1 /* $NetBSD: uvm_aobj.c,v 1.126 2017/10/28 00:37:13 pgoyette Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and 5 * Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp 29 */ 30 31 /* 32 * uvm_aobj.c: anonymous memory uvm_object pager 33 * 34 * author: Chuck Silvers <chuq@chuq.com> 35 * started: Jan-1998 36 * 37 * - design mostly from Chuck Cranor 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.126 2017/10/28 00:37:13 pgoyette Exp $"); 42 43 #ifdef _KERNEL_OPT 44 #include "opt_uvmhist.h" 45 #endif 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/kernel.h> 50 #include <sys/kmem.h> 51 #include <sys/pool.h> 52 #include <sys/atomic.h> 53 54 #include <uvm/uvm.h> 55 56 /* 57 * An anonymous UVM object (aobj) manages anonymous-memory. In addition to 58 * keeping the list of resident pages, it may also keep a list of allocated 59 * swap blocks. Depending on the size of the object, this list is either 60 * stored in an array (small objects) or in a hash table (large objects). 61 * 62 * Lock order 63 * 64 * uao_list_lock -> 65 * uvm_object::vmobjlock 66 */ 67 68 /* 69 * Note: for hash tables, we break the address space of the aobj into blocks 70 * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two. 71 */ 72 73 #define UAO_SWHASH_CLUSTER_SHIFT 4 74 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT) 75 76 /* Get the "tag" for this page index. */ 77 #define UAO_SWHASH_ELT_TAG(idx) ((idx) >> UAO_SWHASH_CLUSTER_SHIFT) 78 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \ 79 ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1)) 80 81 /* Given an ELT and a page index, find the swap slot. */ 82 #define UAO_SWHASH_ELT_PAGESLOT(elt, idx) \ 83 ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)]) 84 85 /* Given an ELT, return its pageidx base. */ 86 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \ 87 ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT) 88 89 /* The hash function. */ 90 #define UAO_SWHASH_HASH(aobj, idx) \ 91 (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \ 92 & (aobj)->u_swhashmask)]) 93 94 /* 95 * The threshold which determines whether we will use an array or a 96 * hash table to store the list of allocated swap blocks. 97 */ 98 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4) 99 #define UAO_USES_SWHASH(aobj) \ 100 ((aobj)->u_pages > UAO_SWHASH_THRESHOLD) 101 102 /* The number of buckets in a hash, with an upper bound. */ 103 #define UAO_SWHASH_MAXBUCKETS 256 104 #define UAO_SWHASH_BUCKETS(aobj) \ 105 (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS)) 106 107 /* 108 * uao_swhash_elt: when a hash table is being used, this structure defines 109 * the format of an entry in the bucket list. 110 */ 111 112 struct uao_swhash_elt { 113 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */ 114 voff_t tag; /* our 'tag' */ 115 int count; /* our number of active slots */ 116 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */ 117 }; 118 119 /* 120 * uao_swhash: the swap hash table structure 121 */ 122 123 LIST_HEAD(uao_swhash, uao_swhash_elt); 124 125 /* 126 * uao_swhash_elt_pool: pool of uao_swhash_elt structures. 127 * Note: pages for this pool must not come from a pageable kernel map. 128 */ 129 static struct pool uao_swhash_elt_pool __cacheline_aligned; 130 131 /* 132 * uvm_aobj: the actual anon-backed uvm_object 133 * 134 * => the uvm_object is at the top of the structure, this allows 135 * (struct uvm_aobj *) == (struct uvm_object *) 136 * => only one of u_swslots and u_swhash is used in any given aobj 137 */ 138 139 struct uvm_aobj { 140 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */ 141 pgoff_t u_pages; /* number of pages in entire object */ 142 int u_flags; /* the flags (see uvm_aobj.h) */ 143 int *u_swslots; /* array of offset->swapslot mappings */ 144 /* 145 * hashtable of offset->swapslot mappings 146 * (u_swhash is an array of bucket heads) 147 */ 148 struct uao_swhash *u_swhash; 149 u_long u_swhashmask; /* mask for hashtable */ 150 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */ 151 int u_freelist; /* freelist to allocate pages from */ 152 }; 153 154 static void uao_free(struct uvm_aobj *); 155 static int uao_get(struct uvm_object *, voff_t, struct vm_page **, 156 int *, int, vm_prot_t, int, int); 157 static int uao_put(struct uvm_object *, voff_t, voff_t, int); 158 159 #if defined(VMSWAP) 160 static struct uao_swhash_elt *uao_find_swhash_elt 161 (struct uvm_aobj *, int, bool); 162 163 static bool uao_pagein(struct uvm_aobj *, int, int); 164 static bool uao_pagein_page(struct uvm_aobj *, int); 165 #endif /* defined(VMSWAP) */ 166 167 static struct vm_page *uao_pagealloc(struct uvm_object *, voff_t, int); 168 169 /* 170 * aobj_pager 171 * 172 * note that some functions (e.g. put) are handled elsewhere 173 */ 174 175 const struct uvm_pagerops aobj_pager = { 176 .pgo_reference = uao_reference, 177 .pgo_detach = uao_detach, 178 .pgo_get = uao_get, 179 .pgo_put = uao_put, 180 }; 181 182 /* 183 * uao_list: global list of active aobjs, locked by uao_list_lock 184 */ 185 186 static LIST_HEAD(aobjlist, uvm_aobj) uao_list __cacheline_aligned; 187 static kmutex_t uao_list_lock __cacheline_aligned; 188 189 /* 190 * hash table/array related functions 191 */ 192 193 #if defined(VMSWAP) 194 195 /* 196 * uao_find_swhash_elt: find (or create) a hash table entry for a page 197 * offset. 