1 /* $NetBSD: uvm_aobj.c,v 1.45 2001/06/23 20:52:03 chs Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and 5 * Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Charles D. Cranor and 19 * Washington University. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp 35 */ 36 /* 37 * uvm_aobj.c: anonymous memory uvm_object pager 38 * 39 * author: Chuck Silvers <chuq@chuq.com> 40 * started: Jan-1998 41 * 42 * - design mostly from Chuck Cranor 43 */ 44 45 46 47 #include "opt_uvmhist.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/proc.h> 52 #include <sys/malloc.h> 53 #include <sys/kernel.h> 54 #include <sys/pool.h> 55 #include <sys/kernel.h> 56 57 #include <uvm/uvm.h> 58 59 /* 60 * an aobj manages anonymous-memory backed uvm_objects. in addition 61 * to keeping the list of resident pages, it also keeps a list of 62 * allocated swap blocks. depending on the size of the aobj this list 63 * of allocated swap blocks is either stored in an array (small objects) 64 * or in a hash table (large objects). 65 */ 66 67 /* 68 * local structures 69 */ 70 71 /* 72 * for hash tables, we break the address space of the aobj into blocks 73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to 74 * be a power of two. 75 */ 76 77 #define UAO_SWHASH_CLUSTER_SHIFT 4 78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT) 79 80 /* get the "tag" for this page index */ 81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \ 82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) 83 84 /* given an ELT and a page index, find the swap slot */ 85 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \ 86 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)]) 87 88 /* given an ELT, return its pageidx base */ 89 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \ 90 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT) 91 92 /* 93 * the swhash hash function 94 */ 95 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \ 96 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \ 97 & (AOBJ)->u_swhashmask)]) 98 99 /* 100 * the swhash threshhold determines if we will use an array or a 101 * hash table to store the list of allocated swap blocks. 102 */ 103 104 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4) 105 #define UAO_USES_SWHASH(AOBJ) \ 106 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */ 107 108 /* 109 * the number of buckets in a swhash, with an upper bound 110 */ 111 #define UAO_SWHASH_MAXBUCKETS 256 112 #define UAO_SWHASH_BUCKETS(AOBJ) \ 113 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \ 114 UAO_SWHASH_MAXBUCKETS)) 115 116 117 /* 118 * uao_swhash_elt: when a hash table is being used, this structure defines 119 * the format of an entry in the bucket list. 120 */ 121 122 struct uao_swhash_elt { 123 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */ 124 voff_t tag; /* our 'tag' */ 125 int count; /* our number of active slots */ 126 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */ 127 }; 128 129 /* 130 * uao_swhash: the swap hash table structure 131 */ 132 133 LIST_HEAD(uao_swhash, uao_swhash_elt); 134 135 /* 136 * uao_swhash_elt_pool: pool of uao_swhash_elt structures 137 */ 138 139 struct pool uao_swhash_elt_pool; 140 141 /* 142 * uvm_aobj: the actual anon-backed uvm_object 143 * 144 * => the uvm_object is at the top of the structure, this allows 145 * (struct uvm_device *) == (struct uvm_object *) 146 * => only one of u_swslots and u_swhash is used in any given aobj 147 */ 148 149 struct uvm_aobj { 150 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */ 151 int u_pages; /* number of pages in entire object */ 152 int u_flags; /* the flags (see uvm_aobj.h) */ 153 int *u_swslots; /* array of offset->swapslot mappings */ 154 /* 155 * hashtable of offset->swapslot mappings 156 * (u_swhash is an array of bucket heads) 157 */ 158 struct uao_swhash *u_swhash; 159 u_long u_swhashmask; /* mask for hashtable */ 160 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */ 161 }; 162 163 /* 164 * uvm_aobj_pool: pool of uvm_aobj structures 165 */ 166 167 struct pool uvm_aobj_pool; 168 169 /* 170 * local functions 171 */ 172 173 static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *, 174 int, boolean_t)); 175 static int uao_find_swslot __P((struct uvm_aobj *, int)); 176 static boolean_t uao_flush __P((struct uvm_object *, 177 voff_t, voff_t, int)); 178 static void uao_free __P((struct uvm_aobj *)); 179 static int uao_get __P((struct uvm_object *, voff_t, 180 struct vm_page **, int *, int, 181 vm_prot_t, int, int)); 182 static boolean_t uao_releasepg __P((struct vm_page *, 183 struct vm_page **)); 184 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int)); 185 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int)); 186 187 /* 188 * aobj_pager 189 * 190 * note that some functions (e.g. put) are handled elsewhere 191 */ 192 193 struct uvm_pagerops aobj_pager = { 194 NULL, /* init */ 195 uao_reference, /* reference */ 196 uao_detach, /* detach */ 197 NULL, /* fault */ 198 uao_flush, /* flush */ 199 uao_get, /* get */ 200 NULL, /* put (done by pagedaemon) */ 201 NULL, /* cluster */ 202 NULL, /* mk_pcluster */ 203 uao_releasepg /* releasepg */ 204 }; 205 206 /* 207 * uao_list: global list of active aobjs, locked by uao_list_lock 208 */ 209 210 static LIST_HEAD(aobjlist, uvm_aobj) uao_list; 211 static struct simplelock uao_list_lock; 212 213 214 /* 215 * functions 216 */ 217 218 /* 219 * hash table/array related functions 220 */ 221 222 /* 223 * uao_find_swhash_elt: find (or create) a hash table entry for a page 224 * offset. 