xref: /netbsd-src/sys/uvm/uvm_aobj.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: uvm_aobj.c,v 1.115 2011/06/12 03:36:02 rmind Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5  *                    Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29  */
30 
31 /*
32  * uvm_aobj.c: anonymous memory uvm_object pager
33  *
34  * author: Chuck Silvers <chuq@chuq.com>
35  * started: Jan-1998
36  *
37  * - design mostly from Chuck Cranor
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.115 2011/06/12 03:36:02 rmind Exp $");
42 
43 #include "opt_uvmhist.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/pool.h>
51 
52 #include <uvm/uvm.h>
53 
54 /*
55  * an aobj manages anonymous-memory backed uvm_objects.   in addition
56  * to keeping the list of resident pages, it also keeps a list of
57  * allocated swap blocks.  depending on the size of the aobj this list
58  * of allocated swap blocks is either stored in an array (small objects)
59  * or in a hash table (large objects).
60  */
61 
62 /*
63  * local structures
64  */
65 
66 /*
67  * for hash tables, we break the address space of the aobj into blocks
68  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
69  * be a power of two.
70  */
71 
72 #define UAO_SWHASH_CLUSTER_SHIFT 4
73 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
74 
75 /* get the "tag" for this page index */
76 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
77 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
78 
79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
80 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
81 
82 /* given an ELT and a page index, find the swap slot */
83 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
84 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
85 
86 /* given an ELT, return its pageidx base */
87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89 
90 /*
91  * the swhash hash function
92  */
93 
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 			    & (AOBJ)->u_swhashmask)])
97 
98 /*
99  * the swhash threshhold determines if we will use an array or a
100  * hash table to store the list of allocated swap blocks.
101  */
102 
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
106 
107 /*
108  * the number of buckets in a swhash, with an upper bound
109  */
110 
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 	     UAO_SWHASH_MAXBUCKETS))
115 
116 /*
117  * uao_swhash_elt: when a hash table is being used, this structure defines
118  * the format of an entry in the bucket list.
119  */
120 
121 struct uao_swhash_elt {
122 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
123 	voff_t tag;				/* our 'tag' */
124 	int count;				/* our number of active slots */
125 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
126 };
127 
128 /*
129  * uao_swhash: the swap hash table structure
130  */
131 
132 LIST_HEAD(uao_swhash, uao_swhash_elt);
133 
134 /*
135  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
136  * Note: pages for this pool must not come from a pageable kernel map.
137  */
138 static struct pool uao_swhash_elt_pool;
139 
140 /*
141  * uvm_aobj: the actual anon-backed uvm_object
142  *
143  * => the uvm_object is at the top of the structure, this allows
144  *   (struct uvm_aobj *) == (struct uvm_object *)
145  * => only one of u_swslots and u_swhash is used in any given aobj
146  */
147 
148 struct uvm_aobj {
149 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
150 	pgoff_t u_pages;	 /* number of pages in entire object */
151 	int u_flags;		 /* the flags (see uvm_aobj.h) */
152 	int *u_swslots;		 /* array of offset->swapslot mappings */
153 				 /*
154 				  * hashtable of offset->swapslot mappings
155 				  * (u_swhash is an array of bucket heads)
156 				  */
157 	struct uao_swhash *u_swhash;
158 	u_long u_swhashmask;		/* mask for hashtable */
159 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
160 };
161 
162 /*
163  * local functions
164  */
165 
166 static void	uao_free(struct uvm_aobj *);
167 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
168 		    int *, int, vm_prot_t, int, int);
169 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
170 
171 static void uao_detach_locked(struct uvm_object *);
172 static void uao_reference_locked(struct uvm_object *);
173 
174 #if defined(VMSWAP)
175 static struct uao_swhash_elt *uao_find_swhash_elt
176     (struct uvm_aobj *, int, bool);
177 
178 static bool uao_pagein(struct uvm_aobj *, int, int);
179 static bool uao_pagein_page(struct uvm_aobj *, int);
180 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
181 #endif /* defined(VMSWAP) */
182 
183 /*
184  * aobj_pager
185  *
186  * note that some functions (e.g. put) are handled elsewhere
187  */
188 
189 const struct uvm_pagerops aobj_pager = {
190 	.pgo_reference = uao_reference,
191 	.pgo_detach = uao_detach,
192 	.pgo_get = uao_get,
193 	.pgo_put = uao_put,
194 };
195 
196 /*
197  * uao_list: global list of active aobjs, locked by uao_list_lock
198  */
199 
200 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
201 static kmutex_t uao_list_lock;
202 
203 /*
204  * functions
205  */
206 
207 /*
208  * hash table/array related functions
209  */
210 
211 #if defined(VMSWAP)
212 
213 /*
214  * uao_find_swhash_elt: find (or create) a hash table entry for a page
215  * offset.
