1 /* $NetBSD: uvm_amap.c,v 1.43 2002/03/28 06:06:29 nathanw Exp $ */ 2 3 /* 4 * 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Charles D. Cranor and 19 * Washington University. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * uvm_amap.c: amap operations 37 */ 38 39 /* 40 * this file contains functions that perform operations on amaps. see 41 * uvm_amap.h for a brief explanation of the role of amaps in uvm. 42 */ 43 44 #include <sys/cdefs.h> 45 __KERNEL_RCSID(0, "$NetBSD: uvm_amap.c,v 1.43 2002/03/28 06:06:29 nathanw Exp $"); 46 47 #undef UVM_AMAP_INLINE /* enable/disable amap inlines */ 48 49 #include "opt_uvmhist.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/proc.h> 54 #include <sys/malloc.h> 55 #include <sys/kernel.h> 56 #include <sys/pool.h> 57 58 #define UVM_AMAP_C /* ensure disabled inlines are in */ 59 #include <uvm/uvm.h> 60 #include <uvm/uvm_swap.h> 61 62 /* 63 * pool for allocation of vm_map structures. note that the pool has 64 * its own simplelock for its protection. also note that in order to 65 * avoid an endless loop, the amap pool's allocator cannot allocate 66 * memory from an amap (it currently goes through the kernel uobj, so 67 * we are ok). 68 */ 69 70 struct pool uvm_amap_pool; 71 72 /* 73 * local functions 74 */ 75 76 static struct vm_amap *amap_alloc1 __P((int, int, int)); 77 78 #ifdef UVM_AMAP_PPREF 79 /* 80 * what is ppref? ppref is an _optional_ amap feature which is used 81 * to keep track of reference counts on a per-page basis. it is enabled 82 * when UVM_AMAP_PPREF is defined. 83 * 84 * when enabled, an array of ints is allocated for the pprefs. this 85 * array is allocated only when a partial reference is added to the 86 * map (either by unmapping part of the amap, or gaining a reference 87 * to only a part of an amap). if the malloc of the array fails 88 * (M_NOWAIT), then we set the array pointer to PPREF_NONE to indicate 89 * that we tried to do ppref's but couldn't alloc the array so just 90 * give up (after all, this is an optional feature!). 91 * 92 * the array is divided into page sized "chunks." for chunks of length 1, 93 * the chunk reference count plus one is stored in that chunk's slot. 94 * for chunks of length > 1 the first slot contains (the reference count 95 * plus one) * -1. [the negative value indicates that the length is 96 * greater than one.] the second slot of the chunk contains the length 97 * of the chunk. here is an example: 98 * 99 * actual REFS: 2 2 2 2 3 1 1 0 0 0 4 4 0 1 1 1 100 * ppref: -3 4 x x 4 -2 2 -1 3 x -5 2 1 -2 3 x 101 * <----------><-><----><-------><----><-><-------> 102 * (x = don't care) 103 * 104 * this allows us to allow one int to contain the ref count for the whole 105 * chunk. note that the "plus one" part is needed because a reference 106 * count of zero is neither positive or negative (need a way to tell 107 * if we've got one zero or a bunch of them). 108 * 109 * here are some in-line functions to help us. 110 */ 111 112 static __inline void pp_getreflen __P((int *, int, int *, int *)); 113 static __inline void pp_setreflen __P((int *, int, int, int)); 114 115 /* 116 * pp_getreflen: get the reference and length for a specific offset 117 * 118 * => ppref's amap must be locked 119 */ 120 static __inline void 121 pp_getreflen(ppref, offset, refp, lenp) 122 int *ppref, offset, *refp, *lenp; 123 { 124 125 if (ppref[offset] > 0) { /* chunk size must be 1 */ 126 *refp = ppref[offset] - 1; /* don't forget to adjust */ 127 *lenp = 1; 128 } else { 129 *refp = (ppref[offset] * -1) - 1; 130 *lenp = ppref[offset+1]; 