xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: uvm_aobj.c,v 1.93 2007/08/05 10:19:23 pooka Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.93 2007/08/05 10:19:23 pooka Exp $");
47 
48 #include "opt_uvmhist.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
61  * to keeping the list of resident pages, it also keeps a list of
62  * allocated swap blocks.  depending on the size of the aobj this list
63  * of allocated swap blocks is either stored in an array (small objects)
64  * or in a hash table (large objects).
65  */
66 
67 /*
68  * local structures
69  */
70 
71 /*
72  * for hash tables, we break the address space of the aobj into blocks
73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
74  * be a power of two.
75  */
76 
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79 
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83 
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86 
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90 
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94 
95 /*
96  * the swhash hash function
97  */
98 
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 			    & (AOBJ)->u_swhashmask)])
102 
103 /*
104  * the swhash threshhold determines if we will use an array or a
105  * hash table to store the list of allocated swap blocks.
106  */
107 
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
111 
112 /*
113  * the number of buckets in a swhash, with an upper bound
114  */
115 
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 	     UAO_SWHASH_MAXBUCKETS))
120 
121 
122 /*
123  * uao_swhash_elt: when a hash table is being used, this structure defines
124  * the format of an entry in the bucket list.
125  */
126 
127 struct uao_swhash_elt {
128 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
129 	voff_t tag;				/* our 'tag' */
130 	int count;				/* our number of active slots */
131 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
132 };
133 
134 /*
135  * uao_swhash: the swap hash table structure
136  */
137 
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139 
140 /*
141  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142  * NOTE: Pages for this pool must not come from a pageable kernel map!
143  */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145     "uaoeltpl", NULL, IPL_VM);
146 
147 /*
148  * uvm_aobj: the actual anon-backed uvm_object
149  *
150  * => the uvm_object is at the top of the structure, this allows
151  *   (struct uvm_aobj *) == (struct uvm_object *)
152  * => only one of u_swslots and u_swhash is used in any given aobj
153  */
154 
155 struct uvm_aobj {
156 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 	pgoff_t u_pages;	 /* number of pages in entire object */
158 	int u_flags;		 /* the flags (see uvm_aobj.h) */
159 	int *u_swslots;		 /* array of offset->swapslot mappings */
160 				 /*
161 				  * hashtable of offset->swapslot mappings
162 				  * (u_swhash is an array of bucket heads)
163 				  */
164 	struct uao_swhash *u_swhash;
165 	u_long u_swhashmask;		/* mask for hashtable */
166 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
167 };
168 
169 /*
170  * uvm_aobj_pool: pool of uvm_aobj structures
171  */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173     &pool_allocator_nointr, IPL_NONE);
174 
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176 
177 /*
178  * local functions
179  */
180 
181 static void	uao_free(struct uvm_aobj *);
182 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 		    int *, int, vm_prot_t, int, int);
184 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
185 
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188     (struct uvm_aobj *, int, bool);
189 
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194 
195 /*
196  * aobj_pager
197  *
198  * note that some functions (e.g. put) are handled elsewhere
199  */
200 
201 struct uvm_pagerops aobj_pager = {
202 	NULL,			/* init */
203 	uao_reference,		/* reference */
204 	uao_detach,		/* detach */
205 	NULL,			/* fault */
206 	uao_get,		/* get */
207 	uao_put,		/* flush */
208 };
209 
210 /*
211  * uao_list: global list of active aobjs, locked by uao_list_lock
212  */
213 
214 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
215 static kmutex_t uao_list_lock;
216 
217 /*
218  * functions
219  */
220 
221 /*
222  * hash table/array related functions
223  */
224 
225 #if defined(VMSWAP)
226 
227 /*
228  * uao_find_swhash_elt: find (or create) a hash table entry for a page
229  * offset.
230  *
231  * => the object should be locked by the caller
232  */
233 
234 static struct uao_swhash_elt *
235 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
236 {
237 	struct uao_swhash *swhash;
238 	struct uao_swhash_elt *elt;
239 	voff_t page_tag;
240 
241 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
242 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
243 
244 	/*
245 	 * now search the bucket for the requested tag
246 	 */
247 
248 	LIST_FOREACH(elt, swhash, list) {
249 		if (elt->tag == page_tag) {
250 			return elt;
251 		}
252 	}
253 	if (!create) {
254 		return NULL;
255 	}
256 
257 	/*
258 	 * allocate a new entry for the bucket and init/insert it in
259 	 */
260 
261 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
262 	if (elt == NULL) {
263 		return NULL;
264 	}
265 	LIST_INSERT_HEAD(swhash, elt, list);
266 	elt->tag = page_tag;
267 	elt->count = 0;
268 	memset(elt->slots, 0, sizeof(elt->slots));
269 	return elt;
270 }
271 
272 /*
273  * uao_find_swslot: find the swap slot number for an aobj/pageidx
274  *
275  * => object must be locked by caller
276  */
277 
278 int
279 uao_find_swslot(struct uvm_object *uobj, int pageidx)
280 {
281 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
282 	struct uao_swhash_elt *elt;
283 
284 	/*
285 	 * if noswap flag is set, then we never return a slot
286 	 */
287 
288 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
289 		return(0);
290 
291 	/*
292 	 * if hashing, look in hash table.