216  *
217  * => the object should be locked by the caller
218  */
219 
220 static struct uao_swhash_elt *
221 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
222 {
223 	struct uao_swhash *swhash;
224 	struct uao_swhash_elt *elt;
225 	voff_t page_tag;
226 
227 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
228 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
229 
230 	/*
231 	 * now search the bucket for the requested tag
232 	 */
233 
234 	LIST_FOREACH(elt, swhash, list) {
235 		if (elt->tag == page_tag) {
236 			return elt;
237 		}
238 	}
239 	if (!create) {
240 		return NULL;
241 	}
242 
243 	/*
244 	 * allocate a new entry for the bucket and init/insert it in
245 	 */
246 
247 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
248 	if (elt == NULL) {
249 		return NULL;
250 	}
251 	LIST_INSERT_HEAD(swhash, elt, list);
252 	elt->tag = page_tag;
253 	elt->count = 0;
254 	memset(elt->slots, 0, sizeof(elt->slots));
255 	return elt;
256 }
257 
258 /*
259  * uao_find_swslot: find the swap slot number for an aobj/pageidx
260  *
261  * => object must be locked by caller
262  */
263 
264 int
265 uao_find_swslot(struct uvm_object *uobj, int pageidx)
266 {
267 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
268 	struct uao_swhash_elt *elt;
269 
270 	/*
271 	 * if noswap flag is set, then we never return a slot
272 	 */
273 
274 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
275 		return(0);
276 
277 	/*
278 	 * if hashing, look in hash table.
279 	 */
280 
281 	if (UAO_USES_SWHASH(aobj)) {
282 		elt = uao_find_swhash_elt(aobj, pageidx, false);
283 		if (elt)
284 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
285 		else
286 			return(0);
287 	}
288 
289 	/*
290 	 * otherwise, look in the array
291 	 */
292 
293 	return(aobj->u_swslots[pageidx]);
294 }
295 
296 /*
297  * uao_set_swslot: set the swap slot for a page in an aobj.
298  *
299  * => setting a slot to zero frees the slot
300  * => object must be locked by caller
301  * => we return the old slot number, or -1 if we failed to allocate
302  *    memory to record the new slot number
303  */
304 
305 int
306 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
307 {
308 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
309 	struct uao_swhash_elt *elt;
310 	int oldslot;
311 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
312 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
313 	    aobj, pageidx, slot, 0);
314 
315 	KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
316 
317 	/*
318 	 * if noswap flag is set, then we can't set a non-zero slot.
319 	 */
320 
321 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
322 		if (slot == 0)
323 			return(0);
324 
325 		printf("uao_set_swslot: uobj = %p\n", uobj);
326 		panic("uao_set_swslot: NOSWAP object");
327 	}
328 
329 	/*
330 	 * are we using a hash table?  if so, add it in the hash.
331 	 */
332 
333 	if (UAO_USES_SWHASH(aobj)) {
334 
335 		/*
336 		 * Avoid allocating an entry just to free it again if
337 		 * the page had not swap slot in the first place, and
338 		 * we are freeing.
339 		 */
340 
341 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
342 		if (elt == NULL) {
343 			return slot ? -1 : 0;
344 		}
345 
346 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
347 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
348 
349 		/*
350 		 * now adjust the elt's reference counter and free it if we've
351 		 * dropped it to zero.
352 		 */
353 
354 		if (slot) {
355 			if (oldslot == 0)
356 				elt->count++;
357 		} else {
358 			if (oldslot)
359 				elt->count--;
360 
361 			if (elt->count == 0) {
362 				LIST_REMOVE(elt, list);
363 				pool_put(&uao_swhash_elt_pool, elt);
364 			}
365 		}
366 	} else {
367 		/* we are using an array */
368 		oldslot = aobj->u_swslots[pageidx];
369 		aobj->u_swslots[pageidx] = slot;
370 	}
371 	return (oldslot);
372 }
373 
374 #endif /* defined(VMSWAP) */
375 
376 /*
377  * end of hash/array functions
378  */
379 
380 /*
381  * uao_free: free all resources held by an aobj, and then free the aobj
382  *
383  * => the aobj should be dead
384  */
385 
386 static void
387 uao_free(struct uvm_aobj *aobj)
388 {
389 
390 #if defined(VMSWAP)
391 	uao_dropswap_range1(aobj, 0, 0);
392 #endif /* defined(VMSWAP) */
393 
394 	mutex_exit(aobj->u_obj.vmobjlock);
395 
396 #if defined(VMSWAP)
397 	if (UAO_USES_SWHASH(aobj)) {
398 
399 		/*
400 		 * free the hash table itself.
401 		 */
402 
403 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
404 	} else {
405 
406 		/*
407 		 * free the array itsself.
408 		 */
409 
410 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
411 	}
412 #endif /* defined(VMSWAP) */
413 
414 	/*
415 	 * finally free the aobj itself
416 	 */
417 
418 	uvm_obj_destroy(&aobj->u_obj, true);
419 	kmem_free(aobj, sizeof(struct uvm_aobj));
420 }
421 
422 /*
423  * pager functions
424  */
425 
426 /*
427  * uao_create: create an aobj of the given size and return its uvm_object.
428  *
429  * => for normal use, flags are always zero
430  * => for the kernel object, the flags are:
431  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
432  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
433  */
434 
435 struct uvm_object *
436 uao_create(vsize_t size, int flags)
437 {
438 	static struct uvm_aobj kernel_object_store;
439 	static kmutex_t kernel_object_lock;
440 	static int kobj_alloced = 0;
441 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
442 	struct uvm_aobj *aobj;
443 	int refs;
444 
445 	/*
446 	 * Allocate a new aobj, unless kernel object is requested.
447 	 */
448 
449 	if (flags & UAO_FLAG_KERNOBJ) {
450 		KASSERT(!kobj_alloced);
451 		aobj = &kernel_object_store;
452 		aobj->u_pages = pages;
453 		aobj->u_flags = UAO_FLAG_NOSWAP;
454 		refs = UVM_OBJ_KERN;
455 		kobj_alloced = UAO_FLAG_KERNOBJ;
456 	} else if (flags & UAO_FLAG_KERNSWAP) {
457 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
458 		aobj = &kernel_object_store;
459 		kobj_alloced = UAO_FLAG_KERNSWAP;
460 		refs = 0xdeadbeaf; /* XXX: gcc */
461 	} else {
462 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
463 		aobj->u_pages = pages;
464 		aobj->u_flags = 0;
465 		refs = 1;
466 	}
467 
468 	/*
469  	 * allocate hash/array if necessary
470  	 *
471  	 * note: in the KERNSWAP case no need to worry about locking since
472  	 * we are still booting we should be the only thread around.
