xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision 1ca5c1b28139779176bd5c13ad7c5f25c0bcd5f8)
1 /*	$NetBSD: uvm_aobj.c,v 1.49 2001/11/10 07:36:59 lukem Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Charles D. Cranor and
19  *      Washington University.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35  */
36 /*
37  * uvm_aobj.c: anonymous memory uvm_object pager
38  *
39  * author: Chuck Silvers <chuq@chuq.com>
40  * started: Jan-1998
41  *
42  * - design mostly from Chuck Cranor
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.49 2001/11/10 07:36:59 lukem Exp $");
47 
48 #include "opt_uvmhist.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56 #include <sys/kernel.h>
57 
58 #include <uvm/uvm.h>
59 
60 /*
61  * an aobj manages anonymous-memory backed uvm_objects.   in addition
62  * to keeping the list of resident pages, it also keeps a list of
63  * allocated swap blocks.  depending on the size of the aobj this list
64  * of allocated swap blocks is either stored in an array (small objects)
65  * or in a hash table (large objects).
66  */
67 
68 /*
69  * local structures
70  */
71 
72 /*
73  * for hash tables, we break the address space of the aobj into blocks
74  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
75  * be a power of two.
76  */
77 
78 #define UAO_SWHASH_CLUSTER_SHIFT 4
79 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80 
81 /* get the "tag" for this page index */
82 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
83 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84 
85 /* given an ELT and a page index, find the swap slot */
86 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
87 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
88 
89 /* given an ELT, return its pageidx base */
90 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
91 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
92 
93 /*
94  * the swhash hash function
95  */
96 
97 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
98 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
99 			    & (AOBJ)->u_swhashmask)])
100 
101 /*
102  * the swhash threshhold determines if we will use an array or a
103  * hash table to store the list of allocated swap blocks.
104  */
105 
106 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
107 #define UAO_USES_SWHASH(AOBJ) \
108 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
109 
110 /*
111  * the number of buckets in a swhash, with an upper bound
112  */
113 
114 #define UAO_SWHASH_MAXBUCKETS 256
115 #define UAO_SWHASH_BUCKETS(AOBJ) \
116 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
117 	     UAO_SWHASH_MAXBUCKETS))
118 
119 
120 /*
121  * uao_swhash_elt: when a hash table is being used, this structure defines
122  * the format of an entry in the bucket list.
123  */
124 
125 struct uao_swhash_elt {
126 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
127 	voff_t tag;				/* our 'tag' */
128 	int count;				/* our number of active slots */
129 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
130 };
131 
132 /*
133  * uao_swhash: the swap hash table structure
134  */
135 
136 LIST_HEAD(uao_swhash, uao_swhash_elt);
137 
138 /*
139  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
140  */
141 
142 struct pool uao_swhash_elt_pool;
143 
144 /*
145  * uvm_aobj: the actual anon-backed uvm_object
146  *
147  * => the uvm_object is at the top of the structure, this allows
148  *   (struct uvm_aobj *) == (struct uvm_object *)
149  * => only one of u_swslots and u_swhash is used in any given aobj
150  */
151 
152 struct uvm_aobj {
153 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
154 	int u_pages;		 /* number of pages in entire object */
155 	int u_flags;		 /* the flags (see uvm_aobj.h) */
156 	int *u_swslots;		 /* array of offset->swapslot mappings */
157 				 /*
158 				  * hashtable of offset->swapslot mappings
159 				  * (u_swhash is an array of bucket heads)
160 				  */
161 	struct uao_swhash *u_swhash;
162 	u_long u_swhashmask;		/* mask for hashtable */
163 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
164 };
165 
166 /*
167  * uvm_aobj_pool: pool of uvm_aobj structures
168  */
169 
170 struct pool uvm_aobj_pool;
171 
172 /*
173  * local functions
174  */
175 
176 static struct uao_swhash_elt *uao_find_swhash_elt
177     __P((struct uvm_aobj *, int, boolean_t));
178 
179 static void	uao_free __P((struct uvm_aobj *));
180 static int	uao_get __P((struct uvm_object *, voff_t, struct vm_page **,
181 		    int *, int, vm_prot_t, int, int));
182 static boolean_t uao_put __P((struct uvm_object *, voff_t, voff_t, int));
183 static boolean_t uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t uao_pagein_page __P((struct uvm_aobj *, int));
185 
186 /*
187  * aobj_pager
188  *
189  * note that some functions (e.g. put) are handled elsewhere
190  */
191 
192 struct uvm_pagerops aobj_pager = {
193 	NULL,			/* init */
194 	uao_reference,		/* reference */
195 	uao_detach,		/* detach */
196 	NULL,			/* fault */
197 	uao_get,		/* get */
198 	uao_put,		/* flush */
199 };
200 
201 /*
202  * uao_list: global list of active aobjs, locked by uao_list_lock
203  */
204 
205 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
206 static struct simplelock uao_list_lock;
207 
208 /*
209  * functions
210  */
211 
212 /*
213  * hash table/array related functions
214  */
215 
216 /*
217  * uao_find_swhash_elt: find (or create) a hash table entry for a page
218  * offset.
