xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision 3cec974c61d7fac0a37c0377723a33214a458c8b)
1 /*	$NetBSD: uvm_aobj.c,v 1.40 2001/03/10 22:46:47 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 
46 
47 #include "opt_uvmhist.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/pool.h>
55 #include <sys/kernel.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
61  * to keeping the list of resident pages, it also keeps a list of
62  * allocated swap blocks.  depending on the size of the aobj this list
63  * of allocated swap blocks is either stored in an array (small objects)
64  * or in a hash table (large objects).
65  */
66 
67 /*
68  * local structures
69  */
70 
71 /*
72  * for hash tables, we break the address space of the aobj into blocks
73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
74  * be a power of two.
75  */
76 
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79 
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83 
84 /* given an ELT and a page index, find the swap slot */
85 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
86 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
87 
88 /* given an ELT, return its pageidx base */
89 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
90 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
91 
92 /*
93  * the swhash hash function
94  */
95 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
96 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
97 			    & (AOBJ)->u_swhashmask)])
98 
99 /*
100  * the swhash threshhold determines if we will use an array or a
101  * hash table to store the list of allocated swap blocks.
102  */
103 
104 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
105 #define UAO_USES_SWHASH(AOBJ) \
106 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
107 
108 /*
109  * the number of buckets in a swhash, with an upper bound
110  */
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 	(min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 	     UAO_SWHASH_MAXBUCKETS))
115 
116 
117 /*
118  * uao_swhash_elt: when a hash table is being used, this structure defines
119  * the format of an entry in the bucket list.
120  */
121 
122 struct uao_swhash_elt {
123 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
124 	voff_t tag;				/* our 'tag' */
125 	int count;				/* our number of active slots */
126 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
127 };
128 
129 /*
130  * uao_swhash: the swap hash table structure
131  */
132 
133 LIST_HEAD(uao_swhash, uao_swhash_elt);
134 
135 /*
136  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
137  */
138 
139 struct pool uao_swhash_elt_pool;
140 
141 /*
142  * uvm_aobj: the actual anon-backed uvm_object
143  *
144  * => the uvm_object is at the top of the structure, this allows
145  *   (struct uvm_device *) == (struct uvm_object *)
146  * => only one of u_swslots and u_swhash is used in any given aobj
147  */
148 
149 struct uvm_aobj {
150 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
151 	int u_pages;		 /* number of pages in entire object */
152 	int u_flags;		 /* the flags (see uvm_aobj.h) */
153 	int *u_swslots;		 /* array of offset->swapslot mappings */
154 				 /*
155 				  * hashtable of offset->swapslot mappings
156 				  * (u_swhash is an array of bucket heads)
157 				  */
158 	struct uao_swhash *u_swhash;
159 	u_long u_swhashmask;		/* mask for hashtable */
160 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
161 };
162 
163 /*
164  * uvm_aobj_pool: pool of uvm_aobj structures
165  */
166 
167 struct pool uvm_aobj_pool;
168 
169 /*
170  * local functions
171  */
172 
173 static struct uao_swhash_elt	*uao_find_swhash_elt __P((struct uvm_aobj *,
174 							  int, boolean_t));
175 static int			 uao_find_swslot __P((struct uvm_aobj *, int));
176 static boolean_t		 uao_flush __P((struct uvm_object *,
177 						voff_t, voff_t, int));
178 static void			 uao_free __P((struct uvm_aobj *));
179 static int			 uao_get __P((struct uvm_object *, voff_t,
180 					      vm_page_t *, int *, int,
181 					      vm_prot_t, int, int));
182 static boolean_t		 uao_releasepg __P((struct vm_page *,
183 						    struct vm_page **));
184 static boolean_t		 uao_pagein __P((struct uvm_aobj *, int, int));
185 static boolean_t		 uao_pagein_page __P((struct uvm_aobj *, int));
186 
187 /*
188  * aobj_pager
189  *
190  * note that some functions (e.g. put) are handled elsewhere
191  */
192 
193 struct uvm_pagerops aobj_pager = {
194 	NULL,			/* init */
195 	uao_reference,		/* reference */
196 	uao_detach,		/* detach */
197 	NULL,			/* fault */
198 	uao_flush,		/* flush */
199 	uao_get,		/* get */
200 	NULL,			/* put (done by pagedaemon) */
201 	NULL,			/* cluster */
202 	NULL,			/* mk_pcluster */
203 	uao_releasepg		/* releasepg */
204 };
205 
206 /*
207  * uao_list: global list of active aobjs, locked by uao_list_lock
208  */
209 
210 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
211 static simple_lock_data_t uao_list_lock;
212 
213 
214 /*
215  * functions
216  */
217 
218 /*
219  * hash table/array related functions
220  */
221 
222 /*
223  * uao_find_swhash_elt: find (or create) a hash table entry for a page
224  * offset.
225  *
226  * => the object should be locked by the caller
227  */
228 
229 static struct uao_swhash_elt *
230 uao_find_swhash_elt(aobj, pageidx, create)
231 	struct uvm_aobj *aobj;
232 	int pageidx;
233 	boolean_t create;
234 {
235 	struct uao_swhash *swhash;
236 	struct uao_swhash_elt *elt;
237 	voff_t page_tag;
238 
239 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
240 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
241 
242 	/*
243 	 * now search the bucket for the requested tag
244 	 */
245 	LIST_FOREACH(elt, swhash, list) {
246 		if (elt->tag == page_tag)
247 			return(elt);
248 	}
249 
250 	/* fail now if we are not allowed to create a new entry in the bucket */
251 	if (!create)
252 		return NULL;
253 
254 
255 	/*
256 	 * allocate a new entry for the bucket and init/insert it in
257 	 */
258 	elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
259 	LIST_INSERT_HEAD(swhash, elt, list);
260 	elt->tag = page_tag;
261 	elt->count = 0;
262 	memset(elt->slots, 0, sizeof(elt->slots));
263 
264 	return(elt);
265 }
266 
267 /*
268  * uao_find_swslot: find the swap slot number for an aobj/pageidx
269  *
270  * => object must be locked by caller
271  */
272 __inline static int
273 uao_find_swslot(aobj, pageidx)
274 	struct uvm_aobj *aobj;
275 	int pageidx;
276 {
277 
278 	/*
279 	 * if noswap flag is set, then we never return a slot
280 	 */
281 
282 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
283 		return(0);
284 
285 	/*
286 	 * if hashing, look in hash table.