293 	 */
294 
295 	if (UAO_USES_SWHASH(aobj)) {
296 		elt = uao_find_swhash_elt(aobj, pageidx, false);
297 		if (elt)
298 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
299 		else
300 			return(0);
301 	}
302 
303 	/*
304 	 * otherwise, look in the array
305 	 */
306 
307 	return(aobj->u_swslots[pageidx]);
308 }
309 
310 /*
311  * uao_set_swslot: set the swap slot for a page in an aobj.
312  *
313  * => setting a slot to zero frees the slot
314  * => object must be locked by caller
315  * => we return the old slot number, or -1 if we failed to allocate
316  *    memory to record the new slot number
317  */
318 
319 int
320 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
321 {
322 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
323 	struct uao_swhash_elt *elt;
324 	int oldslot;
325 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
326 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
327 	    aobj, pageidx, slot, 0);
328 
329 	/*
330 	 * if noswap flag is set, then we can't set a non-zero slot.
331 	 */
332 
333 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
334 		if (slot == 0)
335 			return(0);
336 
337 		printf("uao_set_swslot: uobj = %p\n", uobj);
338 		panic("uao_set_swslot: NOSWAP object");
339 	}
340 
341 	/*
342 	 * are we using a hash table?  if so, add it in the hash.
343 	 */
344 
345 	if (UAO_USES_SWHASH(aobj)) {
346 
347 		/*
348 		 * Avoid allocating an entry just to free it again if
349 		 * the page had not swap slot in the first place, and
350 		 * we are freeing.
351 		 */
352 
353 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
354 		if (elt == NULL) {
355 			return slot ? -1 : 0;
356 		}
357 
358 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
359 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
360 
361 		/*
362 		 * now adjust the elt's reference counter and free it if we've
363 		 * dropped it to zero.
364 		 */
365 
366 		if (slot) {
367 			if (oldslot == 0)
368 				elt->count++;
369 		} else {
370 			if (oldslot)
371 				elt->count--;
372 
373 			if (elt->count == 0) {
374 				LIST_REMOVE(elt, list);
375 				pool_put(&uao_swhash_elt_pool, elt);
376 			}
377 		}
378 	} else {
379 		/* we are using an array */
380 		oldslot = aobj->u_swslots[pageidx];
381 		aobj->u_swslots[pageidx] = slot;
382 	}
383 	return (oldslot);
384 }
385 
386 #endif /* defined(VMSWAP) */
387 
388 /*
389  * end of hash/array functions
390  */
391 
392 /*
393  * uao_free: free all resources held by an aobj, and then free the aobj
394  *
395  * => the aobj should be dead
396  */
397 
398 static void
399 uao_free(struct uvm_aobj *aobj)
400 {
401 	int swpgonlydelta = 0;
402 
403 #if defined(VMSWAP)
404 	uao_dropswap_range1(aobj, 0, 0);
405 #endif /* defined(VMSWAP) */
406 
407 	simple_unlock(&aobj->u_obj.vmobjlock);
408 
409 #if defined(VMSWAP)
410 	if (UAO_USES_SWHASH(aobj)) {
411 
412 		/*
413 		 * free the hash table itself.
414 		 */
415 
416 		free(aobj->u_swhash, M_UVMAOBJ);
417 	} else {
418 
419 		/*
420 		 * free the array itsself.
421 		 */
422 
423 		free(aobj->u_swslots, M_UVMAOBJ);
424 	}
425 #endif /* defined(VMSWAP) */
426 
427 	/*
428 	 * finally free the aobj itself
429 	 */
430 
431 	pool_put(&uvm_aobj_pool, aobj);
432 
433 	/*
434 	 * adjust the counter of pages only in swap for all
435 	 * the swap slots we've freed.
436 	 */
437 
438 	if (swpgonlydelta > 0) {
439 		mutex_enter(&uvm_swap_data_lock);
440 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
441 		uvmexp.swpgonly -= swpgonlydelta;
442 		mutex_exit(&uvm_swap_data_lock);
443 	}
444 }
445 
446 /*
447  * pager functions
448  */
449 
450 /*
451  * uao_create: create an aobj of the given size and return its uvm_object.
452  *
453  * => for normal use, flags are always zero
454  * => for the kernel object, the flags are:
455  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
456  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
457  */
458 
459 struct uvm_object *
460 uao_create(vsize_t size, int flags)
461 {
462 	static struct uvm_aobj kernel_object_store;
463 	static int kobj_alloced = 0;
464 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
465 	struct uvm_aobj *aobj;
466 	int refs;
467 
468 	/*
469 	 * malloc a new aobj unless we are asked for the kernel object
470 	 */
471 
472 	if (flags & UAO_FLAG_KERNOBJ) {
473 		KASSERT(!kobj_alloced);
474 		aobj = &kernel_object_store;
475 		aobj->u_pages = pages;
476 		aobj->u_flags = UAO_FLAG_NOSWAP;
477 		refs = UVM_OBJ_KERN;
478 		kobj_alloced = UAO_FLAG_KERNOBJ;
479 	} else if (flags & UAO_FLAG_KERNSWAP) {
480 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
481 		aobj = &kernel_object_store;
482 		kobj_alloced = UAO_FLAG_KERNSWAP;
483 		refs = 0xdeadbeaf; /* XXX: gcc */
484 	} else {
485 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
486 		aobj->u_pages = pages;
487 		aobj->u_flags = 0;
488 		refs = 1;
489 	}
490 
491 	/*
492  	 * allocate hash/array if necessary
493  	 *
494  	 * note: in the KERNSWAP case no need to worry about locking since
495  	 * we are still booting we should be the only thread around.