219  *
220  * => the object should be locked by the caller
221  */
222 
223 static struct uao_swhash_elt *
224 uao_find_swhash_elt(aobj, pageidx, create)
225 	struct uvm_aobj *aobj;
226 	int pageidx;
227 	boolean_t create;
228 {
229 	struct uao_swhash *swhash;
230 	struct uao_swhash_elt *elt;
231 	voff_t page_tag;
232 
233 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
234 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
235 
236 	/*
237 	 * now search the bucket for the requested tag
238 	 */
239 
240 	LIST_FOREACH(elt, swhash, list) {
241 		if (elt->tag == page_tag) {
242 			return elt;
243 		}
244 	}
245 	if (!create) {
246 		return NULL;
247 	}
248 
249 	/*
250 	 * allocate a new entry for the bucket and init/insert it in
251 	 */
252 
253 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
254 	if (elt == NULL) {
255 		return NULL;
256 	}
257 	LIST_INSERT_HEAD(swhash, elt, list);
258 	elt->tag = page_tag;
259 	elt->count = 0;
260 	memset(elt->slots, 0, sizeof(elt->slots));
261 	return elt;
262 }
263 
264 /*
265  * uao_find_swslot: find the swap slot number for an aobj/pageidx
266  *
267  * => object must be locked by caller
268  */
269 
270 int
271 uao_find_swslot(uobj, pageidx)
272 	struct uvm_object *uobj;
273 	int pageidx;
274 {
275 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
276 	struct uao_swhash_elt *elt;
277 
278 	/*
279 	 * if noswap flag is set, then we never return a slot
280 	 */
281 
282 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
283 		return(0);
284 
285 	/*
286 	 * if hashing, look in hash table.
287 	 */
288 
289 	if (UAO_USES_SWHASH(aobj)) {
290 		elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
291 		if (elt)
292 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
293 		else
294 			return(0);
295 	}
296 
297 	/*
298 	 * otherwise, look in the array
299 	 */
300 
301 	return(aobj->u_swslots[pageidx]);
302 }
303 
304 /*
305  * uao_set_swslot: set the swap slot for a page in an aobj.
306  *
307  * => setting a slot to zero frees the slot
308  * => object must be locked by caller
309  * => we return the old slot number, or -1 if we failed to allocate
310  *    memory to record the new slot number
311  */
312 
313 int
314 uao_set_swslot(uobj, pageidx, slot)
315 	struct uvm_object *uobj;
316 	int pageidx, slot;
317 {
318 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
319 	struct uao_swhash_elt *elt;
320 	int oldslot;
321 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
322 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
323 	    aobj, pageidx, slot, 0);
324 
325 	/*
326 	 * if noswap flag is set, then we can't set a non-zero slot.
327 	 */
328 
329 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
330 		if (slot == 0)
331 			return(0);
332 
333 		printf("uao_set_swslot: uobj = %p\n", uobj);
334 		panic("uao_set_swslot: NOSWAP object");
335 	}
336 
337 	/*
338 	 * are we using a hash table?  if so, add it in the hash.
339 	 */
340 
341 	if (UAO_USES_SWHASH(aobj)) {
342 
343 		/*
344 		 * Avoid allocating an entry just to free it again if
345 		 * the page had not swap slot in the first place, and
346 		 * we are freeing.
347 		 */
348 
349 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
350 		if (elt == NULL) {
351 			return slot ? -1 : 0;
352 		}
353 
354 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
355 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
356 
357 		/*
358 		 * now adjust the elt's reference counter and free it if we've
359 		 * dropped it to zero.
360 		 */
361 
362 		if (slot) {
363 			if (oldslot == 0)
364 				elt->count++;
365 		} else {
366 			if (oldslot)
367 				elt->count--;
368 
369 			if (elt->count == 0) {
370 				LIST_REMOVE(elt, list);
371 				pool_put(&uao_swhash_elt_pool, elt);
372 			}
373 		}
374 	} else {
375 		/* we are using an array */
376 		oldslot = aobj->u_swslots[pageidx];
377 		aobj->u_swslots[pageidx] = slot;
378 	}
379 	return (oldslot);
380 }
381 
382 /*
383  * end of hash/array functions
384  */
385 
386 /*
387  * uao_free: free all resources held by an aobj, and then free the aobj
388  *
389  * => the aobj should be dead
390  */
391 
392 static void
393 uao_free(aobj)
394 	struct uvm_aobj *aobj;
395 {
396 	int swpgonlydelta = 0;
397 
398 	simple_unlock(&aobj->u_obj.vmobjlock);
399 	if (UAO_USES_SWHASH(aobj)) {
400 		int i, hashbuckets = aobj->u_swhashmask + 1;
401 
402 		/*
403 		 * free the swslots from each hash bucket,
404 		 * then the hash bucket, and finally the hash table itself.
