xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: uvm_aobj.c,v 1.104 2008/10/18 03:46:22 rmind Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.104 2008/10/18 03:46:22 rmind Exp $");
47 
48 #include "opt_uvmhist.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/pool.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
61  * to keeping the list of resident pages, it also keeps a list of
62  * allocated swap blocks.  depending on the size of the aobj this list
63  * of allocated swap blocks is either stored in an array (small objects)
64  * or in a hash table (large objects).
65  */
66 
67 /*
68  * local structures
69  */
70 
71 /*
72  * for hash tables, we break the address space of the aobj into blocks
73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
74  * be a power of two.
75  */
76 
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79 
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83 
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86 
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90 
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94 
95 /*
96  * the swhash hash function
97  */
98 
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 			    & (AOBJ)->u_swhashmask)])
102 
103 /*
104  * the swhash threshhold determines if we will use an array or a
105  * hash table to store the list of allocated swap blocks.
106  */
107 
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
111 
112 /*
113  * the number of buckets in a swhash, with an upper bound
114  */
115 
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 	     UAO_SWHASH_MAXBUCKETS))
120 
121 /*
122  * uao_swhash_elt: when a hash table is being used, this structure defines
123  * the format of an entry in the bucket list.
124  */
125 
126 struct uao_swhash_elt {
127 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
128 	voff_t tag;				/* our 'tag' */
129 	int count;				/* our number of active slots */
130 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
131 };
132 
133 /*
134  * uao_swhash: the swap hash table structure
135  */
136 
137 LIST_HEAD(uao_swhash, uao_swhash_elt);
138 
139 /*
140  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
141  * NOTE: Pages for this pool must not come from a pageable kernel map!
142  */
143 static POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
144     "uaoeltpl", NULL, IPL_VM);
145 
146 static struct pool_cache uvm_aobj_cache;
147 
148 /*
149  * uvm_aobj: the actual anon-backed uvm_object
150  *
151  * => the uvm_object is at the top of the structure, this allows
152  *   (struct uvm_aobj *) == (struct uvm_object *)
153  * => only one of u_swslots and u_swhash is used in any given aobj
154  */
155 
156 struct uvm_aobj {
157 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
158 	pgoff_t u_pages;	 /* number of pages in entire object */
159 	int u_flags;		 /* the flags (see uvm_aobj.h) */
160 	int *u_swslots;		 /* array of offset->swapslot mappings */
161 				 /*
162 				  * hashtable of offset->swapslot mappings
163 				  * (u_swhash is an array of bucket heads)
164 				  */
165 	struct uao_swhash *u_swhash;
166 	u_long u_swhashmask;		/* mask for hashtable */
167 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
168 };
169 
170 /*
171  * local functions
172  */
173 
174 static void	uao_free(struct uvm_aobj *);
175 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
176 		    int *, int, vm_prot_t, int, int);
177 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
178 
179 #if defined(VMSWAP)
180 static struct uao_swhash_elt *uao_find_swhash_elt
181     (struct uvm_aobj *, int, bool);
182 
183 static bool uao_pagein(struct uvm_aobj *, int, int);
184 static bool uao_pagein_page(struct uvm_aobj *, int);
185 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
186 #endif /* defined(VMSWAP) */
187 
188 /*
189  * aobj_pager
190  *
191  * note that some functions (e.g. put) are handled elsewhere
192  */
193 
194 const struct uvm_pagerops aobj_pager = {
195 	.pgo_reference = uao_reference,
196 	.pgo_detach = uao_detach,
197 	.pgo_get = uao_get,
198 	.pgo_put = uao_put,
199 };
200 
201 /*
202  * uao_list: global list of active aobjs, locked by uao_list_lock
203  */
204 
205 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
206 static kmutex_t uao_list_lock;
207 
208 /*
209  * functions
210  */
211 
212 /*
213  * hash table/array related functions
214  */
215 
216 #if defined(VMSWAP)
217 
218 /*
219  * uao_find_swhash_elt: find (or create) a hash table entry for a page
220  * offset.
221  *
222  * => the object should be locked by the caller
223  */
224 
225 static struct uao_swhash_elt *
226 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
227 {
228 	struct uao_swhash *swhash;
229 	struct uao_swhash_elt *elt;
230 	voff_t page_tag;
231 
232 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
233 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
234 
235 	/*
236 	 * now search the bucket for the requested tag
237 	 */
238 
239 	LIST_FOREACH(elt, swhash, list) {
240 		if (elt->tag == page_tag) {
241 			return elt;
242 		}
243 	}
244 	if (!create) {
245 		return NULL;
246 	}
247 
248 	/*
249 	 * allocate a new entry for the bucket and init/insert it in
250 	 */
251 
252 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
253 	if (elt == NULL) {
254 		return NULL;
255 	}
256 	LIST_INSERT_HEAD(swhash, elt, list);
257 	elt->tag = page_tag;
258 	elt->count = 0;
259 	memset(elt->slots, 0, sizeof(elt->slots));
260 	return elt;
261 }
262 
263 /*
264  * uao_find_swslot: find the swap slot number for an aobj/pageidx
265  *
266  * => object must be locked by caller
267  */
268 
269 int
270 uao_find_swslot(struct uvm_object *uobj, int pageidx)
271 {
272 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
273 	struct uao_swhash_elt *elt;
274 
275 	/*
276 	 * if noswap flag is set, then we never return a slot
277 	 */
278 
279 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
280 		return(0);
281 
282 	/*
283 	 * if hashing, look in hash table.