496  	 */
497 
498 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
499 #if defined(VMSWAP)
500 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
501 		    M_NOWAIT : M_WAITOK;
502 
503 		/* allocate hash table or array depending on object size */
504 		if (UAO_USES_SWHASH(aobj)) {
505 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
506 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
507 			if (aobj->u_swhash == NULL)
508 				panic("uao_create: hashinit swhash failed");
509 		} else {
510 			aobj->u_swslots = malloc(pages * sizeof(int),
511 			    M_UVMAOBJ, mflags);
512 			if (aobj->u_swslots == NULL)
513 				panic("uao_create: malloc swslots failed");
514 			memset(aobj->u_swslots, 0, pages * sizeof(int));
515 		}
516 #endif /* defined(VMSWAP) */
517 
518 		if (flags) {
519 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
520 			return(&aobj->u_obj);
521 		}
522 	}
523 
524 	/*
525  	 * init aobj fields
526  	 */
527 
528 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
529 
530 	/*
531  	 * now that aobj is ready, add it to the global list
532  	 */
533 
534 	mutex_enter(&uao_list_lock);
535 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
536 	mutex_exit(&uao_list_lock);
537 	return(&aobj->u_obj);
538 }
539 
540 
541 
542 /*
543  * uao_init: set up aobj pager subsystem
544  *
545  * => called at boot time from uvm_pager_init()
546  */
547 
548 void
549 uao_init(void)
550 {
551 	static int uao_initialized;
552 
553 	if (uao_initialized)
554 		return;
555 	uao_initialized = true;
556 	LIST_INIT(&uao_list);
557 	/* XXXSMP should be adaptive but vmobjlock needs to be too */
558 	mutex_init(&uao_list_lock, MUTEX_SPIN, IPL_NONE);
559 }
560 
561 /*
562  * uao_reference: add a ref to an aobj
563  *
564  * => aobj must be unlocked
565  * => just lock it and call the locked version
566  */
567 
568 void
569 uao_reference(struct uvm_object *uobj)
570 {
571 	simple_lock(&uobj->vmobjlock);
572 	uao_reference_locked(uobj);
573 	simple_unlock(&uobj->vmobjlock);
574 }
575 
576 /*
577  * uao_reference_locked: add a ref to an aobj that is already locked
578  *
579  * => aobj must be locked
580  * this needs to be separate from the normal routine
581  * since sometimes we need to add a reference to an aobj when
582  * it's already locked.
583  */
584 
585 void
586 uao_reference_locked(struct uvm_object *uobj)
587 {
588 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
589 
590 	/*
591  	 * kernel_object already has plenty of references, leave it alone.
592  	 */
593 
594 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
595 		return;
596 
597 	uobj->uo_refs++;
598 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
599 		    uobj, uobj->uo_refs,0,0);
600 }
601 
602 /*
603  * uao_detach: drop a reference to an aobj
604  *
605  * => aobj must be unlocked
606  * => just lock it and call the locked version
607  */
608 
609 void
610 uao_detach(struct uvm_object *uobj)
611 {
612 	simple_lock(&uobj->vmobjlock);
613 	uao_detach_locked(uobj);
614 }
615 
616 /*
617  * uao_detach_locked: drop a reference to an aobj
618  *
619  * => aobj must be locked, and is unlocked (or freed) upon return.
620  * this needs to be separate from the normal routine
621  * since sometimes we need to detach from an aobj when
622  * it's already locked.
623  */
624 
625 void
626 uao_detach_locked(struct uvm_object *uobj)
627 {
628 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
629 	struct vm_page *pg;
630 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
631 
632 	/*
633  	 * detaching from kernel_object is a noop.
634  	 */
635 
636 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
637 		simple_unlock(&uobj->vmobjlock);
638 		return;
639 	}
640 
641 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
642 	uobj->uo_refs--;
643 	if (uobj->uo_refs) {
644 		simple_unlock(&uobj->vmobjlock);
645 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
646 		return;
647 	}
648 
649 	/*
650  	 * remove the aobj from the global list.
651  	 */
652 
653 	mutex_enter(&uao_list_lock);
654 	LIST_REMOVE(aobj, u_list);
655 	mutex_exit(&uao_list_lock);
656 
657 	/*
658  	 * free all the pages left in the aobj.  for each page,
659 	 * when the page is no longer busy (and thus after any disk i/o that
660 	 * it's involved in is complete), release any swap resources and
661 	 * free the page itself.
662  	 */
663 
664 	uvm_lock_pageq();
665 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
666 		pmap_page_protect(pg, VM_PROT_NONE);
667 		if (pg->flags & PG_BUSY) {
668 			pg->flags |= PG_WANTED;
669 			uvm_unlock_pageq();
670 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
671 			    "uao_det", 0);
672 			simple_lock(&uobj->vmobjlock);
673 			uvm_lock_pageq();
674 			continue;
675 		}
676 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
677 		uvm_pagefree(pg);
678 	}
679 	uvm_unlock_pageq();
680 
681 	/*
682  	 * finally, free the aobj itself.
683  	 */
684 
685 	uao_free(aobj);
686 }
687 
688 /*
689  * uao_put: flush pages out of a uvm object
690  *
691  * => object should be locked by caller.  we may _unlock_ the object
692  *	if (and only if) we need to clean a page (PGO_CLEANIT).