131 } 132 } 133 134 /* 135 * pp_setreflen: set the reference and length for a specific offset 136 * 137 * => ppref's amap must be locked 138 */ 139 static __inline void 140 pp_setreflen(ppref, offset, ref, len) 141 int *ppref, offset, ref, len; 142 { 143 if (len == 1) { 144 ppref[offset] = ref + 1; 145 } else { 146 ppref[offset] = (ref + 1) * -1; 147 ppref[offset+1] = len; 148 } 149 } 150 #endif 151 152 /* 153 * amap_init: called at boot time to init global amap data structures 154 */ 155 156 void 157 amap_init(void) 158 { 159 160 /* 161 * Initialize the vm_amap pool. 162 */ 163 164 pool_init(&uvm_amap_pool, sizeof(struct vm_amap), 0, 0, 0, 165 "amappl", &pool_allocator_nointr); 166 } 167 168 /* 169 * amap_alloc1: internal function that allocates an amap, but does not 170 * init the overlay. 171 * 172 * => lock on returned amap is init'd 173 */ 174 static inline struct vm_amap * 175 amap_alloc1(slots, padslots, waitf) 176 int slots, padslots, waitf; 177 { 178 struct vm_amap *amap; 179 int totalslots; 180 181 amap = pool_get(&uvm_amap_pool, (waitf == M_WAITOK) ? PR_WAITOK : 0); 182 if (amap == NULL) 183 return(NULL); 184 185 totalslots = malloc_roundup((slots + padslots) * sizeof(int)) / 186 sizeof(int); 187 simple_lock_init(&amap->am_l); 188 amap->am_ref = 1; 189 amap->am_flags = 0; 190 #ifdef UVM_AMAP_PPREF 191 amap->am_ppref = NULL; 192 #endif 193 amap->am_maxslot = totalslots; 194 amap->am_nslot = slots; 195 amap->am_nused = 0; 196 197 amap->am_slots = malloc(totalslots * sizeof(int), M_UVMAMAP, 198 waitf); 199 if (amap->am_slots == NULL) 200 goto fail1; 201 202 amap->am_bckptr = malloc(totalslots * sizeof(int), M_UVMAMAP, waitf); 203 if (amap->am_bckptr == NULL) 204 goto fail2; 205 206 amap->am_anon = malloc(totalslots * sizeof(struct vm_anon *), 207 M_UVMAMAP, waitf); 208 if (amap->am_anon == NULL) 209 goto fail3; 210 211 return(amap); 212 213 fail3: 214 free(amap->am_bckptr, M_UVMAMAP); 215 fail2: 216 free(amap->am_slots, M_UVMAMAP); 217 fail1: 218 pool_put(&uvm_amap_pool, amap); 219 return (NULL); 220 } 221 222 /* 223 * amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM 224 * 225 * => caller should ensure sz is a multiple of PAGE_SIZE 226 * => reference count to new amap is set to one 227 * => new amap is returned unlocked 228 */ 229 230 struct vm_amap * 231 amap_alloc(sz, padsz, waitf) 232 vaddr_t sz, padsz; 233 int waitf; 234 { 235 struct vm_amap *amap; 236 int slots, padslots; 237 UVMHIST_FUNC("amap_alloc"); UVMHIST_CALLED(maphist); 238 239 AMAP_B2SLOT(slots, sz); 240 AMAP_B2SLOT(padslots, padsz); 241 242 amap = amap_alloc1(slots, padslots, waitf); 243 if (amap) 244 memset(amap->am_anon, 0, 245 amap->am_maxslot * sizeof(struct vm_anon *)); 246 247 UVMHIST_LOG(maphist,"<- done, amap = 0x%x, sz=%d", amap, sz, 0, 0); 248 return(amap); 249 } 250 251 252 /* 253 * amap_free: free an amap 254 * 255 * => the amap must be unlocked 256 * => the amap should have a zero reference count and be empty 257 */ 258 void 259 amap_free(amap) 260 struct vm_amap *amap; 261 { 262 UVMHIST_FUNC("amap_free"); UVMHIST_CALLED(maphist); 263 264 KASSERT(amap->am_ref == 0 && amap->am_nused == 0); 265 LOCK_ASSERT(!simple_lock_held(&amap->am_l)); 266 free(amap->am_slots, M_UVMAMAP); 267 free(amap->am_bckptr, M_UVMAMAP); 268 free(amap->am_anon, M_UVMAMAP); 269 #ifdef UVM_AMAP_PPREF 270 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) 271 free(amap->am_ppref, M_UVMAMAP); 272 #endif 273 pool_put(&uvm_amap_pool, amap); 274 UVMHIST_LOG(maphist,"<- done, freed amap = 0x%x", amap, 0, 0, 0); 275 } 276 277 /* 278 * amap_extend: extend the size of an amap (if needed) 279 * 280 * => called from uvm_map when we want to extend an amap to cover 281 * a new mapping (rather than allocate a new one) 282 * => amap should be unlocked (we will lock it) 283 * => to safely extend an amap it should have a reference count of 284 * one (thus it can't be shared) 285 * => XXXCDC: needs a waitflag or failure return value? 