405 		 */
406 
407 		for (i = 0; i < hashbuckets; i++) {
408 			struct uao_swhash_elt *elt, *next;
409 
410 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
411 			     elt != NULL;
412 			     elt = next) {
413 				int j;
414 
415 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
416 					int slot = elt->slots[j];
417 
418 					if (slot == 0) {
419 						continue;
420 					}
421 					uvm_swap_free(slot, 1);
422 					swpgonlydelta++;
423 				}
424 
425 				next = LIST_NEXT(elt, list);
426 				pool_put(&uao_swhash_elt_pool, elt);
427 			}
428 		}
429 		free(aobj->u_swhash, M_UVMAOBJ);
430 	} else {
431 		int i;
432 
433 		/*
434 		 * free the array
435 		 */
436 
437 		for (i = 0; i < aobj->u_pages; i++) {
438 			int slot = aobj->u_swslots[i];
439 
440 			if (slot) {
441 				uvm_swap_free(slot, 1);
442 				swpgonlydelta++;
443 			}
444 		}
445 		free(aobj->u_swslots, M_UVMAOBJ);
446 	}
447 
448 	/*
449 	 * finally free the aobj itself
450 	 */
451 
452 	pool_put(&uvm_aobj_pool, aobj);
453 
454 	/*
455 	 * adjust the counter of pages only in swap for all
456 	 * the swap slots we've freed.
457 	 */
458 
459 	if (swpgonlydelta > 0) {
460 		simple_lock(&uvm.swap_data_lock);
461 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
462 		uvmexp.swpgonly -= swpgonlydelta;
463 		simple_unlock(&uvm.swap_data_lock);
464 	}
465 }
466 
467 /*
468  * pager functions
469  */
470 
471 /*
472  * uao_create: create an aobj of the given size and return its uvm_object.
473  *
474  * => for normal use, flags are always zero
475  * => for the kernel object, the flags are:
476  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
477  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
478  */
479 
480 struct uvm_object *
481 uao_create(size, flags)
482 	vsize_t size;
483 	int flags;
484 {
485 	static struct uvm_aobj kernel_object_store;
486 	static int kobj_alloced = 0;
487 	int pages = round_page(size) >> PAGE_SHIFT;
488 	struct uvm_aobj *aobj;
489 
490 	/*
491 	 * malloc a new aobj unless we are asked for the kernel object
492 	 */
493 
494 	if (flags & UAO_FLAG_KERNOBJ) {
495 		KASSERT(!kobj_alloced);
496 		aobj = &kernel_object_store;
497 		aobj->u_pages = pages;
498 		aobj->u_flags = UAO_FLAG_NOSWAP;
499 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
500 		kobj_alloced = UAO_FLAG_KERNOBJ;
501 	} else if (flags & UAO_FLAG_KERNSWAP) {
502 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
503 		aobj = &kernel_object_store;
504 		kobj_alloced = UAO_FLAG_KERNSWAP;
505 	} else {
506 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 		aobj->u_pages = pages;
508 		aobj->u_flags = 0;
509 		aobj->u_obj.uo_refs = 1;
510 	}
511 
512 	/*
513  	 * allocate hash/array if necessary
514  	 *
515  	 * note: in the KERNSWAP case no need to worry about locking since
516  	 * we are still booting we should be the only thread around.
517  	 */
518 
519 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
520 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
521 		    M_NOWAIT : M_WAITOK;
522 
523 		/* allocate hash table or array depending on object size */
524 		if (UAO_USES_SWHASH(aobj)) {
525 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
526 			    HASH_LIST, M_UVMAOBJ, mflags, &aobj->u_swhashmask);
527 			if (aobj->u_swhash == NULL)
528 				panic("uao_create: hashinit swhash failed");
529 		} else {
530 			aobj->u_swslots = malloc(pages * sizeof(int),
531 			    M_UVMAOBJ, mflags);
532 			if (aobj->u_swslots == NULL)
533 				panic("uao_create: malloc swslots failed");
534 			memset(aobj->u_swslots, 0, pages * sizeof(int));
535 		}
536 
537 		if (flags) {
538 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
539 			return(&aobj->u_obj);
540 		}
541 	}
542 
543 	/*
544  	 * init aobj fields
545  	 */
546 
547 	simple_lock_init(&aobj->u_obj.vmobjlock);
548 	aobj->u_obj.pgops = &aobj_pager;
549 	TAILQ_INIT(&aobj->u_obj.memq);
550 	aobj->u_obj.uo_npages = 0;
551 
552 	/*
553  	 * now that aobj is ready, add it to the global list
554  	 */
555 
556 	simple_lock(&uao_list_lock);
557 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
558 	simple_unlock(&uao_list_lock);
559 	return(&aobj->u_obj);
560 }
561 
562 
563 
564 /*
565  * uao_init: set up aobj pager subsystem
566  *
567  * => called at boot time from uvm_pager_init()
568  */
569 
570 void
571 uao_init(void)
572 {
573 	static int uao_initialized;
574 
575 	if (uao_initialized)
576 		return;
577 	uao_initialized = TRUE;
578 	LIST_INIT(&uao_list);
579 	simple_lock_init(&uao_list_lock);
580 
581 	/*
582 	 * NOTE: Pages fror this pool must not come from a pageable
583 	 * kernel map!