693  *	XXXJRT Currently, however, we don't.  In the case of cleaning
694  *	XXXJRT a page, we simply just deactivate it.  Should probably
695  *	XXXJRT handle this better, in the future (although "flushing"
696  *	XXXJRT anonymous memory isn't terribly important).
697  * => if PGO_CLEANIT is not set, then we will neither unlock the object
698  *	or block.
699  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
700  *	for flushing.
701  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
702  *	that new pages are inserted on the tail end of the list.  thus,
703  *	we can make a complete pass through the object in one go by starting
704  *	at the head and working towards the tail (new pages are put in
705  *	front of us).
706  * => NOTE: we are allowed to lock the page queues, so the caller
707  *	must not be holding the lock on them [e.g. pagedaemon had
708  *	better not call us with the queues locked]
709  * => we return 0 unless we encountered some sort of I/O error
710  *	XXXJRT currently never happens, as we never directly initiate
711  *	XXXJRT I/O
712  *
713  * note on page traversal:
714  *	we can traverse the pages in an object either by going down the
715  *	linked list in "uobj->memq", or we can go over the address range
716  *	by page doing hash table lookups for each address.  depending
717  *	on how many pages are in the object it may be cheaper to do one
718  *	or the other.  we set "by_list" to true if we are using memq.
719  *	if the cost of a hash lookup was equal to the cost of the list
720  *	traversal we could compare the number of pages in the start->stop
721  *	range to the total number of pages in the object.  however, it
722  *	seems that a hash table lookup is more expensive than the linked
723  *	list traversal, so we multiply the number of pages in the
724  *	start->stop range by a penalty which we define below.
725  */
726 
727 static int
728 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
729 {
730 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
731 	struct vm_page *pg, *nextpg, curmp, endmp;
732 	bool by_list;
733 	voff_t curoff;
734 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
735 
736 	curoff = 0;
737 	if (flags & PGO_ALLPAGES) {
738 		start = 0;
739 		stop = aobj->u_pages << PAGE_SHIFT;
740 		by_list = true;		/* always go by the list */
741 	} else {
742 		start = trunc_page(start);
743 		if (stop == 0) {
744 			stop = aobj->u_pages << PAGE_SHIFT;
745 		} else {
746 			stop = round_page(stop);
747 		}
748 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
749 			printf("uao_flush: strange, got an out of range "
750 			    "flush (fixed)\n");
751 			stop = aobj->u_pages << PAGE_SHIFT;
752 		}
753 		by_list = (uobj->uo_npages <=
754 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
755 	}
756 	UVMHIST_LOG(maphist,
757 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
758 	    start, stop, by_list, flags);
759 
760 	/*
761 	 * Don't need to do any work here if we're not freeing
762 	 * or deactivating pages.
763 	 */
764 
765 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
766 		simple_unlock(&uobj->vmobjlock);
767 		return 0;
768 	}
769 
770 	/*
771 	 * Initialize the marker pages.  See the comment in
772 	 * genfs_putpages() also.
773 	 */
774 
775 	curmp.uobject = uobj;
776 	curmp.offset = (voff_t)-1;
777 	curmp.flags = PG_BUSY;
778 	endmp.uobject = uobj;
779 	endmp.offset = (voff_t)-1;
780 	endmp.flags = PG_BUSY;
781 
782 	/*
783 	 * now do it.  note: we must update nextpg in the body of loop or we
784 	 * will get stuck.  we need to use nextpg if we'll traverse the list
785 	 * because we may free "pg" before doing the next loop.
786 	 */
787 
788 	if (by_list) {
789 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
790 		nextpg = TAILQ_FIRST(&uobj->memq);
791 		uvm_lwp_hold(curlwp);
792 	} else {
793 		curoff = start;
794 		nextpg = NULL;	/* Quell compiler warning */
795 	}
796 
797 	uvm_lock_pageq();
798 
799 	/* locked: both page queues and uobj */
800 	for (;;) {
801 		if (by_list) {
802 			pg = nextpg;
803 			if (pg == &endmp)
804 				break;
805 			nextpg = TAILQ_NEXT(pg, listq);
806 			if (pg->offset < start || pg->offset >= stop)
807 				continue;
808 		} else {
809 			if (curoff < stop) {
810 				pg = uvm_pagelookup(uobj, curoff);
811 				curoff += PAGE_SIZE;
812 			} else
813 				break;
814 			if (pg == NULL)
815 				continue;
816 		}
817 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
818 
819 		/*
820 		 * XXX In these first 3 cases, we always just
821 		 * XXX deactivate the page.  We may want to
822 		 * XXX handle the different cases more specifically
823 		 * XXX in the future.
824 		 */
825 
826 		case PGO_CLEANIT|PGO_FREE:
827 		case PGO_CLEANIT|PGO_DEACTIVATE:
828 		case PGO_DEACTIVATE:
829  deactivate_it:
830 			/* skip the page if it's wired */
831 			if (pg->wire_count != 0)
832 				continue;
833 
834 			/* ...and deactivate the page. */
835 			pmap_clear_reference(pg);
836 			uvm_pagedeactivate(pg);
837 			continue;
838 
839 		case PGO_FREE:
840 
841 			/*
842 			 * If there are multiple references to
843 			 * the object, just deactivate the page.
844 			 */
845 
846 			if (uobj->uo_refs > 1)
847 				goto deactivate_it;
848 
849 			/*
850 			 * wait and try again if the page is busy.
