old slot number, or -1 if we failed to allocate 282 * memory to record the new slot number 283 */ 284 285 int 286 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot) 287 { 288 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 289 struct uao_swhash_elt *elt; 290 int oldslot; 291 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist); 292 UVMHIST_LOG(pdhist, "aobj %#jx pageidx %jd slot %jd", 293 (uintptr_t)aobj, pageidx, slot, 0); 294 295 KASSERT(rw_write_held(uobj->vmobjlock) || uobj->uo_refs == 0); 296 297 /* 298 * if noswap flag is set, then we can't set a non-zero slot. 299 */ 300 301 if (aobj->u_flags & UAO_FLAG_NOSWAP) { 302 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object"); 303 return 0; 304 } 305 306 /* 307 * are we using a hash table? if so, add it in the hash. 308 */ 309 310 if (UAO_USES_SWHASH(aobj)) { 311 312 /* 313 * Avoid allocating an entry just to free it again if 314 * the page had not swap slot in the first place, and 315 * we are freeing. 316 */ 317 318 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0); 319 if (elt == NULL) { 320 return slot ? -1 : 0; 321 } 322 323 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx); 324 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot; 325 326 /* 327 * now adjust the elt's reference counter and free it if we've 328 * dropped it to zero. 329 */ 330 331 if (slot) { 332 if (oldslot == 0) 333 elt->count++; 334 } else { 335 if (oldslot) 336 elt->count--; 337 338 if (elt->count == 0) { 339 LIST_REMOVE(elt, list); 340 pool_put(&uao_swhash_elt_pool, elt); 341 } 342 } 343 } else { 344 /* we are using an array */ 345 oldslot = aobj->u_swslots[pageidx]; 346 aobj->u_swslots[pageidx] = slot; 347 } 348 return oldslot; 349 } 350 351 #endif /* defined(VMSWAP) */ 352 353 /* 354 * end of hash/array functions 355 */ 356 357 /* 358 * uao_free: free all resources held by an aobj, and then free the aobj 359 * 360 * => the aobj should be dead 361 */ 362 363 static void 364 uao_free(struct uvm_aobj *aobj) 365 { 366 struct uvm_object *uobj = &aobj->u_obj; 367 368 KASSERT(rw_write_held(uobj->vmobjlock)); 369 uao_dropswap_range(uobj, 0, 0); 370 rw_exit(uobj->vmobjlock); 371 372 #if defined(VMSWAP) 373 if (UAO_USES_SWHASH(aobj)) { 374 375 /* 376 * free the hash table itself. 377 */ 378 379 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask); 380 } else { 381 382 /* 383 * free the array itsself. 384 */ 385 386 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int)); 387 } 388 #endif /* defined(VMSWAP) */ 389 390 /* 391 * finally free the aobj itself 392 */ 393 394 uvm_obj_destroy(uobj, true); 395 kmem_free(aobj, sizeof(struct uvm_aobj)); 396 } 397 398 /* 399 * pager functions 400 */ 401 402 /* 403 * uao_create: create an aobj of the given size and return its uvm_object. 404 * 405 * => for normal use, flags are always zero 406 * => for the kernel object, the flags are: 407 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once) 408 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ") 409 */ 410 411 struct uvm_object * 412 uao_create(voff_t size, int flags) 413 { 414 static struct uvm_aobj kernel_object_store; 415 static krwlock_t kernel_object_lock __cacheline_aligned; 416 static int kobj_alloced __diagused = 0; 417 pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT; 418 struct uvm_aobj *aobj; 419 int refs; 420 421 /* 422 * Allocate a new aobj, unless kernel object is requested. 