284 	 */
285 
286 	if (UAO_USES_SWHASH(aobj)) {
287 		elt = uao_find_swhash_elt(aobj, pageidx, false);
288 		if (elt)
289 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
290 		else
291 			return(0);
292 	}
293 
294 	/*
295 	 * otherwise, look in the array
296 	 */
297 
298 	return(aobj->u_swslots[pageidx]);
299 }
300 
301 /*
302  * uao_set_swslot: set the swap slot for a page in an aobj.
303  *
304  * => setting a slot to zero frees the slot
305  * => object must be locked by caller
306  * => we return the old slot number, or -1 if we failed to allocate
307  *    memory to record the new slot number
308  */
309 
310 int
311 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
312 {
313 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
314 	struct uao_swhash_elt *elt;
315 	int oldslot;
316 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
317 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
318 	    aobj, pageidx, slot, 0);
319 
320 	/*
321 	 * if noswap flag is set, then we can't set a non-zero slot.
322 	 */
323 
324 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
325 		if (slot == 0)
326 			return(0);
327 
328 		printf("uao_set_swslot: uobj = %p\n", uobj);
329 		panic("uao_set_swslot: NOSWAP object");
330 	}
331 
332 	/*
333 	 * are we using a hash table?  if so, add it in the hash.
334 	 */
335 
336 	if (UAO_USES_SWHASH(aobj)) {
337 
338 		/*
339 		 * Avoid allocating an entry just to free it again if
340 		 * the page had not swap slot in the first place, and
341 		 * we are freeing.
342 		 */
343 
344 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
345 		if (elt == NULL) {
346 			return slot ? -1 : 0;
347 		}
348 
349 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
350 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
351 
352 		/*
353 		 * now adjust the elt's reference counter and free it if we've
354 		 * dropped it to zero.
355 		 */
356 
357 		if (slot) {
358 			if (oldslot == 0)
359 				elt->count++;
360 		} else {
361 			if (oldslot)
362 				elt->count--;
363 
364 			if (elt->count == 0) {
365 				LIST_REMOVE(elt, list);
366 				pool_put(&uao_swhash_elt_pool, elt);
367 			}
368 		}
369 	} else {
370 		/* we are using an array */
371 		oldslot = aobj->u_swslots[pageidx];
372 		aobj->u_swslots[pageidx] = slot;
373 	}
374 	return (oldslot);
375 }
376 
377 #endif /* defined(VMSWAP) */
378 
379 /*
380  * end of hash/array functions
381  */
382 
383 /*
384  * uao_free: free all resources held by an aobj, and then free the aobj
385  *
386  * => the aobj should be dead
387  */
388 
389 static void
390 uao_free(struct uvm_aobj *aobj)
391 {
392 	int swpgonlydelta = 0;
393 
394 
395 #if defined(VMSWAP)
396 	uao_dropswap_range1(aobj, 0, 0);
397 #endif /* defined(VMSWAP) */
398 
399 	mutex_exit(&aobj->u_obj.vmobjlock);
400 
401 #if defined(VMSWAP)
402 	if (UAO_USES_SWHASH(aobj)) {
403 
404 		/*
405 		 * free the hash table itself.
406 		 */
407 
408 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
409 	} else {
410 
411 		/*
412 		 * free the array itsself.
413 		 */
414 
415 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
416 	}
417 #endif /* defined(VMSWAP) */
418 
419 	/*
420 	 * finally free the aobj itself
421 	 */
422 
423 	UVM_OBJ_DESTROY(&aobj->u_obj);
424 	pool_cache_put(&uvm_aobj_cache, aobj);
425 
426 	/*
427 	 * adjust the counter of pages only in swap for all
428 	 * the swap slots we've freed.
429 	 */
430 
431 	if (swpgonlydelta > 0) {
432 		mutex_enter(&uvm_swap_data_lock);
433 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
434 		uvmexp.swpgonly -= swpgonlydelta;
435 		mutex_exit(&uvm_swap_data_lock);
436 	}
437 }
438 
439 /*
440  * pager functions
441  */
442 
443 /*
444  * uao_create: create an aobj of the given size and return its uvm_object.
445  *
446  * => for normal use, flags are always zero
447  * => for the kernel object, the flags are:
448  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
449  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
450  */
451 
452 struct uvm_object *
453 uao_create(vsize_t size, int flags)
454 {
455 	static struct uvm_aobj kernel_object_store;
456 	static int kobj_alloced = 0;
457 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
458 	struct uvm_aobj *aobj;
459 	int refs;
460 
461 	/*
462 	 * malloc a new aobj unless we are asked for the kernel object
463 	 */
464 
465 	if (flags & UAO_FLAG_KERNOBJ) {
466 		KASSERT(!kobj_alloced);
467 		aobj = &kernel_object_store;
468 		aobj->u_pages = pages;
469 		aobj->u_flags = UAO_FLAG_NOSWAP;
470 		refs = UVM_OBJ_KERN;
471 		kobj_alloced = UAO_FLAG_KERNOBJ;
472 	} else if (flags & UAO_FLAG_KERNSWAP) {
473 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
474 		aobj = &kernel_object_store;
475 		kobj_alloced = UAO_FLAG_KERNSWAP;
476 		refs = 0xdeadbeaf; /* XXX: gcc */
477 	} else {
478 		aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
479 		aobj->u_pages = pages;
480 		aobj->u_flags = 0;
481 		refs = 1;
482 	}
483 
484 	/*
485  	 * allocate hash/array if necessary
486  	 *
487  	 * note: in the KERNSWAP case no need to worry about locking since
488  	 * we are still booting we should be the only thread around.