851 			 * otherwise free the swap slot and the page.
852 			 */
853 
854 			pmap_page_protect(pg, VM_PROT_NONE);
855 			if (pg->flags & PG_BUSY) {
856 				if (by_list) {
857 					TAILQ_INSERT_BEFORE(pg, &curmp, listq);
858 				}
859 				pg->flags |= PG_WANTED;
860 				uvm_unlock_pageq();
861 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
862 				    "uao_put", 0);
863 				simple_lock(&uobj->vmobjlock);
864 				uvm_lock_pageq();
865 				if (by_list) {
866 					nextpg = TAILQ_NEXT(&curmp, listq);
867 					TAILQ_REMOVE(&uobj->memq, &curmp,
868 					    listq);
869 				} else
870 					curoff -= PAGE_SIZE;
871 				continue;
872 			}
873 
874 			/*
875 			 * freeing swapslot here is not strictly necessary.
876 			 * however, leaving it here doesn't save much
877 			 * because we need to update swap accounting anyway.
878 			 */
879 
880 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
881 			uvm_pagefree(pg);
882 			continue;
883 		}
884 	}
885 	uvm_unlock_pageq();
886 	if (by_list) {
887 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
888 	}
889 	simple_unlock(&uobj->vmobjlock);
890 	if (by_list) {
891 		uvm_lwp_rele(curlwp);
892 	}
893 	return 0;
894 }
895 
896 /*
897  * uao_get: fetch me a page
898  *
899  * we have three cases:
900  * 1: page is resident     -> just return the page.
901  * 2: page is zero-fill    -> allocate a new page and zero it.
902  * 3: page is swapped out  -> fetch the page from swap.
903  *
904  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
905  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
906  * then we will need to return EBUSY.
907  *
908  * => prefer map unlocked (not required)
909  * => object must be locked!  we will _unlock_ it before starting any I/O.
910  * => flags: PGO_ALLPAGES: get all of the pages
911  *           PGO_LOCKED: fault data structures are locked
912  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
913  * => NOTE: caller must check for released pages!!
914  */
915 
916 static int
917 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
918     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
919 {
920 #if defined(VMSWAP)
921 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
922 #endif /* defined(VMSWAP) */
923 	voff_t current_offset;
924 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
925 	int lcv, gotpages, maxpages, swslot, pageidx;
926 	bool done;
927 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
928 
929 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
930 		    (struct uvm_aobj *)uobj, offset, flags,0);
931 
932 	/*
933  	 * get number of pages
934  	 */
935 
936 	maxpages = *npagesp;
937 
938 	/*
939  	 * step 1: handled the case where fault data structures are locked.
940  	 */
941 
942 	if (flags & PGO_LOCKED) {
943 
944 		/*
945  		 * step 1a: get pages that are already resident.   only do
946 		 * this if the data structures are locked (i.e. the first
947 		 * time through).
948  		 */
949 
950 		done = true;	/* be optimistic */
951 		gotpages = 0;	/* # of pages we got so far */
952 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
953 		    lcv++, current_offset += PAGE_SIZE) {
954 			/* do we care about this page?  if not, skip it */
955 			if (pps[lcv] == PGO_DONTCARE)
956 				continue;
957 			ptmp = uvm_pagelookup(uobj, current_offset);
958 
959 			/*
960  			 * if page is new, attempt to allocate the page,
961 			 * zero-fill'd.
962  			 */
963 
964 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
965 			    current_offset >> PAGE_SHIFT) == 0) {
966 				ptmp = uvm_pagealloc(uobj, current_offset,
967 				    NULL, UVM_PGA_ZERO);
968 				if (ptmp) {
969 					/* new page */
970 					ptmp->flags &= ~(PG_FAKE);
971 					ptmp->pqflags |= PQ_AOBJ;
972 					goto gotpage;
973 				}
974 			}
975 
976 			/*
977 			 * to be useful must get a non-busy page
978 			 */
979 
980 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
981 				if (lcv == centeridx ||
982 				    (flags & PGO_ALLPAGES) != 0)
983 					/* need to do a wait or I/O! */
984 					done = false;
985 					continue;
986 			}
987 
988 			/*
989 			 * useful page: busy/lock it and plug it in our
990 			 * result array
991 			 */
992 
993 			/* caller must un-busy this page */
994 			ptmp->flags |= PG_BUSY;
995 			UVM_PAGE_OWN(ptmp, "uao_get1");
996 gotpage:
997 			pps[lcv] = ptmp;
998 			gotpages++;
999 		}
1000 
1001 		/*
1002  		 * step 1b: now we've either done everything needed or we
1003 		 * to unlock and do some waiting or I/O.
1004  		 */
1005 
1006 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1007 		*npagesp = gotpages;
1008 		if (done)
1009 			return 0;
1010 		else
1011 			return EBUSY;
1012 	}
1013 
1014 	/*
1015  	 * step 2: get non-resident or busy pages.
1016  	 * object is locked.   data structures are unlocked.
1017  	 */
1018 
1019 	if ((flags & PGO_SYNCIO) == 0) {
1020 		goto done;
1021 	}
1022 
1023 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1024 	    lcv++, current_offset += PAGE_SIZE) {
1025 
1026 		/*
1027 		 * - skip over pages we've already gotten or don't want
1028 		 * - skip over pages we don't _have_ to get
1029 		 */
1030 
1031 		if (pps[lcv] != NULL ||
1032 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1033 			continue;
1034 
1035 		pageidx = current_offset >> PAGE_SHIFT;
1036 
1037 		/*
1038  		 * we have yet to locate the current page (pps[lcv]).   we
1039 		 * first look for a page that is already at the current offset.