423 */ 424 425 if (flags & UAO_FLAG_KERNOBJ) { 426 KASSERT(!kobj_alloced); 427 aobj = &kernel_object_store; 428 aobj->u_pages = pages; 429 aobj->u_flags = UAO_FLAG_NOSWAP; 430 refs = UVM_OBJ_KERN; 431 kobj_alloced = UAO_FLAG_KERNOBJ; 432 } else if (flags & UAO_FLAG_KERNSWAP) { 433 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ); 434 aobj = &kernel_object_store; 435 kobj_alloced = UAO_FLAG_KERNSWAP; 436 refs = 0xdeadbeaf; /* XXX: gcc */ 437 } else { 438 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP); 439 aobj->u_pages = pages; 440 aobj->u_flags = 0; 441 refs = 1; 442 } 443 444 /* 445 * no freelist by default 446 */ 447 448 aobj->u_freelist = VM_NFREELIST; 449 450 /* 451 * allocate hash/array if necessary 452 * 453 * note: in the KERNSWAP case no need to worry about locking since 454 * we are still booting we should be the only thread around. 455 */ 456 457 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) { 458 #if defined(VMSWAP) 459 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0; 460 461 /* allocate hash table or array depending on object size */ 462 if (UAO_USES_SWHASH(aobj)) { 463 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj), 464 HASH_LIST, kernswap ? false : true, 465 &aobj->u_swhashmask); 466 if (aobj->u_swhash == NULL) 467 panic("uao_create: hashinit swhash failed"); 468 } else { 469 aobj->u_swslots = kmem_zalloc(pages * sizeof(int), 470 kernswap ? KM_NOSLEEP : KM_SLEEP); 471 if (aobj->u_swslots == NULL) 472 panic("uao_create: swslots allocation failed"); 473 } 474 #endif /* defined(VMSWAP) */ 475 476 if (flags) { 477 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */ 478 return &aobj->u_obj; 479 } 480 } 481 482 /* 483 * Initialise UVM object. 484 */ 485 486 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0; 487 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs); 488 if (__predict_false(kernobj)) { 489 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */ 490 rw_init(&kernel_object_lock); 491 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock); 492 } 493 494 /* 495 * now that aobj is ready, add it to the global list 496 */ 497 498 mutex_enter(&uao_list_lock); 499 LIST_INSERT_HEAD(&uao_list, aobj, u_list); 500 mutex_exit(&uao_list_lock); 501 return(&aobj->u_obj); 502 } 503 504 /* 505 * uao_set_pgfl: allocate pages only from the specified freelist. 506 * 507 * => must be called before any pages are allocated for the object. 508 * => reset by setting it to VM_NFREELIST, meaning any freelist. 509 */ 510 511 void 512 uao_set_pgfl(struct uvm_object *uobj, int freelist) 513 { 514 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 515 516 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist); 517 KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d", 518 freelist); 519 520 aobj->u_freelist = freelist; 521 } 522 523 /* 524 * uao_pagealloc: allocate a page for aobj. 525 */ 526 527 static inline struct vm_page * 528 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags) 529 { 530 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 531 532 if (__predict_true(aobj->u_freelist == VM_NFREELIST)) 533 return uvm_pagealloc(uobj, offset, NULL, flags); 534 else 535 return uvm_pagealloc_strat(uobj, offset, NULL, flags, 536 UVM_PGA_STRAT_ONLY, aobj->u_freelist); 537 } 538 539 /* 540 * uao_init: set up aobj pager subsystem 541 * 542 * => called at boot time from uvm_pager_init() 543 */ 544 545 void 546 uao_init(void) 547 { 548 static int uao_initialized; 549 550 if (uao_initialized) 551 return; 552 uao_initialized = true; 553 LIST_INIT(&uao_list); 554 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE); 555 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 556 0, 0, 0, "uaoeltpl", NULL, IPL_VM); 557 } 558 559 /* 560 * uao_reference: hold a reference to an anonymous UVM object. 