198 * 199 * => the object should be locked by the caller 200 */ 201 202 static struct uao_swhash_elt * 203 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create) 204 { 205 struct uao_swhash *swhash; 206 struct uao_swhash_elt *elt; 207 voff_t page_tag; 208 209 swhash = UAO_SWHASH_HASH(aobj, pageidx); 210 page_tag = UAO_SWHASH_ELT_TAG(pageidx); 211 212 /* 213 * now search the bucket for the requested tag 214 */ 215 216 LIST_FOREACH(elt, swhash, list) { 217 if (elt->tag == page_tag) { 218 return elt; 219 } 220 } 221 if (!create) { 222 return NULL; 223 } 224 225 /* 226 * allocate a new entry for the bucket and init/insert it in 227 */ 228 229 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT); 230 if (elt == NULL) { 231 return NULL; 232 } 233 LIST_INSERT_HEAD(swhash, elt, list); 234 elt->tag = page_tag; 235 elt->count = 0; 236 memset(elt->slots, 0, sizeof(elt->slots)); 237 return elt; 238 } 239 240 /* 241 * uao_find_swslot: find the swap slot number for an aobj/pageidx 242 * 243 * => object must be locked by caller 244 */ 245 246 int 247 uao_find_swslot(struct uvm_object *uobj, int pageidx) 248 { 249 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 250 struct uao_swhash_elt *elt; 251 252 /* 253 * if noswap flag is set, then we never return a slot 254 */ 255 256 if (aobj->u_flags & UAO_FLAG_NOSWAP) 257 return 0; 258 259 /* 260 * if hashing, look in hash table. 261 */ 262 263 if (UAO_USES_SWHASH(aobj)) { 264 elt = uao_find_swhash_elt(aobj, pageidx, false); 265 return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0; 266 } 267 268 /* 269 * otherwise, look in the array 270 */ 271 272 return aobj->u_swslots[pageidx]; 273 } 274 275 /* 276 * uao_set_swslot: set the swap slot for a page in an aobj. 277 * 278 * => setting a slot to zero frees the slot 279 * => object must be locked by caller 280 * => we return the old slot number, or -1 if we failed to allocate 281 * memory to record the new slot number 282 */ 283 284 int 285 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot) 286 { 287 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 288 struct uao_swhash_elt *elt; 289 int oldslot; 290 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist); 291 UVMHIST_LOG(pdhist, "aobj %#jx pageidx %jd slot %jd", 292 (uintptr_t)aobj, pageidx, slot, 0); 293 294 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0); 295 296 /* 297 * if noswap flag is set, then we can't set a non-zero slot. 298 */ 299 300 if (aobj->u_flags & UAO_FLAG_NOSWAP) { 301 KASSERTMSG(slot == 0, "uao_set_swslot: no swap object"); 302 return 0; 303 } 304 305 /* 306 * are we using a hash table? if so, add it in the hash. 307 */ 308 309 if (UAO_USES_SWHASH(aobj)) { 310 311 /* 312 * Avoid allocating an entry just to free it again if 313 * the page had not swap slot in the first place, and 314 * we are freeing. 315 */ 316 317 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0); 318 if (elt == NULL) { 319 return slot ? -1 : 0; 320 } 321 322 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx); 323 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot; 324 325 /* 326 * now adjust the elt's reference counter and free it if we've 327 * dropped it to zero. 328 */ 329 330 if (slot) { 331 if (oldslot == 0) 332 elt->count++; 333 } else { 334 if (oldslot) 335 elt->count--; 336 337 if (elt->count == 0) { 338 LIST_REMOVE(elt, list); 339 pool_put(&uao_swhash_elt_pool, elt); 340 } 341 } 342 } else { 343 /* we are using an array */ 344 oldslot = aobj->u_swslots[pageidx]; 345 aobj->u_swslots[pageidx] = slot; 346 } 347 return oldslot; 348 } 349 350 #endif /* defined(VMSWAP) */ 351 352 /* 353 * end of hash/array functions 354 */ 355 356 /* 357 * uao_free: free all resources held by an aobj, and then free the aobj 358 * 359 * => the aobj should be dead 360 */ 361 362 static void 363 uao_free(struct uvm_aobj *aobj) 364 { 365 struct uvm_object *uobj = &aobj->u_obj; 366 367 KASSERT(mutex_owned(uobj->vmobjlock)); 368 uao_dropswap_range(uobj, 0, 0); 369 mutex_exit(uobj->vmobjlock); 370 371 #if defined(VMSWAP) 372 if (UAO_USES_SWHASH(aobj)) { 373 374 /* 375 * free the hash table itself. 376 */ 377 378 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask); 379 } else { 380 381 /* 382 * free the array itsself. 