225 * 226 * => the object should be locked by the caller 227 */ 228 229 static struct uao_swhash_elt * 230 uao_find_swhash_elt(aobj, pageidx, create) 231 struct uvm_aobj *aobj; 232 int pageidx; 233 boolean_t create; 234 { 235 struct uao_swhash *swhash; 236 struct uao_swhash_elt *elt; 237 voff_t page_tag; 238 239 swhash = UAO_SWHASH_HASH(aobj, pageidx); 240 page_tag = UAO_SWHASH_ELT_TAG(pageidx); 241 242 /* 243 * now search the bucket for the requested tag 244 */ 245 246 LIST_FOREACH(elt, swhash, list) { 247 if (elt->tag == page_tag) { 248 return elt; 249 } 250 } 251 if (!create) { 252 return NULL; 253 } 254 255 /* 256 * allocate a new entry for the bucket and init/insert it in 257 */ 258 259 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT); 260 if (elt == NULL) { 261 return NULL; 262 } 263 LIST_INSERT_HEAD(swhash, elt, list); 264 elt->tag = page_tag; 265 elt->count = 0; 266 memset(elt->slots, 0, sizeof(elt->slots)); 267 return elt; 268 } 269 270 /* 271 * uao_find_swslot: find the swap slot number for an aobj/pageidx 272 * 273 * => object must be locked by caller 274 */ 275 __inline static int 276 uao_find_swslot(aobj, pageidx) 277 struct uvm_aobj *aobj; 278 int pageidx; 279 { 280 281 /* 282 * if noswap flag is set, then we never return a slot 283 */ 284 285 if (aobj->u_flags & UAO_FLAG_NOSWAP) 286 return(0); 287 288 /* 289 * if hashing, look in hash table. 290 */ 291 292 if (UAO_USES_SWHASH(aobj)) { 293 struct uao_swhash_elt *elt = 294 uao_find_swhash_elt(aobj, pageidx, FALSE); 295 296 if (elt) 297 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx)); 298 else 299 return(0); 300 } 301 302 /* 303 * otherwise, look in the array 304 */ 305 return(aobj->u_swslots[pageidx]); 306 } 307 308 /* 309 * uao_set_swslot: set the swap slot for a page in an aobj. 310 * 311 * => setting a slot to zero frees the slot 312 * => object must be locked by caller 313 * => we return the old slot number, or -1 if we failed to allocate 314 * memory to record the new slot number 315 */ 316 int 317 uao_set_swslot(uobj, pageidx, slot) 318 struct uvm_object *uobj; 319 int pageidx, slot; 320 { 321 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 322 struct uao_swhash_elt *elt; 323 int oldslot; 324 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist); 325 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d", 326 aobj, pageidx, slot, 0); 327 328 /* 329 * if noswap flag is set, then we can't set a slot 330 */ 331 332 if (aobj->u_flags & UAO_FLAG_NOSWAP) { 333 334 if (slot == 0) 335 return(0); /* a clear is ok */ 336 337 /* but a set is not */ 338 printf("uao_set_swslot: uobj = %p\n", uobj); 339 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object"); 340 } 341 342 /* 343 * are we using a hash table? if so, add it in the hash. 344 */ 345 346 if (UAO_USES_SWHASH(aobj)) { 347 348 /* 349 * Avoid allocating an entry just to free it again if 350 * the page had not swap slot in the first place, and 351 * we are freeing. 352 */ 353 354 elt = uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE); 355 if (elt == NULL) { 356 return slot ? -1 : 0; 357 } 358 359 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx); 360 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot; 361 362 /* 363 * now adjust the elt's reference counter and free it if we've 364 * dropped it to zero. 365 */ 366 367 /* an allocation? */ 368 if (slot) { 369 if (oldslot == 0) 370 elt->count++; 371 } else { 372 if (oldslot) 373 elt->count--; 374 375 if (elt->count == 0) { 376 LIST_REMOVE(elt, list); 377 pool_put(&uao_swhash_elt_pool, elt); 378 } 379 } 380 } else { 381 /* we are using an array */ 382 oldslot = aobj->u_swslots[pageidx]; 383 aobj->u_swslots[pageidx] = slot; 384 } 385 return (oldslot); 386 } 387 388 /* 389 * end of hash/array functions 390 */ 391 392 /* 393 * uao_free: free all resources held by an aobj, and then free the aobj 394 * 395 * => the aobj should be dead 396 */ 397 static void 398 uao_free(aobj) 399 struct uvm_aobj *aobj; 400 { 401 402 simple_unlock(&aobj->u_obj.vmobjlock); 403 404 if (UAO_USES_SWHASH(aobj)) { 405 int i, hashbuckets = aobj->u_swhashmask + 1; 406 407 /* 408 * free the swslots from each hash bucket, 409 * then the hash bucket, and finally the hash table itself. 