xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*	$NetBSD: uvm_aobj.c,v 1.46 2001/09/15 20:36:45 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 #include "opt_uvmhist.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/pool.h>
53 #include <sys/kernel.h>
54 
55 #include <uvm/uvm.h>
56 
57 /*
58  * an aobj manages anonymous-memory backed uvm_objects.   in addition
59  * to keeping the list of resident pages, it also keeps a list of
60  * allocated swap blocks.  depending on the size of the aobj this list
61  * of allocated swap blocks is either stored in an array (small objects)
62  * or in a hash table (large objects).
63  */
64 
65 /*
66  * local structures
67  */
68 
69 /*
70  * for hash tables, we break the address space of the aobj into blocks
71  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
72  * be a power of two.
73  */
74 
75 #define UAO_SWHASH_CLUSTER_SHIFT 4
76 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
77 
78 /* get the "tag" for this page index */
79 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
80 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
81 
82 /* given an ELT and a page index, find the swap slot */
83 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
84 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
85 
86 /* given an ELT, return its pageidx base */
87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89 
90 /*
91  * the swhash hash function
92  */
93 
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 			    & (AOBJ)->u_swhashmask)])
97 
98 /*
99  * the swhash threshhold determines if we will use an array or a
100  * hash table to store the list of allocated swap blocks.
101  */
102 
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
106 
107 /*
108  * the number of buckets in a swhash, with an upper bound
109  */
110 
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 	     UAO_SWHASH_MAXBUCKETS))
115 
116 
117 /*
118  * uao_swhash_elt: when a hash table is being used, this structure defines
119  * the format of an entry in the bucket list.
120  */
121 
122 struct uao_swhash_elt {
123 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
124 	voff_t tag;				/* our 'tag' */
125 	int count;				/* our number of active slots */
126 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
127 };
128 
129 /*
130  * uao_swhash: the swap hash table structure
131  */
132 
133 LIST_HEAD(uao_swhash, uao_swhash_elt);
134 
135 /*
136  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
137  */
138 
139 struct pool uao_swhash_elt_pool;
140 
141 /*
142  * uvm_aobj: the actual anon-backed uvm_object
143  *
144  * => the uvm_object is at the top of the structure, this allows
145  *   (struct uvm_aobj *) == (struct uvm_object *)
146  * => only one of u_swslots and u_swhash is used in any given aobj
147  */
148 
149 struct uvm_aobj {
150 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
151 	int u_pages;		 /* number of pages in entire object */
152 	int u_flags;		 /* the flags (see uvm_aobj.h) */
153 	int *u_swslots;		 /* array of offset->swapslot mappings */
154 				 /*
155 				  * hashtable of offset->swapslot mappings
156 				  * (u_swhash is an array of bucket heads)
157 				  */
158 	struct uao_swhash *u_swhash;
159 	u_long u_swhashmask;		/* mask for hashtable */
160 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
161 };
162 
163 /*
164  * uvm_aobj_pool: pool of uvm_aobj structures
165  */
166 
167 struct pool uvm_aobj_pool;
168 
169 /*
170  * local functions
171  */
172 
173 static struct uao_swhash_elt *uao_find_swhash_elt
174     __P((struct uvm_aobj *, int, boolean_t));
175 
176 static void	uao_free __P((struct uvm_aobj *));
177 static int	uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
178 		    int *, int, vm_prot_t, int, int));
179 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
180 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
181 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
182 
183 /*
184  * aobj_pager
185  *
186  * note that some functions (e.g. put) are handled elsewhere
187  */
188 
189 struct uvm_pagerops aobj_pager = {
190 	NULL,			/* init */
191 	uao_reference,		/* reference */
192 	uao_detach,		/* detach */
193 	NULL,			/* fault */
194 	uao_get,		/* get */
195 	uao_put,		/* flush */
196 };
197 
198 /*
199  * uao_list: global list of active aobjs, locked by uao_list_lock
200  */
201 
202 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
203 static struct simplelock uao_list_lock;
204 
205 /*
206  * functions
207  */
208 
209 /*
210  * hash table/array related functions
211  */
212 
213 /*
214  * uao_find_swhash_elt: find (or create) a hash table entry for a page
215  * offset.
216  *
217  * => the object should be locked by the caller
218  */
219 
220 static struct uao_swhash_elt *
221 uao_find_swhash_elt(aobj, pageidx, create)
222 	struct uvm_aobj *aobj;
223 	int pageidx;
224 	boolean_t create;
225 {
226 	struct uao_swhash *swhash;
227 	struct uao_swhash_elt *elt;
228 	voff_t page_tag;
229 
230 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
231 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
232 
233 	/*
234 	 * now search the bucket for the requested tag
235 	 */
236 
237 	LIST_FOREACH(elt, swhash, list) {
238 		if (elt->tag == page_tag) {
239 			return elt;
240 		}
241 	}
242 	if (!create) {
243 		return NULL;
244 	}
245 
246 	/*
247 	 * allocate a new entry for the bucket and init/insert it in
248 	 */
249 
250 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
251 	if (elt == NULL) {
252 		return NULL;
253 	}
254 	LIST_INSERT_HEAD(swhash, elt, list);
255 	elt->tag = page_tag;
256 	elt->count = 0;
257 	memset(elt->slots, 0, sizeof(elt->slots));
258 	return elt;
259 }
260 
261 /*
262  * uao_find_swslot: find the swap slot number for an aobj/pageidx
263  *
264  * => object must be locked by caller
265  */
266 
267 int
268 uao_find_swslot(uobj, pageidx)
269 	struct uvm_object *uobj;
270 	int pageidx;
271 {
272 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
273 	struct uao_swhash_elt *elt;
274 
275 	/*
276 	 * if noswap flag is set, then we never return a slot
277 	 */
278 
279 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
280 		return(0);
281 
282 	/*
283 	 * if hashing, look in hash table.
