xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: uvm_aobj.c,v 1.103 2008/06/25 13:21:04 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.103 2008/06/25 13:21:04 ad Exp $");
47 
48 #include "opt_uvmhist.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
61  * to keeping the list of resident pages, it also keeps a list of
62  * allocated swap blocks.  depending on the size of the aobj this list
63  * of allocated swap blocks is either stored in an array (small objects)
64  * or in a hash table (large objects).
65  */
66 
67 /*
68  * local structures
69  */
70 
71 /*
72  * for hash tables, we break the address space of the aobj into blocks
73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
74  * be a power of two.
75  */
76 
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79 
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83 
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86 
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90 
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94 
95 /*
96  * the swhash hash function
97  */
98 
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 			    & (AOBJ)->u_swhashmask)])
102 
103 /*
104  * the swhash threshhold determines if we will use an array or a
105  * hash table to store the list of allocated swap blocks.
106  */
107 
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
111 
112 /*
113  * the number of buckets in a swhash, with an upper bound
114  */
115 
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 	     UAO_SWHASH_MAXBUCKETS))
120 
121 
122 /*
123  * uao_swhash_elt: when a hash table is being used, this structure defines
124  * the format of an entry in the bucket list.
125  */
126 
127 struct uao_swhash_elt {
128 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
129 	voff_t tag;				/* our 'tag' */
130 	int count;				/* our number of active slots */
131 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
132 };
133 
134 /*
135  * uao_swhash: the swap hash table structure
136  */
137 
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139 
140 /*
141  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142  * NOTE: Pages for this pool must not come from a pageable kernel map!
143  */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145     "uaoeltpl", NULL, IPL_VM);
146 
147 static struct pool_cache uvm_aobj_cache;
148 
149 /*
150  * uvm_aobj: the actual anon-backed uvm_object
151  *
152  * => the uvm_object is at the top of the structure, this allows
153  *   (struct uvm_aobj *) == (struct uvm_object *)
154  * => only one of u_swslots and u_swhash is used in any given aobj
155  */
156 
157 struct uvm_aobj {
158 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
159 	pgoff_t u_pages;	 /* number of pages in entire object */
160 	int u_flags;		 /* the flags (see uvm_aobj.h) */
161 	int *u_swslots;		 /* array of offset->swapslot mappings */
162 				 /*
163 				  * hashtable of offset->swapslot mappings
164 				  * (u_swhash is an array of bucket heads)
165 				  */
166 	struct uao_swhash *u_swhash;
167 	u_long u_swhashmask;		/* mask for hashtable */
168 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
169 };
170 
171 /*
172  * uvm_aobj_pool: pool of uvm_aobj structures
173  */
174 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
175 
176 /*
177  * local functions
178  */
179 
180 static void	uao_free(struct uvm_aobj *);
181 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
182 		    int *, int, vm_prot_t, int, int);
183 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
184 
185 #if defined(VMSWAP)
186 static struct uao_swhash_elt *uao_find_swhash_elt
187     (struct uvm_aobj *, int, bool);
188 
189 static bool uao_pagein(struct uvm_aobj *, int, int);
190 static bool uao_pagein_page(struct uvm_aobj *, int);
191 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
192 #endif /* defined(VMSWAP) */
193 
194 /*
195  * aobj_pager
196  *
197  * note that some functions (e.g. put) are handled elsewhere
198  */
199 
200 const struct uvm_pagerops aobj_pager = {
201 	.pgo_reference = uao_reference,
202 	.pgo_detach = uao_detach,
203 	.pgo_get = uao_get,
204 	.pgo_put = uao_put,
205 };
206 
207 /*
208  * uao_list: global list of active aobjs, locked by uao_list_lock
209  */
210 
211 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
212 static kmutex_t uao_list_lock;
213 
214 /*
215  * functions
216  */
217 
218 /*
219  * hash table/array related functions
220  */
221 
222 #if defined(VMSWAP)
223 
224 /*
225  * uao_hashinit: limited version of hashinit() that uses malloc(). XXX
226  */
227 static void *
228 uao_hashinit(u_int elements, int mflags, u_long *hashmask)
229 {
230 	LIST_HEAD(, generic) *elm, *emx;
231 	u_long hashsize;
232 	void *p;
233 
234 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
235 		continue;
236 	if ((p = malloc(hashsize * sizeof(*elm), M_UVMAOBJ, mflags)) == NULL)
237 		return (NULL);
238 	for (elm = p, emx = elm + hashsize; elm < emx; elm++)
239 		LIST_INIT(elm);
240 	*hashmask = hashsize - 1;
241 
242 	return (p);
243 }
244 
245 /*
246  * uao_find_swhash_elt: find (or create) a hash table entry for a page
247  * offset.
248  *
249  * => the object should be locked by the caller
250  */
251 
252 static struct uao_swhash_elt *
253 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
254 {
255 	struct uao_swhash *swhash;
256 	struct uao_swhash_elt *elt;
257 	voff_t page_tag;
258 
259 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
260 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
261 
262 	/*
263 	 * now search the bucket for the requested tag
264 	 */
265 
266 	LIST_FOREACH(elt, swhash, list) {
267 		if (elt->tag == page_tag) {
268 			return elt;
269 		}
270 	}
271 	if (!create) {
272 		return NULL;
273 	}
274 
275 	/*
276 	 * allocate a new entry for the bucket and init/insert it in
277 	 */
278 
279 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
280 	if (elt == NULL) {
281 		return NULL;
282 	}
283 	LIST_INSERT_HEAD(swhash, elt, list);
284 	elt->tag = page_tag;
285 	elt->count = 0;
286 	memset(elt->slots, 0, sizeof(elt->slots));
287 	return elt;
288 }
289 
290 /*
291  * uao_find_swslot: find the swap slot number for an aobj/pageidx
292  *
293  * => object must be locked by caller
294  */
295 
296 int
297 uao_find_swslot(struct uvm_object *uobj, int pageidx)
298 {
299 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
300 	struct uao_swhash_elt *elt;
301 
302 	/*
303 	 * if noswap flag is set, then we never return a slot
304 	 */
305 
306 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
307 		return(0);
308 
309 	/*
310 	 * if hashing, look in hash table.