410 */ 411 for (i = 0; i < hashbuckets; i++) { 412 struct uao_swhash_elt *elt, *next; 413 414 for (elt = LIST_FIRST(&aobj->u_swhash[i]); 415 elt != NULL; 416 elt = next) { 417 int j; 418 419 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) { 420 int slot = elt->slots[j]; 421 422 if (slot == 0) { 423 continue; 424 } 425 uvm_swap_free(slot, 1); 426 427 /* 428 * this page is no longer 429 * only in swap. 430 */ 431 simple_lock(&uvm.swap_data_lock); 432 uvmexp.swpgonly--; 433 simple_unlock(&uvm.swap_data_lock); 434 } 435 436 next = LIST_NEXT(elt, list); 437 pool_put(&uao_swhash_elt_pool, elt); 438 } 439 } 440 free(aobj->u_swhash, M_UVMAOBJ); 441 } else { 442 int i; 443 444 /* 445 * free the array 446 */ 447 448 for (i = 0; i < aobj->u_pages; i++) { 449 int slot = aobj->u_swslots[i]; 450 451 if (slot) { 452 uvm_swap_free(slot, 1); 453 454 /* this page is no longer only in swap. */ 455 simple_lock(&uvm.swap_data_lock); 456 uvmexp.swpgonly--; 457 simple_unlock(&uvm.swap_data_lock); 458 } 459 } 460 free(aobj->u_swslots, M_UVMAOBJ); 461 } 462 463 /* 464 * finally free the aobj itself 465 */ 466 pool_put(&uvm_aobj_pool, aobj); 467 } 468 469 /* 470 * pager functions 471 */ 472 473 /* 474 * uao_create: create an aobj of the given size and return its uvm_object. 475 * 476 * => for normal use, flags are always zero 477 * => for the kernel object, the flags are: 478 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once) 479 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ") 480 */ 481 struct uvm_object * 482 uao_create(size, flags) 483 vsize_t size; 484 int flags; 485 { 486 static struct uvm_aobj kernel_object_store; /* home of kernel_object */ 487 static int kobj_alloced = 0; /* not allocated yet */ 488 int pages = round_page(size) >> PAGE_SHIFT; 489 struct uvm_aobj *aobj; 490 491 /* 492 * malloc a new aobj unless we are asked for the kernel object 493 */ 494 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */ 495 if (kobj_alloced) 496 panic("uao_create: kernel object already allocated"); 497 498 aobj = &kernel_object_store; 499 aobj->u_pages = pages; 500 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */ 501 /* we are special, we never die */ 502 aobj->u_obj.uo_refs = UVM_OBJ_KERN; 503 kobj_alloced = UAO_FLAG_KERNOBJ; 504 } else if (flags & UAO_FLAG_KERNSWAP) { 505 aobj = &kernel_object_store; 506 if (kobj_alloced != UAO_FLAG_KERNOBJ) 507 panic("uao_create: asked to enable swap on kernel object"); 508 kobj_alloced = UAO_FLAG_KERNSWAP; 509 } else { /* normal object */ 510 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK); 511 aobj->u_pages = pages; 512 aobj->u_flags = 0; /* normal object */ 513 aobj->u_obj.uo_refs = 1; /* start with 1 reference */ 514 } 515 516 /* 517 * allocate hash/array if necessary 518 * 519 * note: in the KERNSWAP case no need to worry about locking since 520 * we are still booting we should be the only thread around. 521 */ 522 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) { 523 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ? 524 M_NOWAIT : M_WAITOK; 525 526 /* allocate hash table or array depending on object size */ 527 if (UAO_USES_SWHASH(aobj)) { 528 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj), 529 HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask); 530 if (aobj->u_swhash == NULL) 531 panic("uao_create: hashinit swhash failed"); 532 } else { 533 aobj->u_swslots = malloc(pages * sizeof(int), 534 M_UVMAOBJ, mflags); 535 if (aobj->u_swslots == NULL) 536 panic("uao_create: malloc swslots failed"); 537 memset(aobj->u_swslots, 0, pages * sizeof(int)); 538 } 539 540 if (flags) { 541 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */ 542 return(&aobj->u_obj); 543 /* done! */ 544 } 545 } 546 547 /* 548 * init aobj fields 549 */ 550 simple_lock_init(&aobj->u_obj.vmobjlock); 551 aobj->u_obj.pgops = &aobj_pager; 552 TAILQ_INIT(&aobj->u_obj.memq); 553 aobj->u_obj.uo_npages = 0; 554 555 /* 556 * now that aobj is ready, add it to the global list 557 */ 558 simple_lock(&uao_list_lock); 559 LIST_INSERT_HEAD(&uao_list, aobj, u_list); 560 simple_unlock(&uao_list_lock); 561 562 /* 563 * done! 564 */ 565 return(&aobj->u_obj); 566 } 567 568 569 570 /* 571 * uao_init: set up aobj pager subsystem 572 * 573 * => called at boot time from uvm_pager_init() 574 */ 575 void 576 uao_init() 577 { 578 static int uao_initialized; 579 580 if (uao_initialized) 581 return; 582 uao_initialized = TRUE; 583 584 LIST_INIT(&uao_list); 585 simple_lock_init(&uao_list_lock); 586 587 /* 588 * NOTE: Pages fror this pool must not come from a pageable 589 * kernel map! 590 */ 591 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 592 0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ); 593 594 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, 595 "aobjpl", 0, 596 pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ); 597 } 598 599 /* 600 * uao_reference: add a ref to an aobj 601 * 602 * => aobj must be unlocked 603 * => just lock it and call the locked version 604 */ 605 void 606 uao_reference(uobj) 607 struct uvm_object *uobj; 608 { 609 simple_lock(&uobj->vmobjlock); 610 uao_reference_locked(uobj); 611 simple_unlock(&uobj->vmobjlock); 612 } 613 614 /* 615 * uao_reference_locked: add a ref to an aobj that is already locked 616 * 617 * => aobj must be locked 618 * this needs to be separate from the normal routine 619 * since sometimes we need to add a reference to an aobj when 620 * it's already locked. 