284 	 */
285 
286 	if (UAO_USES_SWHASH(aobj)) {
287 		elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
288 		if (elt)
289 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
290 		else
291 			return(0);
292 	}
293 
294 	/*
295 	 * otherwise, look in the array
296 	 */
297 
298 	return(aobj->u_swslots[pageidx]);
299 }
300 
301 /*
302  * uao_set_swslot: set the swap slot for a page in an aobj.
303  *
304  * => setting a slot to zero frees the slot
305  * => object must be locked by caller
306  * => we return the old slot number, or -1 if we failed to allocate
307  *    memory to record the new slot number
308  */
309 
310 int
311 uao_set_swslot(uobj, pageidx, slot)
312 	struct uvm_object *uobj;
313 	int pageidx, slot;
314 {
315 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
316 	struct uao_swhash_elt *elt;
317 	int oldslot;
318 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
319 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
320 	    aobj, pageidx, slot, 0);
321 
322 	/*
323 	 * if noswap flag is set, then we can't set a non-zero slot.
324 	 */
325 
326 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
327 		if (slot == 0)
328 			return(0);
329 
330 		printf("uao_set_swslot: uobj = %p\n", uobj);
331 		panic("uao_set_swslot: NOSWAP object");
332 	}
333 
334 	/*
335 	 * are we using a hash table?  if so, add it in the hash.
336 	 */
337 
338 	if (UAO_USES_SWHASH(aobj)) {
339 
340 		/*
341 		 * Avoid allocating an entry just to free it again if
342 		 * the page had not swap slot in the first place, and
343 		 * we are freeing.
344 		 */
345 
346 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
347 		if (elt == NULL) {
348 			return slot ? -1 : 0;
349 		}
350 
351 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
352 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
353 
354 		/*
355 		 * now adjust the elt's reference counter and free it if we've
356 		 * dropped it to zero.
357 		 */
358 
359 		if (slot) {
360 			if (oldslot == 0)
361 				elt->count++;
362 		} else {
363 			if (oldslot)
364 				elt->count--;
365 
366 			if (elt->count == 0) {
367 				LIST_REMOVE(elt, list);
368 				pool_put(&uao_swhash_elt_pool, elt);
369 			}
370 		}
371 	} else {
372 		/* we are using an array */
373 		oldslot = aobj->u_swslots[pageidx];
374 		aobj->u_swslots[pageidx] = slot;
375 	}
376 	return (oldslot);
377 }
378 
379 /*
380  * end of hash/array functions
381  */
382 
383 /*
384  * uao_free: free all resources held by an aobj, and then free the aobj
385  *
386  * => the aobj should be dead
387  */
388 
389 static void
390 uao_free(aobj)
391 	struct uvm_aobj *aobj;
392 {
393 	int swpgonlydelta = 0;
394 
395 	simple_unlock(&aobj->u_obj.vmobjlock);
396 	if (UAO_USES_SWHASH(aobj)) {
397 		int i, hashbuckets = aobj->u_swhashmask + 1;
398 
399 		/*
400 		 * free the swslots from each hash bucket,
401 		 * then the hash bucket, and finally the hash table itself.
402 		 */
403 
404 		for (i = 0; i < hashbuckets; i++) {
405 			struct uao_swhash_elt *elt, *next;
406 
407 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
408 			     elt != NULL;
409 			     elt = next) {
410 				int j;
411 
412 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
413 					int slot = elt->slots[j];
414 
415 					if (slot == 0) {
416 						continue;
417 					}
418 					uvm_swap_free(slot, 1);
419 					swpgonlydelta++;
420 				}
421 
422 				next = LIST_NEXT(elt, list);
423 				pool_put(&uao_swhash_elt_pool, elt);
424 			}
425 		}
426 		free(aobj->u_swhash, M_UVMAOBJ);
427 	} else {
428 		int i;
429 
430 		/*
431 		 * free the array
432 		 */
433 
434 		for (i = 0; i < aobj->u_pages; i++) {
435 			int slot = aobj->u_swslots[i];
436 
437 			if (slot) {
438 				uvm_swap_free(slot, 1);
439 				swpgonlydelta++;
440 			}
441 		}
442 		free(aobj->u_swslots, M_UVMAOBJ);
443 	}
444 
445 	/*
446 	 * finally free the aobj itself
447 	 */
448 
449 	pool_put(&uvm_aobj_pool, aobj);
450 
451 	/*
452 	 * adjust the counter of pages only in swap for all
453 	 * the swap slots we've freed.