584 	 */
585 
586 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
587 	    0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
588 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
589 	    "aobjpl", 0,
590 	    pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
591 }
592 
593 /*
594  * uao_reference: add a ref to an aobj
595  *
596  * => aobj must be unlocked
597  * => just lock it and call the locked version
598  */
599 
600 void
601 uao_reference(uobj)
602 	struct uvm_object *uobj;
603 {
604 	simple_lock(&uobj->vmobjlock);
605 	uao_reference_locked(uobj);
606 	simple_unlock(&uobj->vmobjlock);
607 }
608 
609 /*
610  * uao_reference_locked: add a ref to an aobj that is already locked
611  *
612  * => aobj must be locked
613  * this needs to be separate from the normal routine
614  * since sometimes we need to add a reference to an aobj when
615  * it's already locked.
616  */
617 
618 void
619 uao_reference_locked(uobj)
620 	struct uvm_object *uobj;
621 {
622 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
623 
624 	/*
625  	 * kernel_object already has plenty of references, leave it alone.
626  	 */
627 
628 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
629 		return;
630 
631 	uobj->uo_refs++;
632 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
633 		    uobj, uobj->uo_refs,0,0);
634 }
635 
636 /*
637  * uao_detach: drop a reference to an aobj
638  *
639  * => aobj must be unlocked
640  * => just lock it and call the locked version
641  */
642 
643 void
644 uao_detach(uobj)
645 	struct uvm_object *uobj;
646 {
647 	simple_lock(&uobj->vmobjlock);
648 	uao_detach_locked(uobj);
649 }
650 
651 /*
652  * uao_detach_locked: drop a reference to an aobj
653  *
654  * => aobj must be locked, and is unlocked (or freed) upon return.
655  * this needs to be separate from the normal routine
656  * since sometimes we need to detach from an aobj when
657  * it's already locked.
658  */
659 
660 void
661 uao_detach_locked(uobj)
662 	struct uvm_object *uobj;
663 {
664 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
665 	struct vm_page *pg;
666 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
667 
668 	/*
669  	 * detaching from kernel_object is a noop.
670  	 */
671 
672 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
673 		simple_unlock(&uobj->vmobjlock);
674 		return;
675 	}
676 
677 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
678 	uobj->uo_refs--;
679 	if (uobj->uo_refs) {
680 		simple_unlock(&uobj->vmobjlock);
681 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
682 		return;
683 	}
684 
685 	/*
686  	 * remove the aobj from the global list.
687  	 */
688 
689 	simple_lock(&uao_list_lock);
690 	LIST_REMOVE(aobj, u_list);
691 	simple_unlock(&uao_list_lock);
692 
693 	/*
694  	 * free all the pages left in the aobj.  for each page,
695 	 * when the page is no longer busy (and thus after any disk i/o that
696 	 * it's involved in is complete), release any swap resources and
697 	 * free the page itself.
698  	 */
699 
700 	uvm_lock_pageq();
701 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
702 		pmap_page_protect(pg, VM_PROT_NONE);
703 		if (pg->flags & PG_BUSY) {
704 			pg->flags |= PG_WANTED;
705 			uvm_unlock_pageq();
706 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, FALSE,
707 			    "uao_det", 0);
708 			simple_lock(&uobj->vmobjlock);
709 			uvm_lock_pageq();
710 			continue;
711 		}
712 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
713 		uvm_pagefree(pg);
714 	}
715 	uvm_unlock_pageq();
716 
717 	/*
718  	 * finally, free the aobj itself.
719  	 */
720 
721 	uao_free(aobj);
722 }
723 
724 /*
725  * uao_put: flush pages out of a uvm object
726  *
727  * => object should be locked by caller.  we may _unlock_ the object
728  *	if (and only if) we need to clean a page (PGO_CLEANIT).
729  *	XXXJRT Currently, however, we don't.  In the case of cleaning
730  *	XXXJRT a page, we simply just deactivate it.  Should probably
731  *	XXXJRT handle this better, in the future (although "flushing"
732  *	XXXJRT anonymous memory isn't terribly important).
733  * => if PGO_CLEANIT is not set, then we will neither unlock the object
734  *	or block.
735  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
736  *	for flushing.
737  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
738  *	that new pages are inserted on the tail end of the list.  thus,
739  *	we can make a complete pass through the object in one go by starting
740  *	at the head and working towards the tail (new pages are put in
741  *	front of us).
742  * => NOTE: we are allowed to lock the page queues, so the caller
743  *	must not be holding the lock on them [e.g. pagedaemon had
744  *	better not call us with the queues locked]
745  * => we return TRUE unless we encountered some sort of I/O error
746  *	XXXJRT currently never happens, as we never directly initiate
747  *	XXXJRT I/O
748  *
749  * note on page traversal:
750  *	we can traverse the pages in an object either by going down the
751  *	linked list in "uobj->memq", or we can go over the address range
752  *	by page doing hash table lookups for each address.  depending
753  *	on how many pages are in the object it may be cheaper to do one
754  *	or the other.  we set "by_list" to true if we are using memq.
755  *	if the cost of a hash lookup was equal to the cost of the list
756  *	traversal we could compare the number of pages in the start->stop
757  *	range to the total number of pages in the object.  however, it
758  *	seems that a hash table lookup is more expensive than the linked
759  *	list traversal, so we multiply the number of pages in the
760  *	start->stop range by a penalty which we define below.