383 */ 384 385 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int)); 386 } 387 #endif /* defined(VMSWAP) */ 388 389 /* 390 * finally free the aobj itself 391 */ 392 393 uvm_obj_destroy(uobj, true); 394 kmem_free(aobj, sizeof(struct uvm_aobj)); 395 } 396 397 /* 398 * pager functions 399 */ 400 401 /* 402 * uao_create: create an aobj of the given size and return its uvm_object. 403 * 404 * => for normal use, flags are always zero 405 * => for the kernel object, the flags are: 406 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once) 407 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ") 408 */ 409 410 struct uvm_object * 411 uao_create(vsize_t size, int flags) 412 { 413 static struct uvm_aobj kernel_object_store; 414 static kmutex_t kernel_object_lock; 415 static int kobj_alloced __diagused = 0; 416 pgoff_t pages = round_page(size) >> PAGE_SHIFT; 417 struct uvm_aobj *aobj; 418 int refs; 419 420 /* 421 * Allocate a new aobj, unless kernel object is requested. 422 */ 423 424 if (flags & UAO_FLAG_KERNOBJ) { 425 KASSERT(!kobj_alloced); 426 aobj = &kernel_object_store; 427 aobj->u_pages = pages; 428 aobj->u_flags = UAO_FLAG_NOSWAP; 429 refs = UVM_OBJ_KERN; 430 kobj_alloced = UAO_FLAG_KERNOBJ; 431 } else if (flags & UAO_FLAG_KERNSWAP) { 432 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ); 433 aobj = &kernel_object_store; 434 kobj_alloced = UAO_FLAG_KERNSWAP; 435 refs = 0xdeadbeaf; /* XXX: gcc */ 436 } else { 437 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP); 438 aobj->u_pages = pages; 439 aobj->u_flags = 0; 440 refs = 1; 441 } 442 443 /* 444 * no freelist by default 445 */ 446 447 aobj->u_freelist = VM_NFREELIST; 448 449 /* 450 * allocate hash/array if necessary 451 * 452 * note: in the KERNSWAP case no need to worry about locking since 453 * we are still booting we should be the only thread around. 454 */ 455 456 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) { 457 #if defined(VMSWAP) 458 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0; 459 460 /* allocate hash table or array depending on object size */ 461 if (UAO_USES_SWHASH(aobj)) { 462 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj), 463 HASH_LIST, kernswap ? false : true, 464 &aobj->u_swhashmask); 465 if (aobj->u_swhash == NULL) 466 panic("uao_create: hashinit swhash failed"); 467 } else { 468 aobj->u_swslots = kmem_zalloc(pages * sizeof(int), 469 kernswap ? KM_NOSLEEP : KM_SLEEP); 470 if (aobj->u_swslots == NULL) 471 panic("uao_create: swslots allocation failed"); 472 } 473 #endif /* defined(VMSWAP) */ 474 475 if (flags) { 476 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */ 477 return &aobj->u_obj; 478 } 479 } 480 481 /* 482 * Initialise UVM object. 483 */ 484 485 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0; 486 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs); 487 if (__predict_false(kernobj)) { 488 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */ 489 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE); 490 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock); 491 } 492 493 /* 494 * now that aobj is ready, add it to the global list 495 */ 496 497 mutex_enter(&uao_list_lock); 498 LIST_INSERT_HEAD(&uao_list, aobj, u_list); 499 mutex_exit(&uao_list_lock); 500 return(&aobj->u_obj); 501 } 502 503 /* 504 * uao_set_pgfl: allocate pages only from the specified freelist. 505 * 506 * => must be called before any pages are allocated for the object. 507 * => reset by setting it to VM_NFREELIST, meaning any freelist. 508 */ 509 510 void 511 uao_set_pgfl(struct uvm_object *uobj, int freelist) 512 { 513 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 514 515 KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist); 516 KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d", 517 freelist); 518 519 aobj->u_freelist = freelist; 520 } 521 522 /* 523 * uao_pagealloc: allocate a page for aobj. 524 */ 525 526 static inline struct vm_page * 527 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags) 528 { 529 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 530 531 if (__predict_true(aobj->u_freelist == VM_NFREELIST)) 532 return uvm_pagealloc(uobj, offset, NULL, flags); 533 else 534 return uvm_pagealloc_strat(uobj, offset, NULL, flags, 535 UVM_PGA_STRAT_ONLY, aobj->u_freelist); 536 } 537 538 /* 539 * uao_init: set up aobj pager subsystem 540 * 541 * => called at boot time from uvm_pager_init() 542 */ 543 544 void 545 uao_init(void) 546 { 547 static int uao_initialized; 548 549 if (uao_initialized) 550 return; 551 uao_initialized = true; 552 LIST_INIT(&uao_list); 553 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE); 554 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 555 0, 0, 0, "uaoeltpl", NULL, IPL_VM); 556 } 557 558 /* 559 * uao_reference: hold a reference to an anonymous UVM object. 