287 	 */
288 
289 	if (UAO_USES_SWHASH(aobj)) {
290 		struct uao_swhash_elt *elt =
291 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
292 
293 		if (elt)
294 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
295 		else
296 			return(0);
297 	}
298 
299 	/*
300 	 * otherwise, look in the array
301 	 */
302 	return(aobj->u_swslots[pageidx]);
303 }
304 
305 /*
306  * uao_set_swslot: set the swap slot for a page in an aobj.
307  *
308  * => setting a slot to zero frees the slot
309  * => object must be locked by caller
310  */
311 int
312 uao_set_swslot(uobj, pageidx, slot)
313 	struct uvm_object *uobj;
314 	int pageidx, slot;
315 {
316 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
317 	int oldslot;
318 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
319 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
320 	    aobj, pageidx, slot, 0);
321 
322 	/*
323 	 * if noswap flag is set, then we can't set a slot
324 	 */
325 
326 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
327 
328 		if (slot == 0)
329 			return(0);		/* a clear is ok */
330 
331 		/* but a set is not */
332 		printf("uao_set_swslot: uobj = %p\n", uobj);
333 	    panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
334 	}
335 
336 	/*
337 	 * are we using a hash table?  if so, add it in the hash.
338 	 */
339 
340 	if (UAO_USES_SWHASH(aobj)) {
341 
342 		/*
343 		 * Avoid allocating an entry just to free it again if
344 		 * the page had not swap slot in the first place, and
345 		 * we are freeing.
346 		 */
347 
348 		struct uao_swhash_elt *elt =
349 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
350 		if (elt == NULL) {
351 			KASSERT(slot == 0);
352 			return (0);
353 		}
354 
355 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
356 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
357 
358 		/*
359 		 * now adjust the elt's reference counter and free it if we've
360 		 * dropped it to zero.
361 		 */
362 
363 		/* an allocation? */
364 		if (slot) {
365 			if (oldslot == 0)
366 				elt->count++;
367 		} else {		/* freeing slot ... */
368 			if (oldslot)	/* to be safe */
369 				elt->count--;
370 
371 			if (elt->count == 0) {
372 				LIST_REMOVE(elt, list);
373 				pool_put(&uao_swhash_elt_pool, elt);
374 			}
375 		}
376 	} else {
377 		/* we are using an array */
378 		oldslot = aobj->u_swslots[pageidx];
379 		aobj->u_swslots[pageidx] = slot;
380 	}
381 	return (oldslot);
382 }
383 
384 /*
385  * end of hash/array functions
386  */
387 
388 /*
389  * uao_free: free all resources held by an aobj, and then free the aobj
390  *
391  * => the aobj should be dead
392  */
393 static void
394 uao_free(aobj)
395 	struct uvm_aobj *aobj;
396 {
397 
398 	simple_unlock(&aobj->u_obj.vmobjlock);
399 
400 	if (UAO_USES_SWHASH(aobj)) {
401 		int i, hashbuckets = aobj->u_swhashmask + 1;
402 
403 		/*
404 		 * free the swslots from each hash bucket,
405 		 * then the hash bucket, and finally the hash table itself.
406 		 */
407 		for (i = 0; i < hashbuckets; i++) {
408 			struct uao_swhash_elt *elt, *next;
409 
410 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
411 			     elt != NULL;
412 			     elt = next) {
413 				int j;
414 
415 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
416 					int slot = elt->slots[j];
417 
418 					if (slot == 0) {
419 						continue;
420 					}
421 					uvm_swap_free(slot, 1);
422 
423 					/*
424 					 * this page is no longer
425 					 * only in swap.
426 					 */
427 					simple_lock(&uvm.swap_data_lock);
428 					uvmexp.swpgonly--;
429 					simple_unlock(&uvm.swap_data_lock);
430 				}
431 
432 				next = LIST_NEXT(elt, list);
433 				pool_put(&uao_swhash_elt_pool, elt);
434 			}
435 		}
436 		free(aobj->u_swhash, M_UVMAOBJ);
437 	} else {
438 		int i;
439 
440 		/*
441 		 * free the array
442 		 */
443 
444 		for (i = 0; i < aobj->u_pages; i++) {
445 			int slot = aobj->u_swslots[i];
446 
447 			if (slot) {
448 				uvm_swap_free(slot, 1);
449 
450 				/* this page is no longer only in swap. */
451 				simple_lock(&uvm.swap_data_lock);
452 				uvmexp.swpgonly--;
453 				simple_unlock(&uvm.swap_data_lock);
454 			}
455 		}
456 		free(aobj->u_swslots, M_UVMAOBJ);
457 	}
458 
459 	/*
460 	 * finally free the aobj itself
461 	 */
462 	pool_put(&uvm_aobj_pool, aobj);
463 }
464 
465 /*
466  * pager functions
467  */
468 
469 /*
470  * uao_create: create an aobj of the given size and return its uvm_object.