489  	 */
490 
491 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
492 #if defined(VMSWAP)
493 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
494 
495 		/* allocate hash table or array depending on object size */
496 		if (UAO_USES_SWHASH(aobj)) {
497 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
498 			    HASH_LIST, kernswap ? false : true,
499 			    &aobj->u_swhashmask);
500 			if (aobj->u_swhash == NULL)
501 				panic("uao_create: hashinit swhash failed");
502 		} else {
503 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
504 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
505 			if (aobj->u_swslots == NULL)
506 				panic("uao_create: malloc swslots failed");
507 		}
508 #endif /* defined(VMSWAP) */
509 
510 		if (flags) {
511 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
512 			return(&aobj->u_obj);
513 		}
514 	}
515 
516 	/*
517  	 * init aobj fields
518  	 */
519 
520 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
521 
522 	/*
523  	 * now that aobj is ready, add it to the global list
524  	 */
525 
526 	mutex_enter(&uao_list_lock);
527 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
528 	mutex_exit(&uao_list_lock);
529 	return(&aobj->u_obj);
530 }
531 
532 
533 
534 /*
535  * uao_init: set up aobj pager subsystem
536  *
537  * => called at boot time from uvm_pager_init()
538  */
539 
540 void
541 uao_init(void)
542 {
543 	static int uao_initialized;
544 
545 	if (uao_initialized)
546 		return;
547 	uao_initialized = true;
548 	LIST_INIT(&uao_list);
549 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
550 	pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
551 	    0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
552 }
553 
554 /*
555  * uao_reference: add a ref to an aobj
556  *
557  * => aobj must be unlocked
558  * => just lock it and call the locked version
559  */
560 
561 void
562 uao_reference(struct uvm_object *uobj)
563 {
564 
565 	/*
566  	 * kernel_object already has plenty of references, leave it alone.
567  	 */
568 
569 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
570 		return;
571 
572 	mutex_enter(&uobj->vmobjlock);
573 	uao_reference_locked(uobj);
574 	mutex_exit(&uobj->vmobjlock);
575 }
576 
577 /*
578  * uao_reference_locked: add a ref to an aobj that is already locked
579  *
580  * => aobj must be locked
581  * this needs to be separate from the normal routine
582  * since sometimes we need to add a reference to an aobj when
583  * it's already locked.
584  */
585 
586 void
587 uao_reference_locked(struct uvm_object *uobj)
588 {
589 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
590 
591 	/*
592  	 * kernel_object already has plenty of references, leave it alone.
593  	 */
594 
595 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
596 		return;
597 
598 	uobj->uo_refs++;
599 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
600 		    uobj, uobj->uo_refs,0,0);
601 }
602 
603 /*
604  * uao_detach: drop a reference to an aobj
605  *
606  * => aobj must be unlocked
607  * => just lock it and call the locked version
608  */
609 
610 void
611 uao_detach(struct uvm_object *uobj)
612 {
613 
614 	/*
615  	 * detaching from kernel_object is a noop.
616  	 */
617 
618 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
619 		return;
620 
621 	mutex_enter(&uobj->vmobjlock);
622 	uao_detach_locked(uobj);
623 }
624 
625 /*
626  * uao_detach_locked: drop a reference to an aobj
627  *
628  * => aobj must be locked, and is unlocked (or freed) upon return.
629  * this needs to be separate from the normal routine
630  * since sometimes we need to detach from an aobj when
631  * it's already locked.
632  */
633 
634 void
635 uao_detach_locked(struct uvm_object *uobj)
636 {
637 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
638 	struct vm_page *pg;
639 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
640 
641 	/*
642  	 * detaching from kernel_object is a noop.
643  	 */
644 
645 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
646 		mutex_exit(&uobj->vmobjlock);
647 		return;
648 	}
649 
650 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
651 	uobj->uo_refs--;
652 	if (uobj->uo_refs) {
653 		mutex_exit(&uobj->vmobjlock);
654 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
655 		return;
656 	}
657 
658 	/*
659  	 * remove the aobj from the global list.
660  	 */
661 
662 	mutex_enter(&uao_list_lock);
663 	LIST_REMOVE(aobj, u_list);
664 	mutex_exit(&uao_list_lock);
665 
666 	/*
667  	 * free all the pages left in the aobj.  for each page,
668 	 * when the page is no longer busy (and thus after any disk i/o that
669 	 * it's involved in is complete), release any swap resources and
670 	 * free the page itself.
671  	 */
672 
673 	mutex_enter(&uvm_pageqlock);
674 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
675 		pmap_page_protect(pg, VM_PROT_NONE);
676 		if (pg->flags & PG_BUSY) {
677 			pg->flags |= PG_WANTED;
678 			mutex_exit(&uvm_pageqlock);
679 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
680 			    "uao_det", 0);
681 			mutex_enter(&uobj->vmobjlock);
682 			mutex_enter(&uvm_pageqlock);
683 			continue;
684 		}
685 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
686 		uvm_pagefree(pg);
687 	}
688 	mutex_exit(&uvm_pageqlock);
689 
690 	/*
691  	 * finally, free the aobj itself.