286 * => XXXCDC: support padding at this level? 287 */ 288 void 289 amap_extend(entry, addsize) 290 struct vm_map_entry *entry; 291 vsize_t addsize; 292 { 293 struct vm_amap *amap = entry->aref.ar_amap; 294 int slotoff = entry->aref.ar_pageoff; 295 int slotmapped, slotadd, slotneed, slotadded, slotalloc; 296 #ifdef UVM_AMAP_PPREF 297 int *newppref, *oldppref; 298 #endif 299 int *newsl, *newbck, *oldsl, *oldbck; 300 struct vm_anon **newover, **oldover; 301 UVMHIST_FUNC("amap_extend"); UVMHIST_CALLED(maphist); 302 303 UVMHIST_LOG(maphist, " (entry=0x%x, addsize=0x%x)", entry,addsize,0,0); 304 305 /* 306 * first, determine how many slots we need in the amap. don't 307 * forget that ar_pageoff could be non-zero: this means that 308 * there are some unused slots before us in the amap. 309 */ 310 311 amap_lock(amap); /* lock! */ 312 313 AMAP_B2SLOT(slotmapped, entry->end - entry->start); /* slots mapped */ 314 AMAP_B2SLOT(slotadd, addsize); /* slots to add */ 315 slotneed = slotoff + slotmapped + slotadd; 316 317 /* 318 * case 1: we already have enough slots in the map and thus 319 * only need to bump the reference counts on the slots we are 320 * adding. 321 */ 322 323 if (amap->am_nslot >= slotneed) { 324 #ifdef UVM_AMAP_PPREF 325 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { 326 amap_pp_adjref(amap, slotoff + slotmapped, slotadd, 1); 327 } 328 #endif 329 amap_unlock(amap); 330 UVMHIST_LOG(maphist,"<- done (case 1), amap = 0x%x, sltneed=%d", 331 amap, slotneed, 0, 0); 332 return; /* done! */ 333 } 334 335 /* 336 * case 2: we pre-allocated slots for use and we just need to 337 * bump nslot up to take account for these slots. 338 */ 339 if (amap->am_maxslot >= slotneed) { 340 #ifdef UVM_AMAP_PPREF 341 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { 342 if ((slotoff + slotmapped) < amap->am_nslot) 343 amap_pp_adjref(amap, slotoff + slotmapped, 344 (amap->am_nslot - (slotoff + slotmapped)), 345 1); 346 pp_setreflen(amap->am_ppref, amap->am_nslot, 1, 347 slotneed - amap->am_nslot); 348 } 349 #endif 350 amap->am_nslot = slotneed; 351 amap_unlock(amap); 352 /* 353 * no need to zero am_anon since that was done at 354 * alloc time and we never shrink an allocation. 355 */ 356 UVMHIST_LOG(maphist,"<- done (case 2), amap = 0x%x, slotneed=%d", 357 amap, slotneed, 0, 0); 358 return; 359 } 360 361 /* 362 * case 3: we need to malloc a new amap and copy all the amap 363 * data over from old amap to the new one. 364 * 365 * XXXCDC: could we take advantage of a kernel realloc()? 366 */ 367 368 amap_unlock(amap); /* unlock in case we sleep in malloc */ 369 slotalloc = malloc_roundup(slotneed * sizeof(int)) / sizeof(int); 370 #ifdef UVM_AMAP_PPREF 371 newppref = NULL; 372 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { 373 newppref = malloc(slotalloc * sizeof(int), M_UVMAMAP, 374 M_NOWAIT); 375 if (newppref == NULL) { 376 /* give up if malloc fails */ 377 free(amap->am_ppref, M_UVMAMAP); 378 amap->am_ppref = PPREF_NONE; 379 } 380 } 381 #endif 382 newsl = malloc(slotalloc * sizeof(int), M_UVMAMAP, M_WAITOK); 383 newbck = malloc(slotalloc * sizeof(int), M_UVMAMAP, M_WAITOK); 384 newover = malloc(slotalloc * sizeof(struct vm_anon *), 385 M_UVMAMAP, M_WAITOK); 386 amap_lock(amap); /* re-lock! */ 387 KASSERT(amap->am_maxslot < slotneed); 388 389 /* 390 * now copy everything over to new malloc'd areas... 