473  	 */
474 
475 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
476 #if defined(VMSWAP)
477 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
478 
479 		/* allocate hash table or array depending on object size */
480 		if (UAO_USES_SWHASH(aobj)) {
481 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
482 			    HASH_LIST, kernswap ? false : true,
483 			    &aobj->u_swhashmask);
484 			if (aobj->u_swhash == NULL)
485 				panic("uao_create: hashinit swhash failed");
486 		} else {
487 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
488 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
489 			if (aobj->u_swslots == NULL)
490 				panic("uao_create: swslots allocation failed");
491 		}
492 #endif /* defined(VMSWAP) */
493 
494 		if (flags) {
495 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
496 			return(&aobj->u_obj);
497 		}
498 	}
499 
500 	/*
501 	 * Initialise UVM object.
502 	 */
503 
504 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
505 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
506 	if (__predict_false(kernobj)) {
507 		/* Initialisation only once, for UAO_FLAG_KERNOBJ. */
508 		mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
509 		uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
510 	}
511 
512 	/*
513  	 * now that aobj is ready, add it to the global list
514  	 */
515 
516 	mutex_enter(&uao_list_lock);
517 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
518 	mutex_exit(&uao_list_lock);
519 	return(&aobj->u_obj);
520 }
521 
522 
523 
524 /*
525  * uao_init: set up aobj pager subsystem
526  *
527  * => called at boot time from uvm_pager_init()
528  */
529 
530 void
531 uao_init(void)
532 {
533 	static int uao_initialized;
534 
535 	if (uao_initialized)
536 		return;
537 	uao_initialized = true;
538 	LIST_INIT(&uao_list);
539 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
540 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
541 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
542 }
543 
544 /*
545  * uao_reference: add a ref to an aobj
546  *
547  * => aobj must be unlocked
548  * => just lock it and call the locked version
549  */
550 
551 void
552 uao_reference(struct uvm_object *uobj)
553 {
554 
555 	/*
556  	 * kernel_object already has plenty of references, leave it alone.
557  	 */
558 
559 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
560 		return;
561 
562 	mutex_enter(uobj->vmobjlock);
563 	uao_reference_locked(uobj);
564 	mutex_exit(uobj->vmobjlock);
565 }
566 
567 /*
568  * uao_reference_locked: add a ref to an aobj that is already locked
569  *
570  * => aobj must be locked
571  * this needs to be separate from the normal routine
572  * since sometimes we need to add a reference to an aobj when
573  * it's already locked.
574  */
575 
576 static void
577 uao_reference_locked(struct uvm_object *uobj)
578 {
579 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
580 
581 	/*
582  	 * kernel_object already has plenty of references, leave it alone.
583  	 */
584 
585 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
586 		return;
587 
588 	uobj->uo_refs++;
589 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
590 		    uobj, uobj->uo_refs,0,0);
591 }
592 
593 /*
594  * uao_detach: drop a reference to an aobj
595  *
596  * => aobj must be unlocked
597  * => just lock it and call the locked version
598  */
599 
600 void
601 uao_detach(struct uvm_object *uobj)
602 {
603 
604 	/*
605  	 * detaching from kernel_object is a noop.
606  	 */
607 
608 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
609 		return;
610 
611 	mutex_enter(uobj->vmobjlock);
612 	uao_detach_locked(uobj);
613 }
614 
615 /*
616  * uao_detach_locked: drop a reference to an aobj
617  *
618  * => aobj must be locked, and is unlocked (or freed) upon return.
619  * this needs to be separate from the normal routine
620  * since sometimes we need to detach from an aobj when
621  * it's already locked.
622  */
623 
624 static void
625 uao_detach_locked(struct uvm_object *uobj)
626 {
627 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
628 	struct vm_page *pg;
629 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
630 
631 	/*
632  	 * detaching from kernel_object is a noop.
633  	 */
634 
635 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
636 		mutex_exit(uobj->vmobjlock);
637 		return;
638 	}
639 
640 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
641 	uobj->uo_refs--;
642 	if (uobj->uo_refs) {
643 		mutex_exit(uobj->vmobjlock);
644 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
645 		return;
646 	}
647 
648 	/*
649  	 * remove the aobj from the global list.
650  	 */
651 
652 	mutex_enter(&uao_list_lock);
653 	LIST_REMOVE(aobj, u_list);
654 	mutex_exit(&uao_list_lock);
655 
656 	/*
657  	 * free all the pages left in the aobj.  for each page,
658 	 * when the page is no longer busy (and thus after any disk i/o that
659 	 * it's involved in is complete), release any swap resources and
660 	 * free the page itself.
661  	 */
662 
663 	mutex_enter(&uvm_pageqlock);
664 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
665 		pmap_page_protect(pg, VM_PROT_NONE);
666 		if (pg->flags & PG_BUSY) {
667 			pg->flags |= PG_WANTED;
668 			mutex_exit(&uvm_pageqlock);
669 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
670 			    "uao_det", 0);
671 			mutex_enter(uobj->vmobjlock);
672 			mutex_enter(&uvm_pageqlock);
673 			continue;
674 		}
675 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
676 		uvm_pagefree(pg);
677 	}
678 	mutex_exit(&uvm_pageqlock);
679 
680 	/*
681  	 * finally, free the aobj itself.