621 */ 622 void 623 uao_reference_locked(uobj) 624 struct uvm_object *uobj; 625 { 626 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist); 627 628 /* 629 * kernel_object already has plenty of references, leave it alone. 630 */ 631 632 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) 633 return; 634 635 uobj->uo_refs++; /* bump! */ 636 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)", 637 uobj, uobj->uo_refs,0,0); 638 } 639 640 641 /* 642 * uao_detach: drop a reference to an aobj 643 * 644 * => aobj must be unlocked 645 * => just lock it and call the locked version 646 */ 647 void 648 uao_detach(uobj) 649 struct uvm_object *uobj; 650 { 651 simple_lock(&uobj->vmobjlock); 652 uao_detach_locked(uobj); 653 } 654 655 656 /* 657 * uao_detach_locked: drop a reference to an aobj 658 * 659 * => aobj must be locked, and is unlocked (or freed) upon return. 660 * this needs to be separate from the normal routine 661 * since sometimes we need to detach from an aobj when 662 * it's already locked. 663 */ 664 void 665 uao_detach_locked(uobj) 666 struct uvm_object *uobj; 667 { 668 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 669 struct vm_page *pg, *nextpg; 670 boolean_t busybody; 671 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist); 672 673 /* 674 * detaching from kernel_object is a noop. 675 */ 676 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) { 677 simple_unlock(&uobj->vmobjlock); 678 return; 679 } 680 681 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0); 682 uobj->uo_refs--; /* drop ref! */ 683 if (uobj->uo_refs) { /* still more refs? */ 684 simple_unlock(&uobj->vmobjlock); 685 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0); 686 return; 687 } 688 689 /* 690 * remove the aobj from the global list. 691 */ 692 simple_lock(&uao_list_lock); 693 LIST_REMOVE(aobj, u_list); 694 simple_unlock(&uao_list_lock); 695 696 /* 697 * free all the pages that aren't PG_BUSY, 698 * mark for release any that are. 699 */ 700 busybody = FALSE; 701 for (pg = TAILQ_FIRST(&uobj->memq); pg != NULL; pg = nextpg) { 702 nextpg = TAILQ_NEXT(pg, listq); 703 if (pg->flags & PG_BUSY) { 704 pg->flags |= PG_RELEASED; 705 busybody = TRUE; 706 continue; 707 } 708 709 /* zap the mappings, free the swap slot, free the page */ 710 pmap_page_protect(pg, VM_PROT_NONE); 711 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT); 712 uvm_lock_pageq(); 713 uvm_pagefree(pg); 714 uvm_unlock_pageq(); 715 } 716 717 /* 718 * if we found any busy pages, we're done for now. 719 * mark the aobj for death, releasepg will finish up for us. 720 */ 721 if (busybody) { 722 aobj->u_flags |= UAO_FLAG_KILLME; 723 simple_unlock(&aobj->u_obj.vmobjlock); 724 return; 725 } 726 727 /* 728 * finally, free the rest. 729 */ 730 uao_free(aobj); 731 } 732 733 /* 734 * uao_flush: "flush" pages out of a uvm object 735 * 736 * => object should be locked by caller. we may _unlock_ the object 737 * if (and only if) we need to clean a page (PGO_CLEANIT). 738 * XXXJRT Currently, however, we don't. In the case of cleaning 739 * XXXJRT a page, we simply just deactivate it. Should probably 740 * XXXJRT handle this better, in the future (although "flushing" 741 * XXXJRT anonymous memory isn't terribly important). 742 * => if PGO_CLEANIT is not set, then we will neither unlock the object 743 * or block. 744 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 745 * for flushing. 746 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 747 * that new pages are inserted on the tail end of the list. thus, 748 * we can make a complete pass through the object in one go by starting 749 * at the head and working towards the tail (new pages are put in 750 * front of us). 751 * => NOTE: we are allowed to lock the page queues, so the caller 752 * must not be holding the lock on them [e.g. pagedaemon had 753 * better not call us with the queues locked] 754 * => we return TRUE unless we encountered some sort of I/O error 755 * XXXJRT currently never happens, as we never directly initiate 756 * XXXJRT I/O 757 * 758 * comment on "cleaning" object and PG_BUSY pages: 759 * this routine is holding the lock on the object. the only time 760 * that is can run into a PG_BUSY page that it does not own is if 761 * some other process has started I/O on the page (e.g. either 762 * a pagein or a pageout). if the PG_BUSY page is being paged 763 * in, then it can not be dirty (!PG_CLEAN) because no one has 764 * had a change to modify it yet. if the PG_BUSY page is being 765 * paged out then it means that someone else has already started 766 * cleaning the page for us (how nice!). in this case, if we 767 * have syncio specified, then after we make our pass through the 768 * object we need to wait for the other PG_BUSY pages to clear 769 * off (i.e. we need to do an iosync). also note that once a 770 * page is PG_BUSY is must stary in its object until it is un-busyed. 771 * XXXJRT We never actually do this, as we are "flushing" anonymous 772 * XXXJRT memory, which doesn't have persistent backing store. 