560 */ 561 void 562 uao_reference(struct uvm_object *uobj) 563 { 564 /* Kernel object is persistent. */ 565 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) { 566 return; 567 } 568 atomic_inc_uint(&uobj->uo_refs); 569 } 570 571 /* 572 * uao_detach: drop a reference to an anonymous UVM object. 573 */ 574 void 575 uao_detach(struct uvm_object *uobj) 576 { 577 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 578 struct vm_page *pg; 579 580 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist); 581 582 /* 583 * Detaching from kernel object is a NOP. 584 */ 585 586 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) 587 return; 588 589 /* 590 * Drop the reference. If it was the last one, destroy the object. 591 */ 592 593 KASSERT(uobj->uo_refs > 0); 594 UVMHIST_LOG(maphist," (uobj=0x%#jx) ref=%jd", 595 (uintptr_t)uobj, uobj->uo_refs, 0, 0); 596 if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) { 597 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0); 598 return; 599 } 600 601 /* 602 * Remove the aobj from the global list. 603 */ 604 605 mutex_enter(&uao_list_lock); 606 LIST_REMOVE(aobj, u_list); 607 mutex_exit(&uao_list_lock); 608 609 /* 610 * Free all the pages left in the aobj. For each page, when the 611 * page is no longer busy (and thus after any disk I/O that it is 612 * involved in is complete), release any swap resources and free 613 * the page itself. 614 */ 615 616 mutex_enter(uobj->vmobjlock); 617 mutex_enter(&uvm_pageqlock); 618 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) { 619 pmap_page_protect(pg, VM_PROT_NONE); 620 if (pg->flags & PG_BUSY) { 621 pg->flags |= PG_WANTED; 622 mutex_exit(&uvm_pageqlock); 623 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false, 624 "uao_det", 0); 625 mutex_enter(uobj->vmobjlock); 626 mutex_enter(&uvm_pageqlock); 627 continue; 628 } 629 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT); 630 uvm_pagefree(pg); 631 } 632 mutex_exit(&uvm_pageqlock); 633 634 /* 635 * Finally, free the anonymous UVM object itself. 636 */ 637 638 uao_free(aobj); 639 } 640 641 /* 642 * uao_put: flush pages out of a uvm object 643 * 644 * => object should be locked by caller. we may _unlock_ the object 645 * if (and only if) we need to clean a page (PGO_CLEANIT). 646 * XXXJRT Currently, however, we don't. In the case of cleaning 647 * XXXJRT a page, we simply just deactivate it. Should probably 648 * XXXJRT handle this better, in the future (although "flushing" 649 * XXXJRT anonymous memory isn't terribly important). 650 * => if PGO_CLEANIT is not set, then we will neither unlock the object 651 * or block. 652 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 653 * for flushing. 654 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 655 * that new pages are inserted on the tail end of the list. thus, 656 * we can make a complete pass through the object in one go by starting 657 * at the head and working towards the tail (new pages are put in 658 * front of us). 659 * => NOTE: we are allowed to lock the page queues, so the caller 660 * must not be holding the lock on them [e.g. pagedaemon had 661 * better not call us with the queues locked] 662 * => we return 0 unless we encountered some sort of I/O error 663 * XXXJRT currently never happens, as we never directly initiate 664 * XXXJRT I/O 665 * 666 * note on page traversal: 667 * we can traverse the pages in an object either by going down the 668 * linked list in "uobj->memq", or we can go over the address range 669 * by page doing hash table lookups for each address. depending 670 * on how many pages are in the object it may be cheaper to do one 671 * or the other. we set "by_list" to true if we are using memq. 672 * if the cost of a hash lookup was equal to the cost of the list 673 * traversal we could compare the number of pages in the start->stop 674 * range to the total number of pages in the object. however, it 675 * seems that a hash table lookup is more expensive than the linked 676 * list traversal, so we multiply the number of pages in the 677 * start->stop range by a penalty which we define below. 678 */ 679 680 static int 681 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags) 682 { 683 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 684 struct vm_page *pg, *nextpg, curmp, endmp; 685 bool by_list; 686 voff_t curoff; 687 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist); 688 689 KASSERT(mutex_owned(uobj->vmobjlock)); 690 691 curoff = 0; 692 if (flags & PGO_ALLPAGES) { 693 start = 0; 694 stop = aobj->u_pages << PAGE_SHIFT; 695 by_list = true; /* always go by the list */ 696 } else { 697 start = trunc_page(start); 698 if (stop == 0) { 699 stop = aobj->u_pages << PAGE_SHIFT; 700 } else { 701 stop = round_page(stop); 702 } 703 if (stop > (aobj->u_pages << PAGE_SHIFT)) { 704 printf("uao_flush: strange, got an out of range " 705 "flush (fixed)\n"); 706 stop = aobj->u_pages << PAGE_SHIFT; 707 } 708 by_list = (uobj->uo_npages <= 709 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY); 710 } 711 UVMHIST_LOG(maphist, 712 " flush start=0x%jx, stop=0x%jx, by_list=%jd, flags=0x%jx", 713 start, stop, by_list, flags); 714 715 /* 716 * Don't need to do any work here if we're not freeing 717 * or deactivating pages. 