454 	 */
455 
456 	simple_lock(&uvm.swap_data_lock);
457 	uvmexp.swpgonly -= swpgonlydelta;
458 	simple_unlock(&uvm.swap_data_lock);
459 }
460 
461 /*
462  * pager functions
463  */
464 
465 /*
466  * uao_create: create an aobj of the given size and return its uvm_object.
467  *
468  * => for normal use, flags are always zero
469  * => for the kernel object, the flags are:
470  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
471  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
472  */
473 
474 struct uvm_object *
475 uao_create(size, flags)
476 	vsize_t size;
477 	int flags;
478 {
479 	static struct uvm_aobj kernel_object_store;
480 	static int kobj_alloced = 0;
481 	int pages = round_page(size) >> PAGE_SHIFT;
482 	struct uvm_aobj *aobj;
483 
484 	/*
485 	 * malloc a new aobj unless we are asked for the kernel object
486 	 */
487 
488 	if (flags & UAO_FLAG_KERNOBJ) {
489 		KASSERT(!kobj_alloced);
490 		aobj = &kernel_object_store;
491 		aobj->u_pages = pages;
492 		aobj->u_flags = UAO_FLAG_NOSWAP;
493 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
494 		kobj_alloced = UAO_FLAG_KERNOBJ;
495 	} else if (flags & UAO_FLAG_KERNSWAP) {
496 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
497 		aobj = &kernel_object_store;
498 		kobj_alloced = UAO_FLAG_KERNSWAP;
499 	} else {
500 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
501 		aobj->u_pages = pages;
502 		aobj->u_flags = 0;
503 		aobj->u_obj.uo_refs = 1;
504 	}
505 
506 	/*
507  	 * allocate hash/array if necessary
508  	 *
509  	 * note: in the KERNSWAP case no need to worry about locking since
510  	 * we are still booting we should be the only thread around.
511  	 */
512 
513 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
514 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
515 		    M_NOWAIT : M_WAITOK;
516 
517 		/* allocate hash table or array depending on object size */
518 		if (UAO_USES_SWHASH(aobj)) {
519 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
520 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
521 			if (aobj->u_swhash == NULL)
522 				panic("uao_create: hashinit swhash failed");
523 		} else {
524 			aobj->u_swslots = malloc(pages * sizeof(int),
525 			    M_UVMAOBJ, mflags);
526 			if (aobj->u_swslots == NULL)
527 				panic("uao_create: malloc swslots failed");
528 			memset(aobj->u_swslots, 0, pages * sizeof(int));
529 		}
530 
531 		if (flags) {
532 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
533 			return(&aobj->u_obj);
534 		}
535 	}
536 
537 	/*
538  	 * init aobj fields
539  	 */
540 
541 	simple_lock_init(&aobj->u_obj.vmobjlock);
542 	aobj->u_obj.pgops = &aobj_pager;
543 	TAILQ_INIT(&aobj->u_obj.memq);
544 	aobj->u_obj.uo_npages = 0;
545 
546 	/*
547  	 * now that aobj is ready, add it to the global list
548  	 */
549 
550 	simple_lock(&uao_list_lock);
551 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
552 	simple_unlock(&uao_list_lock);
553 	return(&aobj->u_obj);
554 }
555 
556 
557 
558 /*
559  * uao_init: set up aobj pager subsystem
560  *
561  * => called at boot time from uvm_pager_init()
562  */
563 
564 void
565 uao_init(void)
566 {
567 	static int uao_initialized;
568 
569 	if (uao_initialized)
570 		return;
571 	uao_initialized = TRUE;
572 	LIST_INIT(&uao_list);
573 	simple_lock_init(&uao_list_lock);
574 
575 	/*
576 	 * NOTE: Pages fror this pool must not come from a pageable
577 	 * kernel map!
578 	 */
579 
580 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
581 	    0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
582 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
583 	    "aobjpl", 0,
584 	    pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
585 }
586 
587 /*
588  * uao_reference: add a ref to an aobj
589  *
590  * => aobj must be unlocked
591  * => just lock it and call the locked version
592  */
593 
594 void
595 uao_reference(uobj)
596 	struct uvm_object *uobj;
597 {
598 	simple_lock(&uobj->vmobjlock);
599 	uao_reference_locked(uobj);
600 	simple_unlock(&uobj->vmobjlock);
601 }
602 
603 /*
604  * uao_reference_locked: add a ref to an aobj that is already locked
605  *
606  * => aobj must be locked
607  * this needs to be separate from the normal routine
608  * since sometimes we need to add a reference to an aobj when
609  * it's already locked.
610  */
611 
612 void
613 uao_reference_locked(uobj)
614 	struct uvm_object *uobj;
615 {
616 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
617 
618 	/*
619  	 * kernel_object already has plenty of references, leave it alone.
