xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision 89c5a767f8fc7a4633b2d409966e2becbb98ff92)
1 /*	$NetBSD: uvm_aobj.c,v 1.27 2000/01/11 06:57:49 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 
46 
47 #include "opt_uvmhist.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/pool.h>
54 #include <sys/kernel.h>
55 
56 #include <vm/vm.h>
57 #include <vm/vm_page.h>
58 #include <vm/vm_kern.h>
59 
60 #include <uvm/uvm.h>
61 
62 /*
63  * an aobj manages anonymous-memory backed uvm_objects.   in addition
64  * to keeping the list of resident pages, it also keeps a list of
65  * allocated swap blocks.  depending on the size of the aobj this list
66  * of allocated swap blocks is either stored in an array (small objects)
67  * or in a hash table (large objects).
68  */
69 
70 /*
71  * local structures
72  */
73 
74 /*
75  * for hash tables, we break the address space of the aobj into blocks
76  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
77  * be a power of two.
78  */
79 
80 #define UAO_SWHASH_CLUSTER_SHIFT 4
81 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
82 
83 /* get the "tag" for this page index */
84 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
85 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
86 
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
90 
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94 
95 /*
96  * the swhash hash function
97  */
98 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
99 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
100 			    & (AOBJ)->u_swhashmask)])
101 
102 /*
103  * the swhash threshhold determines if we will use an array or a
104  * hash table to store the list of allocated swap blocks.
105  */
106 
107 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
108 #define UAO_USES_SWHASH(AOBJ) \
109 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
110 
111 /*
112  * the number of buckets in a swhash, with an upper bound
113  */
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 	(min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 	     UAO_SWHASH_MAXBUCKETS))
118 
119 
120 /*
121  * uao_swhash_elt: when a hash table is being used, this structure defines
122  * the format of an entry in the bucket list.
123  */
124 
125 struct uao_swhash_elt {
126 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
127 	vaddr_t tag;				/* our 'tag' */
128 	int count;				/* our number of active slots */
129 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
130 };
131 
132 /*
133  * uao_swhash: the swap hash table structure
134  */
135 
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137 
138 /*
139  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140  */
141 
142 struct pool uao_swhash_elt_pool;
143 
144 /*
145  * uvm_aobj: the actual anon-backed uvm_object
146  *
147  * => the uvm_object is at the top of the structure, this allows
148  *   (struct uvm_device *) == (struct uvm_object *)
149  * => only one of u_swslots and u_swhash is used in any given aobj
150  */
151 
152 struct uvm_aobj {
153 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 	int u_pages;		 /* number of pages in entire object */
155 	int u_flags;		 /* the flags (see uvm_aobj.h) */
156 	int *u_swslots;		 /* array of offset->swapslot mappings */
157 				 /*
158 				  * hashtable of offset->swapslot mappings
159 				  * (u_swhash is an array of bucket heads)
160 				  */
161 	struct uao_swhash *u_swhash;
162 	u_long u_swhashmask;		/* mask for hashtable */
163 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
164 };
165 
166 /*
167  * uvm_aobj_pool: pool of uvm_aobj structures
168  */
169 
170 struct pool uvm_aobj_pool;
171 
172 /*
173  * local functions
174  */
175 
176 static struct uao_swhash_elt	*uao_find_swhash_elt __P((struct uvm_aobj *,
177 							  int, boolean_t));
178 static int			 uao_find_swslot __P((struct uvm_aobj *,
179 						      int));
180 static boolean_t		 uao_flush __P((struct uvm_object *,
181 						vaddr_t, vaddr_t,
182 						int));
183 static void			 uao_free __P((struct uvm_aobj *));
184 static int			 uao_get __P((struct uvm_object *, vaddr_t,
185 					      vm_page_t *, int *, int,
186 					      vm_prot_t, int, int));
187 static boolean_t		 uao_releasepg __P((struct vm_page *,
188 						    struct vm_page **));
189 static boolean_t		 uao_pagein __P((struct uvm_aobj *, int, int));
190 static boolean_t		 uao_pagein_page __P((struct uvm_aobj *, int));
191 
192 
193 
194 /*
195  * aobj_pager
196  *
197  * note that some functions (e.g. put) are handled elsewhere
198  */
199 
200 struct uvm_pagerops aobj_pager = {
201 	NULL,			/* init */
202 	uao_reference,		/* reference */
203 	uao_detach,		/* detach */
204 	NULL,			/* fault */
205 	uao_flush,		/* flush */
206 	uao_get,		/* get */
207 	NULL,			/* asyncget */
208 	NULL,			/* put (done by pagedaemon) */
209 	NULL,			/* cluster */
210 	NULL,			/* mk_pcluster */
211 	uvm_shareprot,		/* shareprot */
212 	NULL,			/* aiodone */
213 	uao_releasepg		/* releasepg */
214 };
215 
216 /*
217  * uao_list: global list of active aobjs, locked by uao_list_lock
218  */
219 
220 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
221 static simple_lock_data_t uao_list_lock;
222 
223 
224 /*
225  * functions
226  */
227 
228 /*
229  * hash table/array related functions
230  */
231 
232 /*
233  * uao_find_swhash_elt: find (or create) a hash table entry for a page
234  * offset.