718 */ 719 720 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) { 721 mutex_exit(uobj->vmobjlock); 722 return 0; 723 } 724 725 /* 726 * Initialize the marker pages. See the comment in 727 * genfs_putpages() also. 728 */ 729 730 curmp.flags = PG_MARKER; 731 endmp.flags = PG_MARKER; 732 733 /* 734 * now do it. note: we must update nextpg in the body of loop or we 735 * will get stuck. we need to use nextpg if we'll traverse the list 736 * because we may free "pg" before doing the next loop. 737 */ 738 739 if (by_list) { 740 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue); 741 nextpg = TAILQ_FIRST(&uobj->memq); 742 } else { 743 curoff = start; 744 nextpg = NULL; /* Quell compiler warning */ 745 } 746 747 /* locked: uobj */ 748 for (;;) { 749 if (by_list) { 750 pg = nextpg; 751 if (pg == &endmp) 752 break; 753 nextpg = TAILQ_NEXT(pg, listq.queue); 754 if (pg->flags & PG_MARKER) 755 continue; 756 if (pg->offset < start || pg->offset >= stop) 757 continue; 758 } else { 759 if (curoff < stop) { 760 pg = uvm_pagelookup(uobj, curoff); 761 curoff += PAGE_SIZE; 762 } else 763 break; 764 if (pg == NULL) 765 continue; 766 } 767 768 /* 769 * wait and try again if the page is busy. 770 */ 771 772 if (pg->flags & PG_BUSY) { 773 if (by_list) { 774 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue); 775 } 776 pg->flags |= PG_WANTED; 777 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0, 778 "uao_put", 0); 779 mutex_enter(uobj->vmobjlock); 780 if (by_list) { 781 nextpg = TAILQ_NEXT(&curmp, listq.queue); 782 TAILQ_REMOVE(&uobj->memq, &curmp, 783 listq.queue); 784 } else 785 curoff -= PAGE_SIZE; 786 continue; 787 } 788 789 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) { 790 791 /* 792 * XXX In these first 3 cases, we always just 793 * XXX deactivate the page. We may want to 794 * XXX handle the different cases more specifically 795 * XXX in the future. 796 */ 797 798 case PGO_CLEANIT|PGO_FREE: 799 case PGO_CLEANIT|PGO_DEACTIVATE: 800 case PGO_DEACTIVATE: 801 deactivate_it: 802 mutex_enter(&uvm_pageqlock); 803 /* skip the page if it's wired */ 804 if (pg->wire_count == 0) { 805 uvm_pagedeactivate(pg); 806 } 807 mutex_exit(&uvm_pageqlock); 808 break; 809 810 case PGO_FREE: 811 /* 812 * If there are multiple references to 813 * the object, just deactivate the page. 814 */ 815 816 if (uobj->uo_refs > 1) 817 goto deactivate_it; 818 819 /* 820 * free the swap slot and the page. 821 */ 822 823 pmap_page_protect(pg, VM_PROT_NONE); 824 825 /* 826 * freeing swapslot here is not strictly necessary. 827 * however, leaving it here doesn't save much 828 * because we need to update swap accounting anyway. 829 */ 830 831 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 832 mutex_enter(&uvm_pageqlock); 833 uvm_pagefree(pg); 834 mutex_exit(&uvm_pageqlock); 835 break; 836 837 default: 838 panic("%s: impossible", __func__); 839 } 840 } 841 if (by_list) { 842 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue); 843 } 844 mutex_exit(uobj->vmobjlock); 845 return 0; 846 } 847 848 /* 849 * uao_get: fetch me a page 850 * 851 * we have three cases: 852 * 1: page is resident -> just return the page. 853 * 2: page is zero-fill -> allocate a new page and zero it. 854 * 3: page is swapped out -> fetch the page from swap. 855 * 856 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot. 857 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES), 858 * then we will need to return EBUSY. 859 * 860 * => prefer map unlocked (not required) 861 * => object must be locked! we will _unlock_ it before starting any I/O. 862 * => flags: PGO_ALLPAGES: get all of the pages 863 * PGO_LOCKED: fault data structures are locked 864 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 865 * => NOTE: caller must check for released pages!! 866 */ 867 868 static int 869 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps, 870 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags) 871 { 872 voff_t current_offset; 873 struct vm_page *ptmp = NULL; /* Quell compiler warning */ 874 int lcv, gotpages, maxpages, swslot, pageidx; 875 bool done; 876 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist); 877 878 UVMHIST_LOG(pdhist, "aobj=%#jx offset=%jd, flags=%jd", 879 (uintptr_t)uobj, offset, flags,0); 880 881 /* 882 * get number of pages 883 */ 884 885 maxpages = *npagesp; 886 887 /* 888 * step 1: handled the case where fault data structures are locked. 