682  	 */
683 
684 	uao_free(aobj);
685 }
686 
687 /*
688  * uao_put: flush pages out of a uvm object
689  *
690  * => object should be locked by caller.  we may _unlock_ the object
691  *	if (and only if) we need to clean a page (PGO_CLEANIT).
692  *	XXXJRT Currently, however, we don't.  In the case of cleaning
693  *	XXXJRT a page, we simply just deactivate it.  Should probably
694  *	XXXJRT handle this better, in the future (although "flushing"
695  *	XXXJRT anonymous memory isn't terribly important).
696  * => if PGO_CLEANIT is not set, then we will neither unlock the object
697  *	or block.
698  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
699  *	for flushing.
700  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
701  *	that new pages are inserted on the tail end of the list.  thus,
702  *	we can make a complete pass through the object in one go by starting
703  *	at the head and working towards the tail (new pages are put in
704  *	front of us).
705  * => NOTE: we are allowed to lock the page queues, so the caller
706  *	must not be holding the lock on them [e.g. pagedaemon had
707  *	better not call us with the queues locked]
708  * => we return 0 unless we encountered some sort of I/O error
709  *	XXXJRT currently never happens, as we never directly initiate
710  *	XXXJRT I/O
711  *
712  * note on page traversal:
713  *	we can traverse the pages in an object either by going down the
714  *	linked list in "uobj->memq", or we can go over the address range
715  *	by page doing hash table lookups for each address.  depending
716  *	on how many pages are in the object it may be cheaper to do one
717  *	or the other.  we set "by_list" to true if we are using memq.
718  *	if the cost of a hash lookup was equal to the cost of the list
719  *	traversal we could compare the number of pages in the start->stop
720  *	range to the total number of pages in the object.  however, it
721  *	seems that a hash table lookup is more expensive than the linked
722  *	list traversal, so we multiply the number of pages in the
723  *	start->stop range by a penalty which we define below.
724  */
725 
726 static int
727 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
728 {
729 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
730 	struct vm_page *pg, *nextpg, curmp, endmp;
731 	bool by_list;
732 	voff_t curoff;
733 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
734 
735 	KASSERT(mutex_owned(uobj->vmobjlock));
736 
737 	curoff = 0;
738 	if (flags & PGO_ALLPAGES) {
739 		start = 0;
740 		stop = aobj->u_pages << PAGE_SHIFT;
741 		by_list = true;		/* always go by the list */
742 	} else {
743 		start = trunc_page(start);
744 		if (stop == 0) {
745 			stop = aobj->u_pages << PAGE_SHIFT;
746 		} else {
747 			stop = round_page(stop);
748 		}
749 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
750 			printf("uao_flush: strange, got an out of range "
751 			    "flush (fixed)\n");
752 			stop = aobj->u_pages << PAGE_SHIFT;
753 		}
754 		by_list = (uobj->uo_npages <=
755 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
756 	}
757 	UVMHIST_LOG(maphist,
758 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
759 	    start, stop, by_list, flags);
760 
761 	/*
762 	 * Don't need to do any work here if we're not freeing
763 	 * or deactivating pages.
764 	 */
765 
766 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
767 		mutex_exit(uobj->vmobjlock);
768 		return 0;
769 	}
770 
771 	/*
772 	 * Initialize the marker pages.  See the comment in
773 	 * genfs_putpages() also.
774 	 */
775 
776 	curmp.flags = PG_MARKER;
777 	endmp.flags = PG_MARKER;
778 
779 	/*
780 	 * now do it.  note: we must update nextpg in the body of loop or we
781 	 * will get stuck.  we need to use nextpg if we'll traverse the list
782 	 * because we may free "pg" before doing the next loop.
783 	 */
784 
785 	if (by_list) {
786 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
787 		nextpg = TAILQ_FIRST(&uobj->memq);
788 	} else {
789 		curoff = start;
790 		nextpg = NULL;	/* Quell compiler warning */
791 	}
792 
793 	/* locked: uobj */
794 	for (;;) {
795 		if (by_list) {
796 			pg = nextpg;
797 			if (pg == &endmp)
798 				break;
799 			nextpg = TAILQ_NEXT(pg, listq.queue);
800 			if (pg->flags & PG_MARKER)
801 				continue;
802 			if (pg->offset < start || pg->offset >= stop)
803 				continue;
804 		} else {
805 			if (curoff < stop) {
806 				pg = uvm_pagelookup(uobj, curoff);
807 				curoff += PAGE_SIZE;
808 			} else
809 				break;
810 			if (pg == NULL)
811 				continue;
812 		}
813 
814 		/*
815 		 * wait and try again if the page is busy.
816 		 */
817 
818 		if (pg->flags & PG_BUSY) {
819 			if (by_list) {
820 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
821 			}
822 			pg->flags |= PG_WANTED;
823 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
824 			    "uao_put", 0);
825 			mutex_enter(uobj->vmobjlock);
826 			if (by_list) {
827 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
828 				TAILQ_REMOVE(&uobj->memq, &curmp,
829 				    listq.queue);
830 			} else
831 				curoff -= PAGE_SIZE;
832 			continue;
833 		}
834 
835 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
836 
837 		/*
838 		 * XXX In these first 3 cases, we always just
839 		 * XXX deactivate the page.  We may want to
840 		 * XXX handle the different cases more specifically
841 		 * XXX in the future.