620  	 */
621 
622 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
623 		return;
624 
625 	uobj->uo_refs++;
626 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
627 		    uobj, uobj->uo_refs,0,0);
628 }
629 
630 /*
631  * uao_detach: drop a reference to an aobj
632  *
633  * => aobj must be unlocked
634  * => just lock it and call the locked version
635  */
636 
637 void
638 uao_detach(uobj)
639 	struct uvm_object *uobj;
640 {
641 	simple_lock(&uobj->vmobjlock);
642 	uao_detach_locked(uobj);
643 }
644 
645 /*
646  * uao_detach_locked: drop a reference to an aobj
647  *
648  * => aobj must be locked, and is unlocked (or freed) upon return.
649  * this needs to be separate from the normal routine
650  * since sometimes we need to detach from an aobj when
651  * it's already locked.
652  */
653 
654 void
655 uao_detach_locked(uobj)
656 	struct uvm_object *uobj;
657 {
658 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
659 	struct vm_page *pg;
660 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
661 
662 	/*
663  	 * detaching from kernel_object is a noop.
664  	 */
665 
666 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
667 		simple_unlock(&uobj->vmobjlock);
668 		return;
669 	}
670 
671 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
672 	uobj->uo_refs--;
673 	if (uobj->uo_refs) {
674 		simple_unlock(&uobj->vmobjlock);
675 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
676 		return;
677 	}
678 
679 	/*
680  	 * remove the aobj from the global list.
681  	 */
682 
683 	simple_lock(&uao_list_lock);
684 	LIST_REMOVE(aobj, u_list);
685 	simple_unlock(&uao_list_lock);
686 
687 	/*
688  	 * free all the pages left in the aobj.  for each page,
689 	 * when the page is no longer busy (and thus after any disk i/o that
690 	 * it's involved in is complete), release any swap resources and
691 	 * free the page itself.
692  	 */
693 
694 	uvm_lock_pageq();
695 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
696 		pmap_page_protect(pg, VM_PROT_NONE);
697 		if (pg->flags & PG_BUSY) {
698 			pg->flags |= PG_WANTED;
699 			uvm_unlock_pageq();
700 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
701 			    "uao_det", 0);
702 			simple_lock(&uobj->vmobjlock);
703 			uvm_lock_pageq();
704 			continue;
705 		}
706 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
707 		uvm_pagefree(pg);
708 	}
709 	uvm_unlock_pageq();
710 
711 	/*
712  	 * finally, free the aobj itself.
713  	 */
714 
715 	uao_free(aobj);
716 }
717 
718 /*
719  * uao_put: flush pages out of a uvm object
720  *
721  * => object should be locked by caller.  we may _unlock_ the object
722  *	if (and only if) we need to clean a page (PGO_CLEANIT).
723  *	XXXJRT Currently, however, we don't.  In the case of cleaning
724  *	XXXJRT a page, we simply just deactivate it.  Should probably
725  *	XXXJRT handle this better, in the future (although "flushing"
726  *	XXXJRT anonymous memory isn't terribly important).
727  * => if PGO_CLEANIT is not set, then we will neither unlock the object
728  *	or block.
729  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
730  *	for flushing.
731  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
732  *	that new pages are inserted on the tail end of the list.  thus,
733  *	we can make a complete pass through the object in one go by starting
734  *	at the head and working towards the tail (new pages are put in
735  *	front of us).
736  * => NOTE: we are allowed to lock the page queues, so the caller
737  *	must not be holding the lock on them [e.g. pagedaemon had
738  *	better not call us with the queues locked]
739  * => we return TRUE unless we encountered some sort of I/O error
740  *	XXXJRT currently never happens, as we never directly initiate
741  *	XXXJRT I/O
742  *
743  * note on page traversal:
744  *	we can traverse the pages in an object either by going down the
745  *	linked list in "uobj->memq", or we can go over the address range
746  *	by page doing hash table lookups for each address.  depending
747  *	on how many pages are in the object it may be cheaper to do one
748  *	or the other.  we set "by_list" to true if we are using memq.
749  *	if the cost of a hash lookup was equal to the cost of the list
750  *	traversal we could compare the number of pages in the start->stop
751  *	range to the total number of pages in the object.  however, it
752  *	seems that a hash table lookup is more expensive than the linked
753  *	list traversal, so we multiply the number of pages in the
754  *	start->stop range by a penalty which we define below.
755  */
756 
757 int
758 uao_put(uobj, start, stop, flags)
759 	struct uvm_object *uobj;
760 	voff_t start, stop;
761 	int flags;
762 {
763 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
764 	struct vm_page *pg, *nextpg;
765 	boolean_t by_list;
766 	voff_t curoff;
767 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
768 
769 	curoff = 0;
770 	if (flags & PGO_ALLPAGES) {
771 		start = 0;
772 		stop = aobj->u_pages << PAGE_SHIFT;
773 		by_list = TRUE;		/* always go by the list */
774 	} else {
775 		start = trunc_page(start);
776 		stop = round_page(stop);
777 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
778 			printf("uao_flush: strange, got an out of range "
779 			    "flush (fixed)\n");
780 			stop = aobj->u_pages << PAGE_SHIFT;
781 		}
782 		by_list = (uobj->uo_npages <=
783 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
784 	}
785 	UVMHIST_LOG(maphist,
786 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
787 	    start, stop, by_list, flags);
788 
789 	/*
790 	 * Don't need to do any work here if we're not freeing
791 	 * or deactivating pages.