692  	 */
693 
694 	uao_free(aobj);
695 }
696 
697 /*
698  * uao_put: flush pages out of a uvm object
699  *
700  * => object should be locked by caller.  we may _unlock_ the object
701  *	if (and only if) we need to clean a page (PGO_CLEANIT).
702  *	XXXJRT Currently, however, we don't.  In the case of cleaning
703  *	XXXJRT a page, we simply just deactivate it.  Should probably
704  *	XXXJRT handle this better, in the future (although "flushing"
705  *	XXXJRT anonymous memory isn't terribly important).
706  * => if PGO_CLEANIT is not set, then we will neither unlock the object
707  *	or block.
708  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
709  *	for flushing.
710  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
711  *	that new pages are inserted on the tail end of the list.  thus,
712  *	we can make a complete pass through the object in one go by starting
713  *	at the head and working towards the tail (new pages are put in
714  *	front of us).
715  * => NOTE: we are allowed to lock the page queues, so the caller
716  *	must not be holding the lock on them [e.g. pagedaemon had
717  *	better not call us with the queues locked]
718  * => we return 0 unless we encountered some sort of I/O error
719  *	XXXJRT currently never happens, as we never directly initiate
720  *	XXXJRT I/O
721  *
722  * note on page traversal:
723  *	we can traverse the pages in an object either by going down the
724  *	linked list in "uobj->memq", or we can go over the address range
725  *	by page doing hash table lookups for each address.  depending
726  *	on how many pages are in the object it may be cheaper to do one
727  *	or the other.  we set "by_list" to true if we are using memq.
728  *	if the cost of a hash lookup was equal to the cost of the list
729  *	traversal we could compare the number of pages in the start->stop
730  *	range to the total number of pages in the object.  however, it
731  *	seems that a hash table lookup is more expensive than the linked
732  *	list traversal, so we multiply the number of pages in the
733  *	start->stop range by a penalty which we define below.
734  */
735 
736 static int
737 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
738 {
739 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
740 	struct vm_page *pg, *nextpg, curmp, endmp;
741 	bool by_list;
742 	voff_t curoff;
743 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
744 
745 	KASSERT(mutex_owned(&uobj->vmobjlock));
746 
747 	curoff = 0;
748 	if (flags & PGO_ALLPAGES) {
749 		start = 0;
750 		stop = aobj->u_pages << PAGE_SHIFT;
751 		by_list = true;		/* always go by the list */
752 	} else {
753 		start = trunc_page(start);
754 		if (stop == 0) {
755 			stop = aobj->u_pages << PAGE_SHIFT;
756 		} else {
757 			stop = round_page(stop);
758 		}
759 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
760 			printf("uao_flush: strange, got an out of range "
761 			    "flush (fixed)\n");
762 			stop = aobj->u_pages << PAGE_SHIFT;
763 		}
764 		by_list = (uobj->uo_npages <=
765 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
766 	}
767 	UVMHIST_LOG(maphist,
768 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
769 	    start, stop, by_list, flags);
770 
771 	/*
772 	 * Don't need to do any work here if we're not freeing
773 	 * or deactivating pages.
774 	 */
775 
776 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
777 		mutex_exit(&uobj->vmobjlock);
778 		return 0;
779 	}
780 
781 	/*
782 	 * Initialize the marker pages.  See the comment in
783 	 * genfs_putpages() also.
784 	 */
785 
786 	curmp.uobject = uobj;
787 	curmp.offset = (voff_t)-1;
788 	curmp.flags = PG_BUSY;
789 	endmp.uobject = uobj;
790 	endmp.offset = (voff_t)-1;
791 	endmp.flags = PG_BUSY;
792 
793 	/*
794 	 * now do it.  note: we must update nextpg in the body of loop or we
795 	 * will get stuck.  we need to use nextpg if we'll traverse the list
796 	 * because we may free "pg" before doing the next loop.
797 	 */
798 
799 	if (by_list) {
800 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
801 		nextpg = TAILQ_FIRST(&uobj->memq);
802 		uvm_lwp_hold(curlwp);
803 	} else {
804 		curoff = start;
805 		nextpg = NULL;	/* Quell compiler warning */
806 	}
807 
808 	/* locked: uobj */
809 	for (;;) {
810 		if (by_list) {
811 			pg = nextpg;
812 			if (pg == &endmp)
813 				break;
814 			nextpg = TAILQ_NEXT(pg, listq.queue);
815 			if (pg->offset < start || pg->offset >= stop)
816 				continue;
817 		} else {
818 			if (curoff < stop) {
819 				pg = uvm_pagelookup(uobj, curoff);
820 				curoff += PAGE_SIZE;
821 			} else
822 				break;
823 			if (pg == NULL)
824 				continue;
825 		}
826 
827 		/*
828 		 * wait and try again if the page is busy.
829 		 */
830 
831 		if (pg->flags & PG_BUSY) {
832 			if (by_list) {
833 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
834 			}
835 			pg->flags |= PG_WANTED;
836 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
837 			    "uao_put", 0);
838 			mutex_enter(&uobj->vmobjlock);
839 			if (by_list) {
840 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
841 				TAILQ_REMOVE(&uobj->memq, &curmp,
842 				    listq.queue);
843 			} else
844 				curoff -= PAGE_SIZE;
845 			continue;
846 		}
847 
848 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
849 
850 		/*
851 		 * XXX In these first 3 cases, we always just
852 		 * XXX deactivate the page.  We may want to
853 		 * XXX handle the different cases more specifically
854 		 * XXX in the future.