761  */
762 
763 int
764 uao_put(uobj, start, stop, flags)
765 	struct uvm_object *uobj;
766 	voff_t start, stop;
767 	int flags;
768 {
769 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
770 	struct vm_page *pg, *nextpg;
771 	boolean_t by_list;
772 	voff_t curoff;
773 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
774 
775 	curoff = 0;
776 	if (flags & PGO_ALLPAGES) {
777 		start = 0;
778 		stop = aobj->u_pages << PAGE_SHIFT;
779 		by_list = TRUE;		/* always go by the list */
780 	} else {
781 		start = trunc_page(start);
782 		stop = round_page(stop);
783 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
784 			printf("uao_flush: strange, got an out of range "
785 			    "flush (fixed)\n");
786 			stop = aobj->u_pages << PAGE_SHIFT;
787 		}
788 		by_list = (uobj->uo_npages <=
789 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
790 	}
791 	UVMHIST_LOG(maphist,
792 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
793 	    start, stop, by_list, flags);
794 
795 	/*
796 	 * Don't need to do any work here if we're not freeing
797 	 * or deactivating pages.
798 	 */
799 
800 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
801 		simple_unlock(&uobj->vmobjlock);
802 		return 0;
803 	}
804 
805 	/*
806 	 * now do it.  note: we must update nextpg in the body of loop or we
807 	 * will get stuck.  we need to use nextpg because we may free "pg"
808 	 * before doing the next loop.
809 	 */
810 
811 	if (by_list) {
812 		pg = TAILQ_FIRST(&uobj->memq);
813 	} else {
814 		curoff = start;
815 		pg = uvm_pagelookup(uobj, curoff);
816 	}
817 
818 	nextpg = NULL;
819 	uvm_lock_pageq();
820 
821 	/* locked: both page queues and uobj */
822 	for ( ; (by_list && pg != NULL) ||
823 	    (!by_list && curoff < stop) ; pg = nextpg) {
824 		if (by_list) {
825 			nextpg = TAILQ_NEXT(pg, listq);
826 			if (pg->offset < start || pg->offset >= stop)
827 				continue;
828 		} else {
829 			curoff += PAGE_SIZE;
830 			if (curoff < stop)
831 				nextpg = uvm_pagelookup(uobj, curoff);
832 			if (pg == NULL)
833 				continue;
834 		}
835 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
836 
837 		/*
838 		 * XXX In these first 3 cases, we always just
839 		 * XXX deactivate the page.  We may want to
840 		 * XXX handle the different cases more specifically
841 		 * XXX in the future.
842 		 */
843 
844 		case PGO_CLEANIT|PGO_FREE:
845 		case PGO_CLEANIT|PGO_DEACTIVATE:
846 		case PGO_DEACTIVATE:
847  deactivate_it:
848 			/* skip the page if it's loaned or wired */
849 			if (pg->loan_count != 0 || pg->wire_count != 0)
850 				continue;
851 
852 			/* ...and deactivate the page. */
853 			pmap_clear_reference(pg);
854 			uvm_pagedeactivate(pg);
855 			continue;
856 
857 		case PGO_FREE:
858 
859 			/*
860 			 * If there are multiple references to
861 			 * the object, just deactivate the page.
862 			 */
863 
864 			if (uobj->uo_refs > 1)
865 				goto deactivate_it;
866 
867 			/* XXX skip the page if it's loaned or wired */
868 			if (pg->loan_count != 0 || pg->wire_count != 0)
869 				continue;
870 
871 			/*
872 			 * wait if the page is busy, then free the swap slot
873 			 * and the page.
874 			 */
875 
876 			pmap_page_protect(pg, VM_PROT_NONE);
877 			while (pg->flags & PG_BUSY) {
878 				pg->flags |= PG_WANTED;
879 				uvm_unlock_pageq();
880 				UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
881 				    "uao_put", 0);
882 				simple_lock(&uobj->vmobjlock);
883 				uvm_lock_pageq();
884 			}
885 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
886 			uvm_pagefree(pg);
887 			continue;
888 		}
889 	}
890 	uvm_unlock_pageq();
891 	simple_unlock(&uobj->vmobjlock);
892 	return 0;
893 }
894 
895 /*
896  * uao_get: fetch me a page
897  *
898  * we have three cases:
899  * 1: page is resident     -> just return the page.
900  * 2: page is zero-fill    -> allocate a new page and zero it.
901  * 3: page is swapped out  -> fetch the page from swap.
902  *
903  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
904  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
905  * then we will need to return EBUSY.
906  *
907  * => prefer map unlocked (not required)
908  * => object must be locked!  we will _unlock_ it before starting any I/O.
909  * => flags: PGO_ALLPAGES: get all of the pages
910  *           PGO_LOCKED: fault data structures are locked
911  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
912  * => NOTE: caller must check for released pages!!
913  */
914 
915 static int
916 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
917 	struct uvm_object *uobj;
918 	voff_t offset;
919 	struct vm_page **pps;
920 	int *npagesp;
921 	int centeridx, advice, flags;
922 	vm_prot_t access_type;
923 {
924 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
925 	voff_t current_offset;
926 	struct vm_page *ptmp;
927 	int lcv, gotpages, maxpages, swslot, error, pageidx;
928 	boolean_t done;
929 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
930 
931 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
932 		    aobj, offset, flags,0);
933 
934 	/*
935  	 * get number of pages
936  	 */
937 
938 	maxpages = *npagesp;
939 
940 	/*
941  	 * step 1: handled the case where fault data structures are locked.