773 * 774 * note on page traversal: 775 * we can traverse the pages in an object either by going down the 776 * linked list in "uobj->memq", or we can go over the address range 777 * by page doing hash table lookups for each address. depending 778 * on how many pages are in the object it may be cheaper to do one 779 * or the other. we set "by_list" to true if we are using memq. 780 * if the cost of a hash lookup was equal to the cost of the list 781 * traversal we could compare the number of pages in the start->stop 782 * range to the total number of pages in the object. however, it 783 * seems that a hash table lookup is more expensive than the linked 784 * list traversal, so we multiply the number of pages in the 785 * start->stop range by a penalty which we define below. 786 */ 787 788 #define UAO_HASH_PENALTY 4 /* XXX: a guess */ 789 790 boolean_t 791 uao_flush(uobj, start, stop, flags) 792 struct uvm_object *uobj; 793 voff_t start, stop; 794 int flags; 795 { 796 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj; 797 struct vm_page *pp, *ppnext; 798 boolean_t retval, by_list; 799 voff_t curoff; 800 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist); 801 802 curoff = 0; /* XXX: shut up gcc */ 803 804 retval = TRUE; /* default to success */ 805 806 if (flags & PGO_ALLPAGES) { 807 start = 0; 808 stop = aobj->u_pages << PAGE_SHIFT; 809 by_list = TRUE; /* always go by the list */ 810 } else { 811 start = trunc_page(start); 812 stop = round_page(stop); 813 if (stop > (aobj->u_pages << PAGE_SHIFT)) { 814 printf("uao_flush: strange, got an out of range " 815 "flush (fixed)\n"); 816 stop = aobj->u_pages << PAGE_SHIFT; 817 } 818 by_list = (uobj->uo_npages <= 819 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY); 820 } 821 822 UVMHIST_LOG(maphist, 823 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x", 824 start, stop, by_list, flags); 825 826 /* 827 * Don't need to do any work here if we're not freeing 828 * or deactivating pages. 829 */ 830 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) { 831 UVMHIST_LOG(maphist, 832 "<- done (no work to do)",0,0,0,0); 833 return (retval); 834 } 835 836 /* 837 * now do it. note: we must update ppnext in the body of loop or we 838 * will get stuck. we need to use ppnext because we may free "pp" 839 * before doing the next loop. 840 */ 841 842 if (by_list) { 843 pp = uobj->memq.tqh_first; 844 } else { 845 curoff = start; 846 pp = uvm_pagelookup(uobj, curoff); 847 } 848 849 ppnext = NULL; /* XXX: shut up gcc */ 850 uvm_lock_pageq(); /* page queues locked */ 851 852 /* locked: both page queues and uobj */ 853 for ( ; (by_list && pp != NULL) || 854 (!by_list && curoff < stop) ; pp = ppnext) { 855 if (by_list) { 856 ppnext = TAILQ_NEXT(pp, listq); 857 858 /* range check */ 859 if (pp->offset < start || pp->offset >= stop) 860 continue; 861 } else { 862 curoff += PAGE_SIZE; 863 if (curoff < stop) 864 ppnext = uvm_pagelookup(uobj, curoff); 865 866 /* null check */ 867 if (pp == NULL) 868 continue; 869 } 870 871 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) { 872 /* 873 * XXX In these first 3 cases, we always just 874 * XXX deactivate the page. We may want to 875 * XXX handle the different cases more specifically 876 * XXX in the future. 877 */ 878 case PGO_CLEANIT|PGO_FREE: 879 case PGO_CLEANIT|PGO_DEACTIVATE: 880 case PGO_DEACTIVATE: 881 deactivate_it: 882 /* skip the page if it's loaned or wired */ 883 if (pp->loan_count != 0 || 884 pp->wire_count != 0) 885 continue; 886 887 /* ...and deactivate the page. */ 888 pmap_clear_reference(pp); 889 uvm_pagedeactivate(pp); 890 891 continue; 892 893 case PGO_FREE: 894 /* 895 * If there are multiple references to 896 * the object, just deactivate the page. 897 */ 898 if (uobj->uo_refs > 1) 899 goto deactivate_it; 900 901 /* XXX skip the page if it's loaned or wired */ 902 if (pp->loan_count != 0 || 903 pp->wire_count != 0) 904 continue; 905 906 /* 907 * mark the page as released if its busy. 908 */ 909 if (pp->flags & PG_BUSY) { 910 pp->flags |= PG_RELEASED; 911 continue; 912 } 913 914 /* zap all mappings for the page. */ 915 pmap_page_protect(pp, VM_PROT_NONE); 916 917 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT); 918 uvm_pagefree(pp); 919 920 continue; 921 922 default: 923 panic("uao_flush: weird flags"); 924 } 925 } 926 927 uvm_unlock_pageq(); 928 929 UVMHIST_LOG(maphist, 930 "<- done, rv=%d",retval,0,0,0); 931 return (retval); 932 } 933 934 /* 935 * uao_get: fetch me a page 936 * 937 * we have three cases: 938 * 1: page is resident -> just return the page. 939 * 2: page is zero-fill -> allocate a new page and zero it. 940 * 3: page is swapped out -> fetch the page from swap. 941 * 942 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot. 943 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES), 944 * then we will need to return EBUSY. 