311 	 */
312 
313 	if (UAO_USES_SWHASH(aobj)) {
314 		elt = uao_find_swhash_elt(aobj, pageidx, false);
315 		if (elt)
316 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
317 		else
318 			return(0);
319 	}
320 
321 	/*
322 	 * otherwise, look in the array
323 	 */
324 
325 	return(aobj->u_swslots[pageidx]);
326 }
327 
328 /*
329  * uao_set_swslot: set the swap slot for a page in an aobj.
330  *
331  * => setting a slot to zero frees the slot
332  * => object must be locked by caller
333  * => we return the old slot number, or -1 if we failed to allocate
334  *    memory to record the new slot number
335  */
336 
337 int
338 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
339 {
340 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
341 	struct uao_swhash_elt *elt;
342 	int oldslot;
343 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
344 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
345 	    aobj, pageidx, slot, 0);
346 
347 	/*
348 	 * if noswap flag is set, then we can't set a non-zero slot.
349 	 */
350 
351 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
352 		if (slot == 0)
353 			return(0);
354 
355 		printf("uao_set_swslot: uobj = %p\n", uobj);
356 		panic("uao_set_swslot: NOSWAP object");
357 	}
358 
359 	/*
360 	 * are we using a hash table?  if so, add it in the hash.
361 	 */
362 
363 	if (UAO_USES_SWHASH(aobj)) {
364 
365 		/*
366 		 * Avoid allocating an entry just to free it again if
367 		 * the page had not swap slot in the first place, and
368 		 * we are freeing.
369 		 */
370 
371 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
372 		if (elt == NULL) {
373 			return slot ? -1 : 0;
374 		}
375 
376 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
377 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
378 
379 		/*
380 		 * now adjust the elt's reference counter and free it if we've
381 		 * dropped it to zero.
382 		 */
383 
384 		if (slot) {
385 			if (oldslot == 0)
386 				elt->count++;
387 		} else {
388 			if (oldslot)
389 				elt->count--;
390 
391 			if (elt->count == 0) {
392 				LIST_REMOVE(elt, list);
393 				pool_put(&uao_swhash_elt_pool, elt);
394 			}
395 		}
396 	} else {
397 		/* we are using an array */
398 		oldslot = aobj->u_swslots[pageidx];
399 		aobj->u_swslots[pageidx] = slot;
400 	}
401 	return (oldslot);
402 }
403 
404 #endif /* defined(VMSWAP) */
405 
406 /*
407  * end of hash/array functions
408  */
409 
410 /*
411  * uao_free: free all resources held by an aobj, and then free the aobj
412  *
413  * => the aobj should be dead
414  */
415 
416 static void
417 uao_free(struct uvm_aobj *aobj)
418 {
419 	int swpgonlydelta = 0;
420 
421 
422 #if defined(VMSWAP)
423 	uao_dropswap_range1(aobj, 0, 0);
424 #endif /* defined(VMSWAP) */
425 
426 	mutex_exit(&aobj->u_obj.vmobjlock);
427 
428 #if defined(VMSWAP)
429 	if (UAO_USES_SWHASH(aobj)) {
430 
431 		/*
432 		 * free the hash table itself.
433 		 */
434 
435 		free(aobj->u_swhash, M_UVMAOBJ);
436 	} else {
437 
438 		/*
439 		 * free the array itsself.
440 		 */
441 
442 		free(aobj->u_swslots, M_UVMAOBJ);
443 	}
444 #endif /* defined(VMSWAP) */
445 
446 	/*
447 	 * finally free the aobj itself
448 	 */
449 
450 	UVM_OBJ_DESTROY(&aobj->u_obj);
451 	pool_cache_put(&uvm_aobj_cache, aobj);
452 
453 	/*
454 	 * adjust the counter of pages only in swap for all
455 	 * the swap slots we've freed.
456 	 */
457 
458 	if (swpgonlydelta > 0) {
459 		mutex_enter(&uvm_swap_data_lock);
460 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
461 		uvmexp.swpgonly -= swpgonlydelta;
462 		mutex_exit(&uvm_swap_data_lock);
463 	}
464 }
465 
466 /*
467  * pager functions
468  */
469 
470 /*
471  * uao_create: create an aobj of the given size and return its uvm_object.
472  *
473  * => for normal use, flags are always zero
474  * => for the kernel object, the flags are:
475  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
476  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
477  */
478 
479 struct uvm_object *
480 uao_create(vsize_t size, int flags)
481 {
482 	static struct uvm_aobj kernel_object_store;
483 	static int kobj_alloced = 0;
484 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
485 	struct uvm_aobj *aobj;
486 	int refs;
487 
488 	/*
489 	 * malloc a new aobj unless we are asked for the kernel object
490 	 */
491 
492 	if (flags & UAO_FLAG_KERNOBJ) {
493 		KASSERT(!kobj_alloced);
494 		aobj = &kernel_object_store;
495 		aobj->u_pages = pages;
496 		aobj->u_flags = UAO_FLAG_NOSWAP;
497 		refs = UVM_OBJ_KERN;
498 		kobj_alloced = UAO_FLAG_KERNOBJ;
499 	} else if (flags & UAO_FLAG_KERNSWAP) {
500 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
501 		aobj = &kernel_object_store;
502 		kobj_alloced = UAO_FLAG_KERNSWAP;
503 		refs = 0xdeadbeaf; /* XXX: gcc */
504 	} else {
505 		aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
506 		aobj->u_pages = pages;
507 		aobj->u_flags = 0;
508 		refs = 1;
509 	}
510 
511 	/*
512  	 * allocate hash/array if necessary
513  	 *
514  	 * note: in the KERNSWAP case no need to worry about locking since
515  	 * we are still booting we should be the only thread around.