471  *
472  * => for normal use, flags are always zero
473  * => for the kernel object, the flags are:
474  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
475  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
476  */
477 struct uvm_object *
478 uao_create(size, flags)
479 	vsize_t size;
480 	int flags;
481 {
482 	static struct uvm_aobj kernel_object_store; /* home of kernel_object */
483 	static int kobj_alloced = 0;			/* not allocated yet */
484 	int pages = round_page(size) >> PAGE_SHIFT;
485 	struct uvm_aobj *aobj;
486 
487 	/*
488 	 * malloc a new aobj unless we are asked for the kernel object
489 	 */
490 	if (flags & UAO_FLAG_KERNOBJ) {		/* want kernel object? */
491 		if (kobj_alloced)
492 			panic("uao_create: kernel object already allocated");
493 
494 		aobj = &kernel_object_store;
495 		aobj->u_pages = pages;
496 		aobj->u_flags = UAO_FLAG_NOSWAP;	/* no swap to start */
497 		/* we are special, we never die */
498 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
499 		kobj_alloced = UAO_FLAG_KERNOBJ;
500 	} else if (flags & UAO_FLAG_KERNSWAP) {
501 		aobj = &kernel_object_store;
502 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
503 		    panic("uao_create: asked to enable swap on kernel object");
504 		kobj_alloced = UAO_FLAG_KERNSWAP;
505 	} else {	/* normal object */
506 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 		aobj->u_pages = pages;
508 		aobj->u_flags = 0;		/* normal object */
509 		aobj->u_obj.uo_refs = 1;	/* start with 1 reference */
510 	}
511 
512 	/*
513  	 * allocate hash/array if necessary
514  	 *
515  	 * note: in the KERNSWAP case no need to worry about locking since
516  	 * we are still booting we should be the only thread around.
517  	 */
518 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
519 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
520 		    M_NOWAIT : M_WAITOK;
521 
522 		/* allocate hash table or array depending on object size */
523 		if (UAO_USES_SWHASH(aobj)) {
524 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
525 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
526 			if (aobj->u_swhash == NULL)
527 				panic("uao_create: hashinit swhash failed");
528 		} else {
529 			aobj->u_swslots = malloc(pages * sizeof(int),
530 			    M_UVMAOBJ, mflags);
531 			if (aobj->u_swslots == NULL)
532 				panic("uao_create: malloc swslots failed");
533 			memset(aobj->u_swslots, 0, pages * sizeof(int));
534 		}
535 
536 		if (flags) {
537 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
538 			return(&aobj->u_obj);
539 			/* done! */
540 		}
541 	}
542 
543 	/*
544  	 * init aobj fields
545  	 */
546 	simple_lock_init(&aobj->u_obj.vmobjlock);
547 	aobj->u_obj.pgops = &aobj_pager;
548 	TAILQ_INIT(&aobj->u_obj.memq);
549 	aobj->u_obj.uo_npages = 0;
550 
551 	/*
552  	 * now that aobj is ready, add it to the global list
553  	 */
554 	simple_lock(&uao_list_lock);
555 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
556 	simple_unlock(&uao_list_lock);
557 
558 	/*
559  	 * done!
560  	 */
561 	return(&aobj->u_obj);
562 }
563 
564 
565 
566 /*
567  * uao_init: set up aobj pager subsystem
568  *
569  * => called at boot time from uvm_pager_init()
570  */
571 void
572 uao_init()
573 {
574 	static int uao_initialized;
575 
576 	if (uao_initialized)
577 		return;
578 	uao_initialized = TRUE;
579 
580 	LIST_INIT(&uao_list);
581 	simple_lock_init(&uao_list_lock);
582 
583 	/*
584 	 * NOTE: Pages fror this pool must not come from a pageable
585 	 * kernel map!
586 	 */
587 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
588 	    0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
589 
590 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
591 	    "aobjpl", 0,
592 	    pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
593 }
594 
595 /*
596  * uao_reference: add a ref to an aobj
597  *
598  * => aobj must be unlocked
599  * => just lock it and call the locked version
600  */
601 void
602 uao_reference(uobj)
603 	struct uvm_object *uobj;
604 {
605 	simple_lock(&uobj->vmobjlock);
606 	uao_reference_locked(uobj);
607 	simple_unlock(&uobj->vmobjlock);
608 }
609 
610 /*
611  * uao_reference_locked: add a ref to an aobj that is already locked
612  *
613  * => aobj must be locked
614  * this needs to be separate from the normal routine
615  * since sometimes we need to add a reference to an aobj when
616  * it's already locked.
617  */
618 void
619 uao_reference_locked(uobj)
620 	struct uvm_object *uobj;
621 {
622 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
623 
624 	/*
625  	 * kernel_object already has plenty of references, leave it alone.
626  	 */
627 
628 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
629 		return;
630 
631 	uobj->uo_refs++;		/* bump! */
632 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
633 		    uobj, uobj->uo_refs,0,0);
634 }
635 
636 
637 /*
638  * uao_detach: drop a reference to an aobj
639  *
640  * => aobj must be unlocked
641  * => just lock it and call the locked version
642  */
643 void
644 uao_detach(uobj)
645 	struct uvm_object *uobj;
646 {
647 	simple_lock(&uobj->vmobjlock);
648 	uao_detach_locked(uobj);
649 }
650 
651 
652 /*
653  * uao_detach_locked: drop a reference to an aobj
654  *
655  * => aobj must be locked, and is unlocked (or freed) upon return.
656  * this needs to be separate from the normal routine
657  * since sometimes we need to detach from an aobj when
658  * it's already locked.
659  */
660 void
661 uao_detach_locked(uobj)
662 	struct uvm_object *uobj;
663 {
664 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
665 	struct vm_page *pg;
666 	boolean_t busybody;
667 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
668 
669 	/*
670  	 * detaching from kernel_object is a noop.