945 * 946 * => prefer map unlocked (not required) 947 * => object must be locked! we will _unlock_ it before starting any I/O. 948 * => flags: PGO_ALLPAGES: get all of the pages 949 * PGO_LOCKED: fault data structures are locked 950 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 951 * => NOTE: caller must check for released pages!! 952 */ 953 static int 954 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags) 955 struct uvm_object *uobj; 956 voff_t offset; 957 struct vm_page **pps; 958 int *npagesp; 959 int centeridx, advice, flags; 960 vm_prot_t access_type; 961 { 962 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 963 voff_t current_offset; 964 struct vm_page *ptmp; 965 int lcv, gotpages, maxpages, swslot, rv, pageidx; 966 boolean_t done; 967 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist); 968 969 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d", 970 aobj, offset, flags,0); 971 972 /* 973 * get number of pages 974 */ 975 maxpages = *npagesp; 976 977 /* 978 * step 1: handled the case where fault data structures are locked. 979 */ 980 981 if (flags & PGO_LOCKED) { 982 /* 983 * step 1a: get pages that are already resident. only do 984 * this if the data structures are locked (i.e. the first 985 * time through). 986 */ 987 988 done = TRUE; /* be optimistic */ 989 gotpages = 0; /* # of pages we got so far */ 990 991 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 992 lcv++, current_offset += PAGE_SIZE) { 993 /* do we care about this page? if not, skip it */ 994 if (pps[lcv] == PGO_DONTCARE) 995 continue; 996 997 ptmp = uvm_pagelookup(uobj, current_offset); 998 999 /* 1000 * if page is new, attempt to allocate the page, 1001 * zero-fill'd. 1002 */ 1003 if (ptmp == NULL && uao_find_swslot(aobj, 1004 current_offset >> PAGE_SHIFT) == 0) { 1005 ptmp = uvm_pagealloc(uobj, current_offset, 1006 NULL, UVM_PGA_ZERO); 1007 if (ptmp) { 1008 /* new page */ 1009 ptmp->flags &= ~(PG_BUSY|PG_FAKE); 1010 ptmp->pqflags |= PQ_AOBJ; 1011 UVM_PAGE_OWN(ptmp, NULL); 1012 } 1013 } 1014 1015 /* 1016 * to be useful must get a non-busy, non-released page 1017 */ 1018 if (ptmp == NULL || 1019 (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) { 1020 if (lcv == centeridx || 1021 (flags & PGO_ALLPAGES) != 0) 1022 /* need to do a wait or I/O! */ 1023 done = FALSE; 1024 continue; 1025 } 1026 1027 /* 1028 * useful page: busy/lock it and plug it in our 1029 * result array 1030 */ 1031 /* caller must un-busy this page */ 1032 ptmp->flags |= PG_BUSY; 1033 UVM_PAGE_OWN(ptmp, "uao_get1"); 1034 pps[lcv] = ptmp; 1035 gotpages++; 1036 1037 } /* "for" lcv loop */ 1038 1039 /* 1040 * step 1b: now we've either done everything needed or we 1041 * to unlock and do some waiting or I/O. 1042 */ 1043 1044 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0); 1045 1046 *npagesp = gotpages; 1047 if (done) 1048 /* bingo! */ 1049 return(0); 1050 else 1051 /* EEK! Need to unlock and I/O */ 1052 return(EBUSY); 1053 } 1054 1055 /* 1056 * step 2: get non-resident or busy pages. 1057 * object is locked. data structures are unlocked. 1058 */ 1059 1060 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 1061 lcv++, current_offset += PAGE_SIZE) { 1062 1063 /* 1064 * - skip over pages we've already gotten or don't want 1065 * - skip over pages we don't _have_ to get 1066 */ 1067 1068 if (pps[lcv] != NULL || 1069 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0)) 1070 continue; 1071 1072 pageidx = current_offset >> PAGE_SHIFT; 1073 1074 /* 1075 * we have yet to locate the current page (pps[lcv]). we 1076 * first look for a page that is already at the current offset. 1077 * if we find a page, we check to see if it is busy or 1078 * released. if that is the case, then we sleep on the page 1079 * until it is no longer busy or released and repeat the lookup. 1080 * if the page we found is neither busy nor released, then we 1081 * busy it (so we own it) and plug it into pps[lcv]. this 1082 * 'break's the following while loop and indicates we are 1083 * ready to move on to the next page in the "lcv" loop above. 1084 * 1085 * if we exit the while loop with pps[lcv] still set to NULL, 1086 * then it means that we allocated a new busy/fake/clean page 1087 * ptmp in the object and we need to do I/O to fill in the data. 1088 */ 1089 1090 /* top of "pps" while loop */ 1091 while (pps[lcv] == NULL) { 1092 /* look for a resident page */ 1093 ptmp = uvm_pagelookup(uobj, current_offset); 1094 1095 /* not resident? allocate one now (if we can) */ 1096 if (ptmp == NULL) { 1097 1098 ptmp = uvm_pagealloc(uobj, current_offset, 1099 NULL, 0); 1100 1101 /* out of RAM? */ 1102 if (ptmp == NULL) { 1103 simple_unlock(&uobj->vmobjlock); 1104 UVMHIST_LOG(pdhist, 1105 "sleeping, ptmp == NULL\n",0,0,0,0); 1106 uvm_wait("uao_getpage"); 1107 simple_lock(&uobj->vmobjlock); 1108 /* goto top of pps while loop */ 1109 continue; 1110 } 1111 1112 /* 1113 * safe with PQ's unlocked: because we just 1114 * alloc'd the page 1115 */ 1116 ptmp->pqflags |= PQ_AOBJ; 1117 1118 /* 1119 * got new page ready for I/O. break pps while 1120 * loop. pps[lcv] is still NULL. 1121 */ 1122 break; 1123 } 1124 1125 /* page is there, see if we need to wait on it */ 1126 if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) { 1127 ptmp->flags |= PG_WANTED; 1128 UVMHIST_LOG(pdhist, 1129 "sleeping, ptmp->flags 0x%x\n", 1130 ptmp->flags,0,0,0); 1131 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock, 1132 FALSE, "uao_get", 0); 1133 simple_lock(&uobj->vmobjlock); 1134 continue; /* goto top of pps while loop */ 1135 } 1136 1137 /* 1138 * if we get here then the page has become resident and 1139 * unbusy between steps 1 and 2. we busy it now (so we 1140 * own it) and set pps[lcv] (so that we exit the while 1141 * loop). 