792 	 */
793 
794 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
795 		simple_unlock(&uobj->vmobjlock);
796 		return 0;
797 	}
798 
799 	/*
800 	 * now do it.  note: we must update nextpg in the body of loop or we
801 	 * will get stuck.  we need to use nextpg because we may free "pg"
802 	 * before doing the next loop.
803 	 */
804 
805 	if (by_list) {
806 		pg = TAILQ_FIRST(&uobj->memq);
807 	} else {
808 		curoff = start;
809 		pg = uvm_pagelookup(uobj, curoff);
810 	}
811 
812 	nextpg = NULL;
813 	uvm_lock_pageq();
814 
815 	/* locked: both page queues and uobj */
816 	for ( ; (by_list && pg != NULL) ||
817 	    (!by_list && curoff < stop) ; pg = nextpg) {
818 		if (by_list) {
819 			nextpg = TAILQ_NEXT(pg, listq);
820 			if (pg->offset < start || pg->offset >= stop)
821 				continue;
822 		} else {
823 			curoff += PAGE_SIZE;
824 			if (curoff < stop)
825 				nextpg = uvm_pagelookup(uobj, curoff);
826 			if (pg == NULL)
827 				continue;
828 		}
829 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
830 
831 		/*
832 		 * XXX In these first 3 cases, we always just
833 		 * XXX deactivate the page.  We may want to
834 		 * XXX handle the different cases more specifically
835 		 * XXX in the future.
836 		 */
837 
838 		case PGO_CLEANIT|PGO_FREE:
839 		case PGO_CLEANIT|PGO_DEACTIVATE:
840 		case PGO_DEACTIVATE:
841  deactivate_it:
842 			/* skip the page if it's loaned or wired */
843 			if (pg->loan_count != 0 || pg->wire_count != 0)
844 				continue;
845 
846 			/* ...and deactivate the page. */
847 			pmap_clear_reference(pg);
848 			uvm_pagedeactivate(pg);
849 			continue;
850 
851 		case PGO_FREE:
852 
853 			/*
854 			 * If there are multiple references to
855 			 * the object, just deactivate the page.
856 			 */
857 
858 			if (uobj->uo_refs > 1)
859 				goto deactivate_it;
860 
861 			/* XXX skip the page if it's loaned or wired */
862 			if (pg->loan_count != 0 || pg->wire_count != 0)
863 				continue;
864 
865 			/*
866 			 * wait if the page is busy, then free the swap slot
867 			 * and the page.
868 			 */
869 
870 			pmap_page_protect(pg, VM_PROT_NONE);
871 			while (pg->flags & PG_BUSY) {
872 				pg->flags |= PG_WANTED;
873 				uvm_unlock_pageq();
874 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
875 				    "uao_put", 0);
876 				simple_lock(&uobj->vmobjlock);
877 				uvm_lock_pageq();
878 			}
879 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
880 			uvm_pagefree(pg);
881 			continue;
882 		}
883 	}
884 	uvm_unlock_pageq();
885 	simple_unlock(&uobj->vmobjlock);
886 	return 0;
887 }
888 
889 /*
890  * uao_get: fetch me a page
891  *
892  * we have three cases:
893  * 1: page is resident     -> just return the page.
894  * 2: page is zero-fill    -> allocate a new page and zero it.
895  * 3: page is swapped out  -> fetch the page from swap.
896  *
897  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
898  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
899  * then we will need to return EBUSY.
900  *
901  * => prefer map unlocked (not required)
902  * => object must be locked!  we will _unlock_ it before starting any I/O.
903  * => flags: PGO_ALLPAGES: get all of the pages
904  *           PGO_LOCKED: fault data structures are locked
905  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
906  * => NOTE: caller must check for released pages!!
907  */
908 
909 static int
910 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
911 	struct uvm_object *uobj;
912 	voff_t offset;
913 	struct vm_page **pps;
914 	int *npagesp;
915 	int centeridx, advice, flags;
916 	vm_prot_t access_type;
917 {
918 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
919 	voff_t current_offset;
920 	struct vm_page *ptmp;
921 	int lcv, gotpages, maxpages, swslot, error, pageidx;
922 	boolean_t done;
923 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
924 
925 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
926 		    aobj, offset, flags,0);
927 
928 	/*
929  	 * get number of pages
930  	 */
931 
932 	maxpages = *npagesp;
933 
934 	/*
935  	 * step 1: handled the case where fault data structures are locked.
936  	 */
937 
938 	if (flags & PGO_LOCKED) {
939 
940 		/*
941  		 * step 1a: get pages that are already resident.   only do
942 		 * this if the data structures are locked (i.e. the first
943 		 * time through).