235  *
236  * => the object should be locked by the caller
237  */
238 
239 static struct uao_swhash_elt *
240 uao_find_swhash_elt(aobj, pageidx, create)
241 	struct uvm_aobj *aobj;
242 	int pageidx;
243 	boolean_t create;
244 {
245 	struct uao_swhash *swhash;
246 	struct uao_swhash_elt *elt;
247 	int page_tag;
248 
249 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
250 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
251 
252 	/*
253 	 * now search the bucket for the requested tag
254 	 */
255 	for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
256 		if (elt->tag == page_tag)
257 			return(elt);
258 	}
259 
260 	/* fail now if we are not allowed to create a new entry in the bucket */
261 	if (!create)
262 		return NULL;
263 
264 
265 	/*
266 	 * allocate a new entry for the bucket and init/insert it in
267 	 */
268 	elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
269 	LIST_INSERT_HEAD(swhash, elt, list);
270 	elt->tag = page_tag;
271 	elt->count = 0;
272 	memset(elt->slots, 0, sizeof(elt->slots));
273 
274 	return(elt);
275 }
276 
277 /*
278  * uao_find_swslot: find the swap slot number for an aobj/pageidx
279  *
280  * => object must be locked by caller
281  */
282 __inline static int
283 uao_find_swslot(aobj, pageidx)
284 	struct uvm_aobj *aobj;
285 	int pageidx;
286 {
287 
288 	/*
289 	 * if noswap flag is set, then we never return a slot
290 	 */
291 
292 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
293 		return(0);
294 
295 	/*
296 	 * if hashing, look in hash table.
297 	 */
298 
299 	if (UAO_USES_SWHASH(aobj)) {
300 		struct uao_swhash_elt *elt =
301 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
302 
303 		if (elt)
304 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
305 		else
306 			return(NULL);
307 	}
308 
309 	/*
310 	 * otherwise, look in the array
311 	 */
312 	return(aobj->u_swslots[pageidx]);
313 }
314 
315 /*
316  * uao_set_swslot: set the swap slot for a page in an aobj.
317  *
318  * => setting a slot to zero frees the slot
319  * => object must be locked by caller
320  */
321 int
322 uao_set_swslot(uobj, pageidx, slot)
323 	struct uvm_object *uobj;
324 	int pageidx, slot;
325 {
326 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
327 	int oldslot;
328 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
329 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
330 	    aobj, pageidx, slot, 0);
331 
332 	/*
333 	 * if noswap flag is set, then we can't set a slot
334 	 */
335 
336 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
337 
338 		if (slot == 0)
339 			return(0);		/* a clear is ok */
340 
341 		/* but a set is not */
342 		printf("uao_set_swslot: uobj = %p\n", uobj);
343 	    panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
344 	}
345 
346 	/*
347 	 * are we using a hash table?  if so, add it in the hash.
348 	 */
349 
350 	if (UAO_USES_SWHASH(aobj)) {
351 		/*
352 		 * Avoid allocating an entry just to free it again if
353 		 * the page had not swap slot in the first place, and
354 		 * we are freeing.
355 		 */
356 		struct uao_swhash_elt *elt =
357 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
358 		if (elt == NULL) {
359 #ifdef DIAGNOSTIC
360 			if (slot)
361 				panic("uao_set_swslot: didn't create elt");
362 #endif
363 			return (0);
364 		}
365 
366 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
367 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
368 
369 		/*
370 		 * now adjust the elt's reference counter and free it if we've
371 		 * dropped it to zero.
372 		 */
373 
374 		/* an allocation? */
375 		if (slot) {
376 			if (oldslot == 0)
377 				elt->count++;
378 		} else {		/* freeing slot ... */
379 			if (oldslot)	/* to be safe */
380 				elt->count--;
381 
382 			if (elt->count == 0) {
383 				LIST_REMOVE(elt, list);
384 				pool_put(&uao_swhash_elt_pool, elt);
385 			}
386 		}
387 
388 	} else {
389 		/* we are using an array */
390 		oldslot = aobj->u_swslots[pageidx];
391 		aobj->u_swslots[pageidx] = slot;
392 	}
393 	return (oldslot);
394 }
395 
396 /*
397  * end of hash/array functions
398  */
399 
400 /*
401  * uao_free: free all resources held by an aobj, and then free the aobj
402  *
403  * => the aobj should be dead
404  */
405 static void
406 uao_free(aobj)
407 	struct uvm_aobj *aobj;
408 {
409 
410 	simple_unlock(&aobj->u_obj.vmobjlock);
411 
412 	if (UAO_USES_SWHASH(aobj)) {
413 		int i, hashbuckets = aobj->u_swhashmask + 1;
414 
415 		/*
416 		 * free the swslots from each hash bucket,
417 		 * then the hash bucket, and finally the hash table itself.
418 		 */
419 		for (i = 0; i < hashbuckets; i++) {
420 			struct uao_swhash_elt *elt, *next;
421 
422 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
423 			     elt != NULL;
424 			     elt = next) {
425 				int j;
426 
427 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
428 					int slot = elt->slots[j];
429 
430 					if (slot) {
431 						uvm_swap_free(slot, 1);
432 
433 						/*
434 						 * this page is no longer
435 						 * only in swap.
436 						 */
437 						simple_lock(&uvm.swap_data_lock);
438 						uvmexp.swpgonly--;
439 						simple_unlock(&uvm.swap_data_lock);
440 					}
441 				}
442 
443 				next = LIST_NEXT(elt, list);
444 				pool_put(&uao_swhash_elt_pool, elt);
445 			}
446 		}
447 		FREE(aobj->u_swhash, M_UVMAOBJ);
448 	} else {
449 		int i;
450 
451 		/*
452 		 * free the array
453 		 */
454 
455 		for (i = 0; i < aobj->u_pages; i++) {
456 			int slot = aobj->u_swslots[i];
457 
458 			if (slot) {
459 				uvm_swap_free(slot, 1);
460 
461 				/* this page is no longer only in swap. */
462 				simple_lock(&uvm.swap_data_lock);
463 				uvmexp.swpgonly--;
464 				simple_unlock(&uvm.swap_data_lock);
465 			}
466 		}
467 		FREE(aobj->u_swslots, M_UVMAOBJ);
468 	}
469 
470 	/*
471 	 * finally free the aobj itself
472 	 */
473 	pool_put(&uvm_aobj_pool, aobj);
474 }
475 
476 /*
477  * pager functions
478  */
479 
480 /*
481  * uao_create: create an aobj of the given size and return its uvm_object.