561 */ 562 void 563 uao_reference(struct uvm_object *uobj) 564 { 565 /* Kernel object is persistent. */ 566 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) { 567 return; 568 } 569 atomic_inc_uint(&uobj->uo_refs); 570 } 571 572 /* 573 * uao_detach: drop a reference to an anonymous UVM object. 574 */ 575 void 576 uao_detach(struct uvm_object *uobj) 577 { 578 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 579 struct uvm_page_array a; 580 struct vm_page *pg; 581 582 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist); 583 584 /* 585 * Detaching from kernel object is a NOP. 586 */ 587 588 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) 589 return; 590 591 /* 592 * Drop the reference. If it was the last one, destroy the object. 593 */ 594 595 KASSERT(uobj->uo_refs > 0); 596 UVMHIST_LOG(maphist," (uobj=%#jx) ref=%jd", 597 (uintptr_t)uobj, uobj->uo_refs, 0, 0); 598 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) { 599 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0); 600 return; 601 } 602 603 /* 604 * Remove the aobj from the global list. 605 */ 606 607 mutex_enter(&uao_list_lock); 608 LIST_REMOVE(aobj, u_list); 609 mutex_exit(&uao_list_lock); 610 611 /* 612 * Free all the pages left in the aobj. For each page, when the 613 * page is no longer busy (and thus after any disk I/O that it is 614 * involved in is complete), release any swap resources and free 615 * the page itself. 616 */ 617 uvm_page_array_init(&a); 618 rw_enter(uobj->vmobjlock, RW_WRITER); 619 while ((pg = uvm_page_array_fill_and_peek(&a, uobj, 0, 0, 0)) 620 != NULL) { 621 uvm_page_array_advance(&a); 622 pmap_page_protect(pg, VM_PROT_NONE); 623 if (pg->flags & PG_BUSY) { 624 uvm_pagewait(pg, uobj->vmobjlock, "uao_det"); 625 uvm_page_array_clear(&a); 626 rw_enter(uobj->vmobjlock, RW_WRITER); 627 continue; 628 } 629 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT); 630 uvm_pagefree(pg); 631 } 632 uvm_page_array_fini(&a); 633 634 /* 635 * Finally, free the anonymous UVM object itself. 636 */ 637 638 uao_free(aobj); 639 } 640 641 /* 642 * uao_put: flush pages out of a uvm object 643 * 644 * => object should be locked by caller. we may _unlock_ the object 645 * if (and only if) we need to clean a page (PGO_CLEANIT). 646 * XXXJRT Currently, however, we don't. In the case of cleaning 647 * XXXJRT a page, we simply just deactivate it. Should probably 648 * XXXJRT handle this better, in the future (although "flushing" 649 * XXXJRT anonymous memory isn't terribly important). 650 * => if PGO_CLEANIT is not set, then we will neither unlock the object 651 * or block. 652 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 653 * for flushing. 654 * => we return 0 unless we encountered some sort of I/O error 655 * XXXJRT currently never happens, as we never directly initiate 656 * XXXJRT I/O 657 */ 658 659 static int 660 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags) 661 { 662 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 663 struct uvm_page_array a; 664 struct vm_page *pg; 665 voff_t curoff; 666 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist); 667 668 KASSERT(rw_write_held(uobj->vmobjlock)); 669 670 if (flags & PGO_ALLPAGES) { 671 start = 0; 672 stop = aobj->u_pages << PAGE_SHIFT; 673 } else { 674 start = trunc_page(start); 675 if (stop == 0) { 676 stop = aobj->u_pages << PAGE_SHIFT; 677 } else { 678 stop = round_page(stop); 679 } 680 if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) { 681 printf("uao_put: strange, got an out of range " 682 "flush %#jx > %#jx (fixed)\n", 683 (uintmax_t)stop, 684 (uintmax_t)(aobj->u_pages << PAGE_SHIFT)); 685 stop = aobj->u_pages << PAGE_SHIFT; 686 } 687 } 688 UVMHIST_LOG(maphist, 689 " flush start=%#jx, stop=%#jx, flags=%#jx", 690 start, stop, flags, 0); 691 692 /* 693 * Don't need to do any work here if we're not freeing 694 * or deactivating pages. 