855 		 */
856 
857 		case PGO_CLEANIT|PGO_FREE:
858 		case PGO_CLEANIT|PGO_DEACTIVATE:
859 		case PGO_DEACTIVATE:
860  deactivate_it:
861 			mutex_enter(&uvm_pageqlock);
862 			/* skip the page if it's wired */
863 			if (pg->wire_count == 0) {
864 				uvm_pagedeactivate(pg);
865 			}
866 			mutex_exit(&uvm_pageqlock);
867 			break;
868 
869 		case PGO_FREE:
870 			/*
871 			 * If there are multiple references to
872 			 * the object, just deactivate the page.
873 			 */
874 
875 			if (uobj->uo_refs > 1)
876 				goto deactivate_it;
877 
878 			/*
879 			 * free the swap slot and the page.
880 			 */
881 
882 			pmap_page_protect(pg, VM_PROT_NONE);
883 
884 			/*
885 			 * freeing swapslot here is not strictly necessary.
886 			 * however, leaving it here doesn't save much
887 			 * because we need to update swap accounting anyway.
888 			 */
889 
890 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
891 			mutex_enter(&uvm_pageqlock);
892 			uvm_pagefree(pg);
893 			mutex_exit(&uvm_pageqlock);
894 			break;
895 
896 		default:
897 			panic("%s: impossible", __func__);
898 		}
899 	}
900 	if (by_list) {
901 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
902 		uvm_lwp_rele(curlwp);
903 	}
904 	mutex_exit(&uobj->vmobjlock);
905 	return 0;
906 }
907 
908 /*
909  * uao_get: fetch me a page
910  *
911  * we have three cases:
912  * 1: page is resident     -> just return the page.
913  * 2: page is zero-fill    -> allocate a new page and zero it.
914  * 3: page is swapped out  -> fetch the page from swap.
915  *
916  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
917  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
918  * then we will need to return EBUSY.
919  *
920  * => prefer map unlocked (not required)
921  * => object must be locked!  we will _unlock_ it before starting any I/O.
922  * => flags: PGO_ALLPAGES: get all of the pages
923  *           PGO_LOCKED: fault data structures are locked
924  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
925  * => NOTE: caller must check for released pages!!
926  */
927 
928 static int
929 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
930     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
931 {
932 #if defined(VMSWAP)
933 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
934 #endif /* defined(VMSWAP) */
935 	voff_t current_offset;
936 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
937 	int lcv, gotpages, maxpages, swslot, pageidx;
938 	bool done;
939 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
940 
941 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
942 		    (struct uvm_aobj *)uobj, offset, flags,0);
943 
944 	/*
945  	 * get number of pages
946  	 */
947 
948 	maxpages = *npagesp;
949 
950 	/*
951  	 * step 1: handled the case where fault data structures are locked.
952  	 */
953 
954 	if (flags & PGO_LOCKED) {
955 
956 		/*
957  		 * step 1a: get pages that are already resident.   only do
958 		 * this if the data structures are locked (i.e. the first
959 		 * time through).
960  		 */
961 
962 		done = true;	/* be optimistic */
963 		gotpages = 0;	/* # of pages we got so far */
964 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
965 		    lcv++, current_offset += PAGE_SIZE) {
966 			/* do we care about this page?  if not, skip it */
967 			if (pps[lcv] == PGO_DONTCARE)
968 				continue;
969 			ptmp = uvm_pagelookup(uobj, current_offset);
970 
971 			/*
972  			 * if page is new, attempt to allocate the page,
973 			 * zero-fill'd.
974  			 */
975 
976 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
977 			    current_offset >> PAGE_SHIFT) == 0) {
978 				ptmp = uvm_pagealloc(uobj, current_offset,
979 				    NULL, UVM_PGA_ZERO);
980 				if (ptmp) {
981 					/* new page */
982 					ptmp->flags &= ~(PG_FAKE);
983 					ptmp->pqflags |= PQ_AOBJ;
984 					goto gotpage;
985 				}
986 			}
987 
988 			/*
989 			 * to be useful must get a non-busy page
990 			 */
991 
992 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
993 				if (lcv == centeridx ||
994 				    (flags & PGO_ALLPAGES) != 0)
995 					/* need to do a wait or I/O! */
996 					done = false;
997 					continue;
998 			}
999 
1000 			/*
1001 			 * useful page: busy/lock it and plug it in our
1002 			 * result array
1003 			 */
1004 
1005 			/* caller must un-busy this page */
1006 			ptmp->flags |= PG_BUSY;
1007 			UVM_PAGE_OWN(ptmp, "uao_get1");
1008 gotpage:
1009 			pps[lcv] = ptmp;
1010 			gotpages++;
1011 		}
1012 
1013 		/*
1014  		 * step 1b: now we've either done everything needed or we
1015 		 * to unlock and do some waiting or I/O.
1016  		 */
1017 
1018 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1019 		*npagesp = gotpages;
1020 		if (done)
1021 			return 0;
1022 		else
1023 			return EBUSY;
1024 	}
1025 
1026 	/*
1027  	 * step 2: get non-resident or busy pages.
1028  	 * object is locked.   data structures are unlocked.
1029  	 */
1030 
1031 	if ((flags & PGO_SYNCIO) == 0) {
1032 		goto done;
1033 	}
1034 
1035 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1036 	    lcv++, current_offset += PAGE_SIZE) {
1037 
1038 		/*
1039 		 * - skip over pages we've already gotten or don't want
1040 		 * - skip over pages we don't _have_ to get
1041 		 */
1042 
1043 		if (pps[lcv] != NULL ||
1044 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1045 			continue;
1046 
1047 		pageidx = current_offset >> PAGE_SHIFT;
1048 
1049 		/*
1050  		 * we have yet to locate the current page (pps[lcv]).   we
1051 		 * first look for a page that is already at the current offset.