482  *
483  * => for normal use, flags are always zero
484  * => for the kernel object, the flags are:
485  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
486  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
487  */
488 struct uvm_object *
489 uao_create(size, flags)
490 	vsize_t size;
491 	int flags;
492 {
493 	static struct uvm_aobj kernel_object_store; /* home of kernel_object */
494 	static int kobj_alloced = 0;			/* not allocated yet */
495 	int pages = round_page(size) >> PAGE_SHIFT;
496 	struct uvm_aobj *aobj;
497 
498 	/*
499 	 * malloc a new aobj unless we are asked for the kernel object
500 	 */
501 	if (flags & UAO_FLAG_KERNOBJ) {		/* want kernel object? */
502 		if (kobj_alloced)
503 			panic("uao_create: kernel object already allocated");
504 
505 		aobj = &kernel_object_store;
506 		aobj->u_pages = pages;
507 		aobj->u_flags = UAO_FLAG_NOSWAP;	/* no swap to start */
508 		/* we are special, we never die */
509 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
510 		kobj_alloced = UAO_FLAG_KERNOBJ;
511 	} else if (flags & UAO_FLAG_KERNSWAP) {
512 		aobj = &kernel_object_store;
513 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
514 		    panic("uao_create: asked to enable swap on kernel object");
515 		kobj_alloced = UAO_FLAG_KERNSWAP;
516 	} else {	/* normal object */
517 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
518 		aobj->u_pages = pages;
519 		aobj->u_flags = 0;		/* normal object */
520 		aobj->u_obj.uo_refs = 1;	/* start with 1 reference */
521 	}
522 
523 	/*
524  	 * allocate hash/array if necessary
525  	 *
526  	 * note: in the KERNSWAP case no need to worry about locking since
527  	 * we are still booting we should be the only thread around.
528  	 */
529 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
530 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
531 		    M_NOWAIT : M_WAITOK;
532 
533 		/* allocate hash table or array depending on object size */
534 		if (UAO_USES_SWHASH(aobj)) {
535 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
536 			    M_UVMAOBJ, mflags, &aobj->u_swhashmask);
537 			if (aobj->u_swhash == NULL)
538 				panic("uao_create: hashinit swhash failed");
539 		} else {
540 			MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
541 			    M_UVMAOBJ, mflags);
542 			if (aobj->u_swslots == NULL)
543 				panic("uao_create: malloc swslots failed");
544 			memset(aobj->u_swslots, 0, pages * sizeof(int));
545 		}
546 
547 		if (flags) {
548 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
549 			return(&aobj->u_obj);
550 			/* done! */
551 		}
552 	}
553 
554 	/*
555  	 * init aobj fields
556  	 */
557 	simple_lock_init(&aobj->u_obj.vmobjlock);
558 	aobj->u_obj.pgops = &aobj_pager;
559 	TAILQ_INIT(&aobj->u_obj.memq);
560 	aobj->u_obj.uo_npages = 0;
561 
562 	/*
563  	 * now that aobj is ready, add it to the global list
564  	 */
565 	simple_lock(&uao_list_lock);
566 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
567 	simple_unlock(&uao_list_lock);
568 
569 	/*
570  	 * done!
571  	 */
572 	return(&aobj->u_obj);
573 }
574 
575 
576 
577 /*
578  * uao_init: set up aobj pager subsystem
579  *
580  * => called at boot time from uvm_pager_init()
581  */
582 void
583 uao_init()
584 {
585 	static int uao_initialized;
586 
587 	if (uao_initialized)
588 		return;
589 	uao_initialized = TRUE;
590 
591 	LIST_INIT(&uao_list);
592 	simple_lock_init(&uao_list_lock);
593 
594 	/*
595 	 * NOTE: Pages fror this pool must not come from a pageable
596 	 * kernel map!
597 	 */
598 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
599 	    0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
600 
601 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
602 	    "aobjpl", 0,
603 	    pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
604 }
605 
606 /*
607  * uao_reference: add a ref to an aobj
608  *
609  * => aobj must be unlocked
610  * => just lock it and call the locked version
611  */
612 void
613 uao_reference(uobj)
614 	struct uvm_object *uobj;
615 {
616 	simple_lock(&uobj->vmobjlock);
617 	uao_reference_locked(uobj);
618 	simple_unlock(&uobj->vmobjlock);
619 }
620 
621 /*
622  * uao_reference_locked: add a ref to an aobj that is already locked
623  *
624  * => aobj must be locked
625  * this needs to be separate from the normal routine
626  * since sometimes we need to add a reference to an aobj when
627  * it's already locked.
628  */
629 void
630 uao_reference_locked(uobj)
631 	struct uvm_object *uobj;
632 {
633 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
634 
635 	/*
636  	 * kernel_object already has plenty of references, leave it alone.
637  	 */
638 
639 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
640 		return;
641 
642 	uobj->uo_refs++;		/* bump! */
643 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
644 		    uobj, uobj->uo_refs,0,0);
645 }
646 
647 
648 /*
649  * uao_detach: drop a reference to an aobj
650  *
651  * => aobj must be unlocked
652  * => just lock it and call the locked version
653  */
654 void
655 uao_detach(uobj)
656 	struct uvm_object *uobj;
657 {
658 	simple_lock(&uobj->vmobjlock);
659 	uao_detach_locked(uobj);
660 }
661 
662 
663 /*
664  * uao_detach_locked: drop a reference to an aobj
665  *
666  * => aobj must be locked, and is unlocked (or freed) upon return.
667  * this needs to be separate from the normal routine
668  * since sometimes we need to detach from an aobj when
669  * it's already locked.
670  */
671 void
672 uao_detach_locked(uobj)
673 	struct uvm_object *uobj;
674 {
675 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
676 	struct vm_page *pg;
677 	boolean_t busybody;
678 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
679 
680 	/*
681  	 * detaching from kernel_object is a noop.