516  	 */
517 
518 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
519 #if defined(VMSWAP)
520 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
521 		    M_NOWAIT : M_WAITOK;
522 
523 		/* allocate hash table or array depending on object size */
524 		if (UAO_USES_SWHASH(aobj)) {
525 			aobj->u_swhash = uao_hashinit(UAO_SWHASH_BUCKETS(aobj),
526 			    mflags, &aobj->u_swhashmask);
527 			if (aobj->u_swhash == NULL)
528 				panic("uao_create: hashinit swhash failed");
529 		} else {
530 			aobj->u_swslots = malloc(pages * sizeof(int),
531 			    M_UVMAOBJ, mflags);
532 			if (aobj->u_swslots == NULL)
533 				panic("uao_create: malloc swslots failed");
534 			memset(aobj->u_swslots, 0, pages * sizeof(int));
535 		}
536 #endif /* defined(VMSWAP) */
537 
538 		if (flags) {
539 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
540 			return(&aobj->u_obj);
541 		}
542 	}
543 
544 	/*
545  	 * init aobj fields
546  	 */
547 
548 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
549 
550 	/*
551  	 * now that aobj is ready, add it to the global list
552  	 */
553 
554 	mutex_enter(&uao_list_lock);
555 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
556 	mutex_exit(&uao_list_lock);
557 	return(&aobj->u_obj);
558 }
559 
560 
561 
562 /*
563  * uao_init: set up aobj pager subsystem
564  *
565  * => called at boot time from uvm_pager_init()
566  */
567 
568 void
569 uao_init(void)
570 {
571 	static int uao_initialized;
572 
573 	if (uao_initialized)
574 		return;
575 	uao_initialized = true;
576 	LIST_INIT(&uao_list);
577 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
578 	pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
579 	    0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
580 }
581 
582 /*
583  * uao_reference: add a ref to an aobj
584  *
585  * => aobj must be unlocked
586  * => just lock it and call the locked version
587  */
588 
589 void
590 uao_reference(struct uvm_object *uobj)
591 {
592 
593 	/*
594  	 * kernel_object already has plenty of references, leave it alone.
595  	 */
596 
597 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
598 		return;
599 
600 	mutex_enter(&uobj->vmobjlock);
601 	uao_reference_locked(uobj);
602 	mutex_exit(&uobj->vmobjlock);
603 }
604 
605 /*
606  * uao_reference_locked: add a ref to an aobj that is already locked
607  *
608  * => aobj must be locked
609  * this needs to be separate from the normal routine
610  * since sometimes we need to add a reference to an aobj when
611  * it's already locked.
612  */
613 
614 void
615 uao_reference_locked(struct uvm_object *uobj)
616 {
617 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
618 
619 	/*
620  	 * kernel_object already has plenty of references, leave it alone.
621  	 */
622 
623 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
624 		return;
625 
626 	uobj->uo_refs++;
627 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
628 		    uobj, uobj->uo_refs,0,0);
629 }
630 
631 /*
632  * uao_detach: drop a reference to an aobj
633  *
634  * => aobj must be unlocked
635  * => just lock it and call the locked version
636  */
637 
638 void
639 uao_detach(struct uvm_object *uobj)
640 {
641 
642 	/*
643  	 * detaching from kernel_object is a noop.
644  	 */
645 
646 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
647 		return;
648 
649 	mutex_enter(&uobj->vmobjlock);
650 	uao_detach_locked(uobj);
651 }
652 
653 /*
654  * uao_detach_locked: drop a reference to an aobj
655  *
656  * => aobj must be locked, and is unlocked (or freed) upon return.
657  * this needs to be separate from the normal routine
658  * since sometimes we need to detach from an aobj when
659  * it's already locked.
660  */
661 
662 void
663 uao_detach_locked(struct uvm_object *uobj)
664 {
665 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
666 	struct vm_page *pg;
667 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
668 
669 	/*
670  	 * detaching from kernel_object is a noop.
671  	 */
672 
673 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
674 		mutex_exit(&uobj->vmobjlock);
675 		return;
676 	}
677 
678 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
679 	uobj->uo_refs--;
680 	if (uobj->uo_refs) {
681 		mutex_exit(&uobj->vmobjlock);
682 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
683 		return;
684 	}
685 
686 	/*
687  	 * remove the aobj from the global list.
688  	 */
689 
690 	mutex_enter(&uao_list_lock);
691 	LIST_REMOVE(aobj, u_list);
692 	mutex_exit(&uao_list_lock);
693 
694 	/*
695  	 * free all the pages left in the aobj.  for each page,
696 	 * when the page is no longer busy (and thus after any disk i/o that
697 	 * it's involved in is complete), release any swap resources and
698 	 * free the page itself.