1040 		 * if we find a page, we check to see if it is busy or
1041 		 * released.  if that is the case, then we sleep on the page
1042 		 * until it is no longer busy or released and repeat the lookup.
1043 		 * if the page we found is neither busy nor released, then we
1044 		 * busy it (so we own it) and plug it into pps[lcv].   this
1045 		 * 'break's the following while loop and indicates we are
1046 		 * ready to move on to the next page in the "lcv" loop above.
1047  		 *
1048  		 * if we exit the while loop with pps[lcv] still set to NULL,
1049 		 * then it means that we allocated a new busy/fake/clean page
1050 		 * ptmp in the object and we need to do I/O to fill in the data.
1051  		 */
1052 
1053 		/* top of "pps" while loop */
1054 		while (pps[lcv] == NULL) {
1055 			/* look for a resident page */
1056 			ptmp = uvm_pagelookup(uobj, current_offset);
1057 
1058 			/* not resident?   allocate one now (if we can) */
1059 			if (ptmp == NULL) {
1060 
1061 				ptmp = uvm_pagealloc(uobj, current_offset,
1062 				    NULL, 0);
1063 
1064 				/* out of RAM? */
1065 				if (ptmp == NULL) {
1066 					simple_unlock(&uobj->vmobjlock);
1067 					UVMHIST_LOG(pdhist,
1068 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1069 					uvm_wait("uao_getpage");
1070 					simple_lock(&uobj->vmobjlock);
1071 					continue;
1072 				}
1073 
1074 				/*
1075 				 * safe with PQ's unlocked: because we just
1076 				 * alloc'd the page
1077 				 */
1078 
1079 				ptmp->pqflags |= PQ_AOBJ;
1080 
1081 				/*
1082 				 * got new page ready for I/O.  break pps while
1083 				 * loop.  pps[lcv] is still NULL.
1084 				 */
1085 
1086 				break;
1087 			}
1088 
1089 			/* page is there, see if we need to wait on it */
1090 			if ((ptmp->flags & PG_BUSY) != 0) {
1091 				ptmp->flags |= PG_WANTED;
1092 				UVMHIST_LOG(pdhist,
1093 				    "sleeping, ptmp->flags 0x%x\n",
1094 				    ptmp->flags,0,0,0);
1095 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1096 				    false, "uao_get", 0);
1097 				simple_lock(&uobj->vmobjlock);
1098 				continue;
1099 			}
1100 
1101 			/*
1102  			 * if we get here then the page has become resident and
1103 			 * unbusy between steps 1 and 2.  we busy it now (so we
1104 			 * own it) and set pps[lcv] (so that we exit the while
1105 			 * loop).
1106  			 */
1107 
1108 			/* we own it, caller must un-busy */
1109 			ptmp->flags |= PG_BUSY;
1110 			UVM_PAGE_OWN(ptmp, "uao_get2");
1111 			pps[lcv] = ptmp;
1112 		}
1113 
1114 		/*
1115  		 * if we own the valid page at the correct offset, pps[lcv] will
1116  		 * point to it.   nothing more to do except go to the next page.
1117  		 */
1118 
1119 		if (pps[lcv])
1120 			continue;			/* next lcv */
1121 
1122 		/*
1123  		 * we have a "fake/busy/clean" page that we just allocated.
1124  		 * do the needed "i/o", either reading from swap or zeroing.
1125  		 */
1126 
1127 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1128 
1129 		/*
1130  		 * just zero the page if there's nothing in swap.
1131  		 */
1132 
1133 		if (swslot == 0) {
1134 
1135 			/*
1136 			 * page hasn't existed before, just zero it.
1137 			 */
1138 
1139 			uvm_pagezero(ptmp);
1140 		} else {
1141 #if defined(VMSWAP)
1142 			int error;
1143 
1144 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1145 			     swslot, 0,0,0);
1146 
1147 			/*
1148 			 * page in the swapped-out page.
1149 			 * unlock object for i/o, relock when done.
1150 			 */
1151 
1152 			simple_unlock(&uobj->vmobjlock);
1153 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1154 			simple_lock(&uobj->vmobjlock);
1155 
1156 			/*
1157 			 * I/O done.  check for errors.
1158 			 */
1159 
1160 			if (error != 0) {
1161 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1162 				    error,0,0,0);
1163 				if (ptmp->flags & PG_WANTED)
1164 					wakeup(ptmp);
1165 
1166 				/*
1167 				 * remove the swap slot from the aobj
1168 				 * and mark the aobj as having no real slot.
1169 				 * don't free the swap slot, thus preventing
1170 				 * it from being used again.
1171 				 */
1172 
1173 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1174 							SWSLOT_BAD);
1175 				if (swslot > 0) {
1176 					uvm_swap_markbad(swslot, 1);
1177 				}
1178 
1179 				uvm_lock_pageq();
1180 				uvm_pagefree(ptmp);
1181 				uvm_unlock_pageq();
1182 				simple_unlock(&uobj->vmobjlock);
1183 				return error;
1184 			}
1185 #else /* defined(VMSWAP) */
1186 			panic("%s: pagein", __func__);
1187 #endif /* defined(VMSWAP) */
1188 		}
1189 
1190 		if ((access_type & VM_PROT_WRITE) == 0) {
1191 			ptmp->flags |= PG_CLEAN;
1192 			pmap_clear_modify(ptmp);
1193 		}
1194 
1195 		/*
1196  		 * we got the page!   clear the fake flag (indicates valid
1197 		 * data now in page) and plug into our result array.   note
1198 		 * that page is still busy.