889 */ 890 891 if (flags & PGO_LOCKED) { 892 893 /* 894 * step 1a: get pages that are already resident. only do 895 * this if the data structures are locked (i.e. the first 896 * time through). 897 */ 898 899 done = true; /* be optimistic */ 900 gotpages = 0; /* # of pages we got so far */ 901 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 902 lcv++, current_offset += PAGE_SIZE) { 903 /* do we care about this page? if not, skip it */ 904 if (pps[lcv] == PGO_DONTCARE) 905 continue; 906 ptmp = uvm_pagelookup(uobj, current_offset); 907 908 /* 909 * if page is new, attempt to allocate the page, 910 * zero-fill'd. 911 */ 912 913 if (ptmp == NULL && uao_find_swslot(uobj, 914 current_offset >> PAGE_SHIFT) == 0) { 915 ptmp = uao_pagealloc(uobj, current_offset, 916 UVM_FLAG_COLORMATCH|UVM_PGA_ZERO); 917 if (ptmp) { 918 /* new page */ 919 ptmp->flags &= ~(PG_FAKE); 920 ptmp->pqflags |= PQ_AOBJ; 921 goto gotpage; 922 } 923 } 924 925 /* 926 * to be useful must get a non-busy page 927 */ 928 929 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) { 930 if (lcv == centeridx || 931 (flags & PGO_ALLPAGES) != 0) 932 /* need to do a wait or I/O! */ 933 done = false; 934 continue; 935 } 936 937 /* 938 * useful page: busy/lock it and plug it in our 939 * result array 940 */ 941 942 /* caller must un-busy this page */ 943 ptmp->flags |= PG_BUSY; 944 UVM_PAGE_OWN(ptmp, "uao_get1"); 945 gotpage: 946 pps[lcv] = ptmp; 947 gotpages++; 948 } 949 950 /* 951 * step 1b: now we've either done everything needed or we 952 * to unlock and do some waiting or I/O. 953 */ 954 955 UVMHIST_LOG(pdhist, "<- done (done=%jd)", done, 0,0,0); 956 *npagesp = gotpages; 957 if (done) 958 return 0; 959 else 960 return EBUSY; 961 } 962 963 /* 964 * step 2: get non-resident or busy pages. 965 * object is locked. data structures are unlocked. 966 */ 967 968 if ((flags & PGO_SYNCIO) == 0) { 969 goto done; 970 } 971 972 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 973 lcv++, current_offset += PAGE_SIZE) { 974 975 /* 976 * - skip over pages we've already gotten or don't want 977 * - skip over pages we don't _have_ to get 978 */ 979 980 if (pps[lcv] != NULL || 981 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0)) 982 continue; 983 984 pageidx = current_offset >> PAGE_SHIFT; 985 986 /* 987 * we have yet to locate the current page (pps[lcv]). we 988 * first look for a page that is already at the current offset. 989 * if we find a page, we check to see if it is busy or 990 * released. if that is the case, then we sleep on the page 991 * until it is no longer busy or released and repeat the lookup. 992 * if the page we found is neither busy nor released, then we 993 * busy it (so we own it) and plug it into pps[lcv]. this 994 * 'break's the following while loop and indicates we are 995 * ready to move on to the next page in the "lcv" loop above. 996 * 997 * if we exit the while loop with pps[lcv] still set to NULL, 998 * then it means that we allocated a new busy/fake/clean page 999 * ptmp in the object and we need to do I/O to fill in the data. 1000 */ 1001 1002 /* top of "pps" while loop */ 1003 while (pps[lcv] == NULL) { 1004 /* look for a resident page */ 1005 ptmp = uvm_pagelookup(uobj, current_offset); 1006 1007 /* not resident? allocate one now (if we can) */ 1008 if (ptmp == NULL) { 1009 1010 ptmp = uao_pagealloc(uobj, current_offset, 0); 1011 1012 /* out of RAM? */ 1013 if (ptmp == NULL) { 1014 mutex_exit(uobj->vmobjlock); 1015 UVMHIST_LOG(pdhist, 1016 "sleeping, ptmp == NULL\n",0,0,0,0); 1017 uvm_wait("uao_getpage"); 1018 mutex_enter(uobj->vmobjlock); 1019 continue; 1020 } 1021 1022 /* 1023 * safe with PQ's unlocked: because we just 1024 * alloc'd the page 1025 */ 1026 1027 ptmp->pqflags |= PQ_AOBJ; 1028 1029 /* 1030 * got new page ready for I/O. break pps while 1031 * loop. pps[lcv] is still NULL. 1032 */ 1033 1034 break; 1035 } 1036 1037 /* page is there, see if we need to wait on it */ 1038 if ((ptmp->flags & PG_BUSY) != 0) { 1039 ptmp->flags |= PG_WANTED; 1040 UVMHIST_LOG(pdhist, 1041 "sleeping, ptmp->flags 0x%jx\n", 1042 ptmp->flags,0,0,0); 1043 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock, 1044 false, "uao_get", 0); 1045 mutex_enter(uobj->vmobjlock); 1046 continue; 1047 } 1048 1049 /* 1050 * if we get here then the page has become resident and 1051 * unbusy between steps 1 and 2. we busy it now (so we 1052 * own it) and set pps[lcv] (so that we exit the while 1053 * loop). 1054 */ 1055 1056 /* we own it, caller must un-busy */ 1057 ptmp->flags |= PG_BUSY; 1058 UVM_PAGE_OWN(ptmp, "uao_get2"); 1059 pps[lcv] = ptmp; 1060 } 1061 1062 /* 1063 * if we own the valid page at the correct offset, pps[lcv] will 1064 * point to it. nothing more to do except go to the next page. 1065 */ 1066 1067 if (pps[lcv]) 1068 continue; /* next lcv */ 1069 1070 /* 1071 * we have a "fake/busy/clean" page that we just allocated. 