682  	 */
683 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
684 		simple_unlock(&uobj->vmobjlock);
685 		return;
686 	}
687 
688 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
689 	uobj->uo_refs--;				/* drop ref! */
690 	if (uobj->uo_refs) {				/* still more refs? */
691 		simple_unlock(&uobj->vmobjlock);
692 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
693 		return;
694 	}
695 
696 	/*
697  	 * remove the aobj from the global list.
698  	 */
699 	simple_lock(&uao_list_lock);
700 	LIST_REMOVE(aobj, u_list);
701 	simple_unlock(&uao_list_lock);
702 
703 	/*
704  	 * free all the pages that aren't PG_BUSY,
705 	 * mark for release any that are.
706  	 */
707 	busybody = FALSE;
708 	for (pg = TAILQ_FIRST(&uobj->memq);
709 	     pg != NULL;
710 	     pg = TAILQ_NEXT(pg, listq)) {
711 		if (pg->flags & PG_BUSY) {
712 			pg->flags |= PG_RELEASED;
713 			busybody = TRUE;
714 			continue;
715 		}
716 
717 		/* zap the mappings, free the swap slot, free the page */
718 		pmap_page_protect(pg, VM_PROT_NONE);
719 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
720 		uvm_lock_pageq();
721 		uvm_pagefree(pg);
722 		uvm_unlock_pageq();
723 	}
724 
725 	/*
726  	 * if we found any busy pages, we're done for now.
727  	 * mark the aobj for death, releasepg will finish up for us.
728  	 */
729 	if (busybody) {
730 		aobj->u_flags |= UAO_FLAG_KILLME;
731 		simple_unlock(&aobj->u_obj.vmobjlock);
732 		return;
733 	}
734 
735 	/*
736  	 * finally, free the rest.
737  	 */
738 	uao_free(aobj);
739 }
740 
741 /*
742  * uao_flush: "flush" pages out of a uvm object
743  *
744  * => object should be locked by caller.  we may _unlock_ the object
745  *	if (and only if) we need to clean a page (PGO_CLEANIT).
746  *	XXXJRT Currently, however, we don't.  In the case of cleaning
747  *	XXXJRT a page, we simply just deactivate it.  Should probably
748  *	XXXJRT handle this better, in the future (although "flushing"
749  *	XXXJRT anonymous memory isn't terribly important).
750  * => if PGO_CLEANIT is not set, then we will neither unlock the object
751  *	or block.
752  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
753  *	for flushing.
754  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
755  *	that new pages are inserted on the tail end of the list.  thus,
756  *	we can make a complete pass through the object in one go by starting
757  *	at the head and working towards the tail (new pages are put in
758  *	front of us).
759  * => NOTE: we are allowed to lock the page queues, so the caller
760  *	must not be holding the lock on them [e.g. pagedaemon had
761  *	better not call us with the queues locked]
762  * => we return TRUE unless we encountered some sort of I/O error
763  *	XXXJRT currently never happens, as we never directly initiate
764  *	XXXJRT I/O
765  *
766  * comment on "cleaning" object and PG_BUSY pages:
767  *	this routine is holding the lock on the object.  the only time
768  *	that is can run into a PG_BUSY page that it does not own is if
769  *	some other process has started I/O on the page (e.g. either
770  *	a pagein or a pageout).  if the PG_BUSY page is being paged
771  *	in, then it can not be dirty (!PG_CLEAN) because no one has
772  *	had a change to modify it yet.  if the PG_BUSY page is being
773  *	paged out then it means that someone else has already started
774  *	cleaning the page for us (how nice!).  in this case, if we
775  *	have syncio specified, then after we make our pass through the
776  *	object we need to wait for the other PG_BUSY pages to clear
777  *	off (i.e. we need to do an iosync).  also note that once a
778  *	page is PG_BUSY is must stary in its object until it is un-busyed.
779  *	XXXJRT We never actually do this, as we are "flushing" anonymous
780  *	XXXJRT memory, which doesn't have persistent backing store.
781  *
782  * note on page traversal:
783  *	we can traverse the pages in an object either by going down the
784  *	linked list in "uobj->memq", or we can go over the address range
785  *	by page doing hash table lookups for each address.  depending
786  *	on how many pages are in the object it may be cheaper to do one
787  *	or the other.  we set "by_list" to true if we are using memq.
788  *	if the cost of a hash lookup was equal to the cost of the list
789  *	traversal we could compare the number of pages in the start->stop
790  *	range to the total number of pages in the object.  however, it
791  *	seems that a hash table lookup is more expensive than the linked
792  *	list traversal, so we multiply the number of pages in the
793  *	start->stop range by a penalty which we define below.
794  */
795 
796 #define	UAO_HASH_PENALTY 4	/* XXX: a guess */
797 
798 boolean_t
799 uao_flush(uobj, start, stop, flags)
800 	struct uvm_object *uobj;
801 	vaddr_t start, stop;
802 	int flags;
803 {
804 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
805 	struct vm_page *pp, *ppnext;
806 	boolean_t retval, by_list;
807 	vaddr_t curoff;
808 	UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
809 
810 	curoff = 0;	/* XXX: shut up gcc */
811 
812 	retval = TRUE;	/* default to success */
813 
814 	if (flags & PGO_ALLPAGES) {
815 		start = 0;
816 		stop = aobj->u_pages << PAGE_SHIFT;
817 		by_list = TRUE;		/* always go by the list */
818 	} else {
819 		start = trunc_page(start);
820 		stop = round_page(stop);
821 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
822 			printf("uao_flush: strange, got an out of range "
823 			    "flush (fixed)\n");
824 			stop = aobj->u_pages << PAGE_SHIFT;
825 		}
826 		by_list = (uobj->uo_npages <=
827 		    ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
828 	}
829 
830 	UVMHIST_LOG(maphist,
831 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
832 	    start, stop, by_list, flags);
833 
834 	/*
835 	 * Don't need to do any work here if we're not freeing
836 	 * or deactivating pages.