1052 		 * if we find a page, we check to see if it is busy or
1053 		 * released.  if that is the case, then we sleep on the page
1054 		 * until it is no longer busy or released and repeat the lookup.
1055 		 * if the page we found is neither busy nor released, then we
1056 		 * busy it (so we own it) and plug it into pps[lcv].   this
1057 		 * 'break's the following while loop and indicates we are
1058 		 * ready to move on to the next page in the "lcv" loop above.
1059  		 *
1060  		 * if we exit the while loop with pps[lcv] still set to NULL,
1061 		 * then it means that we allocated a new busy/fake/clean page
1062 		 * ptmp in the object and we need to do I/O to fill in the data.
1063  		 */
1064 
1065 		/* top of "pps" while loop */
1066 		while (pps[lcv] == NULL) {
1067 			/* look for a resident page */
1068 			ptmp = uvm_pagelookup(uobj, current_offset);
1069 
1070 			/* not resident?   allocate one now (if we can) */
1071 			if (ptmp == NULL) {
1072 
1073 				ptmp = uvm_pagealloc(uobj, current_offset,
1074 				    NULL, 0);
1075 
1076 				/* out of RAM? */
1077 				if (ptmp == NULL) {
1078 					mutex_exit(&uobj->vmobjlock);
1079 					UVMHIST_LOG(pdhist,
1080 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1081 					uvm_wait("uao_getpage");
1082 					mutex_enter(&uobj->vmobjlock);
1083 					continue;
1084 				}
1085 
1086 				/*
1087 				 * safe with PQ's unlocked: because we just
1088 				 * alloc'd the page
1089 				 */
1090 
1091 				ptmp->pqflags |= PQ_AOBJ;
1092 
1093 				/*
1094 				 * got new page ready for I/O.  break pps while
1095 				 * loop.  pps[lcv] is still NULL.
1096 				 */
1097 
1098 				break;
1099 			}
1100 
1101 			/* page is there, see if we need to wait on it */
1102 			if ((ptmp->flags & PG_BUSY) != 0) {
1103 				ptmp->flags |= PG_WANTED;
1104 				UVMHIST_LOG(pdhist,
1105 				    "sleeping, ptmp->flags 0x%x\n",
1106 				    ptmp->flags,0,0,0);
1107 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1108 				    false, "uao_get", 0);
1109 				mutex_enter(&uobj->vmobjlock);
1110 				continue;
1111 			}
1112 
1113 			/*
1114  			 * if we get here then the page has become resident and
1115 			 * unbusy between steps 1 and 2.  we busy it now (so we
1116 			 * own it) and set pps[lcv] (so that we exit the while
1117 			 * loop).
1118  			 */
1119 
1120 			/* we own it, caller must un-busy */
1121 			ptmp->flags |= PG_BUSY;
1122 			UVM_PAGE_OWN(ptmp, "uao_get2");
1123 			pps[lcv] = ptmp;
1124 		}
1125 
1126 		/*
1127  		 * if we own the valid page at the correct offset, pps[lcv] will
1128  		 * point to it.   nothing more to do except go to the next page.
1129  		 */
1130 
1131 		if (pps[lcv])
1132 			continue;			/* next lcv */
1133 
1134 		/*
1135  		 * we have a "fake/busy/clean" page that we just allocated.
1136  		 * do the needed "i/o", either reading from swap or zeroing.
1137  		 */
1138 
1139 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1140 
1141 		/*
1142  		 * just zero the page if there's nothing in swap.
1143  		 */
1144 
1145 		if (swslot == 0) {
1146 
1147 			/*
1148 			 * page hasn't existed before, just zero it.
1149 			 */
1150 
1151 			uvm_pagezero(ptmp);
1152 		} else {
1153 #if defined(VMSWAP)
1154 			int error;
1155 
1156 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1157 			     swslot, 0,0,0);
1158 
1159 			/*
1160 			 * page in the swapped-out page.
1161 			 * unlock object for i/o, relock when done.
1162 			 */
1163 
1164 			mutex_exit(&uobj->vmobjlock);
1165 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1166 			mutex_enter(&uobj->vmobjlock);
1167 
1168 			/*
1169 			 * I/O done.  check for errors.
1170 			 */
1171 
1172 			if (error != 0) {
1173 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1174 				    error,0,0,0);
1175 				if (ptmp->flags & PG_WANTED)
1176 					wakeup(ptmp);
1177 
1178 				/*
1179 				 * remove the swap slot from the aobj
1180 				 * and mark the aobj as having no real slot.
1181 				 * don't free the swap slot, thus preventing
1182 				 * it from being used again.
1183 				 */
1184 
1185 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1186 							SWSLOT_BAD);
1187 				if (swslot > 0) {
1188 					uvm_swap_markbad(swslot, 1);
1189 				}
1190 
1191 				mutex_enter(&uvm_pageqlock);
1192 				uvm_pagefree(ptmp);
1193 				mutex_exit(&uvm_pageqlock);
1194 				mutex_exit(&uobj->vmobjlock);
1195 				return error;
1196 			}
1197 #else /* defined(VMSWAP) */
1198 			panic("%s: pagein", __func__);
1199 #endif /* defined(VMSWAP) */
1200 		}
1201 
1202 		if ((access_type & VM_PROT_WRITE) == 0) {
1203 			ptmp->flags |= PG_CLEAN;
1204 			pmap_clear_modify(ptmp);
1205 		}
1206 
1207 		/*
1208  		 * we got the page!   clear the fake flag (indicates valid
1209 		 * data now in page) and plug into our result array.   note
1210 		 * that page is still busy.