1199  		 *
1200  		 * it is the callers job to:
1201  		 * => check if the page is released
1202  		 * => unbusy the page
1203  		 * => activate the page
1204  		 */
1205 
1206 		ptmp->flags &= ~PG_FAKE;
1207 		pps[lcv] = ptmp;
1208 	}
1209 
1210 	/*
1211  	 * finally, unlock object and return.
1212  	 */
1213 
1214 done:
1215 	simple_unlock(&uobj->vmobjlock);
1216 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1217 	return 0;
1218 }
1219 
1220 #if defined(VMSWAP)
1221 
1222 /*
1223  * uao_dropswap:  release any swap resources from this aobj page.
1224  *
1225  * => aobj must be locked or have a reference count of 0.
1226  */
1227 
1228 void
1229 uao_dropswap(struct uvm_object *uobj, int pageidx)
1230 {
1231 	int slot;
1232 
1233 	slot = uao_set_swslot(uobj, pageidx, 0);
1234 	if (slot) {
1235 		uvm_swap_free(slot, 1);
1236 	}
1237 }
1238 
1239 /*
1240  * page in every page in every aobj that is paged-out to a range of swslots.
1241  *
1242  * => nothing should be locked.
1243  * => returns true if pagein was aborted due to lack of memory.
1244  */
1245 
1246 bool
1247 uao_swap_off(int startslot, int endslot)
1248 {
1249 	struct uvm_aobj *aobj, *nextaobj;
1250 	bool rv;
1251 
1252 	/*
1253 	 * walk the list of all aobjs.
1254 	 */
1255 
1256 restart:
1257 	mutex_enter(&uao_list_lock);
1258 	for (aobj = LIST_FIRST(&uao_list);
1259 	     aobj != NULL;
1260 	     aobj = nextaobj) {
1261 
1262 		/*
1263 		 * try to get the object lock, start all over if we fail.
1264 		 * most of the time we'll get the aobj lock,
1265 		 * so this should be a rare case.
1266 		 */
1267 
1268 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1269 			mutex_exit(&uao_list_lock);
1270 			goto restart;
1271 		}
1272 
1273 		/*
1274 		 * add a ref to the aobj so it doesn't disappear
1275 		 * while we're working.
1276 		 */
1277 
1278 		uao_reference_locked(&aobj->u_obj);
1279 
1280 		/*
1281 		 * now it's safe to unlock the uao list.
1282 		 */
1283 
1284 		mutex_exit(&uao_list_lock);
1285 
1286 		/*
1287 		 * page in any pages in the swslot range.
1288 		 * if there's an error, abort and return the error.
1289 		 */
1290 
1291 		rv = uao_pagein(aobj, startslot, endslot);
1292 		if (rv) {
1293 			uao_detach_locked(&aobj->u_obj);
1294 			return rv;
1295 		}
1296 
1297 		/*
1298 		 * we're done with this aobj.
1299 		 * relock the list and drop our ref on the aobj.
1300 		 */
1301 
1302 		mutex_enter(&uao_list_lock);
1303 		nextaobj = LIST_NEXT(aobj, u_list);
1304 		uao_detach_locked(&aobj->u_obj);
1305 	}
1306 
1307 	/*
1308 	 * done with traversal, unlock the list
1309 	 */
1310 	mutex_exit(&uao_list_lock);
1311 	return false;
1312 }
1313 
1314 
1315 /*
1316  * page in any pages from aobj in the given range.
1317  *
1318  * => aobj must be locked and is returned locked.
1319  * => returns true if pagein was aborted due to lack of memory.
1320  */
1321 static bool
1322 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1323 {
1324 	bool rv;
1325 
1326 	if (UAO_USES_SWHASH(aobj)) {
1327 		struct uao_swhash_elt *elt;
1328 		int buck;
1329 
1330 restart:
1331 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1332 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1333 			     elt != NULL;
1334 			     elt = LIST_NEXT(elt, list)) {
1335 				int i;
1336 
1337 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1338 					int slot = elt->slots[i];
1339 
1340 					/*
1341 					 * if the slot isn't in range, skip it.
1342 					 */
1343 
1344 					if (slot < startslot ||
1345 					    slot >= endslot) {
1346 						continue;
1347 					}
1348 
1349 					/*
1350 					 * process the page,
1351 					 * the start over on this object
1352 					 * since the swhash elt
1353 					 * may have been freed.
1354 					 */
1355 
1356 					rv = uao_pagein_page(aobj,
1357 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1358 					if (rv) {
1359 						return rv;
1360 					}
1361 					goto restart;
1362 				}
1363 			}
1364 		}
1365 	} else {
1366 		int i;
1367 
1368 		for (i = 0; i < aobj->u_pages; i++) {
1369 			int slot = aobj->u_swslots[i];
1370 
1371 			/*
1372 			 * if the slot isn't in range, skip it
1373 			 */
1374 
1375 			if (slot < startslot || slot >= endslot) {
1376 				continue;
1377 			}
1378 
1379 			/*
1380 			 * process the page.