842 		 */
843 
844 		case PGO_CLEANIT|PGO_FREE:
845 		case PGO_CLEANIT|PGO_DEACTIVATE:
846 		case PGO_DEACTIVATE:
847  deactivate_it:
848 			mutex_enter(&uvm_pageqlock);
849 			/* skip the page if it's wired */
850 			if (pg->wire_count == 0) {
851 				uvm_pagedeactivate(pg);
852 			}
853 			mutex_exit(&uvm_pageqlock);
854 			break;
855 
856 		case PGO_FREE:
857 			/*
858 			 * If there are multiple references to
859 			 * the object, just deactivate the page.
860 			 */
861 
862 			if (uobj->uo_refs > 1)
863 				goto deactivate_it;
864 
865 			/*
866 			 * free the swap slot and the page.
867 			 */
868 
869 			pmap_page_protect(pg, VM_PROT_NONE);
870 
871 			/*
872 			 * freeing swapslot here is not strictly necessary.
873 			 * however, leaving it here doesn't save much
874 			 * because we need to update swap accounting anyway.
875 			 */
876 
877 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
878 			mutex_enter(&uvm_pageqlock);
879 			uvm_pagefree(pg);
880 			mutex_exit(&uvm_pageqlock);
881 			break;
882 
883 		default:
884 			panic("%s: impossible", __func__);
885 		}
886 	}
887 	if (by_list) {
888 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
889 	}
890 	mutex_exit(uobj->vmobjlock);
891 	return 0;
892 }
893 
894 /*
895  * uao_get: fetch me a page
896  *
897  * we have three cases:
898  * 1: page is resident     -> just return the page.
899  * 2: page is zero-fill    -> allocate a new page and zero it.
900  * 3: page is swapped out  -> fetch the page from swap.
901  *
902  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
903  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
904  * then we will need to return EBUSY.
905  *
906  * => prefer map unlocked (not required)
907  * => object must be locked!  we will _unlock_ it before starting any I/O.
908  * => flags: PGO_ALLPAGES: get all of the pages
909  *           PGO_LOCKED: fault data structures are locked
910  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
911  * => NOTE: caller must check for released pages!!
912  */
913 
914 static int
915 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
916     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
917 {
918 #if defined(VMSWAP)
919 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
920 #endif /* defined(VMSWAP) */
921 	voff_t current_offset;
922 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
923 	int lcv, gotpages, maxpages, swslot, pageidx;
924 	bool done;
925 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
926 
927 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
928 		    (struct uvm_aobj *)uobj, offset, flags,0);
929 
930 	/*
931  	 * get number of pages
932  	 */
933 
934 	maxpages = *npagesp;
935 
936 	/*
937  	 * step 1: handled the case where fault data structures are locked.
938  	 */
939 
940 	if (flags & PGO_LOCKED) {
941 
942 		/*
943  		 * step 1a: get pages that are already resident.   only do
944 		 * this if the data structures are locked (i.e. the first
945 		 * time through).
946  		 */
947 
948 		done = true;	/* be optimistic */
949 		gotpages = 0;	/* # of pages we got so far */
950 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
951 		    lcv++, current_offset += PAGE_SIZE) {
952 			/* do we care about this page?  if not, skip it */
953 			if (pps[lcv] == PGO_DONTCARE)
954 				continue;
955 			ptmp = uvm_pagelookup(uobj, current_offset);
956 
957 			/*
958  			 * if page is new, attempt to allocate the page,
959 			 * zero-fill'd.
960  			 */
961 
962 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
963 			    current_offset >> PAGE_SHIFT) == 0) {
964 				ptmp = uvm_pagealloc(uobj, current_offset,
965 				    NULL, UVM_PGA_ZERO);
966 				if (ptmp) {
967 					/* new page */
968 					ptmp->flags &= ~(PG_FAKE);
969 					ptmp->pqflags |= PQ_AOBJ;
970 					goto gotpage;
971 				}
972 			}
973 
974 			/*
975 			 * to be useful must get a non-busy page
976 			 */
977 
978 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
979 				if (lcv == centeridx ||
980 				    (flags & PGO_ALLPAGES) != 0)
981 					/* need to do a wait or I/O! */
982 					done = false;
983 					continue;
984 			}
985 
986 			/*
987 			 * useful page: busy/lock it and plug it in our
988 			 * result array
989 			 */
990 
991 			/* caller must un-busy this page */
992 			ptmp->flags |= PG_BUSY;
993 			UVM_PAGE_OWN(ptmp, "uao_get1");
994 gotpage:
995 			pps[lcv] = ptmp;
996 			gotpages++;
997 		}
998 
999 		/*
1000  		 * step 1b: now we've either done everything needed or we
1001 		 * to unlock and do some waiting or I/O.
1002  		 */
1003 
1004 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1005 		*npagesp = gotpages;
1006 		if (done)
1007 			return 0;
1008 		else
1009 			return EBUSY;
1010 	}
1011 
1012 	/*
1013  	 * step 2: get non-resident or busy pages.
1014  	 * object is locked.   data structures are unlocked.