695 */ 696 697 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) { 698 rw_exit(uobj->vmobjlock); 699 return 0; 700 } 701 702 /* locked: uobj */ 703 uvm_page_array_init(&a); 704 curoff = start; 705 while ((pg = uvm_page_array_fill_and_peek(&a, uobj, curoff, 0, 0)) != 706 NULL) { 707 if (pg->offset >= stop) { 708 break; 709 } 710 711 /* 712 * wait and try again if the page is busy. 713 */ 714 715 if (pg->flags & PG_BUSY) { 716 uvm_pagewait(pg, uobj->vmobjlock, "uao_put"); 717 uvm_page_array_clear(&a); 718 rw_enter(uobj->vmobjlock, RW_WRITER); 719 continue; 720 } 721 uvm_page_array_advance(&a); 722 curoff = pg->offset + PAGE_SIZE; 723 724 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) { 725 726 /* 727 * XXX In these first 3 cases, we always just 728 * XXX deactivate the page. We may want to 729 * XXX handle the different cases more specifically 730 * XXX in the future. 731 */ 732 733 case PGO_CLEANIT|PGO_FREE: 734 case PGO_CLEANIT|PGO_DEACTIVATE: 735 case PGO_DEACTIVATE: 736 deactivate_it: 737 uvm_pagelock(pg); 738 uvm_pagedeactivate(pg); 739 uvm_pageunlock(pg); 740 break; 741 742 case PGO_FREE: 743 /* 744 * If there are multiple references to 745 * the object, just deactivate the page. 746 */ 747 748 if (uobj->uo_refs > 1) 749 goto deactivate_it; 750 751 /* 752 * free the swap slot and the page. 753 */ 754 755 pmap_page_protect(pg, VM_PROT_NONE); 756 757 /* 758 * freeing swapslot here is not strictly necessary. 759 * however, leaving it here doesn't save much 760 * because we need to update swap accounting anyway. 761 */ 762 763 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 764 uvm_pagefree(pg); 765 break; 766 767 default: 768 panic("%s: impossible", __func__); 769 } 770 } 771 rw_exit(uobj->vmobjlock); 772 uvm_page_array_fini(&a); 773 return 0; 774 } 775 776 /* 777 * uao_get: fetch me a page 778 * 779 * we have three cases: 780 * 1: page is resident -> just return the page. 781 * 2: page is zero-fill -> allocate a new page and zero it. 782 * 3: page is swapped out -> fetch the page from swap. 783 * 784 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot. 785 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES), 786 * then we will need to return EBUSY. 787 * 788 * => prefer map unlocked (not required) 789 * => object must be locked! we will _unlock_ it before starting any I/O. 790 * => flags: PGO_ALLPAGES: get all of the pages 791 * PGO_LOCKED: fault data structures are locked 792 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 793 * => NOTE: caller must check for released pages!! 794 */ 795 796 static int 797 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps, 798 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags) 799 { 800 voff_t current_offset; 801 struct vm_page *ptmp = NULL; /* Quell compiler warning */ 802 int lcv, gotpages, maxpages, swslot, pageidx; 803 bool done; 804 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist); 805 806 UVMHIST_LOG(pdhist, "aobj=%#jx offset=%jd, flags=%jd", 807 (uintptr_t)uobj, offset, flags,0); 808 809 /* 810 * the object must be locked. it can only be a read lock when 811 * processing a read fault with PGO_LOCKED | PGO_NOBUSY. 812 */ 813 814 KASSERT(rw_lock_held(uobj->vmobjlock)); 815 KASSERT(rw_write_held(uobj->vmobjlock) || 816 ((~flags & (PGO_LOCKED | PGO_NOBUSY)) == 0 && 817 (access_type & VM_PROT_WRITE) == 0)); 818 819 /* 820 * get number of pages 821 */ 822 823 maxpages = *npagesp; 824 825 /* 826 * step 1: handled the case where fault data structures are locked. 