1072 * do the needed "i/o", either reading from swap or zeroing. 1073 */ 1074 1075 swslot = uao_find_swslot(uobj, pageidx); 1076 1077 /* 1078 * just zero the page if there's nothing in swap. 1079 */ 1080 1081 if (swslot == 0) { 1082 1083 /* 1084 * page hasn't existed before, just zero it. 1085 */ 1086 1087 uvm_pagezero(ptmp); 1088 } else { 1089 #if defined(VMSWAP) 1090 int error; 1091 1092 UVMHIST_LOG(pdhist, "pagein from swslot %jd", 1093 swslot, 0,0,0); 1094 1095 /* 1096 * page in the swapped-out page. 1097 * unlock object for i/o, relock when done. 1098 */ 1099 1100 mutex_exit(uobj->vmobjlock); 1101 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO); 1102 mutex_enter(uobj->vmobjlock); 1103 1104 /* 1105 * I/O done. check for errors. 1106 */ 1107 1108 if (error != 0) { 1109 UVMHIST_LOG(pdhist, "<- done (error=%jd)", 1110 error,0,0,0); 1111 if (ptmp->flags & PG_WANTED) 1112 wakeup(ptmp); 1113 1114 /* 1115 * remove the swap slot from the aobj 1116 * and mark the aobj as having no real slot. 1117 * don't free the swap slot, thus preventing 1118 * it from being used again. 1119 */ 1120 1121 swslot = uao_set_swslot(uobj, pageidx, 1122 SWSLOT_BAD); 1123 if (swslot > 0) { 1124 uvm_swap_markbad(swslot, 1); 1125 } 1126 1127 mutex_enter(&uvm_pageqlock); 1128 uvm_pagefree(ptmp); 1129 mutex_exit(&uvm_pageqlock); 1130 mutex_exit(uobj->vmobjlock); 1131 return error; 1132 } 1133 #else /* defined(VMSWAP) */ 1134 panic("%s: pagein", __func__); 1135 #endif /* defined(VMSWAP) */ 1136 } 1137 1138 if ((access_type & VM_PROT_WRITE) == 0) { 1139 ptmp->flags |= PG_CLEAN; 1140 pmap_clear_modify(ptmp); 1141 } 1142 1143 /* 1144 * we got the page! clear the fake flag (indicates valid 1145 * data now in page) and plug into our result array. note 1146 * that page is still busy. 1147 * 1148 * it is the callers job to: 1149 * => check if the page is released 1150 * => unbusy the page 1151 * => activate the page 1152 */ 1153 1154 ptmp->flags &= ~PG_FAKE; 1155 pps[lcv] = ptmp; 1156 } 1157 1158 /* 1159 * finally, unlock object and return. 1160 */ 1161 1162 done: 1163 mutex_exit(uobj->vmobjlock); 1164 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0); 1165 return 0; 1166 } 1167 1168 #if defined(VMSWAP) 1169 1170 /* 1171 * uao_dropswap: release any swap resources from this aobj page. 1172 * 1173 * => aobj must be locked or have a reference count of 0. 1174 */ 1175 1176 void 1177 uao_dropswap(struct uvm_object *uobj, int pageidx) 1178 { 1179 int slot; 1180 1181 slot = uao_set_swslot(uobj, pageidx, 0); 1182 if (slot) { 1183 uvm_swap_free(slot, 1); 1184 } 1185 } 1186 1187 /* 1188 * page in every page in every aobj that is paged-out to a range of swslots. 1189 * 1190 * => nothing should be locked. 1191 * => returns true if pagein was aborted due to lack of memory. 1192 */ 1193 1194 bool 1195 uao_swap_off(int startslot, int endslot) 1196 { 1197 struct uvm_aobj *aobj; 1198 1199 /* 1200 * Walk the list of all anonymous UVM objects. Grab the first. 1201 */ 1202 mutex_enter(&uao_list_lock); 1203 if ((aobj = LIST_FIRST(&uao_list)) == NULL) { 1204 mutex_exit(&uao_list_lock); 1205 return false; 1206 } 1207 uao_reference(&aobj->u_obj); 1208 1209 do { 1210 struct uvm_aobj *nextaobj; 1211 bool rv; 1212 1213 /* 1214 * Prefetch the next object and immediately hold a reference 1215 * on it, so neither the current nor the next entry could 1216 * disappear while we are iterating. 1217 */ 1218 if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) { 1219 uao_reference(&nextaobj->u_obj); 1220 } 1221 mutex_exit(&uao_list_lock); 1222 1223 /* 1224 * Page in all pages in the swap slot range. 1225 */ 1226 mutex_enter(aobj->u_obj.vmobjlock); 1227 rv = uao_pagein(aobj, startslot, endslot); 1228 mutex_exit(aobj->u_obj.vmobjlock); 1229 1230 /* Drop the reference of the current object. */ 1231 uao_detach(&aobj->u_obj); 1232 if (rv) { 1233 if (nextaobj) { 1234 uao_detach(&nextaobj->u_obj); 1235 } 1236 return rv; 1237 } 1238 1239 aobj = nextaobj; 1240 mutex_enter(&uao_list_lock); 1241 } while (aobj); 1242 1243 mutex_exit(&uao_list_lock); 1244 return false; 1245 } 1246 1247 /* 1248 * page in any pages from aobj in the given range. 1249 * 1250 * => aobj must be locked and is returned locked. 1251 * => returns true if pagein was aborted due to lack of memory. 1252 */ 1253 static bool 1254 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot) 1255 { 1256 bool rv; 1257 1258 if (UAO_USES_SWHASH(aobj)) { 1259 struct uao_swhash_elt *elt; 1260 int buck; 1261 1262 restart: 1263 for (buck = aobj->u_swhashmask; buck >= 0; buck--) { 1264 for (elt = LIST_FIRST(&aobj->u_swhash[buck]); 1265 elt != NULL; 1266 elt = LIST_NEXT(elt, list)) { 1267 int i; 1268 1269 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) { 1270 int slot = elt->slots[i]; 1271 1272 /* 1273 * if the slot isn't in range, skip it. 1274 */ 1275 1276 if (slot < startslot || 1277 slot >= endslot) { 1278 continue; 1279 } 1280 1281 /* 1282 * process the page, 1283 * the start over on this object 1284 * since the swhash elt 1285 * may have been freed. 