671  	 */
672 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
673 		simple_unlock(&uobj->vmobjlock);
674 		return;
675 	}
676 
677 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
678 	uobj->uo_refs--;				/* drop ref! */
679 	if (uobj->uo_refs) {				/* still more refs? */
680 		simple_unlock(&uobj->vmobjlock);
681 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
682 		return;
683 	}
684 
685 	/*
686  	 * remove the aobj from the global list.
687  	 */
688 	simple_lock(&uao_list_lock);
689 	LIST_REMOVE(aobj, u_list);
690 	simple_unlock(&uao_list_lock);
691 
692 	/*
693  	 * free all the pages that aren't PG_BUSY,
694 	 * mark for release any that are.
695  	 */
696 	busybody = FALSE;
697 	for (pg = TAILQ_FIRST(&uobj->memq);
698 	     pg != NULL;
699 	     pg = TAILQ_NEXT(pg, listq)) {
700 		if (pg->flags & PG_BUSY) {
701 			pg->flags |= PG_RELEASED;
702 			busybody = TRUE;
703 			continue;
704 		}
705 
706 		/* zap the mappings, free the swap slot, free the page */
707 		pmap_page_protect(pg, VM_PROT_NONE);
708 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
709 		uvm_lock_pageq();
710 		uvm_pagefree(pg);
711 		uvm_unlock_pageq();
712 	}
713 
714 	/*
715  	 * if we found any busy pages, we're done for now.
716  	 * mark the aobj for death, releasepg will finish up for us.
717  	 */
718 	if (busybody) {
719 		aobj->u_flags |= UAO_FLAG_KILLME;
720 		simple_unlock(&aobj->u_obj.vmobjlock);
721 		return;
722 	}
723 
724 	/*
725  	 * finally, free the rest.
726  	 */
727 	uao_free(aobj);
728 }
729 
730 /*
731  * uao_flush: "flush" pages out of a uvm object
732  *
733  * => object should be locked by caller.  we may _unlock_ the object
734  *	if (and only if) we need to clean a page (PGO_CLEANIT).
735  *	XXXJRT Currently, however, we don't.  In the case of cleaning
736  *	XXXJRT a page, we simply just deactivate it.  Should probably
737  *	XXXJRT handle this better, in the future (although "flushing"
738  *	XXXJRT anonymous memory isn't terribly important).
739  * => if PGO_CLEANIT is not set, then we will neither unlock the object
740  *	or block.
741  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
742  *	for flushing.
743  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
744  *	that new pages are inserted on the tail end of the list.  thus,
745  *	we can make a complete pass through the object in one go by starting
746  *	at the head and working towards the tail (new pages are put in
747  *	front of us).
748  * => NOTE: we are allowed to lock the page queues, so the caller
749  *	must not be holding the lock on them [e.g. pagedaemon had
750  *	better not call us with the queues locked]
751  * => we return TRUE unless we encountered some sort of I/O error
752  *	XXXJRT currently never happens, as we never directly initiate
753  *	XXXJRT I/O
754  *
755  * comment on "cleaning" object and PG_BUSY pages:
756  *	this routine is holding the lock on the object.  the only time
757  *	that is can run into a PG_BUSY page that it does not own is if
758  *	some other process has started I/O on the page (e.g. either
759  *	a pagein or a pageout).  if the PG_BUSY page is being paged
760  *	in, then it can not be dirty (!PG_CLEAN) because no one has
761  *	had a change to modify it yet.  if the PG_BUSY page is being
762  *	paged out then it means that someone else has already started
763  *	cleaning the page for us (how nice!).  in this case, if we
764  *	have syncio specified, then after we make our pass through the
765  *	object we need to wait for the other PG_BUSY pages to clear
766  *	off (i.e. we need to do an iosync).  also note that once a
767  *	page is PG_BUSY is must stary in its object until it is un-busyed.
768  *	XXXJRT We never actually do this, as we are "flushing" anonymous
769  *	XXXJRT memory, which doesn't have persistent backing store.
770  *
771  * note on page traversal:
772  *	we can traverse the pages in an object either by going down the
773  *	linked list in "uobj->memq", or we can go over the address range
774  *	by page doing hash table lookups for each address.  depending
775  *	on how many pages are in the object it may be cheaper to do one
776  *	or the other.  we set "by_list" to true if we are using memq.
777  *	if the cost of a hash lookup was equal to the cost of the list
778  *	traversal we could compare the number of pages in the start->stop
779  *	range to the total number of pages in the object.  however, it
780  *	seems that a hash table lookup is more expensive than the linked
781  *	list traversal, so we multiply the number of pages in the
782  *	start->stop range by a penalty which we define below.
783  */
784 
785 #define	UAO_HASH_PENALTY 4	/* XXX: a guess */
786 
787 boolean_t
788 uao_flush(uobj, start, stop, flags)
789 	struct uvm_object *uobj;
790 	voff_t start, stop;
791 	int flags;
792 {
793 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
794 	struct vm_page *pp, *ppnext;
795 	boolean_t retval, by_list;
796 	voff_t curoff;
797 	UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
798 
799 	curoff = 0;	/* XXX: shut up gcc */
800 
801 	retval = TRUE;	/* default to success */
802 
803 	if (flags & PGO_ALLPAGES) {
804 		start = 0;
805 		stop = aobj->u_pages << PAGE_SHIFT;
806 		by_list = TRUE;		/* always go by the list */
807 	} else {
808 		start = trunc_page(start);
809 		stop = round_page(stop);
810 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
811 			printf("uao_flush: strange, got an out of range "
812 			    "flush (fixed)\n");
813 			stop = aobj->u_pages << PAGE_SHIFT;
814 		}
815 		by_list = (uobj->uo_npages <=
816 		    ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
817 	}
818 
819 	UVMHIST_LOG(maphist,
820 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
821 	    start, stop, by_list, flags);
822 
823 	/*
824 	 * Don't need to do any work here if we're not freeing
825 	 * or deactivating pages.