827 */ 828 829 if (flags & PGO_LOCKED) { 830 831 /* 832 * step 1a: get pages that are already resident. only do 833 * this if the data structures are locked (i.e. the first 834 * time through). 835 */ 836 837 done = true; /* be optimistic */ 838 gotpages = 0; /* # of pages we got so far */ 839 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 840 lcv++, current_offset += PAGE_SIZE) { 841 /* do we care about this page? if not, skip it */ 842 if (pps[lcv] == PGO_DONTCARE) 843 continue; 844 ptmp = uvm_pagelookup(uobj, current_offset); 845 846 /* 847 * if page is new, attempt to allocate the page, 848 * zero-fill'd. we can only do this if busying 849 * pages, as otherwise the object is read locked. 850 */ 851 852 if ((flags & PGO_NOBUSY) == 0 && ptmp == NULL && 853 uao_find_swslot(uobj, 854 current_offset >> PAGE_SHIFT) == 0) { 855 ptmp = uao_pagealloc(uobj, current_offset, 856 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO); 857 if (ptmp) { 858 /* new page */ 859 ptmp->flags &= ~(PG_FAKE); 860 uvm_pagemarkdirty(ptmp, 861 UVM_PAGE_STATUS_UNKNOWN); 862 goto gotpage; 863 } 864 } 865 866 /* 867 * to be useful must get a non-busy page 868 */ 869 870 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) { 871 if (lcv == centeridx || 872 (flags & PGO_ALLPAGES) != 0) 873 /* need to do a wait or I/O! */ 874 done = false; 875 continue; 876 } 877 878 /* 879 * useful page: busy/lock it and plug it in our 880 * result array 881 */ 882 KASSERT(uvm_pagegetdirty(ptmp) != 883 UVM_PAGE_STATUS_CLEAN); 884 885 if ((flags & PGO_NOBUSY) == 0) { 886 /* caller must un-busy this page */ 887 ptmp->flags |= PG_BUSY; 888 UVM_PAGE_OWN(ptmp, "uao_get1"); 889 } 890 gotpage: 891 pps[lcv] = ptmp; 892 gotpages++; 893 } 894 895 /* 896 * step 1b: now we've either done everything needed or we 897 * to unlock and do some waiting or I/O. 898 */ 899 900 UVMHIST_LOG(pdhist, "<- done (done=%jd)", done, 0,0,0); 901 *npagesp = gotpages; 902 if (done) 903 return 0; 904 else 905 return EBUSY; 906 } 907 908 /* 909 * step 2: get non-resident or busy pages. 910 * object is locked. data structures are unlocked. 911 */ 912 913 if ((flags & PGO_SYNCIO) == 0) { 914 goto done; 915 } 916 917 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 918 lcv++, current_offset += PAGE_SIZE) { 919 920 /* 921 * - skip over pages we've already gotten or don't want 922 * - skip over pages we don't _have_ to get 923 */ 924 925 if (pps[lcv] != NULL || 926 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0)) 927 continue; 928 929 pageidx = current_offset >> PAGE_SHIFT; 930 931 /* 932 * we have yet to locate the current page (pps[lcv]). we 933 * first look for a page that is already at the current offset. 934 * if we find a page, we check to see if it is busy or 935 * released. if that is the case, then we sleep on the page 936 * until it is no longer busy or released and repeat the lookup. 937 * if the page we found is neither busy nor released, then we 938 * busy it (so we own it) and plug it into pps[lcv]. this 939 * 'break's the following while loop and indicates we are 940 * ready to move on to the next page in the "lcv" loop above. 