944  		 */
945 
946 		done = TRUE;	/* be optimistic */
947 		gotpages = 0;	/* # of pages we got so far */
948 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
949 		    lcv++, current_offset += PAGE_SIZE) {
950 			/* do we care about this page?  if not, skip it */
951 			if (pps[lcv] == PGO_DONTCARE)
952 				continue;
953 			ptmp = uvm_pagelookup(uobj, current_offset);
954 
955 			/*
956  			 * if page is new, attempt to allocate the page,
957 			 * zero-fill'd.
958  			 */
959 
960 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
961 			    current_offset >> PAGE_SHIFT) == 0) {
962 				ptmp = uvm_pagealloc(uobj, current_offset,
963 				    NULL, UVM_PGA_ZERO);
964 				if (ptmp) {
965 					/* new page */
966 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
967 					ptmp->pqflags |= PQ_AOBJ;
968 					UVM_PAGE_OWN(ptmp, NULL);
969 				}
970 			}
971 
972 			/*
973 			 * to be useful must get a non-busy page
974 			 */
975 
976 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
977 				if (lcv == centeridx ||
978 				    (flags & PGO_ALLPAGES) != 0)
979 					/* need to do a wait or I/O! */
980 					done = FALSE;
981 					continue;
982 			}
983 
984 			/*
985 			 * useful page: busy/lock it and plug it in our
986 			 * result array
987 			 */
988 
989 			/* caller must un-busy this page */
990 			ptmp->flags |= PG_BUSY;
991 			UVM_PAGE_OWN(ptmp, "uao_get1");
992 			pps[lcv] = ptmp;
993 			gotpages++;
994 		}
995 
996 		/*
997  		 * step 1b: now we've either done everything needed or we
998 		 * to unlock and do some waiting or I/O.
999  		 */
1000 
1001 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1002 		*npagesp = gotpages;
1003 		if (done)
1004 			return 0;
1005 		else
1006 			return EBUSY;
1007 	}
1008 
1009 	/*
1010  	 * step 2: get non-resident or busy pages.
1011  	 * object is locked.   data structures are unlocked.
1012  	 */
1013 
1014 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1015 	    lcv++, current_offset += PAGE_SIZE) {
1016 
1017 		/*
1018 		 * - skip over pages we've already gotten or don't want
1019 		 * - skip over pages we don't _have_ to get
1020 		 */
1021 
1022 		if (pps[lcv] != NULL ||
1023 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1024 			continue;
1025 
1026 		pageidx = current_offset >> PAGE_SHIFT;
1027 
1028 		/*
1029  		 * we have yet to locate the current page (pps[lcv]).   we
1030 		 * first look for a page that is already at the current offset.
1031 		 * if we find a page, we check to see if it is busy or
1032 		 * released.  if that is the case, then we sleep on the page
1033 		 * until it is no longer busy or released and repeat the lookup.
1034 		 * if the page we found is neither busy nor released, then we
1035 		 * busy it (so we own it) and plug it into pps[lcv].   this
1036 		 * 'break's the following while loop and indicates we are
1037 		 * ready to move on to the next page in the "lcv" loop above.
1038  		 *
1039  		 * if we exit the while loop with pps[lcv] still set to NULL,
1040 		 * then it means that we allocated a new busy/fake/clean page
1041 		 * ptmp in the object and we need to do I/O to fill in the data.
1042  		 */
1043 
1044 		/* top of "pps" while loop */
1045 		while (pps[lcv] == NULL) {
1046 			/* look for a resident page */
1047 			ptmp = uvm_pagelookup(uobj, current_offset);
1048 
1049 			/* not resident?   allocate one now (if we can) */
1050 			if (ptmp == NULL) {
1051 
1052 				ptmp = uvm_pagealloc(uobj, current_offset,
1053 				    NULL, 0);
1054 
1055 				/* out of RAM? */
1056 				if (ptmp == NULL) {
1057 					simple_unlock(&uobj->vmobjlock);
1058 					UVMHIST_LOG(pdhist,
1059 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1060 					uvm_wait("uao_getpage");
1061 					simple_lock(&uobj->vmobjlock);
1062 					continue;
1063 				}
1064 
1065 				/*
1066 				 * safe with PQ's unlocked: because we just
1067 				 * alloc'd the page
1068 				 */
1069 
1070 				ptmp->pqflags |= PQ_AOBJ;
1071 
1072 				/*
1073 				 * got new page ready for I/O.  break pps while
1074 				 * loop.  pps[lcv] is still NULL.
1075 				 */
1076 
1077 				break;
1078 			}
1079 
1080 			/* page is there, see if we need to wait on it */
1081 			if ((ptmp->flags & PG_BUSY) != 0) {
1082 				ptmp->flags |= PG_WANTED;
1083 				UVMHIST_LOG(pdhist,
1084 				    "sleeping, ptmp->flags 0x%x\n",
1085 				    ptmp->flags,0,0,0);
1086 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1087 				    FALSE, "uao_get", 0);
1088 				simple_lock(&uobj->vmobjlock);
1089 				continue;
1090 			}
1091 
1092 			/*
1093  			 * if we get here then the page has become resident and
1094 			 * unbusy between steps 1 and 2.  we busy it now (so we
1095 			 * own it) and set pps[lcv] (so that we exit the while
1096 			 * loop).