826 	 */
827 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
828 		UVMHIST_LOG(maphist,
829 		    "<- done (no work to do)",0,0,0,0);
830 		return (retval);
831 	}
832 
833 	/*
834 	 * now do it.  note: we must update ppnext in the body of loop or we
835 	 * will get stuck.  we need to use ppnext because we may free "pp"
836 	 * before doing the next loop.
837 	 */
838 
839 	if (by_list) {
840 		pp = uobj->memq.tqh_first;
841 	} else {
842 		curoff = start;
843 		pp = uvm_pagelookup(uobj, curoff);
844 	}
845 
846 	ppnext = NULL;	/* XXX: shut up gcc */
847 	uvm_lock_pageq();	/* page queues locked */
848 
849 	/* locked: both page queues and uobj */
850 	for ( ; (by_list && pp != NULL) ||
851 	    (!by_list && curoff < stop) ; pp = ppnext) {
852 		if (by_list) {
853 			ppnext = TAILQ_NEXT(pp, listq);
854 
855 			/* range check */
856 			if (pp->offset < start || pp->offset >= stop)
857 				continue;
858 		} else {
859 			curoff += PAGE_SIZE;
860 			if (curoff < stop)
861 				ppnext = uvm_pagelookup(uobj, curoff);
862 
863 			/* null check */
864 			if (pp == NULL)
865 				continue;
866 		}
867 
868 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
869 		/*
870 		 * XXX In these first 3 cases, we always just
871 		 * XXX deactivate the page.  We may want to
872 		 * XXX handle the different cases more specifically
873 		 * XXX in the future.
874 		 */
875 		case PGO_CLEANIT|PGO_FREE:
876 		case PGO_CLEANIT|PGO_DEACTIVATE:
877 		case PGO_DEACTIVATE:
878  deactivate_it:
879 			/* skip the page if it's loaned or wired */
880 			if (pp->loan_count != 0 ||
881 			    pp->wire_count != 0)
882 				continue;
883 
884 			/* ...and deactivate the page. */
885 			pmap_clear_reference(pp);
886 			uvm_pagedeactivate(pp);
887 
888 			continue;
889 
890 		case PGO_FREE:
891 			/*
892 			 * If there are multiple references to
893 			 * the object, just deactivate the page.
894 			 */
895 			if (uobj->uo_refs > 1)
896 				goto deactivate_it;
897 
898 			/* XXX skip the page if it's loaned or wired */
899 			if (pp->loan_count != 0 ||
900 			    pp->wire_count != 0)
901 				continue;
902 
903 			/*
904 			 * mark the page as released if its busy.
905 			 */
906 			if (pp->flags & PG_BUSY) {
907 				pp->flags |= PG_RELEASED;
908 				continue;
909 			}
910 
911 			/* zap all mappings for the page. */
912 			pmap_page_protect(pp, VM_PROT_NONE);
913 
914 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
915 			uvm_pagefree(pp);
916 
917 			continue;
918 
919 		default:
920 			panic("uao_flush: weird flags");
921 		}
922 	}
923 
924 	uvm_unlock_pageq();
925 
926 	UVMHIST_LOG(maphist,
927 	    "<- done, rv=%d",retval,0,0,0);
928 	return (retval);
929 }
930 
931 /*
932  * uao_get: fetch me a page
933  *
934  * we have three cases:
935  * 1: page is resident     -> just return the page.
936  * 2: page is zero-fill    -> allocate a new page and zero it.
937  * 3: page is swapped out  -> fetch the page from swap.
938  *
939  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
940  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
941  * then we will need to return EBUSY.
942  *
943  * => prefer map unlocked (not required)
944  * => object must be locked!  we will _unlock_ it before starting any I/O.
945  * => flags: PGO_ALLPAGES: get all of the pages
946  *           PGO_LOCKED: fault data structures are locked
947  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
948  * => NOTE: caller must check for released pages!!
949  */
950 static int
951 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
952 	struct uvm_object *uobj;
953 	voff_t offset;
954 	struct vm_page **pps;
955 	int *npagesp;
956 	int centeridx, advice, flags;
957 	vm_prot_t access_type;
958 {
959 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
960 	voff_t current_offset;
961 	vm_page_t ptmp;
962 	int lcv, gotpages, maxpages, swslot, rv, pageidx;
963 	boolean_t done;
964 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
965 
966 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
967 		    aobj, offset, flags,0);
968 
969 	/*
970  	 * get number of pages
971  	 */
972 	maxpages = *npagesp;
973 
974 	/*
975  	 * step 1: handled the case where fault data structures are locked.
976  	 */
977 
978 	if (flags & PGO_LOCKED) {
979 		/*
980  		 * step 1a: get pages that are already resident.   only do
981 		 * this if the data structures are locked (i.e. the first
982 		 * time through).
983  		 */
984 
985 		done = TRUE;	/* be optimistic */
986 		gotpages = 0;	/* # of pages we got so far */
987 
988 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
989 		    lcv++, current_offset += PAGE_SIZE) {
990 			/* do we care about this page?  if not, skip it */
991 			if (pps[lcv] == PGO_DONTCARE)
992 				continue;
993 
994 			ptmp = uvm_pagelookup(uobj, current_offset);
995 
996 			/*
997  			 * if page is new, attempt to allocate the page,
998 			 * zero-fill'd.