941 * 942 * if we exit the while loop with pps[lcv] still set to NULL, 943 * then it means that we allocated a new busy/fake/clean page 944 * ptmp in the object and we need to do I/O to fill in the data. 945 */ 946 947 /* top of "pps" while loop */ 948 while (pps[lcv] == NULL) { 949 /* look for a resident page */ 950 ptmp = uvm_pagelookup(uobj, current_offset); 951 952 /* not resident? allocate one now (if we can) */ 953 if (ptmp == NULL) { 954 955 ptmp = uao_pagealloc(uobj, current_offset, 0); 956 957 /* out of RAM? */ 958 if (ptmp == NULL) { 959 rw_exit(uobj->vmobjlock); 960 UVMHIST_LOG(pdhist, 961 "sleeping, ptmp == NULL\n",0,0,0,0); 962 uvm_wait("uao_getpage"); 963 rw_enter(uobj->vmobjlock, RW_WRITER); 964 continue; 965 } 966 967 /* 968 * got new page ready for I/O. break pps while 969 * loop. pps[lcv] is still NULL. 970 */ 971 972 break; 973 } 974 975 /* page is there, see if we need to wait on it */ 976 if ((ptmp->flags & PG_BUSY) != 0) { 977 UVMHIST_LOG(pdhist, 978 "sleeping, ptmp->flags %#jx\n", 979 ptmp->flags,0,0,0); 980 uvm_pagewait(ptmp, uobj->vmobjlock, "uao_get"); 981 rw_enter(uobj->vmobjlock, RW_WRITER); 982 continue; 983 } 984 985 /* 986 * if we get here then the page has become resident and 987 * unbusy between steps 1 and 2. we busy it now (so we 988 * own it) and set pps[lcv] (so that we exit the while 989 * loop). 990 */ 991 992 KASSERT(uvm_pagegetdirty(ptmp) != 993 UVM_PAGE_STATUS_CLEAN); 994 /* we own it, caller must un-busy */ 995 ptmp->flags |= PG_BUSY; 996 UVM_PAGE_OWN(ptmp, "uao_get2"); 997 pps[lcv] = ptmp; 998 } 999 1000 /* 1001 * if we own the valid page at the correct offset, pps[lcv] will 1002 * point to it. nothing more to do except go to the next page. 1003 */ 1004 1005 if (pps[lcv]) 1006 continue; /* next lcv */ 1007 1008 /* 1009 * we have a "fake/busy/clean" page that we just allocated. 1010 * do the needed "i/o", either reading from swap or zeroing. 1011 */ 1012 1013 swslot = uao_find_swslot(uobj, pageidx); 1014 1015 /* 1016 * just zero the page if there's nothing in swap. 1017 */ 1018 1019 if (swslot == 0) { 1020 1021 /* 1022 * page hasn't existed before, just zero it. 1023 */ 1024 1025 uvm_pagezero(ptmp); 1026 } else { 1027 #if defined(VMSWAP) 1028 int error; 1029 1030 UVMHIST_LOG(pdhist, "pagein from swslot %jd", 1031 swslot, 0,0,0); 1032 1033 /* 1034 * page in the swapped-out page. 1035 * unlock object for i/o, relock when done. 1036 */ 1037 1038 rw_exit(uobj->vmobjlock); 1039 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO); 1040 rw_enter(uobj->vmobjlock, RW_WRITER); 1041 1042 /* 1043 * I/O done. check for errors. 1044 */ 1045 1046 if (error != 0) { 1047 UVMHIST_LOG(pdhist, "<- done (error=%jd)", 1048 error,0,0,0); 1049 1050 /* 1051 * remove the swap slot from the aobj 1052 * and mark the aobj as having no real slot. 1053 * don't free the swap slot, thus preventing 1054 * it from being used again. 1055 */ 1056 1057 swslot = uao_set_swslot(uobj, pageidx, 1058 SWSLOT_BAD); 1059 if (swslot > 0) { 1060 uvm_swap_markbad(swslot, 1); 1061 } 1062 1063 uvm_pagefree(ptmp); 1064 rw_exit(uobj->vmobjlock); 1065 return error; 1066 } 1067 #else /* defined(VMSWAP) */ 1068 panic("%s: pagein", __func__); 1069 #endif /* defined(VMSWAP) */ 1070 } 1071 1072 /* 1073 * note that we will allow the page being writably-mapped 1074 * (!PG_RDONLY) regardless of access_type. 1075 */ 1076 uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN); 1077 1078 /* 1079 * we got the page! clear the fake flag (indicates valid 1080 * data now in page) and plug into our result array. note 1081 * that page is still busy. 1082 * 1083 * it is the callers job to: 1084 * => check if the page is released 1085 * => unbusy the page 1086 * => activate the page 1087 */ 1088 KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN); 1089 KASSERT((ptmp->flags & PG_FAKE) != 0); 1090 ptmp->flags &= ~PG_FAKE; 1091 pps[lcv] = ptmp; 1092 } 1093 1094 /* 1095 * finally, unlock object and return. 1096 */ 1097 1098 done: 1099 rw_exit(uobj->vmobjlock); 1100 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0); 1101 return 0; 1102 } 1103 1104 #if defined(VMSWAP) 1105 1106 /* 1107 * uao_dropswap: release any swap resources from this aobj page. 1108 * 1109 * => aobj must be locked or have a reference count of 0. 