837 	 */
838 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
839 		UVMHIST_LOG(maphist,
840 		    "<- done (no work to do)",0,0,0,0);
841 		return (retval);
842 	}
843 
844 	/*
845 	 * now do it.  note: we must update ppnext in the body of loop or we
846 	 * will get stuck.  we need to use ppnext because we may free "pp"
847 	 * before doing the next loop.
848 	 */
849 
850 	if (by_list) {
851 		pp = uobj->memq.tqh_first;
852 	} else {
853 		curoff = start;
854 		pp = uvm_pagelookup(uobj, curoff);
855 	}
856 
857 	ppnext = NULL;	/* XXX: shut up gcc */
858 	uvm_lock_pageq();	/* page queues locked */
859 
860 	/* locked: both page queues and uobj */
861 	for ( ; (by_list && pp != NULL) ||
862 	    (!by_list && curoff < stop) ; pp = ppnext) {
863 		if (by_list) {
864 			ppnext = pp->listq.tqe_next;
865 
866 			/* range check */
867 			if (pp->offset < start || pp->offset >= stop)
868 				continue;
869 		} else {
870 			curoff += PAGE_SIZE;
871 			if (curoff < stop)
872 				ppnext = uvm_pagelookup(uobj, curoff);
873 
874 			/* null check */
875 			if (pp == NULL)
876 				continue;
877 		}
878 
879 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
880 		/*
881 		 * XXX In these first 3 cases, we always just
882 		 * XXX deactivate the page.  We may want to
883 		 * XXX handle the different cases more specifically
884 		 * XXX in the future.
885 		 */
886 		case PGO_CLEANIT|PGO_FREE:
887 		case PGO_CLEANIT|PGO_DEACTIVATE:
888 		case PGO_DEACTIVATE:
889  deactivate_it:
890 			/* skip the page if it's loaned or wired */
891 			if (pp->loan_count != 0 ||
892 			    pp->wire_count != 0)
893 				continue;
894 
895 			/* zap all mappings for the page. */
896 			pmap_page_protect(pp, VM_PROT_NONE);
897 
898 			/* ...and deactivate the page. */
899 			uvm_pagedeactivate(pp);
900 
901 			continue;
902 
903 		case PGO_FREE:
904 			/*
905 			 * If there are multiple references to
906 			 * the object, just deactivate the page.
907 			 */
908 			if (uobj->uo_refs > 1)
909 				goto deactivate_it;
910 
911 			/* XXX skip the page if it's loaned or wired */
912 			if (pp->loan_count != 0 ||
913 			    pp->wire_count != 0)
914 				continue;
915 
916 			/*
917 			 * mark the page as released if its busy.
918 			 */
919 			if (pp->flags & PG_BUSY) {
920 				pp->flags |= PG_RELEASED;
921 				continue;
922 			}
923 
924 			/* zap all mappings for the page. */
925 			pmap_page_protect(pp, VM_PROT_NONE);
926 
927 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
928 			uvm_pagefree(pp);
929 
930 			continue;
931 
932 		default:
933 			panic("uao_flush: weird flags");
934 		}
935 #ifdef DIAGNOSTIC
936 		panic("uao_flush: unreachable code");
937 #endif
938 	}
939 
940 	uvm_unlock_pageq();
941 
942 	UVMHIST_LOG(maphist,
943 	    "<- done, rv=%d",retval,0,0,0);
944 	return (retval);
945 }
946 
947 /*
948  * uao_get: fetch me a page
949  *
950  * we have three cases:
951  * 1: page is resident     -> just return the page.
952  * 2: page is zero-fill    -> allocate a new page and zero it.
953  * 3: page is swapped out  -> fetch the page from swap.
954  *
955  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
956  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
957  * then we will need to return VM_PAGER_UNLOCK.
958  *
959  * => prefer map unlocked (not required)
960  * => object must be locked!  we will _unlock_ it before starting any I/O.
961  * => flags: PGO_ALLPAGES: get all of the pages
962  *           PGO_LOCKED: fault data structures are locked
963  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
964  * => NOTE: caller must check for released pages!!
965  */
966 static int
967 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
968 	struct uvm_object *uobj;
969 	vaddr_t offset;
970 	struct vm_page **pps;
971 	int *npagesp;
972 	int centeridx, advice, flags;
973 	vm_prot_t access_type;
974 {
975 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
976 	vaddr_t current_offset;
977 	vm_page_t ptmp;
978 	int lcv, gotpages, maxpages, swslot, rv, pageidx;
979 	boolean_t done;
980 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
981 
982 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
983 		    aobj, offset, flags,0);
984 
985 	/*
986  	 * get number of pages
987  	 */
988 	maxpages = *npagesp;
989 
990 	/*
991  	 * step 1: handled the case where fault data structures are locked.
992  	 */
993 
994 	if (flags & PGO_LOCKED) {
995 		/*
996  		 * step 1a: get pages that are already resident.   only do
997 		 * this if the data structures are locked (i.e. the first
998 		 * time through).
999  		 */
1000 
1001 		done = TRUE;	/* be optimistic */
1002 		gotpages = 0;	/* # of pages we got so far */
1003 
1004 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1005 		    lcv++, current_offset += PAGE_SIZE) {
1006 			/* do we care about this page?  if not, skip it */
1007 			if (pps[lcv] == PGO_DONTCARE)
1008 				continue;
1009 
1010 			ptmp = uvm_pagelookup(uobj, current_offset);
1011 
1012 			/*
1013  			 * if page is new, attempt to allocate the page, then
1014 			 * zero-fill it.