999  			 */
1000 			if (ptmp == NULL && uao_find_swslot(aobj,
1001 			    current_offset >> PAGE_SHIFT) == 0) {
1002 				ptmp = uvm_pagealloc(uobj, current_offset,
1003 				    NULL, UVM_PGA_ZERO);
1004 				if (ptmp) {
1005 					/* new page */
1006 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1007 					ptmp->pqflags |= PQ_AOBJ;
1008 					UVM_PAGE_OWN(ptmp, NULL);
1009 				}
1010 			}
1011 
1012 			/*
1013 			 * to be useful must get a non-busy, non-released page
1014 			 */
1015 			if (ptmp == NULL ||
1016 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1017 				if (lcv == centeridx ||
1018 				    (flags & PGO_ALLPAGES) != 0)
1019 					/* need to do a wait or I/O! */
1020 					done = FALSE;
1021 					continue;
1022 			}
1023 
1024 			/*
1025 			 * useful page: busy/lock it and plug it in our
1026 			 * result array
1027 			 */
1028 			/* caller must un-busy this page */
1029 			ptmp->flags |= PG_BUSY;
1030 			UVM_PAGE_OWN(ptmp, "uao_get1");
1031 			pps[lcv] = ptmp;
1032 			gotpages++;
1033 
1034 		}	/* "for" lcv loop */
1035 
1036 		/*
1037  		 * step 1b: now we've either done everything needed or we
1038 		 * to unlock and do some waiting or I/O.
1039  		 */
1040 
1041 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1042 
1043 		*npagesp = gotpages;
1044 		if (done)
1045 			/* bingo! */
1046 			return(0);
1047 		else
1048 			/* EEK!   Need to unlock and I/O */
1049 			return(EBUSY);
1050 	}
1051 
1052 	/*
1053  	 * step 2: get non-resident or busy pages.
1054  	 * object is locked.   data structures are unlocked.
1055  	 */
1056 
1057 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1058 	    lcv++, current_offset += PAGE_SIZE) {
1059 
1060 		/*
1061 		 * - skip over pages we've already gotten or don't want
1062 		 * - skip over pages we don't _have_ to get
1063 		 */
1064 
1065 		if (pps[lcv] != NULL ||
1066 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1067 			continue;
1068 
1069 		pageidx = current_offset >> PAGE_SHIFT;
1070 
1071 		/*
1072  		 * we have yet to locate the current page (pps[lcv]).   we
1073 		 * first look for a page that is already at the current offset.
1074 		 * if we find a page, we check to see if it is busy or
1075 		 * released.  if that is the case, then we sleep on the page
1076 		 * until it is no longer busy or released and repeat the lookup.
1077 		 * if the page we found is neither busy nor released, then we
1078 		 * busy it (so we own it) and plug it into pps[lcv].   this
1079 		 * 'break's the following while loop and indicates we are
1080 		 * ready to move on to the next page in the "lcv" loop above.
1081  		 *
1082  		 * if we exit the while loop with pps[lcv] still set to NULL,
1083 		 * then it means that we allocated a new busy/fake/clean page
1084 		 * ptmp in the object and we need to do I/O to fill in the data.
1085  		 */
1086 
1087 		/* top of "pps" while loop */
1088 		while (pps[lcv] == NULL) {
1089 			/* look for a resident page */
1090 			ptmp = uvm_pagelookup(uobj, current_offset);
1091 
1092 			/* not resident?   allocate one now (if we can) */
1093 			if (ptmp == NULL) {
1094 
1095 				ptmp = uvm_pagealloc(uobj, current_offset,
1096 				    NULL, 0);
1097 
1098 				/* out of RAM? */
1099 				if (ptmp == NULL) {
1100 					simple_unlock(&uobj->vmobjlock);
1101 					UVMHIST_LOG(pdhist,
1102 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1103 					uvm_wait("uao_getpage");
1104 					simple_lock(&uobj->vmobjlock);
1105 					/* goto top of pps while loop */
1106 					continue;
1107 				}
1108 
1109 				/*
1110 				 * safe with PQ's unlocked: because we just
1111 				 * alloc'd the page
1112 				 */
1113 				ptmp->pqflags |= PQ_AOBJ;
1114 
1115 				/*
1116 				 * got new page ready for I/O.  break pps while
1117 				 * loop.  pps[lcv] is still NULL.
1118 				 */
1119 				break;
1120 			}
1121 
1122 			/* page is there, see if we need to wait on it */
1123 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1124 				ptmp->flags |= PG_WANTED;
1125 				UVMHIST_LOG(pdhist,
1126 				    "sleeping, ptmp->flags 0x%x\n",
1127 				    ptmp->flags,0,0,0);
1128 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1129 				    FALSE, "uao_get", 0);
1130 				simple_lock(&uobj->vmobjlock);
1131 				continue;	/* goto top of pps while loop */
1132 			}
1133 
1134 			/*
1135  			 * if we get here then the page has become resident and
1136 			 * unbusy between steps 1 and 2.  we busy it now (so we
1137 			 * own it) and set pps[lcv] (so that we exit the while
1138 			 * loop).
1139  			 */
1140 			/* we own it, caller must un-busy */
1141 			ptmp->flags |= PG_BUSY;
1142 			UVM_PAGE_OWN(ptmp, "uao_get2");
1143 			pps[lcv] = ptmp;
1144 		}
1145 
1146 		/*
1147  		 * if we own the valid page at the correct offset, pps[lcv] will
1148  		 * point to it.   nothing more to do except go to the next page.
1149  		 */
1150 		if (pps[lcv])
1151 			continue;			/* next lcv */
1152 
1153 		/*
1154  		 * we have a "fake/busy/clean" page that we just allocated.