1142 */ 1143 /* we own it, caller must un-busy */ 1144 ptmp->flags |= PG_BUSY; 1145 UVM_PAGE_OWN(ptmp, "uao_get2"); 1146 pps[lcv] = ptmp; 1147 } 1148 1149 /* 1150 * if we own the valid page at the correct offset, pps[lcv] will 1151 * point to it. nothing more to do except go to the next page. 1152 */ 1153 if (pps[lcv]) 1154 continue; /* next lcv */ 1155 1156 /* 1157 * we have a "fake/busy/clean" page that we just allocated. 1158 * do the needed "i/o", either reading from swap or zeroing. 1159 */ 1160 swslot = uao_find_swslot(aobj, pageidx); 1161 1162 /* 1163 * just zero the page if there's nothing in swap. 1164 */ 1165 if (swslot == 0) 1166 { 1167 /* 1168 * page hasn't existed before, just zero it. 1169 */ 1170 uvm_pagezero(ptmp); 1171 } else { 1172 UVMHIST_LOG(pdhist, "pagein from swslot %d", 1173 swslot, 0,0,0); 1174 1175 /* 1176 * page in the swapped-out page. 1177 * unlock object for i/o, relock when done. 1178 */ 1179 simple_unlock(&uobj->vmobjlock); 1180 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO); 1181 simple_lock(&uobj->vmobjlock); 1182 1183 /* 1184 * I/O done. check for errors. 1185 */ 1186 if (rv != 0) 1187 { 1188 UVMHIST_LOG(pdhist, "<- done (error=%d)", 1189 rv,0,0,0); 1190 if (ptmp->flags & PG_WANTED) 1191 wakeup(ptmp); 1192 1193 /* 1194 * remove the swap slot from the aobj 1195 * and mark the aobj as having no real slot. 1196 * don't free the swap slot, thus preventing 1197 * it from being used again. 1198 */ 1199 swslot = uao_set_swslot(&aobj->u_obj, pageidx, 1200 SWSLOT_BAD); 1201 if (swslot != -1) { 1202 uvm_swap_markbad(swslot, 1); 1203 } 1204 1205 ptmp->flags &= ~(PG_WANTED|PG_BUSY); 1206 UVM_PAGE_OWN(ptmp, NULL); 1207 uvm_lock_pageq(); 1208 uvm_pagefree(ptmp); 1209 uvm_unlock_pageq(); 1210 1211 simple_unlock(&uobj->vmobjlock); 1212 return (rv); 1213 } 1214 } 1215 1216 /* 1217 * we got the page! clear the fake flag (indicates valid 1218 * data now in page) and plug into our result array. note 1219 * that page is still busy. 1220 * 1221 * it is the callers job to: 1222 * => check if the page is released 1223 * => unbusy the page 1224 * => activate the page 1225 */ 1226 1227 ptmp->flags &= ~PG_FAKE; /* data is valid ... */ 1228 pmap_clear_modify(ptmp); /* ... and clean */ 1229 pps[lcv] = ptmp; 1230 1231 } /* lcv loop */ 1232 1233 /* 1234 * finally, unlock object and return. 1235 */ 1236 1237 simple_unlock(&uobj->vmobjlock); 1238 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0); 1239 return(0); 1240 } 1241 1242 /* 1243 * uao_releasepg: handle released page in an aobj 1244 * 1245 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need 1246 * to dispose of. 1247 * => caller must handle PG_WANTED case 1248 * => called with page's object locked, pageq's unlocked 1249 * => returns TRUE if page's object is still alive, FALSE if we 1250 * killed the page's object. if we return TRUE, then we 1251 * return with the object locked. 1252 * => if (nextpgp != NULL) => we return the next page on the queue, and return 1253 * with the page queues locked [for pagedaemon] 1254 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case] 1255 * => we kill the aobj if it is not referenced and we are suppose to 1256 * kill it ("KILLME"). 1257 */ 1258 static boolean_t 1259 uao_releasepg(pg, nextpgp) 1260 struct vm_page *pg; 1261 struct vm_page **nextpgp; /* OUT */ 1262 { 1263 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject; 1264 1265 KASSERT(pg->flags & PG_RELEASED); 1266 1267 /* 1268 * dispose of the page [caller handles PG_WANTED] and swap slot. 1269 */ 1270 pmap_page_protect(pg, VM_PROT_NONE); 1271 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT); 1272 uvm_lock_pageq(); 1273 if (nextpgp) 1274 *nextpgp = TAILQ_NEXT(pg, pageq); /* next page for daemon */ 1275 uvm_pagefree(pg); 1276 if (!nextpgp) 1277 uvm_unlock_pageq(); /* keep locked for daemon */ 1278 1279 /* 1280 * if we're not killing the object, we're done. 1281 */ 1282 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0) 1283 return TRUE; 1284 KASSERT(aobj->u_obj.uo_refs == 0); 1285 1286 /* 1287 * if there are still pages in the object, we're done for now. 1288 */ 1289 if (aobj->u_obj.uo_npages != 0) 1290 return TRUE; 1291 1292 KASSERT(TAILQ_EMPTY(&aobj->u_obj.memq)); 1293 1294 /* 1295 * finally, free the rest. 1296 */ 1297 uao_free(aobj); 1298 1299 return FALSE; 1300 } 1301 1302 1303 /* 1304 * uao_dropswap: release any swap resources from this aobj page. 1305 * 1306 * => aobj must be locked or have a reference count of 0. 