699  	 */
700 
701 	mutex_enter(&uvm_pageqlock);
702 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
703 		pmap_page_protect(pg, VM_PROT_NONE);
704 		if (pg->flags & PG_BUSY) {
705 			pg->flags |= PG_WANTED;
706 			mutex_exit(&uvm_pageqlock);
707 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
708 			    "uao_det", 0);
709 			mutex_enter(&uobj->vmobjlock);
710 			mutex_enter(&uvm_pageqlock);
711 			continue;
712 		}
713 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
714 		uvm_pagefree(pg);
715 	}
716 	mutex_exit(&uvm_pageqlock);
717 
718 	/*
719  	 * finally, free the aobj itself.
720  	 */
721 
722 	uao_free(aobj);
723 }
724 
725 /*
726  * uao_put: flush pages out of a uvm object
727  *
728  * => object should be locked by caller.  we may _unlock_ the object
729  *	if (and only if) we need to clean a page (PGO_CLEANIT).
730  *	XXXJRT Currently, however, we don't.  In the case of cleaning
731  *	XXXJRT a page, we simply just deactivate it.  Should probably
732  *	XXXJRT handle this better, in the future (although "flushing"
733  *	XXXJRT anonymous memory isn't terribly important).
734  * => if PGO_CLEANIT is not set, then we will neither unlock the object
735  *	or block.
736  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
737  *	for flushing.
738  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
739  *	that new pages are inserted on the tail end of the list.  thus,
740  *	we can make a complete pass through the object in one go by starting
741  *	at the head and working towards the tail (new pages are put in
742  *	front of us).
743  * => NOTE: we are allowed to lock the page queues, so the caller
744  *	must not be holding the lock on them [e.g. pagedaemon had
745  *	better not call us with the queues locked]
746  * => we return 0 unless we encountered some sort of I/O error
747  *	XXXJRT currently never happens, as we never directly initiate
748  *	XXXJRT I/O
749  *
750  * note on page traversal:
751  *	we can traverse the pages in an object either by going down the
752  *	linked list in "uobj->memq", or we can go over the address range
753  *	by page doing hash table lookups for each address.  depending
754  *	on how many pages are in the object it may be cheaper to do one
755  *	or the other.  we set "by_list" to true if we are using memq.
756  *	if the cost of a hash lookup was equal to the cost of the list
757  *	traversal we could compare the number of pages in the start->stop
758  *	range to the total number of pages in the object.  however, it
759  *	seems that a hash table lookup is more expensive than the linked
760  *	list traversal, so we multiply the number of pages in the
761  *	start->stop range by a penalty which we define below.
762  */
763 
764 static int
765 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
766 {
767 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
768 	struct vm_page *pg, *nextpg, curmp, endmp;
769 	bool by_list;
770 	voff_t curoff;
771 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
772 
773 	KASSERT(mutex_owned(&uobj->vmobjlock));
774 
775 	curoff = 0;
776 	if (flags & PGO_ALLPAGES) {
777 		start = 0;
778 		stop = aobj->u_pages << PAGE_SHIFT;
779 		by_list = true;		/* always go by the list */
780 	} else {
781 		start = trunc_page(start);
782 		if (stop == 0) {
783 			stop = aobj->u_pages << PAGE_SHIFT;
784 		} else {
785 			stop = round_page(stop);
786 		}
787 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
788 			printf("uao_flush: strange, got an out of range "
789 			    "flush (fixed)\n");
790 			stop = aobj->u_pages << PAGE_SHIFT;
791 		}
792 		by_list = (uobj->uo_npages <=
793 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
794 	}
795 	UVMHIST_LOG(maphist,
796 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
797 	    start, stop, by_list, flags);
798 
799 	/*
800 	 * Don't need to do any work here if we're not freeing
801 	 * or deactivating pages.
802 	 */
803 
804 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
805 		mutex_exit(&uobj->vmobjlock);
806 		return 0;
807 	}
808 
809 	/*
810 	 * Initialize the marker pages.  See the comment in
811 	 * genfs_putpages() also.
812 	 */
813 
814 	curmp.uobject = uobj;
815 	curmp.offset = (voff_t)-1;
816 	curmp.flags = PG_BUSY;
817 	endmp.uobject = uobj;
818 	endmp.offset = (voff_t)-1;
819 	endmp.flags = PG_BUSY;
820 
821 	/*
822 	 * now do it.  note: we must update nextpg in the body of loop or we
823 	 * will get stuck.  we need to use nextpg if we'll traverse the list
824 	 * because we may free "pg" before doing the next loop.
825 	 */
826 
827 	if (by_list) {
828 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
829 		nextpg = TAILQ_FIRST(&uobj->memq);
830 		uvm_lwp_hold(curlwp);
831 	} else {
832 		curoff = start;
833 		nextpg = NULL;	/* Quell compiler warning */
834 	}
835 
836 	/* locked: uobj */
837 	for (;;) {
838 		if (by_list) {
839 			pg = nextpg;
840 			if (pg == &endmp)
841 				break;
842 			nextpg = TAILQ_NEXT(pg, listq.queue);
843 			if (pg->offset < start || pg->offset >= stop)
844 				continue;
845 		} else {
846 			if (curoff < stop) {
847 				pg = uvm_pagelookup(uobj, curoff);
848 				curoff += PAGE_SIZE;
849 			} else
850 				break;
851 			if (pg == NULL)
852 				continue;
853 		}
854 
855 		/*
856 		 * wait and try again if the page is busy.