1015  	 */
1016 
1017 	if ((flags & PGO_SYNCIO) == 0) {
1018 		goto done;
1019 	}
1020 
1021 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1022 	    lcv++, current_offset += PAGE_SIZE) {
1023 
1024 		/*
1025 		 * - skip over pages we've already gotten or don't want
1026 		 * - skip over pages we don't _have_ to get
1027 		 */
1028 
1029 		if (pps[lcv] != NULL ||
1030 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1031 			continue;
1032 
1033 		pageidx = current_offset >> PAGE_SHIFT;
1034 
1035 		/*
1036  		 * we have yet to locate the current page (pps[lcv]).   we
1037 		 * first look for a page that is already at the current offset.
1038 		 * if we find a page, we check to see if it is busy or
1039 		 * released.  if that is the case, then we sleep on the page
1040 		 * until it is no longer busy or released and repeat the lookup.
1041 		 * if the page we found is neither busy nor released, then we
1042 		 * busy it (so we own it) and plug it into pps[lcv].   this
1043 		 * 'break's the following while loop and indicates we are
1044 		 * ready to move on to the next page in the "lcv" loop above.
1045  		 *
1046  		 * if we exit the while loop with pps[lcv] still set to NULL,
1047 		 * then it means that we allocated a new busy/fake/clean page
1048 		 * ptmp in the object and we need to do I/O to fill in the data.
1049  		 */
1050 
1051 		/* top of "pps" while loop */
1052 		while (pps[lcv] == NULL) {
1053 			/* look for a resident page */
1054 			ptmp = uvm_pagelookup(uobj, current_offset);
1055 
1056 			/* not resident?   allocate one now (if we can) */
1057 			if (ptmp == NULL) {
1058 
1059 				ptmp = uvm_pagealloc(uobj, current_offset,
1060 				    NULL, 0);
1061 
1062 				/* out of RAM? */
1063 				if (ptmp == NULL) {
1064 					mutex_exit(uobj->vmobjlock);
1065 					UVMHIST_LOG(pdhist,
1066 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1067 					uvm_wait("uao_getpage");
1068 					mutex_enter(uobj->vmobjlock);
1069 					continue;
1070 				}
1071 
1072 				/*
1073 				 * safe with PQ's unlocked: because we just
1074 				 * alloc'd the page
1075 				 */
1076 
1077 				ptmp->pqflags |= PQ_AOBJ;
1078 
1079 				/*
1080 				 * got new page ready for I/O.  break pps while
1081 				 * loop.  pps[lcv] is still NULL.
1082 				 */
1083 
1084 				break;
1085 			}
1086 
1087 			/* page is there, see if we need to wait on it */
1088 			if ((ptmp->flags & PG_BUSY) != 0) {
1089 				ptmp->flags |= PG_WANTED;
1090 				UVMHIST_LOG(pdhist,
1091 				    "sleeping, ptmp->flags 0x%x\n",
1092 				    ptmp->flags,0,0,0);
1093 				UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1094 				    false, "uao_get", 0);
1095 				mutex_enter(uobj->vmobjlock);
1096 				continue;
1097 			}
1098 
1099 			/*
1100  			 * if we get here then the page has become resident and
1101 			 * unbusy between steps 1 and 2.  we busy it now (so we
1102 			 * own it) and set pps[lcv] (so that we exit the while
1103 			 * loop).
1104  			 */
1105 
1106 			/* we own it, caller must un-busy */
1107 			ptmp->flags |= PG_BUSY;
1108 			UVM_PAGE_OWN(ptmp, "uao_get2");
1109 			pps[lcv] = ptmp;
1110 		}
1111 
1112 		/*
1113  		 * if we own the valid page at the correct offset, pps[lcv] will
1114  		 * point to it.   nothing more to do except go to the next page.
1115  		 */
1116 
1117 		if (pps[lcv])
1118 			continue;			/* next lcv */
1119 
1120 		/*
1121  		 * we have a "fake/busy/clean" page that we just allocated.
1122  		 * do the needed "i/o", either reading from swap or zeroing.
1123  		 */
1124 
1125 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1126 
1127 		/*
1128  		 * just zero the page if there's nothing in swap.
1129  		 */
1130 
1131 		if (swslot == 0) {
1132 
1133 			/*
1134 			 * page hasn't existed before, just zero it.
1135 			 */
1136 
1137 			uvm_pagezero(ptmp);
1138 		} else {
1139 #if defined(VMSWAP)
1140 			int error;
1141 
1142 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1143 			     swslot, 0,0,0);
1144 
1145 			/*
1146 			 * page in the swapped-out page.
1147 			 * unlock object for i/o, relock when done.
1148 			 */
1149 
1150 			mutex_exit(uobj->vmobjlock);
1151 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1152 			mutex_enter(uobj->vmobjlock);
1153 
1154 			/*
1155 			 * I/O done.  check for errors.
1156 			 */
1157 
1158 			if (error != 0) {
1159 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1160 				    error,0,0,0);
1161 				if (ptmp->flags & PG_WANTED)
1162 					wakeup(ptmp);
1163 
1164 				/*
1165 				 * remove the swap slot from the aobj
1166 				 * and mark the aobj as having no real slot.
1167 				 * don't free the swap slot, thus preventing
1168 				 * it from being used again.
1169 				 */
1170 
1171 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1172 							SWSLOT_BAD);
1173 				if (swslot > 0) {
1174 					uvm_swap_markbad(swslot, 1);
1175 				}
1176 
1177 				mutex_enter(&uvm_pageqlock);
1178 				uvm_pagefree(ptmp);
1179 				mutex_exit(&uvm_pageqlock);
1180 				mutex_exit(uobj->vmobjlock);
1181 				return error;
1182 			}
1183 #else /* defined(VMSWAP) */
1184 			panic("%s: pagein", __func__);
1185 #endif /* defined(VMSWAP) */
1186 		}
1187 
1188 		if ((access_type & VM_PROT_WRITE) == 0) {
1189 			ptmp->flags |= PG_CLEAN;
1190 			pmap_clear_modify(ptmp);
1191 		}
1192 
1193 		/*
1194  		 * we got the page!   clear the fake flag (indicates valid
1195 		 * data now in page) and plug into our result array.   note
1196 		 * that page is still busy.