1211  		 *
1212  		 * it is the callers job to:
1213  		 * => check if the page is released
1214  		 * => unbusy the page
1215  		 * => activate the page
1216  		 */
1217 
1218 		ptmp->flags &= ~PG_FAKE;
1219 		pps[lcv] = ptmp;
1220 	}
1221 
1222 	/*
1223  	 * finally, unlock object and return.
1224  	 */
1225 
1226 done:
1227 	mutex_exit(&uobj->vmobjlock);
1228 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1229 	return 0;
1230 }
1231 
1232 #if defined(VMSWAP)
1233 
1234 /*
1235  * uao_dropswap:  release any swap resources from this aobj page.
1236  *
1237  * => aobj must be locked or have a reference count of 0.
1238  */
1239 
1240 void
1241 uao_dropswap(struct uvm_object *uobj, int pageidx)
1242 {
1243 	int slot;
1244 
1245 	slot = uao_set_swslot(uobj, pageidx, 0);
1246 	if (slot) {
1247 		uvm_swap_free(slot, 1);
1248 	}
1249 }
1250 
1251 /*
1252  * page in every page in every aobj that is paged-out to a range of swslots.
1253  *
1254  * => nothing should be locked.
1255  * => returns true if pagein was aborted due to lack of memory.
1256  */
1257 
1258 bool
1259 uao_swap_off(int startslot, int endslot)
1260 {
1261 	struct uvm_aobj *aobj, *nextaobj;
1262 	bool rv;
1263 
1264 	/*
1265 	 * walk the list of all aobjs.
1266 	 */
1267 
1268 restart:
1269 	mutex_enter(&uao_list_lock);
1270 	for (aobj = LIST_FIRST(&uao_list);
1271 	     aobj != NULL;
1272 	     aobj = nextaobj) {
1273 
1274 		/*
1275 		 * try to get the object lock, start all over if we fail.
1276 		 * most of the time we'll get the aobj lock,
1277 		 * so this should be a rare case.
1278 		 */
1279 
1280 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1281 			mutex_exit(&uao_list_lock);
1282 			/* XXX Better than yielding but inadequate. */
1283 			kpause("livelock", false, 1, NULL);
1284 			goto restart;
1285 		}
1286 
1287 		/*
1288 		 * add a ref to the aobj so it doesn't disappear
1289 		 * while we're working.
1290 		 */
1291 
1292 		uao_reference_locked(&aobj->u_obj);
1293 
1294 		/*
1295 		 * now it's safe to unlock the uao list.
1296 		 */
1297 
1298 		mutex_exit(&uao_list_lock);
1299 
1300 		/*
1301 		 * page in any pages in the swslot range.
1302 		 * if there's an error, abort and return the error.
1303 		 */
1304 
1305 		rv = uao_pagein(aobj, startslot, endslot);
1306 		if (rv) {
1307 			uao_detach_locked(&aobj->u_obj);
1308 			return rv;
1309 		}
1310 
1311 		/*
1312 		 * we're done with this aobj.
1313 		 * relock the list and drop our ref on the aobj.
1314 		 */
1315 
1316 		mutex_enter(&uao_list_lock);
1317 		nextaobj = LIST_NEXT(aobj, u_list);
1318 		uao_detach_locked(&aobj->u_obj);
1319 	}
1320 
1321 	/*
1322 	 * done with traversal, unlock the list
1323 	 */
1324 	mutex_exit(&uao_list_lock);
1325 	return false;
1326 }
1327 
1328 
1329 /*
1330  * page in any pages from aobj in the given range.
1331  *
1332  * => aobj must be locked and is returned locked.
1333  * => returns true if pagein was aborted due to lack of memory.
1334  */
1335 static bool
1336 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1337 {
1338 	bool rv;
1339 
1340 	if (UAO_USES_SWHASH(aobj)) {
1341 		struct uao_swhash_elt *elt;
1342 		int buck;
1343 
1344 restart:
1345 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1346 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1347 			     elt != NULL;
1348 			     elt = LIST_NEXT(elt, list)) {
1349 				int i;
1350 
1351 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1352 					int slot = elt->slots[i];
1353 
1354 					/*
1355 					 * if the slot isn't in range, skip it.
1356 					 */
1357 
1358 					if (slot < startslot ||
1359 					    slot >= endslot) {
1360 						continue;
1361 					}
1362 
1363 					/*
1364 					 * process the page,
1365 					 * the start over on this object
1366 					 * since the swhash elt
1367 					 * may have been freed.
1368 					 */
1369 
1370 					rv = uao_pagein_page(aobj,
1371 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1372 					if (rv) {
1373 						return rv;
1374 					}
1375 					goto restart;
1376 				}
1377 			}
1378 		}
1379 	} else {
1380 		int i;
1381 
1382 		for (i = 0; i < aobj->u_pages; i++) {
1383 			int slot = aobj->u_swslots[i];
1384 
1385 			/*
1386 			 * if the slot isn't in range, skip it
1387 			 */
1388 
1389 			if (slot < startslot || slot >= endslot) {
1390 				continue;
1391 			}
1392 
1393 			/*
1394 			 * process the page.