1015  			 */
1016 			if (ptmp == NULL && uao_find_swslot(aobj,
1017 			    current_offset >> PAGE_SHIFT) == 0) {
1018 				ptmp = uvm_pagealloc(uobj, current_offset,
1019 				    NULL, 0);
1020 				if (ptmp) {
1021 					/* new page */
1022 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1023 					ptmp->pqflags |= PQ_AOBJ;
1024 					UVM_PAGE_OWN(ptmp, NULL);
1025 					uvm_pagezero(ptmp);
1026 				}
1027 			}
1028 
1029 			/*
1030 			 * to be useful must get a non-busy, non-released page
1031 			 */
1032 			if (ptmp == NULL ||
1033 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1034 				if (lcv == centeridx ||
1035 				    (flags & PGO_ALLPAGES) != 0)
1036 					/* need to do a wait or I/O! */
1037 					done = FALSE;
1038 					continue;
1039 			}
1040 
1041 			/*
1042 			 * useful page: busy/lock it and plug it in our
1043 			 * result array
1044 			 */
1045 			/* caller must un-busy this page */
1046 			ptmp->flags |= PG_BUSY;
1047 			UVM_PAGE_OWN(ptmp, "uao_get1");
1048 			pps[lcv] = ptmp;
1049 			gotpages++;
1050 
1051 		}	/* "for" lcv loop */
1052 
1053 		/*
1054  		 * step 1b: now we've either done everything needed or we
1055 		 * to unlock and do some waiting or I/O.
1056  		 */
1057 
1058 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1059 
1060 		*npagesp = gotpages;
1061 		if (done)
1062 			/* bingo! */
1063 			return(VM_PAGER_OK);
1064 		else
1065 			/* EEK!   Need to unlock and I/O */
1066 			return(VM_PAGER_UNLOCK);
1067 	}
1068 
1069 	/*
1070  	 * step 2: get non-resident or busy pages.
1071  	 * object is locked.   data structures are unlocked.
1072  	 */
1073 
1074 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1075 	    lcv++, current_offset += PAGE_SIZE) {
1076 
1077 		/*
1078 		 * - skip over pages we've already gotten or don't want
1079 		 * - skip over pages we don't _have_ to get
1080 		 */
1081 
1082 		if (pps[lcv] != NULL ||
1083 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1084 			continue;
1085 
1086 		pageidx = current_offset >> PAGE_SHIFT;
1087 
1088 		/*
1089  		 * we have yet to locate the current page (pps[lcv]).   we
1090 		 * first look for a page that is already at the current offset.
1091 		 * if we find a page, we check to see if it is busy or
1092 		 * released.  if that is the case, then we sleep on the page
1093 		 * until it is no longer busy or released and repeat the lookup.
1094 		 * if the page we found is neither busy nor released, then we
1095 		 * busy it (so we own it) and plug it into pps[lcv].   this
1096 		 * 'break's the following while loop and indicates we are
1097 		 * ready to move on to the next page in the "lcv" loop above.
1098  		 *
1099  		 * if we exit the while loop with pps[lcv] still set to NULL,
1100 		 * then it means that we allocated a new busy/fake/clean page
1101 		 * ptmp in the object and we need to do I/O to fill in the data.
1102  		 */
1103 
1104 		/* top of "pps" while loop */
1105 		while (pps[lcv] == NULL) {
1106 			/* look for a resident page */
1107 			ptmp = uvm_pagelookup(uobj, current_offset);
1108 
1109 			/* not resident?   allocate one now (if we can) */
1110 			if (ptmp == NULL) {
1111 
1112 				ptmp = uvm_pagealloc(uobj, current_offset,
1113 				    NULL, 0);
1114 
1115 				/* out of RAM? */
1116 				if (ptmp == NULL) {
1117 					simple_unlock(&uobj->vmobjlock);
1118 					UVMHIST_LOG(pdhist,
1119 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1120 					uvm_wait("uao_getpage");
1121 					simple_lock(&uobj->vmobjlock);
1122 					/* goto top of pps while loop */
1123 					continue;
1124 				}
1125 
1126 				/*
1127 				 * safe with PQ's unlocked: because we just
1128 				 * alloc'd the page
1129 				 */
1130 				ptmp->pqflags |= PQ_AOBJ;
1131 
1132 				/*
1133 				 * got new page ready for I/O.  break pps while
1134 				 * loop.  pps[lcv] is still NULL.
1135 				 */
1136 				break;
1137 			}
1138 
1139 			/* page is there, see if we need to wait on it */
1140 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1141 				ptmp->flags |= PG_WANTED;
1142 				UVMHIST_LOG(pdhist,
1143 				    "sleeping, ptmp->flags 0x%x\n",
1144 				    ptmp->flags,0,0,0);
1145 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1146 				    FALSE, "uao_get", 0);
1147 				simple_lock(&uobj->vmobjlock);
1148 				continue;	/* goto top of pps while loop */
1149 			}
1150 
1151 			/*
1152  			 * if we get here then the page has become resident and
1153 			 * unbusy between steps 1 and 2.  we busy it now (so we
1154 			 * own it) and set pps[lcv] (so that we exit the while
1155 			 * loop).
1156  			 */
1157 			/* we own it, caller must un-busy */
1158 			ptmp->flags |= PG_BUSY;
1159 			UVM_PAGE_OWN(ptmp, "uao_get2");
1160 			pps[lcv] = ptmp;
1161 		}
1162 
1163 		/*
1164  		 * if we own the valid page at the correct offset, pps[lcv] will
1165  		 * point to it.   nothing more to do except go to the next page.
1166  		 */
1167 		if (pps[lcv])
1168 			continue;			/* next lcv */
1169 
1170 		/*
1171  		 * we have a "fake/busy/clean" page that we just allocated.
1172  		 * do the needed "i/o", either reading from swap or zeroing.
1173  		 */
1174 		swslot = uao_find_swslot(aobj, pageidx);
1175 
1176 		/*
1177  		 * just zero the page if there's nothing in swap.
1178  		 */
1179 		if (swslot == 0)
1180 		{
1181 			/*
1182 			 * page hasn't existed before, just zero it.
1183 			 */
1184 			uvm_pagezero(ptmp);
1185 		} else {
1186 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1187 			     swslot, 0,0,0);
1188 
1189 			/*
1190 			 * page in the swapped-out page.