1097  			 */
1098 
1099 			/* we own it, caller must un-busy */
1100 			ptmp->flags |= PG_BUSY;
1101 			UVM_PAGE_OWN(ptmp, "uao_get2");
1102 			pps[lcv] = ptmp;
1103 		}
1104 
1105 		/*
1106  		 * if we own the valid page at the correct offset, pps[lcv] will
1107  		 * point to it.   nothing more to do except go to the next page.
1108  		 */
1109 
1110 		if (pps[lcv])
1111 			continue;			/* next lcv */
1112 
1113 		/*
1114  		 * we have a "fake/busy/clean" page that we just allocated.
1115  		 * do the needed "i/o", either reading from swap or zeroing.
1116  		 */
1117 
1118 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1119 
1120 		/*
1121  		 * just zero the page if there's nothing in swap.
1122  		 */
1123 
1124 		if (swslot == 0) {
1125 
1126 			/*
1127 			 * page hasn't existed before, just zero it.
1128 			 */
1129 
1130 			uvm_pagezero(ptmp);
1131 		} else {
1132 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1133 			     swslot, 0,0,0);
1134 
1135 			/*
1136 			 * page in the swapped-out page.
1137 			 * unlock object for i/o, relock when done.
1138 			 */
1139 
1140 			simple_unlock(&uobj->vmobjlock);
1141 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1142 			simple_lock(&uobj->vmobjlock);
1143 
1144 			/*
1145 			 * I/O done.  check for errors.
1146 			 */
1147 
1148 			if (error != 0) {
1149 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1150 				    error,0,0,0);
1151 				if (ptmp->flags & PG_WANTED)
1152 					wakeup(ptmp);
1153 
1154 				/*
1155 				 * remove the swap slot from the aobj
1156 				 * and mark the aobj as having no real slot.
1157 				 * don't free the swap slot, thus preventing
1158 				 * it from being used again.
1159 				 */
1160 
1161 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1162 							SWSLOT_BAD);
1163 				if (swslot != -1) {
1164 					uvm_swap_markbad(swslot, 1);
1165 				}
1166 
1167 				uvm_lock_pageq();
1168 				uvm_pagefree(ptmp);
1169 				uvm_unlock_pageq();
1170 				simple_unlock(&uobj->vmobjlock);
1171 				return error;
1172 			}
1173 		}
1174 
1175 		/*
1176  		 * we got the page!   clear the fake flag (indicates valid
1177 		 * data now in page) and plug into our result array.   note
1178 		 * that page is still busy.
1179  		 *
1180  		 * it is the callers job to:
1181  		 * => check if the page is released
1182  		 * => unbusy the page
1183  		 * => activate the page
1184  		 */
1185 
1186 		ptmp->flags &= ~PG_FAKE;
1187 		pps[lcv] = ptmp;
1188 	}
1189 
1190 	/*
1191  	 * finally, unlock object and return.
1192  	 */
1193 
1194 	simple_unlock(&uobj->vmobjlock);
1195 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1196 	return 0;
1197 }
1198 
1199 /*
1200  * uao_dropswap:  release any swap resources from this aobj page.
1201  *
1202  * => aobj must be locked or have a reference count of 0.
1203  */
1204 
1205 void
1206 uao_dropswap(uobj, pageidx)
1207 	struct uvm_object *uobj;
1208 	int pageidx;
1209 {
1210 	int slot;
1211 
1212 	slot = uao_set_swslot(uobj, pageidx, 0);
1213 	if (slot) {
1214 		uvm_swap_free(slot, 1);
1215 	}
1216 }
1217 
1218 
1219 /*
1220  * page in every page in every aobj that is paged-out to a range of swslots.
1221  *
1222  * => nothing should be locked.
1223  * => returns TRUE if pagein was aborted due to lack of memory.
1224  */
1225 
1226 boolean_t
1227 uao_swap_off(startslot, endslot)
1228 	int startslot, endslot;
1229 {
1230 	struct uvm_aobj *aobj, *nextaobj;
1231 	boolean_t rv;
1232 
1233 	/*
1234 	 * walk the list of all aobjs.
1235 	 */
1236 
1237 restart:
1238 	simple_lock(&uao_list_lock);
1239 	for (aobj = LIST_FIRST(&uao_list);
1240 	     aobj != NULL;
1241 	     aobj = nextaobj) {
1242 
1243 		/*
1244 		 * try to get the object lock, start all over if we fail.
1245 		 * most of the time we'll get the aobj lock,
1246 		 * so this should be a rare case.
1247 		 */
1248 
1249 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1250 			simple_unlock(&uao_list_lock);
1251 			goto restart;
1252 		}
1253 
1254 		/*
1255 		 * add a ref to the aobj so it doesn't disappear
1256 		 * while we're working.