1307 */ 1308 1309 void 1310 uao_dropswap(uobj, pageidx) 1311 struct uvm_object *uobj; 1312 int pageidx; 1313 { 1314 int slot; 1315 1316 slot = uao_set_swslot(uobj, pageidx, 0); 1317 if (slot) { 1318 uvm_swap_free(slot, 1); 1319 } 1320 } 1321 1322 1323 /* 1324 * page in every page in every aobj that is paged-out to a range of swslots. 1325 * 1326 * => nothing should be locked. 1327 * => returns TRUE if pagein was aborted due to lack of memory. 1328 */ 1329 boolean_t 1330 uao_swap_off(startslot, endslot) 1331 int startslot, endslot; 1332 { 1333 struct uvm_aobj *aobj, *nextaobj; 1334 1335 /* 1336 * walk the list of all aobjs. 1337 */ 1338 1339 restart: 1340 simple_lock(&uao_list_lock); 1341 1342 for (aobj = LIST_FIRST(&uao_list); 1343 aobj != NULL; 1344 aobj = nextaobj) { 1345 boolean_t rv; 1346 1347 /* 1348 * try to get the object lock, 1349 * start all over if we fail. 1350 * most of the time we'll get the aobj lock, 1351 * so this should be a rare case. 1352 */ 1353 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) { 1354 simple_unlock(&uao_list_lock); 1355 goto restart; 1356 } 1357 1358 /* 1359 * add a ref to the aobj so it doesn't disappear 1360 * while we're working. 1361 */ 1362 uao_reference_locked(&aobj->u_obj); 1363 1364 /* 1365 * now it's safe to unlock the uao list. 1366 */ 1367 simple_unlock(&uao_list_lock); 1368 1369 /* 1370 * page in any pages in the swslot range. 1371 * if there's an error, abort and return the error. 1372 */ 1373 rv = uao_pagein(aobj, startslot, endslot); 1374 if (rv) { 1375 uao_detach_locked(&aobj->u_obj); 1376 return rv; 1377 } 1378 1379 /* 1380 * we're done with this aobj. 1381 * relock the list and drop our ref on the aobj. 1382 */ 1383 simple_lock(&uao_list_lock); 1384 nextaobj = LIST_NEXT(aobj, u_list); 1385 uao_detach_locked(&aobj->u_obj); 1386 } 1387 1388 /* 1389 * done with traversal, unlock the list 1390 */ 1391 simple_unlock(&uao_list_lock); 1392 return FALSE; 1393 } 1394 1395 1396 /* 1397 * page in any pages from aobj in the given range. 1398 * 1399 * => aobj must be locked and is returned locked. 1400 * => returns TRUE if pagein was aborted due to lack of memory. 1401 */ 1402 static boolean_t 1403 uao_pagein(aobj, startslot, endslot) 1404 struct uvm_aobj *aobj; 1405 int startslot, endslot; 1406 { 1407 boolean_t rv; 1408 1409 if (UAO_USES_SWHASH(aobj)) { 1410 struct uao_swhash_elt *elt; 1411 int bucket; 1412 1413 restart: 1414 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) { 1415 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]); 1416 elt != NULL; 1417 elt = LIST_NEXT(elt, list)) { 1418 int i; 1419 1420 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) { 1421 int slot = elt->slots[i]; 1422 1423 /* 1424 * if the slot isn't in range, skip it. 1425 */ 1426 if (slot < startslot || 1427 slot >= endslot) { 1428 continue; 1429 } 1430 1431 /* 1432 * process the page, 1433 * the start over on this object 1434 * since the swhash elt 1435 * may have been freed. 1436 */ 1437 rv = uao_pagein_page(aobj, 1438 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i); 1439 if (rv) { 1440 return rv; 1441 } 1442 goto restart; 1443 } 1444 } 1445 } 1446 } else { 1447 int i; 1448 1449 for (i = 0; i < aobj->u_pages; i++) { 1450 int slot = aobj->u_swslots[i]; 1451 1452 /* 1453 * if the slot isn't in range, skip it 1454 */ 1455 if (slot < startslot || slot >= endslot) { 1456 continue; 1457 } 1458 1459 /* 1460 * process the page. 1461 */ 1462 rv = uao_pagein_page(aobj, i); 1463 if (rv) { 1464 return rv; 1465 } 1466 } 1467 } 1468 1469 return FALSE; 1470 } 1471 1472 /* 1473 * page in a page from an aobj. used for swap_off. 1474 * returns TRUE if pagein was aborted due to lack of memory. 1475 * 1476 * => aobj must be locked and is returned locked. 1477 */ 1478 static boolean_t 1479 uao_pagein_page(aobj, pageidx) 1480 struct uvm_aobj *aobj; 1481 int pageidx; 1482 { 1483 struct vm_page *pg; 1484 int rv, slot, npages; 1485 1486 pg = NULL; 1487 npages = 1; 1488 /* locked: aobj */ 1489 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT, 1490 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0); 1491 /* unlocked: aobj */ 1492 1493 /* 1494 * relock and finish up. 1495 */ 1496 simple_lock(&aobj->u_obj.vmobjlock); 1497 1498 switch (rv) { 1499 case 0: 1500 break; 1501 1502 case EIO: 1503 case ERESTART: 1504 /* 1505 * nothing more to do on errors. 1506 * ERESTART can only mean that the anon was freed, 1507 * so again there's nothing to do. 1508 */ 1509 return FALSE; 1510 1511 } 1512 KASSERT((pg->flags & PG_RELEASED) == 0); 1513 1514 /* 1515 * ok, we've got the page now. 1516 * mark it as dirty, clear its swslot and un-busy it. 1517 */ 1518 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0); 1519 uvm_swap_free(slot, 1); 1520 pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE); 1521 UVM_PAGE_OWN(pg, NULL); 1522 1523 /* 1524 * deactivate the page (to put it on a page queue). 1525 */ 1526 pmap_clear_reference(pg); 1527 uvm_lock_pageq(); 1528 uvm_pagedeactivate(pg); 1529 uvm_unlock_pageq(); 1530 1531 return FALSE; 1532 } 1533