1381 			 */
1382 
1383 			rv = uao_pagein_page(aobj, i);
1384 			if (rv) {
1385 				return rv;
1386 			}
1387 		}
1388 	}
1389 
1390 	return false;
1391 }
1392 
1393 /*
1394  * page in a page from an aobj.  used for swap_off.
1395  * returns true if pagein was aborted due to lack of memory.
1396  *
1397  * => aobj must be locked and is returned locked.
1398  */
1399 
1400 static bool
1401 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1402 {
1403 	struct vm_page *pg;
1404 	int rv, npages;
1405 
1406 	pg = NULL;
1407 	npages = 1;
1408 	/* locked: aobj */
1409 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1410 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1411 	/* unlocked: aobj */
1412 
1413 	/*
1414 	 * relock and finish up.
1415 	 */
1416 
1417 	simple_lock(&aobj->u_obj.vmobjlock);
1418 	switch (rv) {
1419 	case 0:
1420 		break;
1421 
1422 	case EIO:
1423 	case ERESTART:
1424 
1425 		/*
1426 		 * nothing more to do on errors.
1427 		 * ERESTART can only mean that the anon was freed,
1428 		 * so again there's nothing to do.
1429 		 */
1430 
1431 		return false;
1432 
1433 	default:
1434 		return true;
1435 	}
1436 
1437 	/*
1438 	 * ok, we've got the page now.
1439 	 * mark it as dirty, clear its swslot and un-busy it.
1440 	 */
1441 	uao_dropswap(&aobj->u_obj, pageidx);
1442 
1443 	/*
1444 	 * make sure it's on a page queue.
1445 	 */
1446 	uvm_lock_pageq();
1447 	if (pg->wire_count == 0)
1448 		uvm_pageenqueue(pg);
1449 	uvm_unlock_pageq();
1450 
1451 	if (pg->flags & PG_WANTED) {
1452 		wakeup(pg);
1453 	}
1454 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1455 	UVM_PAGE_OWN(pg, NULL);
1456 
1457 	return false;
1458 }
1459 
1460 /*
1461  * uao_dropswap_range: drop swapslots in the range.
1462  *
1463  * => aobj must be locked and is returned locked.
1464  * => start is inclusive.  end is exclusive.
1465  */
1466 
1467 void
1468 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1469 {
1470 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1471 
1472 	LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
1473 
1474 	uao_dropswap_range1(aobj, start, end);
1475 }
1476 
1477 static void
1478 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1479 {
1480 	int swpgonlydelta = 0;
1481 
1482 	if (end == 0) {
1483 		end = INT64_MAX;
1484 	}
1485 
1486 	if (UAO_USES_SWHASH(aobj)) {
1487 		int i, hashbuckets = aobj->u_swhashmask + 1;
1488 		voff_t taghi;
1489 		voff_t taglo;
1490 
1491 		taglo = UAO_SWHASH_ELT_TAG(start);
1492 		taghi = UAO_SWHASH_ELT_TAG(end);
1493 
1494 		for (i = 0; i < hashbuckets; i++) {
1495 			struct uao_swhash_elt *elt, *next;
1496 
1497 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1498 			     elt != NULL;
1499 			     elt = next) {
1500 				int startidx, endidx;
1501 				int j;
1502 
1503 				next = LIST_NEXT(elt, list);
1504 
1505 				if (elt->tag < taglo || taghi < elt->tag) {
1506 					continue;
1507 				}
1508 
1509 				if (elt->tag == taglo) {
1510 					startidx =
1511 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1512 				} else {
1513 					startidx = 0;
1514 				}
1515 
1516 				if (elt->tag == taghi) {
1517 					endidx =
1518 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1519 				} else {
1520 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1521 				}
1522 
1523 				for (j = startidx; j < endidx; j++) {
1524 					int slot = elt->slots[j];
1525 
1526 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1527 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1528 					    + j) << PAGE_SHIFT) == NULL);
1529 					if (slot > 0) {
1530 						uvm_swap_free(slot, 1);
1531 						swpgonlydelta++;
1532 						KASSERT(elt->count > 0);
1533 						elt->slots[j] = 0;
1534 						elt->count--;
1535 					}
1536 				}
1537 
1538 				if (elt->count == 0) {
1539 					LIST_REMOVE(elt, list);
1540 					pool_put(&uao_swhash_elt_pool, elt);
1541 				}
1542 			}
1543 		}
1544 	} else {
1545 		int i;
1546 
1547 		if (aobj->u_pages < end) {
1548 			end = aobj->u_pages;
1549 		}
1550 		for (i = start; i < end; i++) {
1551 			int slot = aobj->u_swslots[i];
1552 
1553 			if (slot > 0) {
1554 				uvm_swap_free(slot, 1);
1555 				swpgonlydelta++;
1556 			}
1557 		}
1558 	}
1559 
1560 	/*
1561 	 * adjust the counter of pages only in swap for all
1562 	 * the swap slots we've freed.
1563 	 */
1564 
1565 	if (swpgonlydelta > 0) {
1566 		mutex_enter(&uvm_swap_data_lock);
1567 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1568 		uvmexp.swpgonly -= swpgonlydelta;
1569 		mutex_exit(&uvm_swap_data_lock);
1570 	}
1571 }
1572 
1573 #endif /* defined(VMSWAP) */
1574