1395 			 */
1396 
1397 			rv = uao_pagein_page(aobj, i);
1398 			if (rv) {
1399 				return rv;
1400 			}
1401 		}
1402 	}
1403 
1404 	return false;
1405 }
1406 
1407 /*
1408  * page in a page from an aobj.  used for swap_off.
1409  * returns true if pagein was aborted due to lack of memory.
1410  *
1411  * => aobj must be locked and is returned locked.
1412  */
1413 
1414 static bool
1415 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1416 {
1417 	struct vm_page *pg;
1418 	int rv, npages;
1419 
1420 	pg = NULL;
1421 	npages = 1;
1422 	/* locked: aobj */
1423 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1424 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1425 	/* unlocked: aobj */
1426 
1427 	/*
1428 	 * relock and finish up.
1429 	 */
1430 
1431 	mutex_enter(&aobj->u_obj.vmobjlock);
1432 	switch (rv) {
1433 	case 0:
1434 		break;
1435 
1436 	case EIO:
1437 	case ERESTART:
1438 
1439 		/*
1440 		 * nothing more to do on errors.
1441 		 * ERESTART can only mean that the anon was freed,
1442 		 * so again there's nothing to do.
1443 		 */
1444 
1445 		return false;
1446 
1447 	default:
1448 		return true;
1449 	}
1450 
1451 	/*
1452 	 * ok, we've got the page now.
1453 	 * mark it as dirty, clear its swslot and un-busy it.
1454 	 */
1455 	uao_dropswap(&aobj->u_obj, pageidx);
1456 
1457 	/*
1458 	 * make sure it's on a page queue.
1459 	 */
1460 	mutex_enter(&uvm_pageqlock);
1461 	if (pg->wire_count == 0)
1462 		uvm_pageenqueue(pg);
1463 	mutex_exit(&uvm_pageqlock);
1464 
1465 	if (pg->flags & PG_WANTED) {
1466 		wakeup(pg);
1467 	}
1468 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1469 	UVM_PAGE_OWN(pg, NULL);
1470 
1471 	return false;
1472 }
1473 
1474 /*
1475  * uao_dropswap_range: drop swapslots in the range.
1476  *
1477  * => aobj must be locked and is returned locked.
1478  * => start is inclusive.  end is exclusive.
1479  */
1480 
1481 void
1482 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1483 {
1484 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1485 
1486 	KASSERT(mutex_owned(&uobj->vmobjlock));
1487 
1488 	uao_dropswap_range1(aobj, start, end);
1489 }
1490 
1491 static void
1492 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1493 {
1494 	int swpgonlydelta = 0;
1495 
1496 	if (end == 0) {
1497 		end = INT64_MAX;
1498 	}
1499 
1500 	if (UAO_USES_SWHASH(aobj)) {
1501 		int i, hashbuckets = aobj->u_swhashmask + 1;
1502 		voff_t taghi;
1503 		voff_t taglo;
1504 
1505 		taglo = UAO_SWHASH_ELT_TAG(start);
1506 		taghi = UAO_SWHASH_ELT_TAG(end);
1507 
1508 		for (i = 0; i < hashbuckets; i++) {
1509 			struct uao_swhash_elt *elt, *next;
1510 
1511 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1512 			     elt != NULL;
1513 			     elt = next) {
1514 				int startidx, endidx;
1515 				int j;
1516 
1517 				next = LIST_NEXT(elt, list);
1518 
1519 				if (elt->tag < taglo || taghi < elt->tag) {
1520 					continue;
1521 				}
1522 
1523 				if (elt->tag == taglo) {
1524 					startidx =
1525 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1526 				} else {
1527 					startidx = 0;
1528 				}
1529 
1530 				if (elt->tag == taghi) {
1531 					endidx =
1532 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1533 				} else {
1534 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1535 				}
1536 
1537 				for (j = startidx; j < endidx; j++) {
1538 					int slot = elt->slots[j];
1539 
1540 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1541 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1542 					    + j) << PAGE_SHIFT) == NULL);
1543 					if (slot > 0) {
1544 						uvm_swap_free(slot, 1);
1545 						swpgonlydelta++;
1546 						KASSERT(elt->count > 0);
1547 						elt->slots[j] = 0;
1548 						elt->count--;
1549 					}
1550 				}
1551 
1552 				if (elt->count == 0) {
1553 					LIST_REMOVE(elt, list);
1554 					pool_put(&uao_swhash_elt_pool, elt);
1555 				}
1556 			}
1557 		}
1558 	} else {
1559 		int i;
1560 
1561 		if (aobj->u_pages < end) {
1562 			end = aobj->u_pages;
1563 		}
1564 		for (i = start; i < end; i++) {
1565 			int slot = aobj->u_swslots[i];
1566 
1567 			if (slot > 0) {
1568 				uvm_swap_free(slot, 1);
1569 				swpgonlydelta++;
1570 			}
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * adjust the counter of pages only in swap for all
1576 	 * the swap slots we've freed.
1577 	 */
1578 
1579 	if (swpgonlydelta > 0) {
1580 		mutex_enter(&uvm_swap_data_lock);
1581 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1582 		uvmexp.swpgonly -= swpgonlydelta;
1583 		mutex_exit(&uvm_swap_data_lock);
1584 	}
1585 }
1586 
1587 #endif /* defined(VMSWAP) */
1588