1191 			 * unlock object for i/o, relock when done.
1192 			 */
1193 			simple_unlock(&uobj->vmobjlock);
1194 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1195 			simple_lock(&uobj->vmobjlock);
1196 
1197 			/*
1198 			 * I/O done.  check for errors.
1199 			 */
1200 			if (rv != VM_PAGER_OK)
1201 			{
1202 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1203 				    rv,0,0,0);
1204 				if (ptmp->flags & PG_WANTED)
1205 					wakeup(ptmp);
1206 
1207 				/*
1208 				 * remove the swap slot from the aobj
1209 				 * and mark the aobj as having no real slot.
1210 				 * don't free the swap slot, thus preventing
1211 				 * it from being used again.
1212 				 */
1213 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1214 							SWSLOT_BAD);
1215 				uvm_swap_markbad(swslot, 1);
1216 
1217 				ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1218 				UVM_PAGE_OWN(ptmp, NULL);
1219 				uvm_lock_pageq();
1220 				uvm_pagefree(ptmp);
1221 				uvm_unlock_pageq();
1222 
1223 				simple_unlock(&uobj->vmobjlock);
1224 				return (rv);
1225 			}
1226 		}
1227 
1228 		/*
1229  		 * we got the page!   clear the fake flag (indicates valid
1230 		 * data now in page) and plug into our result array.   note
1231 		 * that page is still busy.
1232  		 *
1233  		 * it is the callers job to:
1234  		 * => check if the page is released
1235  		 * => unbusy the page
1236  		 * => activate the page
1237  		 */
1238 
1239 		ptmp->flags &= ~PG_FAKE;		/* data is valid ... */
1240 		pmap_clear_modify(ptmp);		/* ... and clean */
1241 		pps[lcv] = ptmp;
1242 
1243 	}	/* lcv loop */
1244 
1245 	/*
1246  	 * finally, unlock object and return.
1247  	 */
1248 
1249 	simple_unlock(&uobj->vmobjlock);
1250 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1251 	return(VM_PAGER_OK);
1252 }
1253 
1254 /*
1255  * uao_releasepg: handle released page in an aobj
1256  *
1257  * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1258  *      to dispose of.
1259  * => caller must handle PG_WANTED case
1260  * => called with page's object locked, pageq's unlocked
1261  * => returns TRUE if page's object is still alive, FALSE if we
1262  *      killed the page's object.    if we return TRUE, then we
1263  *      return with the object locked.
1264  * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1265  *                              with the page queues locked [for pagedaemon]
1266  * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1267  * => we kill the aobj if it is not referenced and we are suppose to
1268  *      kill it ("KILLME").
1269  */
1270 static boolean_t
1271 uao_releasepg(pg, nextpgp)
1272 	struct vm_page *pg;
1273 	struct vm_page **nextpgp;	/* OUT */
1274 {
1275 	struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1276 
1277 #ifdef DIAGNOSTIC
1278 	if ((pg->flags & PG_RELEASED) == 0)
1279 		panic("uao_releasepg: page not released!");
1280 #endif
1281 
1282 	/*
1283  	 * dispose of the page [caller handles PG_WANTED] and swap slot.
1284  	 */
1285 	pmap_page_protect(pg, VM_PROT_NONE);
1286 	uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1287 	uvm_lock_pageq();
1288 	if (nextpgp)
1289 		*nextpgp = pg->pageq.tqe_next;	/* next page for daemon */
1290 	uvm_pagefree(pg);
1291 	if (!nextpgp)
1292 		uvm_unlock_pageq();		/* keep locked for daemon */
1293 
1294 	/*
1295  	 * if we're not killing the object, we're done.
1296  	 */
1297 	if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1298 		return TRUE;
1299 
1300 #ifdef DIAGNOSTIC
1301 	if (aobj->u_obj.uo_refs)
1302 		panic("uvm_km_releasepg: kill flag set on referenced object!");
1303 #endif
1304 
1305 	/*
1306  	 * if there are still pages in the object, we're done for now.
1307  	 */
1308 	if (aobj->u_obj.uo_npages != 0)
1309 		return TRUE;
1310 
1311 #ifdef DIAGNOSTIC
1312 	if (TAILQ_FIRST(&aobj->u_obj.memq))
1313 		panic("uvn_releasepg: pages in object with npages == 0");
1314 #endif
1315 
1316 	/*
1317  	 * finally, free the rest.
1318  	 */
1319 	uao_free(aobj);
1320 
1321 	return FALSE;
1322 }
1323 
1324 
1325 /*
1326  * uao_dropswap:  release any swap resources from this aobj page.
1327  *
1328  * => aobj must be locked or have a reference count of 0.
1329  */
1330 
1331 void
1332 uao_dropswap(uobj, pageidx)
1333 	struct uvm_object *uobj;
1334 	int pageidx;
1335 {
1336 	int slot;
1337 
1338 	slot = uao_set_swslot(uobj, pageidx, 0);
1339 	if (slot) {
1340 		uvm_swap_free(slot, 1);
1341 	}
1342 }
1343 
1344 
1345 /*
1346  * page in every page in every aobj that is paged-out to a range of swslots.
1347  *
1348  * => nothing should be locked.
1349  * => returns TRUE if pagein was aborted due to lack of memory.
1350  */
1351 boolean_t
1352 uao_swap_off(startslot, endslot)
1353 	int startslot, endslot;
1354 {
1355 	struct uvm_aobj *aobj, *nextaobj;
1356 
1357 	/*
1358 	 * walk the list of all aobjs.
1359 	 */
1360 
1361 restart:
1362 	simple_lock(&uao_list_lock);
1363 
1364 	for (aobj = LIST_FIRST(&uao_list);
1365 	     aobj != NULL;
1366 	     aobj = nextaobj) {
1367 		boolean_t rv;
1368 
1369 		/*
1370 		 * try to get the object lock,
1371 		 * start all over if we fail.