1286 */ 1287 1288 rv = uao_pagein_page(aobj, 1289 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i); 1290 if (rv) { 1291 return rv; 1292 } 1293 goto restart; 1294 } 1295 } 1296 } 1297 } else { 1298 int i; 1299 1300 for (i = 0; i < aobj->u_pages; i++) { 1301 int slot = aobj->u_swslots[i]; 1302 1303 /* 1304 * if the slot isn't in range, skip it 1305 */ 1306 1307 if (slot < startslot || slot >= endslot) { 1308 continue; 1309 } 1310 1311 /* 1312 * process the page. 1313 */ 1314 1315 rv = uao_pagein_page(aobj, i); 1316 if (rv) { 1317 return rv; 1318 } 1319 } 1320 } 1321 1322 return false; 1323 } 1324 1325 /* 1326 * uao_pagein_page: page in a single page from an anonymous UVM object. 1327 * 1328 * => Returns true if pagein was aborted due to lack of memory. 1329 * => Object must be locked and is returned locked. 1330 */ 1331 1332 static bool 1333 uao_pagein_page(struct uvm_aobj *aobj, int pageidx) 1334 { 1335 struct uvm_object *uobj = &aobj->u_obj; 1336 struct vm_page *pg; 1337 int rv, npages; 1338 1339 pg = NULL; 1340 npages = 1; 1341 1342 KASSERT(mutex_owned(uobj->vmobjlock)); 1343 rv = uao_get(uobj, pageidx << PAGE_SHIFT, &pg, &npages, 1344 0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO); 1345 1346 /* 1347 * relock and finish up. 1348 */ 1349 1350 mutex_enter(uobj->vmobjlock); 1351 switch (rv) { 1352 case 0: 1353 break; 1354 1355 case EIO: 1356 case ERESTART: 1357 1358 /* 1359 * nothing more to do on errors. 1360 * ERESTART can only mean that the anon was freed, 1361 * so again there's nothing to do. 1362 */ 1363 1364 return false; 1365 1366 default: 1367 return true; 1368 } 1369 1370 /* 1371 * ok, we've got the page now. 1372 * mark it as dirty, clear its swslot and un-busy it. 1373 */ 1374 uao_dropswap(&aobj->u_obj, pageidx); 1375 1376 /* 1377 * make sure it's on a page queue. 1378 */ 1379 mutex_enter(&uvm_pageqlock); 1380 if (pg->wire_count == 0) 1381 uvm_pageenqueue(pg); 1382 mutex_exit(&uvm_pageqlock); 1383 1384 if (pg->flags & PG_WANTED) { 1385 wakeup(pg); 1386 } 1387 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE); 1388 UVM_PAGE_OWN(pg, NULL); 1389 1390 return false; 1391 } 1392 1393 /* 1394 * uao_dropswap_range: drop swapslots in the range. 1395 * 1396 * => aobj must be locked and is returned locked. 1397 * => start is inclusive. end is exclusive. 1398 */ 1399 1400 void 1401 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end) 1402 { 1403 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 1404 int swpgonlydelta = 0; 1405 1406 KASSERT(mutex_owned(uobj->vmobjlock)); 1407 1408 if (end == 0) { 1409 end = INT64_MAX; 1410 } 1411 1412 if (UAO_USES_SWHASH(aobj)) { 1413 int i, hashbuckets = aobj->u_swhashmask + 1; 1414 voff_t taghi; 1415 voff_t taglo; 1416 1417 taglo = UAO_SWHASH_ELT_TAG(start); 1418 taghi = UAO_SWHASH_ELT_TAG(end); 1419 1420 for (i = 0; i < hashbuckets; i++) { 1421 struct uao_swhash_elt *elt, *next; 1422 1423 for (elt = LIST_FIRST(&aobj->u_swhash[i]); 1424 elt != NULL; 1425 elt = next) { 1426 int startidx, endidx; 1427 int j; 1428 1429 next = LIST_NEXT(elt, list); 1430 1431 if (elt->tag < taglo || taghi < elt->tag) { 1432 continue; 1433 } 1434 1435 if (elt->tag == taglo) { 1436 startidx = 1437 UAO_SWHASH_ELT_PAGESLOT_IDX(start); 1438 } else { 1439 startidx = 0; 1440 } 1441 1442 if (elt->tag == taghi) { 1443 endidx = 1444 UAO_SWHASH_ELT_PAGESLOT_IDX(end); 1445 } else { 1446 endidx = UAO_SWHASH_CLUSTER_SIZE; 1447 } 1448 1449 for (j = startidx; j < endidx; j++) { 1450 int slot = elt->slots[j]; 1451 1452 KASSERT(uvm_pagelookup(&aobj->u_obj, 1453 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt) 1454 + j) << PAGE_SHIFT) == NULL); 1455 if (slot > 0) { 1456 uvm_swap_free(slot, 1); 1457 swpgonlydelta++; 1458 KASSERT(elt->count > 0); 1459 elt->slots[j] = 0; 1460 elt->count--; 1461 } 1462 } 1463 1464 if (elt->count == 0) { 1465 LIST_REMOVE(elt, list); 1466 pool_put(&uao_swhash_elt_pool, elt); 1467 } 1468 } 1469 } 1470 } else { 1471 int i; 1472 1473 if (aobj->u_pages < end) { 1474 end = aobj->u_pages; 1475 } 1476 for (i = start; i < end; i++) { 1477 int slot = aobj->u_swslots[i]; 1478 1479 if (slot > 0) { 1480 uvm_swap_free(slot, 1); 1481 swpgonlydelta++; 1482 } 1483 } 1484 } 1485 1486 /* 1487 * adjust the counter of pages only in swap for all 1488 * the swap slots we've freed. 1489 */ 1490 1491 if (swpgonlydelta > 0) { 1492 mutex_enter(&uvm_swap_data_lock); 1493 KASSERT(uvmexp.swpgonly >= swpgonlydelta); 1494 uvmexp.swpgonly -= swpgonlydelta; 1495 mutex_exit(&uvm_swap_data_lock); 1496 } 1497 } 1498 1499 #endif /* defined(VMSWAP) */ 1500