857 		 */
858 
859 		if (pg->flags & PG_BUSY) {
860 			if (by_list) {
861 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
862 			}
863 			pg->flags |= PG_WANTED;
864 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
865 			    "uao_put", 0);
866 			mutex_enter(&uobj->vmobjlock);
867 			if (by_list) {
868 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
869 				TAILQ_REMOVE(&uobj->memq, &curmp,
870 				    listq.queue);
871 			} else
872 				curoff -= PAGE_SIZE;
873 			continue;
874 		}
875 
876 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
877 
878 		/*
879 		 * XXX In these first 3 cases, we always just
880 		 * XXX deactivate the page.  We may want to
881 		 * XXX handle the different cases more specifically
882 		 * XXX in the future.
883 		 */
884 
885 		case PGO_CLEANIT|PGO_FREE:
886 		case PGO_CLEANIT|PGO_DEACTIVATE:
887 		case PGO_DEACTIVATE:
888  deactivate_it:
889 			mutex_enter(&uvm_pageqlock);
890 			/* skip the page if it's wired */
891 			if (pg->wire_count == 0) {
892 				uvm_pagedeactivate(pg);
893 			}
894 			mutex_exit(&uvm_pageqlock);
895 			break;
896 
897 		case PGO_FREE:
898 			/*
899 			 * If there are multiple references to
900 			 * the object, just deactivate the page.
901 			 */
902 
903 			if (uobj->uo_refs > 1)
904 				goto deactivate_it;
905 
906 			/*
907 			 * free the swap slot and the page.
908 			 */
909 
910 			pmap_page_protect(pg, VM_PROT_NONE);
911 
912 			/*
913 			 * freeing swapslot here is not strictly necessary.
914 			 * however, leaving it here doesn't save much
915 			 * because we need to update swap accounting anyway.
916 			 */
917 
918 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
919 			mutex_enter(&uvm_pageqlock);
920 			uvm_pagefree(pg);
921 			mutex_exit(&uvm_pageqlock);
922 			break;
923 
924 		default:
925 			panic("%s: impossible", __func__);
926 		}
927 	}
928 	if (by_list) {
929 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
930 		uvm_lwp_rele(curlwp);
931 	}
932 	mutex_exit(&uobj->vmobjlock);
933 	return 0;
934 }
935 
936 /*
937  * uao_get: fetch me a page
938  *
939  * we have three cases:
940  * 1: page is resident     -> just return the page.
941  * 2: page is zero-fill    -> allocate a new page and zero it.
942  * 3: page is swapped out  -> fetch the page from swap.
943  *
944  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
945  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
946  * then we will need to return EBUSY.
947  *
948  * => prefer map unlocked (not required)
949  * => object must be locked!  we will _unlock_ it before starting any I/O.
950  * => flags: PGO_ALLPAGES: get all of the pages
951  *           PGO_LOCKED: fault data structures are locked
952  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
953  * => NOTE: caller must check for released pages!!
954  */
955 
956 static int
957 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
958     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
959 {
960 #if defined(VMSWAP)
961 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
962 #endif /* defined(VMSWAP) */
963 	voff_t current_offset;
964 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
965 	int lcv, gotpages, maxpages, swslot, pageidx;
966 	bool done;
967 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
968 
969 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
970 		    (struct uvm_aobj *)uobj, offset, flags,0);
971 
972 	/*
973  	 * get number of pages
974  	 */
975 
976 	maxpages = *npagesp;
977 
978 	/*
979  	 * step 1: handled the case where fault data structures are locked.
980  	 */
981 
982 	if (flags & PGO_LOCKED) {
983 
984 		/*
985  		 * step 1a: get pages that are already resident.   only do
986 		 * this if the data structures are locked (i.e. the first
987 		 * time through).
988  		 */
989 
990 		done = true;	/* be optimistic */
991 		gotpages = 0;	/* # of pages we got so far */
992 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
993 		    lcv++, current_offset += PAGE_SIZE) {
994 			/* do we care about this page?  if not, skip it */
995 			if (pps[lcv] == PGO_DONTCARE)
996 				continue;
997 			ptmp = uvm_pagelookup(uobj, current_offset);
998 
999 			/*
1000  			 * if page is new, attempt to allocate the page,
1001 			 * zero-fill'd.
1002  			 */
1003 
1004 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
1005 			    current_offset >> PAGE_SHIFT) == 0) {
1006 				ptmp = uvm_pagealloc(uobj, current_offset,
1007 				    NULL, UVM_PGA_ZERO);
1008 				if (ptmp) {
1009 					/* new page */
1010 					ptmp->flags &= ~(PG_FAKE);
1011 					ptmp->pqflags |= PQ_AOBJ;
1012 					goto gotpage;
1013 				}
1014 			}
1015 
1016 			/*
1017 			 * to be useful must get a non-busy page
1018 			 */
1019 
1020 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
1021 				if (lcv == centeridx ||
1022 				    (flags & PGO_ALLPAGES) != 0)
1023 					/* need to do a wait or I/O! */
1024 					done = false;
1025 					continue;
1026 			}
1027 
1028 			/*
1029 			 * useful page: busy/lock it and plug it in our
1030 			 * result array
1031 			 */
1032 
1033 			/* caller must un-busy this page */
1034 			ptmp->flags |= PG_BUSY;
1035 			UVM_PAGE_OWN(ptmp, "uao_get1");
1036 gotpage:
1037 			pps[lcv] = ptmp;
1038 			gotpages++;
1039 		}
1040 
1041 		/*
1042  		 * step 1b: now we've either done everything needed or we
1043 		 * to unlock and do some waiting or I/O.
1044  		 */
1045 
1046 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1047 		*npagesp = gotpages;
1048 		if (done)
1049 			return 0;
1050 		else
1051 			return EBUSY;
1052 	}
1053 
1054 	/*
1055  	 * step 2: get non-resident or busy pages.
1056  	 * object is locked.   data structures are unlocked.