1372 		 * most of the time we'll get the aobj lock,
1373 		 * so this should be a rare case.
1374 		 */
1375 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1376 			simple_unlock(&uao_list_lock);
1377 			goto restart;
1378 		}
1379 
1380 		/*
1381 		 * add a ref to the aobj so it doesn't disappear
1382 		 * while we're working.
1383 		 */
1384 		uao_reference_locked(&aobj->u_obj);
1385 
1386 		/*
1387 		 * now it's safe to unlock the uao list.
1388 		 */
1389 		simple_unlock(&uao_list_lock);
1390 
1391 		/*
1392 		 * page in any pages in the swslot range.
1393 		 * if there's an error, abort and return the error.
1394 		 */
1395 		rv = uao_pagein(aobj, startslot, endslot);
1396 		if (rv) {
1397 			uao_detach_locked(&aobj->u_obj);
1398 			return rv;
1399 		}
1400 
1401 		/*
1402 		 * we're done with this aobj.
1403 		 * relock the list and drop our ref on the aobj.
1404 		 */
1405 		simple_lock(&uao_list_lock);
1406 		nextaobj = LIST_NEXT(aobj, u_list);
1407 		uao_detach_locked(&aobj->u_obj);
1408 	}
1409 
1410 	/*
1411 	 * done with traversal, unlock the list
1412 	 */
1413 	simple_unlock(&uao_list_lock);
1414 	return FALSE;
1415 }
1416 
1417 
1418 /*
1419  * page in any pages from aobj in the given range.
1420  *
1421  * => aobj must be locked and is returned locked.
1422  * => returns TRUE if pagein was aborted due to lack of memory.
1423  */
1424 static boolean_t
1425 uao_pagein(aobj, startslot, endslot)
1426 	struct uvm_aobj *aobj;
1427 	int startslot, endslot;
1428 {
1429 	boolean_t rv;
1430 
1431 	if (UAO_USES_SWHASH(aobj)) {
1432 		struct uao_swhash_elt *elt;
1433 		int bucket;
1434 
1435 restart:
1436 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1437 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1438 			     elt != NULL;
1439 			     elt = LIST_NEXT(elt, list)) {
1440 				int i;
1441 
1442 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1443 					int slot = elt->slots[i];
1444 
1445 					/*
1446 					 * if the slot isn't in range, skip it.
1447 					 */
1448 					if (slot < startslot ||
1449 					    slot >= endslot) {
1450 						continue;
1451 					}
1452 
1453 					/*
1454 					 * process the page,
1455 					 * the start over on this object
1456 					 * since the swhash elt
1457 					 * may have been freed.
1458 					 */
1459 					rv = uao_pagein_page(aobj,
1460 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1461 					if (rv) {
1462 						return rv;
1463 					}
1464 					goto restart;
1465 				}
1466 			}
1467 		}
1468 	} else {
1469 		int i;
1470 
1471 		for (i = 0; i < aobj->u_pages; i++) {
1472 			int slot = aobj->u_swslots[i];
1473 
1474 			/*
1475 			 * if the slot isn't in range, skip it
1476 			 */
1477 			if (slot < startslot || slot >= endslot) {
1478 				continue;
1479 			}
1480 
1481 			/*
1482 			 * process the page.
1483 			 */
1484 			rv = uao_pagein_page(aobj, i);
1485 			if (rv) {
1486 				return rv;
1487 			}
1488 		}
1489 	}
1490 
1491 	return FALSE;
1492 }
1493 
1494 /*
1495  * page in a page from an aobj.  used for swap_off.
1496  * returns TRUE if pagein was aborted due to lack of memory.
1497  *
1498  * => aobj must be locked and is returned locked.
1499  */
1500 static boolean_t
1501 uao_pagein_page(aobj, pageidx)
1502 	struct uvm_aobj *aobj;
1503 	int pageidx;
1504 {
1505 	struct vm_page *pg;
1506 	int rv, slot, npages;
1507 	UVMHIST_FUNC("uao_pagein_page");  UVMHIST_CALLED(pdhist);
1508 
1509 	pg = NULL;
1510 	npages = 1;
1511 	/* locked: aobj */
1512 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1513 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1514 	/* unlocked: aobj */
1515 
1516 	/*
1517 	 * relock and finish up.
1518 	 */
1519 	simple_lock(&aobj->u_obj.vmobjlock);
1520 
1521 	switch (rv) {
1522 	case VM_PAGER_OK:
1523 		break;
1524 
1525 	case VM_PAGER_ERROR:
1526 	case VM_PAGER_REFAULT:
1527 		/*
1528 		 * nothing more to do on errors.
1529 		 * VM_PAGER_REFAULT can only mean that the anon was freed,
1530 		 * so again there's nothing to do.
1531 		 */
1532 		return FALSE;
1533 
1534 #ifdef DIAGNOSTIC
1535 	default:
1536 		panic("uao_pagein_page: uao_get -> %d\n", rv);
1537 #endif
1538 	}
1539 
1540 #ifdef DIAGNOSTIC
1541 	/*
1542 	 * this should never happen, since we have a reference on the aobj.
1543 	 */
1544 	if (pg->flags & PG_RELEASED) {
1545 		panic("uao_pagein_page: found PG_RELEASED page?\n");
1546 	}
1547 #endif
1548 
1549 	/*
1550 	 * ok, we've got the page now.
1551 	 * mark it as dirty, clear its swslot and un-busy it.
1552 	 */
1553 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1554 	uvm_swap_free(slot, 1);
1555 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1556 	UVM_PAGE_OWN(pg, NULL);
1557 
1558 	/*
1559 	 * deactivate the page (to put it on a page queue).
1560 	 */
1561 	pmap_clear_reference(pg);
1562 	pmap_page_protect(pg, VM_PROT_NONE);
1563 	uvm_lock_pageq();
1564 	uvm_pagedeactivate(pg);
1565 	uvm_unlock_pageq();
1566 
1567 	return FALSE;
1568 }
1569