942  	 */
943 
944 	if (flags & PGO_LOCKED) {
945 
946 		/*
947  		 * step 1a: get pages that are already resident.   only do
948 		 * this if the data structures are locked (i.e. the first
949 		 * time through).
950  		 */
951 
952 		done = TRUE;	/* be optimistic */
953 		gotpages = 0;	/* # of pages we got so far */
954 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
955 		    lcv++, current_offset += PAGE_SIZE) {
956 			/* do we care about this page?  if not, skip it */
957 			if (pps[lcv] == PGO_DONTCARE)
958 				continue;
959 			ptmp = uvm_pagelookup(uobj, current_offset);
960 
961 			/*
962  			 * if page is new, attempt to allocate the page,
963 			 * zero-fill'd.
964  			 */
965 
966 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
967 			    current_offset >> PAGE_SHIFT) == 0) {
968 				ptmp = uvm_pagealloc(uobj, current_offset,
969 				    NULL, UVM_PGA_ZERO);
970 				if (ptmp) {
971 					/* new page */
972 					ptmp->flags &= ~(PG_FAKE);
973 					ptmp->pqflags |= PQ_AOBJ;
974 					goto gotpage;
975 				}
976 			}
977 
978 			/*
979 			 * to be useful must get a non-busy page
980 			 */
981 
982 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
983 				if (lcv == centeridx ||
984 				    (flags & PGO_ALLPAGES) != 0)
985 					/* need to do a wait or I/O! */
986 					done = FALSE;
987 					continue;
988 			}
989 
990 			/*
991 			 * useful page: busy/lock it and plug it in our
992 			 * result array
993 			 */
994 
995 			/* caller must un-busy this page */
996 			ptmp->flags |= PG_BUSY;
997 			UVM_PAGE_OWN(ptmp, "uao_get1");
998 gotpage:
999 			pps[lcv] = ptmp;
1000 			gotpages++;
1001 		}
1002 
1003 		/*
1004  		 * step 1b: now we've either done everything needed or we
1005 		 * to unlock and do some waiting or I/O.
1006  		 */
1007 
1008 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1009 		*npagesp = gotpages;
1010 		if (done)
1011 			return 0;
1012 		else
1013 			return EBUSY;
1014 	}
1015 
1016 	/*
1017  	 * step 2: get non-resident or busy pages.
1018  	 * object is locked.   data structures are unlocked.
1019  	 */
1020 
1021 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1022 	    lcv++, current_offset += PAGE_SIZE) {
1023 
1024 		/*
1025 		 * - skip over pages we've already gotten or don't want
1026 		 * - skip over pages we don't _have_ to get
1027 		 */
1028 
1029 		if (pps[lcv] != NULL ||
1030 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1031 			continue;
1032 
1033 		pageidx = current_offset >> PAGE_SHIFT;
1034 
1035 		/*
1036  		 * we have yet to locate the current page (pps[lcv]).   we
1037 		 * first look for a page that is already at the current offset.
1038 		 * if we find a page, we check to see if it is busy or
1039 		 * released.  if that is the case, then we sleep on the page
1040 		 * until it is no longer busy or released and repeat the lookup.
1041 		 * if the page we found is neither busy nor released, then we
1042 		 * busy it (so we own it) and plug it into pps[lcv].   this
1043 		 * 'break's the following while loop and indicates we are
1044 		 * ready to move on to the next page in the "lcv" loop above.
1045  		 *
1046  		 * if we exit the while loop with pps[lcv] still set to NULL,
1047 		 * then it means that we allocated a new busy/fake/clean page
1048 		 * ptmp in the object and we need to do I/O to fill in the data.
1049  		 */
1050 
1051 		/* top of "pps" while loop */
1052 		while (pps[lcv] == NULL) {
1053 			/* look for a resident page */
1054 			ptmp = uvm_pagelookup(uobj, current_offset);
1055 
1056 			/* not resident?   allocate one now (if we can) */
1057 			if (ptmp == NULL) {
1058 
1059 				ptmp = uvm_pagealloc(uobj, current_offset,
1060 				    NULL, 0);
1061 
1062 				/* out of RAM? */
1063 				if (ptmp == NULL) {
1064 					simple_unlock(&uobj->vmobjlock);
1065 					UVMHIST_LOG(pdhist,
1066 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1067 					uvm_wait("uao_getpage");
1068 					simple_lock(&uobj->vmobjlock);
1069 					continue;
1070 				}
1071 
1072 				/*
1073 				 * safe with PQ's unlocked: because we just
1074 				 * alloc'd the page
1075 				 */
1076 
1077 				ptmp->pqflags |= PQ_AOBJ;
1078 
1079 				/*
1080 				 * got new page ready for I/O.  break pps while
1081 				 * loop.  pps[lcv] is still NULL.