1057  	 */
1058 
1059 	if ((flags & PGO_SYNCIO) == 0) {
1060 		goto done;
1061 	}
1062 
1063 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1064 	    lcv++, current_offset += PAGE_SIZE) {
1065 
1066 		/*
1067 		 * - skip over pages we've already gotten or don't want
1068 		 * - skip over pages we don't _have_ to get
1069 		 */
1070 
1071 		if (pps[lcv] != NULL ||
1072 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1073 			continue;
1074 
1075 		pageidx = current_offset >> PAGE_SHIFT;
1076 
1077 		/*
1078  		 * we have yet to locate the current page (pps[lcv]).   we
1079 		 * first look for a page that is already at the current offset.
1080 		 * if we find a page, we check to see if it is busy or
1081 		 * released.  if that is the case, then we sleep on the page
1082 		 * until it is no longer busy or released and repeat the lookup.
1083 		 * if the page we found is neither busy nor released, then we
1084 		 * busy it (so we own it) and plug it into pps[lcv].   this
1085 		 * 'break's the following while loop and indicates we are
1086 		 * ready to move on to the next page in the "lcv" loop above.
1087  		 *
1088  		 * if we exit the while loop with pps[lcv] still set to NULL,
1089 		 * then it means that we allocated a new busy/fake/clean page
1090 		 * ptmp in the object and we need to do I/O to fill in the data.
1091  		 */
1092 
1093 		/* top of "pps" while loop */
1094 		while (pps[lcv] == NULL) {
1095 			/* look for a resident page */
1096 			ptmp = uvm_pagelookup(uobj, current_offset);
1097 
1098 			/* not resident?   allocate one now (if we can) */
1099 			if (ptmp == NULL) {
1100 
1101 				ptmp = uvm_pagealloc(uobj, current_offset,
1102 				    NULL, 0);
1103 
1104 				/* out of RAM? */
1105 				if (ptmp == NULL) {
1106 					mutex_exit(&uobj->vmobjlock);
1107 					UVMHIST_LOG(pdhist,
1108 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1109 					uvm_wait("uao_getpage");
1110 					mutex_enter(&uobj->vmobjlock);
1111 					continue;
1112 				}
1113 
1114 				/*
1115 				 * safe with PQ's unlocked: because we just
1116 				 * alloc'd the page
1117 				 */
1118 
1119 				ptmp->pqflags |= PQ_AOBJ;
1120 
1121 				/*
1122 				 * got new page ready for I/O.  break pps while
1123 				 * loop.  pps[lcv] is still NULL.
1124 				 */
1125 
1126 				break;
1127 			}
1128 
1129 			/* page is there, see if we need to wait on it */
1130 			if ((ptmp->flags & PG_BUSY) != 0) {
1131 				ptmp->flags |= PG_WANTED;
1132 				UVMHIST_LOG(pdhist,
1133 				    "sleeping, ptmp->flags 0x%x\n",
1134 				    ptmp->flags,0,0,0);
1135 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1136 				    false, "uao_get", 0);
1137 				mutex_enter(&uobj->vmobjlock);
1138 				continue;
1139 			}
1140 
1141 			/*
1142  			 * if we get here then the page has become resident and
1143 			 * unbusy between steps 1 and 2.  we busy it now (so we
1144 			 * own it) and set pps[lcv] (so that we exit the while
1145 			 * loop).
1146  			 */
1147 
1148 			/* we own it, caller must un-busy */
1149 			ptmp->flags |= PG_BUSY;
1150 			UVM_PAGE_OWN(ptmp, "uao_get2");
1151 			pps[lcv] = ptmp;
1152 		}
1153 
1154 		/*
1155  		 * if we own the valid page at the correct offset, pps[lcv] will
1156  		 * point to it.   nothing more to do except go to the next page.
1157  		 */
1158 
1159 		if (pps[lcv])
1160 			continue;			/* next lcv */
1161 
1162 		/*
1163  		 * we have a "fake/busy/clean" page that we just allocated.
1164  		 * do the needed "i/o", either reading from swap or zeroing.
1165  		 */
1166 
1167 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1168 
1169 		/*
1170  		 * just zero the page if there's nothing in swap.
1171  		 */
1172 
1173 		if (swslot == 0) {
1174 
1175 			/*
1176 			 * page hasn't existed before, just zero it.
1177 			 */
1178 
1179 			uvm_pagezero(ptmp);
1180 		} else {
1181 #if defined(VMSWAP)
1182 			int error;
1183 
1184 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1185 			     swslot, 0,0,0);
1186 
1187 			/*
1188 			 * page in the swapped-out page.
1189 			 * unlock object for i/o, relock when done.
1190 			 */
1191 
1192 			mutex_exit(&uobj->vmobjlock);
1193 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1194 			mutex_enter(&uobj->vmobjlock);
1195 
1196 			/*
1197 			 * I/O done.  check for errors.
1198 			 */
1199 
1200 			if (error != 0) {
1201 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1202 				    error,0,0,0);
1203 				if (ptmp->flags & PG_WANTED)
1204 					wakeup(ptmp);
1205 
1206 				/*
1207 				 * remove the swap slot from the aobj
1208 				 * and mark the aobj as having no real slot.
1209 				 * don't free the swap slot, thus preventing
1210 				 * it from being used again.