1110 */ 1111 1112 void 1113 uao_dropswap(struct uvm_object *uobj, int pageidx) 1114 { 1115 int slot; 1116 1117 slot = uao_set_swslot(uobj, pageidx, 0); 1118 if (slot) { 1119 uvm_swap_free(slot, 1); 1120 } 1121 } 1122 1123 /* 1124 * page in every page in every aobj that is paged-out to a range of swslots. 1125 * 1126 * => nothing should be locked. 1127 * => returns true if pagein was aborted due to lack of memory. 1128 */ 1129 1130 bool 1131 uao_swap_off(int startslot, int endslot) 1132 { 1133 struct uvm_aobj *aobj; 1134 1135 /* 1136 * Walk the list of all anonymous UVM objects. Grab the first. 1137 */ 1138 mutex_enter(&uao_list_lock); 1139 if ((aobj = LIST_FIRST(&uao_list)) == NULL) { 1140 mutex_exit(&uao_list_lock); 1141 return false; 1142 } 1143 uao_reference(&aobj->u_obj); 1144 1145 do { 1146 struct uvm_aobj *nextaobj; 1147 bool rv; 1148 1149 /* 1150 * Prefetch the next object and immediately hold a reference 1151 * on it, so neither the current nor the next entry could 1152 * disappear while we are iterating. 1153 */ 1154 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) { 1155 uao_reference(&nextaobj->u_obj); 1156 } 1157 mutex_exit(&uao_list_lock); 1158 1159 /* 1160 * Page in all pages in the swap slot range. 1161 */ 1162 rw_enter(aobj->u_obj.vmobjlock, RW_WRITER); 1163 rv = uao_pagein(aobj, startslot, endslot); 1164 rw_exit(aobj->u_obj.vmobjlock); 1165 1166 /* Drop the reference of the current object. */ 1167 uao_detach(&aobj->u_obj); 1168 if (rv) { 1169 if (nextaobj) { 1170 uao_detach(&nextaobj->u_obj); 1171 } 1172 return rv; 1173 } 1174 1175 aobj = nextaobj; 1176 mutex_enter(&uao_list_lock); 1177 } while (aobj); 1178 1179 mutex_exit(&uao_list_lock); 1180 return false; 1181 } 1182 1183 /* 1184 * page in any pages from aobj in the given range. 1185 * 1186 * => aobj must be locked and is returned locked. 1187 * => returns true if pagein was aborted due to lack of memory. 1188 */ 1189 static bool 1190 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot) 1191 { 1192 bool rv; 1193 1194 if (UAO_USES_SWHASH(aobj)) { 1195 struct uao_swhash_elt *elt; 1196 int buck; 1197 1198 restart: 1199 for (buck = aobj->u_swhashmask; buck >= 0; buck--) { 1200 for (elt = LIST_FIRST(&aobj->u_swhash[buck]); 1201 elt != NULL; 1202 elt = LIST_NEXT(elt, list)) { 1203 int i; 1204 1205 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) { 1206 int slot = elt->slots[i]; 1207 1208 /* 1209 * if the slot isn't in range, skip it. 1210 */ 1211 1212 if (slot < startslot || 1213 slot >= endslot) { 1214 continue; 1215 } 1216 1217 /* 1218 * process the page, 1219 * the start over on this object 1220 * since the swhash elt 1221 * may have been freed. 1222 */ 1223 1224 rv = uao_pagein_page(aobj, 1225 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i); 1226 if (rv) { 1227 return rv; 1228 } 1229 goto restart; 1230 } 1231 } 1232 } 1233 } else { 1234 int i; 1235 1236 for (i = 0; i < aobj->u_pages; i++) { 1237 int slot = aobj->u_swslots[i]; 1238 1239 /* 1240 * if the slot isn't in range, skip it 1241 */ 1242 1243 if (slot < startslot || slot >= endslot) { 1244 continue; 1245 } 1246 1247 /* 1248 * process the page. 1249 */ 1250 1251 rv = uao_pagein_page(aobj, i); 1252 if (rv) { 1253 return rv; 1254 } 1255 } 1256 } 1257 1258 return false; 1259 } 1260 1261 /* 1262 * uao_pagein_page: page in a single page from an anonymous UVM object. 1263 * 1264 * => Returns true if pagein was aborted due to lack of memory. 1265 * => Object must be locked and is returned locked. 