1082 				 */
1083 
1084 				break;
1085 			}
1086 
1087 			/* page is there, see if we need to wait on it */
1088 			if ((ptmp->flags & PG_BUSY) != 0) {
1089 				ptmp->flags |= PG_WANTED;
1090 				UVMHIST_LOG(pdhist,
1091 				    "sleeping, ptmp->flags 0x%x\n",
1092 				    ptmp->flags,0,0,0);
1093 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1094 				    FALSE, "uao_get", 0);
1095 				simple_lock(&uobj->vmobjlock);
1096 				continue;
1097 			}
1098 
1099 			/*
1100  			 * if we get here then the page has become resident and
1101 			 * unbusy between steps 1 and 2.  we busy it now (so we
1102 			 * own it) and set pps[lcv] (so that we exit the while
1103 			 * loop).
1104  			 */
1105 
1106 			/* we own it, caller must un-busy */
1107 			ptmp->flags |= PG_BUSY;
1108 			UVM_PAGE_OWN(ptmp, "uao_get2");
1109 			pps[lcv] = ptmp;
1110 		}
1111 
1112 		/*
1113  		 * if we own the valid page at the correct offset, pps[lcv] will
1114  		 * point to it.   nothing more to do except go to the next page.
1115  		 */
1116 
1117 		if (pps[lcv])
1118 			continue;			/* next lcv */
1119 
1120 		/*
1121  		 * we have a "fake/busy/clean" page that we just allocated.
1122  		 * do the needed "i/o", either reading from swap or zeroing.
1123  		 */
1124 
1125 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1126 
1127 		/*
1128  		 * just zero the page if there's nothing in swap.
1129  		 */
1130 
1131 		if (swslot == 0) {
1132 
1133 			/*
1134 			 * page hasn't existed before, just zero it.
1135 			 */
1136 
1137 			uvm_pagezero(ptmp);
1138 		} else {
1139 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1140 			     swslot, 0,0,0);
1141 
1142 			/*
1143 			 * page in the swapped-out page.
1144 			 * unlock object for i/o, relock when done.
1145 			 */
1146 
1147 			simple_unlock(&uobj->vmobjlock);
1148 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1149 			simple_lock(&uobj->vmobjlock);
1150 
1151 			/*
1152 			 * I/O done.  check for errors.
1153 			 */
1154 
1155 			if (error != 0) {
1156 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1157 				    error,0,0,0);
1158 				if (ptmp->flags & PG_WANTED)
1159 					wakeup(ptmp);
1160 
1161 				/*
1162 				 * remove the swap slot from the aobj
1163 				 * and mark the aobj as having no real slot.
1164 				 * don't free the swap slot, thus preventing
1165 				 * it from being used again.
1166 				 */
1167 
1168 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1169 							SWSLOT_BAD);
1170 				if (swslot != -1) {
1171 					uvm_swap_markbad(swslot, 1);
1172 				}
1173 
1174 				uvm_lock_pageq();
1175 				uvm_pagefree(ptmp);
1176 				uvm_unlock_pageq();
1177 				simple_unlock(&uobj->vmobjlock);
1178 				return error;
1179 			}
1180 		}
1181 
1182 		/*
1183  		 * we got the page!   clear the fake flag (indicates valid
1184 		 * data now in page) and plug into our result array.   note
1185 		 * that page is still busy.
1186  		 *
1187  		 * it is the callers job to:
1188  		 * => check if the page is released
1189  		 * => unbusy the page
1190  		 * => activate the page
1191  		 */
1192 
1193 		ptmp->flags &= ~PG_FAKE;
1194 		pps[lcv] = ptmp;
1195 	}
1196 
1197 	/*
1198  	 * finally, unlock object and return.
1199  	 */
1200 
1201 	simple_unlock(&uobj->vmobjlock);
1202 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1203 	return 0;
1204 }
1205 
1206 /*
1207  * uao_dropswap:  release any swap resources from this aobj page.
1208  *
1209  * => aobj must be locked or have a reference count of 0.
1210  */
1211 
1212 void
1213 uao_dropswap(uobj, pageidx)
1214 	struct uvm_object *uobj;
1215 	int pageidx;
1216 {
1217 	int slot;
1218 
1219 	slot = uao_set_swslot(uobj, pageidx, 0);
1220 	if (slot) {
1221 		uvm_swap_free(slot, 1);
1222 	}
1223 }
1224 
1225 /*
1226  * page in every page in every aobj that is paged-out to a range of swslots.
1227  *
1228  * => nothing should be locked.
1229  * => returns TRUE if pagein was aborted due to lack of memory.
1230  */
1231 
1232 boolean_t
1233 uao_swap_off(startslot, endslot)
1234 	int startslot, endslot;
1235 {
1236 	struct uvm_aobj *aobj, *nextaobj;
1237 	boolean_t rv;
1238 
1239 	/*
1240 	 * walk the list of all aobjs.
1241 	 */
1242 
1243 restart:
1244 	simple_lock(&uao_list_lock);
1245 	for (aobj = LIST_FIRST(&uao_list);
1246 	     aobj != NULL;
1247 	     aobj = nextaobj) {
1248 
1249 		/*
1250 		 * try to get the object lock, start all over if we fail.
1251 		 * most of the time we'll get the aobj lock,
1252 		 * so this should be a rare case.