1211 				 */
1212 
1213 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1214 							SWSLOT_BAD);
1215 				if (swslot > 0) {
1216 					uvm_swap_markbad(swslot, 1);
1217 				}
1218 
1219 				mutex_enter(&uvm_pageqlock);
1220 				uvm_pagefree(ptmp);
1221 				mutex_exit(&uvm_pageqlock);
1222 				mutex_exit(&uobj->vmobjlock);
1223 				return error;
1224 			}
1225 #else /* defined(VMSWAP) */
1226 			panic("%s: pagein", __func__);
1227 #endif /* defined(VMSWAP) */
1228 		}
1229 
1230 		if ((access_type & VM_PROT_WRITE) == 0) {
1231 			ptmp->flags |= PG_CLEAN;
1232 			pmap_clear_modify(ptmp);
1233 		}
1234 
1235 		/*
1236  		 * we got the page!   clear the fake flag (indicates valid
1237 		 * data now in page) and plug into our result array.   note
1238 		 * that page is still busy.
1239  		 *
1240  		 * it is the callers job to:
1241  		 * => check if the page is released
1242  		 * => unbusy the page
1243  		 * => activate the page
1244  		 */
1245 
1246 		ptmp->flags &= ~PG_FAKE;
1247 		pps[lcv] = ptmp;
1248 	}
1249 
1250 	/*
1251  	 * finally, unlock object and return.
1252  	 */
1253 
1254 done:
1255 	mutex_exit(&uobj->vmobjlock);
1256 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1257 	return 0;
1258 }
1259 
1260 #if defined(VMSWAP)
1261 
1262 /*
1263  * uao_dropswap:  release any swap resources from this aobj page.
1264  *
1265  * => aobj must be locked or have a reference count of 0.
1266  */
1267 
1268 void
1269 uao_dropswap(struct uvm_object *uobj, int pageidx)
1270 {
1271 	int slot;
1272 
1273 	slot = uao_set_swslot(uobj, pageidx, 0);
1274 	if (slot) {
1275 		uvm_swap_free(slot, 1);
1276 	}
1277 }
1278 
1279 /*
1280  * page in every page in every aobj that is paged-out to a range of swslots.
1281  *
1282  * => nothing should be locked.
1283  * => returns true if pagein was aborted due to lack of memory.
1284  */
1285 
1286 bool
1287 uao_swap_off(int startslot, int endslot)
1288 {
1289 	struct uvm_aobj *aobj, *nextaobj;
1290 	bool rv;
1291 
1292 	/*
1293 	 * walk the list of all aobjs.
1294 	 */
1295 
1296 restart:
1297 	mutex_enter(&uao_list_lock);
1298 	for (aobj = LIST_FIRST(&uao_list);
1299 	     aobj != NULL;
1300 	     aobj = nextaobj) {
1301 
1302 		/*
1303 		 * try to get the object lock, start all over if we fail.
1304 		 * most of the time we'll get the aobj lock,
1305 		 * so this should be a rare case.
1306 		 */
1307 
1308 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1309 			mutex_exit(&uao_list_lock);
1310 			/* XXX Better than yielding but inadequate. */
1311 			kpause("livelock", false, 1, NULL);
1312 			goto restart;
1313 		}
1314 
1315 		/*
1316 		 * add a ref to the aobj so it doesn't disappear
1317 		 * while we're working.
1318 		 */
1319 
1320 		uao_reference_locked(&aobj->u_obj);
1321 
1322 		/*
1323 		 * now it's safe to unlock the uao list.
1324 		 */
1325 
1326 		mutex_exit(&uao_list_lock);
1327 
1328 		/*
1329 		 * page in any pages in the swslot range.
1330 		 * if there's an error, abort and return the error.
1331 		 */
1332 
1333 		rv = uao_pagein(aobj, startslot, endslot);
1334 		if (rv) {
1335 			uao_detach_locked(&aobj->u_obj);
1336 			return rv;
1337 		}
1338 
1339 		/*
1340 		 * we're done with this aobj.
1341 		 * relock the list and drop our ref on the aobj.
1342 		 */
1343 
1344 		mutex_enter(&uao_list_lock);
1345 		nextaobj = LIST_NEXT(aobj, u_list);
1346 		uao_detach_locked(&aobj->u_obj);
1347 	}
1348 
1349 	/*
1350 	 * done with traversal, unlock the list
1351 	 */
1352 	mutex_exit(&uao_list_lock);
1353 	return false;
1354 }
1355 
1356 
1357 /*
1358  * page in any pages from aobj in the given range.
1359  *
1360  * => aobj must be locked and is returned locked.
1361  * => returns true if pagein was aborted due to lack of memory.
1362  */
1363 static bool
1364 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1365 {
1366 	bool rv;
1367 
1368 	if (UAO_USES_SWHASH(aobj)) {
1369 		struct uao_swhash_elt *elt;
1370 		int buck;
1371 
1372 restart:
1373 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1374 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1375 			     elt != NULL;
1376 			     elt = LIST_NEXT(elt, list)) {
1377 				int i;
1378 
1379 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1380 					int slot = elt->slots[i];
1381 
1382 					/*
1383 					 * if the slot isn't in range, skip it.
1384 					 */
1385 
1386 					if (slot < startslot ||
1387 					    slot >= endslot) {
1388 						continue;
1389 					}
1390 
1391 					/*
1392 					 * process the page,
1393 					 * the start over on this object
1394 					 * since the swhash elt
1395 					 * may have been freed.
1396 					 */
1397 
1398 					rv = uao_pagein_page(aobj,
1399 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1400 					if (rv) {
1401 						return rv;
1402 					}
1403 					goto restart;
1404 				}
1405 			}
1406 		}
1407 	} else {
1408 		int i;
1409 
1410 		for (i = 0; i < aobj->u_pages; i++) {
1411 			int slot = aobj->u_swslots[i];
1412 
1413 			/*
1414 			 * if the slot isn't in range, skip it
1415 			 */
1416 
1417 			if (slot < startslot || slot >= endslot) {
1418 				continue;
1419 			}
1420 
1421 			/*
1422 			 * process the page.