1257 		 */
1258 
1259 		uao_reference_locked(&aobj->u_obj);
1260 
1261 		/*
1262 		 * now it's safe to unlock the uao list.
1263 		 */
1264 
1265 		simple_unlock(&uao_list_lock);
1266 
1267 		/*
1268 		 * page in any pages in the swslot range.
1269 		 * if there's an error, abort and return the error.
1270 		 */
1271 
1272 		rv = uao_pagein(aobj, startslot, endslot);
1273 		if (rv) {
1274 			uao_detach_locked(&aobj->u_obj);
1275 			return rv;
1276 		}
1277 
1278 		/*
1279 		 * we're done with this aobj.
1280 		 * relock the list and drop our ref on the aobj.
1281 		 */
1282 
1283 		simple_lock(&uao_list_lock);
1284 		nextaobj = LIST_NEXT(aobj, u_list);
1285 		uao_detach_locked(&aobj->u_obj);
1286 	}
1287 
1288 	/*
1289 	 * done with traversal, unlock the list
1290 	 */
1291 	simple_unlock(&uao_list_lock);
1292 	return FALSE;
1293 }
1294 
1295 
1296 /*
1297  * page in any pages from aobj in the given range.
1298  *
1299  * => aobj must be locked and is returned locked.
1300  * => returns TRUE if pagein was aborted due to lack of memory.
1301  */
1302 static boolean_t
1303 uao_pagein(aobj, startslot, endslot)
1304 	struct uvm_aobj *aobj;
1305 	int startslot, endslot;
1306 {
1307 	boolean_t rv;
1308 
1309 	if (UAO_USES_SWHASH(aobj)) {
1310 		struct uao_swhash_elt *elt;
1311 		int bucket;
1312 
1313 restart:
1314 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1315 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1316 			     elt != NULL;
1317 			     elt = LIST_NEXT(elt, list)) {
1318 				int i;
1319 
1320 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1321 					int slot = elt->slots[i];
1322 
1323 					/*
1324 					 * if the slot isn't in range, skip it.
1325 					 */
1326 
1327 					if (slot < startslot ||
1328 					    slot >= endslot) {
1329 						continue;
1330 					}
1331 
1332 					/*
1333 					 * process the page,
1334 					 * the start over on this object
1335 					 * since the swhash elt
1336 					 * may have been freed.
1337 					 */
1338 
1339 					rv = uao_pagein_page(aobj,
1340 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1341 					if (rv) {
1342 						return rv;
1343 					}
1344 					goto restart;
1345 				}
1346 			}
1347 		}
1348 	} else {
1349 		int i;
1350 
1351 		for (i = 0; i < aobj->u_pages; i++) {
1352 			int slot = aobj->u_swslots[i];
1353 
1354 			/*
1355 			 * if the slot isn't in range, skip it
1356 			 */
1357 
1358 			if (slot < startslot || slot >= endslot) {
1359 				continue;
1360 			}
1361 
1362 			/*
1363 			 * process the page.
1364 			 */
1365 
1366 			rv = uao_pagein_page(aobj, i);
1367 			if (rv) {
1368 				return rv;
1369 			}
1370 		}
1371 	}
1372 
1373 	return FALSE;
1374 }
1375 
1376 /*
1377  * page in a page from an aobj.  used for swap_off.
1378  * returns TRUE if pagein was aborted due to lack of memory.
1379  *
1380  * => aobj must be locked and is returned locked.
1381  */
1382 
1383 static boolean_t
1384 uao_pagein_page(aobj, pageidx)
1385 	struct uvm_aobj *aobj;
1386 	int pageidx;
1387 {
1388 	struct vm_page *pg;
1389 	int rv, slot, npages;
1390 
1391 	pg = NULL;
1392 	npages = 1;
1393 	/* locked: aobj */
1394 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1395 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1396 	/* unlocked: aobj */
1397 
1398 	/*
1399 	 * relock and finish up.
1400 	 */
1401 
1402 	simple_lock(&aobj->u_obj.vmobjlock);
1403 	switch (rv) {
1404 	case 0:
1405 		break;
1406 
1407 	case EIO:
1408 	case ERESTART:
1409 
1410 		/*
1411 		 * nothing more to do on errors.
1412 		 * ERESTART can only mean that the anon was freed,
1413 		 * so again there's nothing to do.
1414 		 */
1415 
1416 		return FALSE;
1417 	}
1418 
1419 	/*
1420 	 * ok, we've got the page now.
1421 	 * mark it as dirty, clear its swslot and un-busy it.
1422 	 */
1423 
1424 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1425 	uvm_swap_free(slot, 1);
1426 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1427 	UVM_PAGE_OWN(pg, NULL);
1428 
1429 	/*
1430 	 * deactivate the page (to make sure it's on a page queue).
1431 	 */
1432 
1433 	uvm_lock_pageq();
1434 	uvm_pagedeactivate(pg);
1435 	uvm_unlock_pageq();
1436 	return FALSE;
1437 }
1438