1197  		 *
1198  		 * it is the callers job to:
1199  		 * => check if the page is released
1200  		 * => unbusy the page
1201  		 * => activate the page
1202  		 */
1203 
1204 		ptmp->flags &= ~PG_FAKE;
1205 		pps[lcv] = ptmp;
1206 	}
1207 
1208 	/*
1209  	 * finally, unlock object and return.
1210  	 */
1211 
1212 done:
1213 	mutex_exit(uobj->vmobjlock);
1214 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1215 	return 0;
1216 }
1217 
1218 #if defined(VMSWAP)
1219 
1220 /*
1221  * uao_dropswap:  release any swap resources from this aobj page.
1222  *
1223  * => aobj must be locked or have a reference count of 0.
1224  */
1225 
1226 void
1227 uao_dropswap(struct uvm_object *uobj, int pageidx)
1228 {
1229 	int slot;
1230 
1231 	slot = uao_set_swslot(uobj, pageidx, 0);
1232 	if (slot) {
1233 		uvm_swap_free(slot, 1);
1234 	}
1235 }
1236 
1237 /*
1238  * page in every page in every aobj that is paged-out to a range of swslots.
1239  *
1240  * => nothing should be locked.
1241  * => returns true if pagein was aborted due to lack of memory.
1242  */
1243 
1244 bool
1245 uao_swap_off(int startslot, int endslot)
1246 {
1247 	struct uvm_aobj *aobj, *nextaobj;
1248 	bool rv;
1249 
1250 	/*
1251 	 * walk the list of all aobjs.
1252 	 */
1253 
1254 restart:
1255 	mutex_enter(&uao_list_lock);
1256 	for (aobj = LIST_FIRST(&uao_list);
1257 	     aobj != NULL;
1258 	     aobj = nextaobj) {
1259 
1260 		/*
1261 		 * try to get the object lock, start all over if we fail.
1262 		 * most of the time we'll get the aobj lock,
1263 		 * so this should be a rare case.
1264 		 */
1265 
1266 		if (!mutex_tryenter(aobj->u_obj.vmobjlock)) {
1267 			mutex_exit(&uao_list_lock);
1268 			/* XXX Better than yielding but inadequate. */
1269 			kpause("livelock", false, 1, NULL);
1270 			goto restart;
1271 		}
1272 
1273 		/*
1274 		 * add a ref to the aobj so it doesn't disappear
1275 		 * while we're working.
1276 		 */
1277 
1278 		uao_reference_locked(&aobj->u_obj);
1279 
1280 		/*
1281 		 * now it's safe to unlock the uao list.
1282 		 */
1283 
1284 		mutex_exit(&uao_list_lock);
1285 
1286 		/*
1287 		 * page in any pages in the swslot range.
1288 		 * if there's an error, abort and return the error.
1289 		 */
1290 
1291 		rv = uao_pagein(aobj, startslot, endslot);
1292 		if (rv) {
1293 			uao_detach_locked(&aobj->u_obj);
1294 			return rv;
1295 		}
1296 
1297 		/*
1298 		 * we're done with this aobj.
1299 		 * relock the list and drop our ref on the aobj.
1300 		 */
1301 
1302 		mutex_enter(&uao_list_lock);
1303 		nextaobj = LIST_NEXT(aobj, u_list);
1304 		uao_detach_locked(&aobj->u_obj);
1305 	}
1306 
1307 	/*
1308 	 * done with traversal, unlock the list
1309 	 */
1310 	mutex_exit(&uao_list_lock);
1311 	return false;
1312 }
1313 
1314 
1315 /*
1316  * page in any pages from aobj in the given range.
1317  *
1318  * => aobj must be locked and is returned locked.
1319  * => returns true if pagein was aborted due to lack of memory.
1320  */
1321 static bool
1322 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1323 {
1324 	bool rv;
1325 
1326 	if (UAO_USES_SWHASH(aobj)) {
1327 		struct uao_swhash_elt *elt;
1328 		int buck;
1329 
1330 restart:
1331 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1332 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1333 			     elt != NULL;
1334 			     elt = LIST_NEXT(elt, list)) {
1335 				int i;
1336 
1337 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1338 					int slot = elt->slots[i];
1339 
1340 					/*
1341 					 * if the slot isn't in range, skip it.
1342 					 */
1343 
1344 					if (slot < startslot ||
1345 					    slot >= endslot) {
1346 						continue;
1347 					}
1348 
1349 					/*
1350 					 * process the page,
1351 					 * the start over on this object
1352 					 * since the swhash elt
1353 					 * may have been freed.
1354 					 */
1355 
1356 					rv = uao_pagein_page(aobj,
1357 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1358 					if (rv) {
1359 						return rv;
1360 					}
1361 					goto restart;
1362 				}
1363 			}
1364 		}
1365 	} else {
1366 		int i;
1367 
1368 		for (i = 0; i < aobj->u_pages; i++) {
1369 			int slot = aobj->u_swslots[i];
1370 
1371 			/*
1372 			 * if the slot isn't in range, skip it
1373 			 */
1374 
1375 			if (slot < startslot || slot >= endslot) {
1376 				continue;
1377 			}
1378 
1379 			/*
1380 			 * process the page.