1155  		 * do the needed "i/o", either reading from swap or zeroing.
1156  		 */
1157 		swslot = uao_find_swslot(aobj, pageidx);
1158 
1159 		/*
1160  		 * just zero the page if there's nothing in swap.
1161  		 */
1162 		if (swslot == 0)
1163 		{
1164 			/*
1165 			 * page hasn't existed before, just zero it.
1166 			 */
1167 			uvm_pagezero(ptmp);
1168 		} else {
1169 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1170 			     swslot, 0,0,0);
1171 
1172 			/*
1173 			 * page in the swapped-out page.
1174 			 * unlock object for i/o, relock when done.
1175 			 */
1176 			simple_unlock(&uobj->vmobjlock);
1177 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1178 			simple_lock(&uobj->vmobjlock);
1179 
1180 			/*
1181 			 * I/O done.  check for errors.
1182 			 */
1183 			if (rv != 0)
1184 			{
1185 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1186 				    rv,0,0,0);
1187 				if (ptmp->flags & PG_WANTED)
1188 					wakeup(ptmp);
1189 
1190 				/*
1191 				 * remove the swap slot from the aobj
1192 				 * and mark the aobj as having no real slot.
1193 				 * don't free the swap slot, thus preventing
1194 				 * it from being used again.
1195 				 */
1196 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1197 							SWSLOT_BAD);
1198 				uvm_swap_markbad(swslot, 1);
1199 
1200 				ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1201 				UVM_PAGE_OWN(ptmp, NULL);
1202 				uvm_lock_pageq();
1203 				uvm_pagefree(ptmp);
1204 				uvm_unlock_pageq();
1205 
1206 				simple_unlock(&uobj->vmobjlock);
1207 				return (rv);
1208 			}
1209 		}
1210 
1211 		/*
1212  		 * we got the page!   clear the fake flag (indicates valid
1213 		 * data now in page) and plug into our result array.   note
1214 		 * that page is still busy.
1215  		 *
1216  		 * it is the callers job to:
1217  		 * => check if the page is released
1218  		 * => unbusy the page
1219  		 * => activate the page
1220  		 */
1221 
1222 		ptmp->flags &= ~PG_FAKE;		/* data is valid ... */
1223 		pmap_clear_modify(ptmp);		/* ... and clean */
1224 		pps[lcv] = ptmp;
1225 
1226 	}	/* lcv loop */
1227 
1228 	/*
1229  	 * finally, unlock object and return.
1230  	 */
1231 
1232 	simple_unlock(&uobj->vmobjlock);
1233 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1234 	return(0);
1235 }
1236 
1237 /*
1238  * uao_releasepg: handle released page in an aobj
1239  *
1240  * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1241  *      to dispose of.
1242  * => caller must handle PG_WANTED case
1243  * => called with page's object locked, pageq's unlocked
1244  * => returns TRUE if page's object is still alive, FALSE if we
1245  *      killed the page's object.    if we return TRUE, then we
1246  *      return with the object locked.
1247  * => if (nextpgp != NULL) => we return the next page on the queue, and return
1248  *                              with the page queues locked [for pagedaemon]
1249  * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1250  * => we kill the aobj if it is not referenced and we are suppose to
1251  *      kill it ("KILLME").
1252  */
1253 static boolean_t
1254 uao_releasepg(pg, nextpgp)
1255 	struct vm_page *pg;
1256 	struct vm_page **nextpgp;	/* OUT */
1257 {
1258 	struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1259 
1260 	KASSERT(pg->flags & PG_RELEASED);
1261 
1262 	/*
1263  	 * dispose of the page [caller handles PG_WANTED] and swap slot.
1264  	 */
1265 	pmap_page_protect(pg, VM_PROT_NONE);
1266 	uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1267 	uvm_lock_pageq();
1268 	if (nextpgp)
1269 		*nextpgp = TAILQ_NEXT(pg, pageq); /* next page for daemon */
1270 	uvm_pagefree(pg);
1271 	if (!nextpgp)
1272 		uvm_unlock_pageq();		/* keep locked for daemon */
1273 
1274 	/*
1275  	 * if we're not killing the object, we're done.
1276  	 */
1277 	if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1278 		return TRUE;
1279 	KASSERT(aobj->u_obj.uo_refs == 0);
1280 
1281 	/*
1282  	 * if there are still pages in the object, we're done for now.
1283  	 */
1284 	if (aobj->u_obj.uo_npages != 0)
1285 		return TRUE;
1286 
1287 	KASSERT(TAILQ_EMPTY(&aobj->u_obj.memq));
1288 
1289 	/*
1290  	 * finally, free the rest.
1291  	 */
1292 	uao_free(aobj);
1293 
1294 	return FALSE;
1295 }
1296 
1297 
1298 /*
1299  * uao_dropswap:  release any swap resources from this aobj page.
1300  *
1301  * => aobj must be locked or have a reference count of 0.
1302  */
1303 
1304 void
1305 uao_dropswap(uobj, pageidx)
1306 	struct uvm_object *uobj;
1307 	int pageidx;
1308 {
1309 	int slot;
1310 
1311 	slot = uao_set_swslot(uobj, pageidx, 0);
1312 	if (slot) {
1313 		uvm_swap_free(slot, 1);
1314 	}
1315 }
1316 
1317 
1318 /*
1319  * page in every page in every aobj that is paged-out to a range of swslots.
1320  *
1321  * => nothing should be locked.
1322  * => returns TRUE if pagein was aborted due to lack of memory.
1323  */
1324 boolean_t
1325 uao_swap_off(startslot, endslot)
1326 	int startslot, endslot;
1327 {
1328 	struct uvm_aobj *aobj, *nextaobj;
1329 
1330 	/*
1331 	 * walk the list of all aobjs.