1266 */ 1267 1268 static bool 1269 uao_pagein_page(struct uvm_aobj *aobj, int pageidx) 1270 { 1271 struct uvm_object *uobj = &aobj->u_obj; 1272 struct vm_page *pg; 1273 int rv, npages; 1274 1275 pg = NULL; 1276 npages = 1; 1277 1278 KASSERT(rw_write_held(uobj->vmobjlock)); 1279 rv = uao_get(uobj, (voff_t)pageidx << PAGE_SHIFT, &pg, &npages, 1280 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO); 1281 1282 /* 1283 * relock and finish up. 1284 */ 1285 1286 rw_enter(uobj->vmobjlock, RW_WRITER); 1287 switch (rv) { 1288 case 0: 1289 break; 1290 1291 case EIO: 1292 case ERESTART: 1293 1294 /* 1295 * nothing more to do on errors. 1296 * ERESTART can only mean that the anon was freed, 1297 * so again there's nothing to do. 1298 */ 1299 1300 return false; 1301 1302 default: 1303 return true; 1304 } 1305 1306 /* 1307 * ok, we've got the page now. 1308 * mark it as dirty, clear its swslot and un-busy it. 1309 */ 1310 uao_dropswap(&aobj->u_obj, pageidx); 1311 1312 /* 1313 * make sure it's on a page queue. 1314 */ 1315 uvm_pagelock(pg); 1316 uvm_pageenqueue(pg); 1317 uvm_pagewakeup(pg); 1318 uvm_pageunlock(pg); 1319 1320 pg->flags &= ~(PG_BUSY|PG_FAKE); 1321 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); 1322 UVM_PAGE_OWN(pg, NULL); 1323 1324 return false; 1325 } 1326 1327 /* 1328 * uao_dropswap_range: drop swapslots in the range. 1329 * 1330 * => aobj must be locked and is returned locked. 1331 * => start is inclusive. end is exclusive. 1332 */ 1333 1334 void 1335 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end) 1336 { 1337 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 1338 int swpgonlydelta = 0; 1339 1340 KASSERT(rw_write_held(uobj->vmobjlock)); 1341 1342 if (end == 0) { 1343 end = INT64_MAX; 1344 } 1345 1346 if (UAO_USES_SWHASH(aobj)) { 1347 int i, hashbuckets = aobj->u_swhashmask + 1; 1348 voff_t taghi; 1349 voff_t taglo; 1350 1351 taglo = UAO_SWHASH_ELT_TAG(start); 1352 taghi = UAO_SWHASH_ELT_TAG(end); 1353 1354 for (i = 0; i < hashbuckets; i++) { 1355 struct uao_swhash_elt *elt, *next; 1356 1357 for (elt = LIST_FIRST(&aobj->u_swhash[i]); 1358 elt != NULL; 1359 elt = next) { 1360 int startidx, endidx; 1361 int j; 1362 1363 next = LIST_NEXT(elt, list); 1364 1365 if (elt->tag < taglo || taghi < elt->tag) { 1366 continue; 1367 } 1368 1369 if (elt->tag == taglo) { 1370 startidx = 1371 UAO_SWHASH_ELT_PAGESLOT_IDX(start); 1372 } else { 1373 startidx = 0; 1374 } 1375 1376 if (elt->tag == taghi) { 1377 endidx = 1378 UAO_SWHASH_ELT_PAGESLOT_IDX(end); 1379 } else { 1380 endidx = UAO_SWHASH_CLUSTER_SIZE; 1381 } 1382 1383 for (j = startidx; j < endidx; j++) { 1384 int slot = elt->slots[j]; 1385 1386 KASSERT(uvm_pagelookup(&aobj->u_obj, 1387 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt) 1388 + j) << PAGE_SHIFT) == NULL); 1389 if (slot > 0) { 1390 uvm_swap_free(slot, 1); 1391 swpgonlydelta++; 1392 KASSERT(elt->count > 0); 1393 elt->slots[j] = 0; 1394 elt->count--; 1395 } 1396 } 1397 1398 if (elt->count == 0) { 1399 LIST_REMOVE(elt, list); 1400 pool_put(&uao_swhash_elt_pool, elt); 1401 } 1402 } 1403 } 1404 } else { 1405 int i; 1406 1407 if (aobj->u_pages < end) { 1408 end = aobj->u_pages; 1409 } 1410 for (i = start; i < end; i++) { 1411 int slot = aobj->u_swslots[i]; 1412 1413 if (slot > 0) { 1414 uvm_swap_free(slot, 1); 1415 swpgonlydelta++; 1416 } 1417 } 1418 } 1419 1420 /* 1421 * adjust the counter of pages only in swap for all 1422 * the swap slots we've freed. 1423 */ 1424 1425 if (swpgonlydelta > 0) { 1426 KASSERT(uvmexp.swpgonly >= swpgonlydelta); 1427 atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta); 1428 } 1429 } 1430 1431 #endif /* defined(VMSWAP) */ 1432