1423 			 */
1424 
1425 			rv = uao_pagein_page(aobj, i);
1426 			if (rv) {
1427 				return rv;
1428 			}
1429 		}
1430 	}
1431 
1432 	return false;
1433 }
1434 
1435 /*
1436  * page in a page from an aobj.  used for swap_off.
1437  * returns true if pagein was aborted due to lack of memory.
1438  *
1439  * => aobj must be locked and is returned locked.
1440  */
1441 
1442 static bool
1443 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1444 {
1445 	struct vm_page *pg;
1446 	int rv, npages;
1447 
1448 	pg = NULL;
1449 	npages = 1;
1450 	/* locked: aobj */
1451 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1452 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1453 	/* unlocked: aobj */
1454 
1455 	/*
1456 	 * relock and finish up.
1457 	 */
1458 
1459 	mutex_enter(&aobj->u_obj.vmobjlock);
1460 	switch (rv) {
1461 	case 0:
1462 		break;
1463 
1464 	case EIO:
1465 	case ERESTART:
1466 
1467 		/*
1468 		 * nothing more to do on errors.
1469 		 * ERESTART can only mean that the anon was freed,
1470 		 * so again there's nothing to do.
1471 		 */
1472 
1473 		return false;
1474 
1475 	default:
1476 		return true;
1477 	}
1478 
1479 	/*
1480 	 * ok, we've got the page now.
1481 	 * mark it as dirty, clear its swslot and un-busy it.
1482 	 */
1483 	uao_dropswap(&aobj->u_obj, pageidx);
1484 
1485 	/*
1486 	 * make sure it's on a page queue.
1487 	 */
1488 	mutex_enter(&uvm_pageqlock);
1489 	if (pg->wire_count == 0)
1490 		uvm_pageenqueue(pg);
1491 	mutex_exit(&uvm_pageqlock);
1492 
1493 	if (pg->flags & PG_WANTED) {
1494 		wakeup(pg);
1495 	}
1496 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1497 	UVM_PAGE_OWN(pg, NULL);
1498 
1499 	return false;
1500 }
1501 
1502 /*
1503  * uao_dropswap_range: drop swapslots in the range.
1504  *
1505  * => aobj must be locked and is returned locked.
1506  * => start is inclusive.  end is exclusive.
1507  */
1508 
1509 void
1510 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1511 {
1512 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1513 
1514 	KASSERT(mutex_owned(&uobj->vmobjlock));
1515 
1516 	uao_dropswap_range1(aobj, start, end);
1517 }
1518 
1519 static void
1520 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1521 {
1522 	int swpgonlydelta = 0;
1523 
1524 	if (end == 0) {
1525 		end = INT64_MAX;
1526 	}
1527 
1528 	if (UAO_USES_SWHASH(aobj)) {
1529 		int i, hashbuckets = aobj->u_swhashmask + 1;
1530 		voff_t taghi;
1531 		voff_t taglo;
1532 
1533 		taglo = UAO_SWHASH_ELT_TAG(start);
1534 		taghi = UAO_SWHASH_ELT_TAG(end);
1535 
1536 		for (i = 0; i < hashbuckets; i++) {
1537 			struct uao_swhash_elt *elt, *next;
1538 
1539 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1540 			     elt != NULL;
1541 			     elt = next) {
1542 				int startidx, endidx;
1543 				int j;
1544 
1545 				next = LIST_NEXT(elt, list);
1546 
1547 				if (elt->tag < taglo || taghi < elt->tag) {
1548 					continue;
1549 				}
1550 
1551 				if (elt->tag == taglo) {
1552 					startidx =
1553 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1554 				} else {
1555 					startidx = 0;
1556 				}
1557 
1558 				if (elt->tag == taghi) {
1559 					endidx =
1560 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1561 				} else {
1562 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1563 				}
1564 
1565 				for (j = startidx; j < endidx; j++) {
1566 					int slot = elt->slots[j];
1567 
1568 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1569 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1570 					    + j) << PAGE_SHIFT) == NULL);
1571 					if (slot > 0) {
1572 						uvm_swap_free(slot, 1);
1573 						swpgonlydelta++;
1574 						KASSERT(elt->count > 0);
1575 						elt->slots[j] = 0;
1576 						elt->count--;
1577 					}
1578 				}
1579 
1580 				if (elt->count == 0) {
1581 					LIST_REMOVE(elt, list);
1582 					pool_put(&uao_swhash_elt_pool, elt);
1583 				}
1584 			}
1585 		}
1586 	} else {
1587 		int i;
1588 
1589 		if (aobj->u_pages < end) {
1590 			end = aobj->u_pages;
1591 		}
1592 		for (i = start; i < end; i++) {
1593 			int slot = aobj->u_swslots[i];
1594 
1595 			if (slot > 0) {
1596 				uvm_swap_free(slot, 1);
1597 				swpgonlydelta++;
1598 			}
1599 		}
1600 	}
1601 
1602 	/*
1603 	 * adjust the counter of pages only in swap for all
1604 	 * the swap slots we've freed.
1605 	 */
1606 
1607 	if (swpgonlydelta > 0) {
1608 		mutex_enter(&uvm_swap_data_lock);
1609 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1610 		uvmexp.swpgonly -= swpgonlydelta;
1611 		mutex_exit(&uvm_swap_data_lock);
1612 	}
1613 }
1614 
1615 #endif /* defined(VMSWAP) */
1616