1253 		 */
1254 
1255 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1256 			simple_unlock(&uao_list_lock);
1257 			goto restart;
1258 		}
1259 
1260 		/*
1261 		 * add a ref to the aobj so it doesn't disappear
1262 		 * while we're working.
1263 		 */
1264 
1265 		uao_reference_locked(&aobj->u_obj);
1266 
1267 		/*
1268 		 * now it's safe to unlock the uao list.
1269 		 */
1270 
1271 		simple_unlock(&uao_list_lock);
1272 
1273 		/*
1274 		 * page in any pages in the swslot range.
1275 		 * if there's an error, abort and return the error.
1276 		 */
1277 
1278 		rv = uao_pagein(aobj, startslot, endslot);
1279 		if (rv) {
1280 			uao_detach_locked(&aobj->u_obj);
1281 			return rv;
1282 		}
1283 
1284 		/*
1285 		 * we're done with this aobj.
1286 		 * relock the list and drop our ref on the aobj.
1287 		 */
1288 
1289 		simple_lock(&uao_list_lock);
1290 		nextaobj = LIST_NEXT(aobj, u_list);
1291 		uao_detach_locked(&aobj->u_obj);
1292 	}
1293 
1294 	/*
1295 	 * done with traversal, unlock the list
1296 	 */
1297 	simple_unlock(&uao_list_lock);
1298 	return FALSE;
1299 }
1300 
1301 
1302 /*
1303  * page in any pages from aobj in the given range.
1304  *
1305  * => aobj must be locked and is returned locked.
1306  * => returns TRUE if pagein was aborted due to lack of memory.
1307  */
1308 static boolean_t
1309 uao_pagein(aobj, startslot, endslot)
1310 	struct uvm_aobj *aobj;
1311 	int startslot, endslot;
1312 {
1313 	boolean_t rv;
1314 
1315 	if (UAO_USES_SWHASH(aobj)) {
1316 		struct uao_swhash_elt *elt;
1317 		int bucket;
1318 
1319 restart:
1320 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1321 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1322 			     elt != NULL;
1323 			     elt = LIST_NEXT(elt, list)) {
1324 				int i;
1325 
1326 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1327 					int slot = elt->slots[i];
1328 
1329 					/*
1330 					 * if the slot isn't in range, skip it.
1331 					 */
1332 
1333 					if (slot < startslot ||
1334 					    slot >= endslot) {
1335 						continue;
1336 					}
1337 
1338 					/*
1339 					 * process the page,
1340 					 * the start over on this object
1341 					 * since the swhash elt
1342 					 * may have been freed.
1343 					 */
1344 
1345 					rv = uao_pagein_page(aobj,
1346 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1347 					if (rv) {
1348 						return rv;
1349 					}
1350 					goto restart;
1351 				}
1352 			}
1353 		}
1354 	} else {
1355 		int i;
1356 
1357 		for (i = 0; i < aobj->u_pages; i++) {
1358 			int slot = aobj->u_swslots[i];
1359 
1360 			/*
1361 			 * if the slot isn't in range, skip it
1362 			 */
1363 
1364 			if (slot < startslot || slot >= endslot) {
1365 				continue;
1366 			}
1367 
1368 			/*
1369 			 * process the page.
1370 			 */
1371 
1372 			rv = uao_pagein_page(aobj, i);
1373 			if (rv) {
1374 				return rv;
1375 			}
1376 		}
1377 	}
1378 
1379 	return FALSE;
1380 }
1381 
1382 /*
1383  * page in a page from an aobj.  used for swap_off.
1384  * returns TRUE if pagein was aborted due to lack of memory.
1385  *
1386  * => aobj must be locked and is returned locked.
1387  */
1388 
1389 static boolean_t
1390 uao_pagein_page(aobj, pageidx)
1391 	struct uvm_aobj *aobj;
1392 	int pageidx;
1393 {
1394 	struct vm_page *pg;
1395 	int rv, slot, npages;
1396 
1397 	pg = NULL;
1398 	npages = 1;
1399 	/* locked: aobj */
1400 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1401 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1402 	/* unlocked: aobj */
1403 
1404 	/*
1405 	 * relock and finish up.
1406 	 */
1407 
1408 	simple_lock(&aobj->u_obj.vmobjlock);
1409 	switch (rv) {
1410 	case 0:
1411 		break;
1412 
1413 	case EIO:
1414 	case ERESTART:
1415 
1416 		/*
1417 		 * nothing more to do on errors.
1418 		 * ERESTART can only mean that the anon was freed,
1419 		 * so again there's nothing to do.
1420 		 */
1421 
1422 		return FALSE;
1423 	}
1424 
1425 	/*
1426 	 * ok, we've got the page now.
1427 	 * mark it as dirty, clear its swslot and un-busy it.
1428 	 */
1429 
1430 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1431 	uvm_swap_free(slot, 1);
1432 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1433 	UVM_PAGE_OWN(pg, NULL);
1434 
1435 	/*
1436 	 * deactivate the page (to make sure it's on a page queue).
1437 	 */
1438 
1439 	uvm_lock_pageq();
1440 	uvm_pagedeactivate(pg);
1441 	uvm_unlock_pageq();
1442 	return FALSE;
1443 }
1444