1332 	 */
1333 
1334 restart:
1335 	simple_lock(&uao_list_lock);
1336 
1337 	for (aobj = LIST_FIRST(&uao_list);
1338 	     aobj != NULL;
1339 	     aobj = nextaobj) {
1340 		boolean_t rv;
1341 
1342 		/*
1343 		 * try to get the object lock,
1344 		 * start all over if we fail.
1345 		 * most of the time we'll get the aobj lock,
1346 		 * so this should be a rare case.
1347 		 */
1348 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1349 			simple_unlock(&uao_list_lock);
1350 			goto restart;
1351 		}
1352 
1353 		/*
1354 		 * add a ref to the aobj so it doesn't disappear
1355 		 * while we're working.
1356 		 */
1357 		uao_reference_locked(&aobj->u_obj);
1358 
1359 		/*
1360 		 * now it's safe to unlock the uao list.
1361 		 */
1362 		simple_unlock(&uao_list_lock);
1363 
1364 		/*
1365 		 * page in any pages in the swslot range.
1366 		 * if there's an error, abort and return the error.
1367 		 */
1368 		rv = uao_pagein(aobj, startslot, endslot);
1369 		if (rv) {
1370 			uao_detach_locked(&aobj->u_obj);
1371 			return rv;
1372 		}
1373 
1374 		/*
1375 		 * we're done with this aobj.
1376 		 * relock the list and drop our ref on the aobj.
1377 		 */
1378 		simple_lock(&uao_list_lock);
1379 		nextaobj = LIST_NEXT(aobj, u_list);
1380 		uao_detach_locked(&aobj->u_obj);
1381 	}
1382 
1383 	/*
1384 	 * done with traversal, unlock the list
1385 	 */
1386 	simple_unlock(&uao_list_lock);
1387 	return FALSE;
1388 }
1389 
1390 
1391 /*
1392  * page in any pages from aobj in the given range.
1393  *
1394  * => aobj must be locked and is returned locked.
1395  * => returns TRUE if pagein was aborted due to lack of memory.
1396  */
1397 static boolean_t
1398 uao_pagein(aobj, startslot, endslot)
1399 	struct uvm_aobj *aobj;
1400 	int startslot, endslot;
1401 {
1402 	boolean_t rv;
1403 
1404 	if (UAO_USES_SWHASH(aobj)) {
1405 		struct uao_swhash_elt *elt;
1406 		int bucket;
1407 
1408 restart:
1409 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1410 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1411 			     elt != NULL;
1412 			     elt = LIST_NEXT(elt, list)) {
1413 				int i;
1414 
1415 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1416 					int slot = elt->slots[i];
1417 
1418 					/*
1419 					 * if the slot isn't in range, skip it.
1420 					 */
1421 					if (slot < startslot ||
1422 					    slot >= endslot) {
1423 						continue;
1424 					}
1425 
1426 					/*
1427 					 * process the page,
1428 					 * the start over on this object
1429 					 * since the swhash elt
1430 					 * may have been freed.
1431 					 */
1432 					rv = uao_pagein_page(aobj,
1433 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1434 					if (rv) {
1435 						return rv;
1436 					}
1437 					goto restart;
1438 				}
1439 			}
1440 		}
1441 	} else {
1442 		int i;
1443 
1444 		for (i = 0; i < aobj->u_pages; i++) {
1445 			int slot = aobj->u_swslots[i];
1446 
1447 			/*
1448 			 * if the slot isn't in range, skip it
1449 			 */
1450 			if (slot < startslot || slot >= endslot) {
1451 				continue;
1452 			}
1453 
1454 			/*
1455 			 * process the page.
1456 			 */
1457 			rv = uao_pagein_page(aobj, i);
1458 			if (rv) {
1459 				return rv;
1460 			}
1461 		}
1462 	}
1463 
1464 	return FALSE;
1465 }
1466 
1467 /*
1468  * page in a page from an aobj.  used for swap_off.
1469  * returns TRUE if pagein was aborted due to lack of memory.
1470  *
1471  * => aobj must be locked and is returned locked.
1472  */
1473 static boolean_t
1474 uao_pagein_page(aobj, pageidx)
1475 	struct uvm_aobj *aobj;
1476 	int pageidx;
1477 {
1478 	struct vm_page *pg;
1479 	int rv, slot, npages;
1480 
1481 	pg = NULL;
1482 	npages = 1;
1483 	/* locked: aobj */
1484 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1485 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1486 	/* unlocked: aobj */
1487 
1488 	/*
1489 	 * relock and finish up.
1490 	 */
1491 	simple_lock(&aobj->u_obj.vmobjlock);
1492 
1493 	switch (rv) {
1494 	case 0:
1495 		break;
1496 
1497 	case EIO:
1498 	case ERESTART:
1499 		/*
1500 		 * nothing more to do on errors.
1501 		 * ERESTART can only mean that the anon was freed,
1502 		 * so again there's nothing to do.
1503 		 */
1504 		return FALSE;
1505 
1506 	}
1507 	KASSERT((pg->flags & PG_RELEASED) == 0);
1508 
1509 	/*
1510 	 * ok, we've got the page now.
1511 	 * mark it as dirty, clear its swslot and un-busy it.
1512 	 */
1513 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1514 	uvm_swap_free(slot, 1);
1515 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1516 	UVM_PAGE_OWN(pg, NULL);
1517 
1518 	/*
1519 	 * deactivate the page (to put it on a page queue).
1520 	 */
1521 	pmap_clear_reference(pg);
1522 	uvm_lock_pageq();
1523 	uvm_pagedeactivate(pg);
1524 	uvm_unlock_pageq();
1525 
1526 	return FALSE;
1527 }
1528