1381 			 */
1382 
1383 			rv = uao_pagein_page(aobj, i);
1384 			if (rv) {
1385 				return rv;
1386 			}
1387 		}
1388 	}
1389 
1390 	return false;
1391 }
1392 
1393 /*
1394  * page in a page from an aobj.  used for swap_off.
1395  * returns true if pagein was aborted due to lack of memory.
1396  *
1397  * => aobj must be locked and is returned locked.
1398  */
1399 
1400 static bool
1401 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1402 {
1403 	struct vm_page *pg;
1404 	int rv, npages;
1405 
1406 	pg = NULL;
1407 	npages = 1;
1408 	/* locked: aobj */
1409 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1410 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1411 	/* unlocked: aobj */
1412 
1413 	/*
1414 	 * relock and finish up.
1415 	 */
1416 
1417 	mutex_enter(aobj->u_obj.vmobjlock);
1418 	switch (rv) {
1419 	case 0:
1420 		break;
1421 
1422 	case EIO:
1423 	case ERESTART:
1424 
1425 		/*
1426 		 * nothing more to do on errors.
1427 		 * ERESTART can only mean that the anon was freed,
1428 		 * so again there's nothing to do.
1429 		 */
1430 
1431 		return false;
1432 
1433 	default:
1434 		return true;
1435 	}
1436 
1437 	/*
1438 	 * ok, we've got the page now.
1439 	 * mark it as dirty, clear its swslot and un-busy it.
1440 	 */
1441 	uao_dropswap(&aobj->u_obj, pageidx);
1442 
1443 	/*
1444 	 * make sure it's on a page queue.
1445 	 */
1446 	mutex_enter(&uvm_pageqlock);
1447 	if (pg->wire_count == 0)
1448 		uvm_pageenqueue(pg);
1449 	mutex_exit(&uvm_pageqlock);
1450 
1451 	if (pg->flags & PG_WANTED) {
1452 		wakeup(pg);
1453 	}
1454 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1455 	UVM_PAGE_OWN(pg, NULL);
1456 
1457 	return false;
1458 }
1459 
1460 /*
1461  * uao_dropswap_range: drop swapslots in the range.
1462  *
1463  * => aobj must be locked and is returned locked.
1464  * => start is inclusive.  end is exclusive.
1465  */
1466 
1467 void
1468 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1469 {
1470 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1471 
1472 	KASSERT(mutex_owned(uobj->vmobjlock));
1473 
1474 	uao_dropswap_range1(aobj, start, end);
1475 }
1476 
1477 static void
1478 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1479 {
1480 	int swpgonlydelta = 0;
1481 
1482 	if (end == 0) {
1483 		end = INT64_MAX;
1484 	}
1485 
1486 	if (UAO_USES_SWHASH(aobj)) {
1487 		int i, hashbuckets = aobj->u_swhashmask + 1;
1488 		voff_t taghi;
1489 		voff_t taglo;
1490 
1491 		taglo = UAO_SWHASH_ELT_TAG(start);
1492 		taghi = UAO_SWHASH_ELT_TAG(end);
1493 
1494 		for (i = 0; i < hashbuckets; i++) {
1495 			struct uao_swhash_elt *elt, *next;
1496 
1497 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1498 			     elt != NULL;
1499 			     elt = next) {
1500 				int startidx, endidx;
1501 				int j;
1502 
1503 				next = LIST_NEXT(elt, list);
1504 
1505 				if (elt->tag < taglo || taghi < elt->tag) {
1506 					continue;
1507 				}
1508 
1509 				if (elt->tag == taglo) {
1510 					startidx =
1511 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1512 				} else {
1513 					startidx = 0;
1514 				}
1515 
1516 				if (elt->tag == taghi) {
1517 					endidx =
1518 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1519 				} else {
1520 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1521 				}
1522 
1523 				for (j = startidx; j < endidx; j++) {
1524 					int slot = elt->slots[j];
1525 
1526 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1527 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1528 					    + j) << PAGE_SHIFT) == NULL);
1529 					if (slot > 0) {
1530 						uvm_swap_free(slot, 1);
1531 						swpgonlydelta++;
1532 						KASSERT(elt->count > 0);
1533 						elt->slots[j] = 0;
1534 						elt->count--;
1535 					}
1536 				}
1537 
1538 				if (elt->count == 0) {
1539 					LIST_REMOVE(elt, list);
1540 					pool_put(&uao_swhash_elt_pool, elt);
1541 				}
1542 			}
1543 		}
1544 	} else {
1545 		int i;
1546 
1547 		if (aobj->u_pages < end) {
1548 			end = aobj->u_pages;
1549 		}
1550 		for (i = start; i < end; i++) {
1551 			int slot = aobj->u_swslots[i];
1552 
1553 			if (slot > 0) {
1554 				uvm_swap_free(slot, 1);
1555 				swpgonlydelta++;
1556 			}
1557 		}
1558 	}
1559 
1560 	/*
1561 	 * adjust the counter of pages only in swap for all
1562 	 * the swap slots we've freed.
1563 	 */
1564 
1565 	if (swpgonlydelta > 0) {
1566 		mutex_enter(&uvm_swap_data_lock);
1567 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1568 		uvmexp.swpgonly -= swpgonlydelta;
1569 		mutex_exit(&uvm_swap_data_lock);
1570 	}
1571 }
1572 
1573 #endif /* defined(VMSWAP) */
1574