391 */ 392 393 slotadded = slotalloc - amap->am_nslot; 394 395 /* do am_slots */ 396 oldsl = amap->am_slots; 397 memcpy(newsl, oldsl, sizeof(int) * amap->am_nused); 398 amap->am_slots = newsl; 399 400 /* do am_anon */ 401 oldover = amap->am_anon; 402 memcpy(newover, oldover, sizeof(struct vm_anon *) * amap->am_nslot); 403 memset(newover + amap->am_nslot, 0, sizeof(struct vm_anon *) * slotadded); 404 amap->am_anon = newover; 405 406 /* do am_bckptr */ 407 oldbck = amap->am_bckptr; 408 memcpy(newbck, oldbck, sizeof(int) * amap->am_nslot); 409 amap->am_bckptr = newbck; 410 411 #ifdef UVM_AMAP_PPREF 412 /* do ppref */ 413 oldppref = amap->am_ppref; 414 if (newppref) { 415 memcpy(newppref, oldppref, sizeof(int) * amap->am_nslot); 416 memset(newppref + amap->am_nslot, 0, sizeof(int) * slotadded); 417 amap->am_ppref = newppref; 418 if ((slotoff + slotmapped) < amap->am_nslot) 419 amap_pp_adjref(amap, slotoff + slotmapped, 420 (amap->am_nslot - (slotoff + slotmapped)), 1); 421 pp_setreflen(newppref, amap->am_nslot, 1, 422 slotneed - amap->am_nslot); 423 } 424 #endif 425 426 /* update master values */ 427 amap->am_nslot = slotneed; 428 amap->am_maxslot = slotalloc; 429 430 amap_unlock(amap); 431 free(oldsl, M_UVMAMAP); 432 free(oldbck, M_UVMAMAP); 433 free(oldover, M_UVMAMAP); 434 #ifdef UVM_AMAP_PPREF 435 if (oldppref && oldppref != PPREF_NONE) 436 free(oldppref, M_UVMAMAP); 437 #endif 438 UVMHIST_LOG(maphist,"<- done (case 3), amap = 0x%x, slotneed=%d", 439 amap, slotneed, 0, 0); 440 } 441 442 /* 443 * amap_share_protect: change protection of anons in a shared amap 444 * 445 * for shared amaps, given the current data structure layout, it is 446 * not possible for us to directly locate all maps referencing the 447 * shared anon (to change the protection). in order to protect data 448 * in shared maps we use pmap_page_protect(). [this is useful for IPC 449 * mechanisms like map entry passing that may want to write-protect 450 * all mappings of a shared amap.] we traverse am_anon or am_slots 451 * depending on the current state of the amap. 452 * 453 * => entry's map and amap must be locked by the caller 454 */ 455 void 456 amap_share_protect(entry, prot) 457 struct vm_map_entry *entry; 458 vm_prot_t prot; 459 { 460 struct vm_amap *amap = entry->aref.ar_amap; 461 int slots, lcv, slot, stop; 462 463 LOCK_ASSERT(simple_lock_held(&amap->am_l)); 464 465 AMAP_B2SLOT(slots, (entry->end - entry->start)); 466 stop = entry->aref.ar_pageoff + slots; 467 468 if (slots < amap->am_nused) { 469 /* cheaper to traverse am_anon */ 470 for (lcv = entry->aref.ar_pageoff ; lcv < stop ; lcv++) { 471 if (amap->am_anon[lcv] == NULL) 472 continue; 473 if (amap->am_anon[lcv]->u.an_page != NULL) 474 pmap_page_protect(amap->am_anon[lcv]->u.an_page, 475 prot); 476 } 477 return; 478 } 479 480 /* cheaper to traverse am_slots */ 481 for (lcv = 0 ; lcv < amap->am_nused ; lcv++) { 482 slot = amap->am_slots[lcv]; 483 if (slot < entry->aref.ar_pageoff || slot >= stop) 484 continue; 485 if (amap->am_anon[slot]->u.an_page != NULL) 486 pmap_page_protect(amap->am_anon[slot]->u.an_page, prot); 487 } 488 } 489 490 /* 491 * amap_wipeout: wipeout all anon's in an amap; then free the amap! 492 * 493 * => called from amap_unref when the final reference to an amap is 494 * discarded (i.e. when reference count == 1) 495 * => the amap should be locked (by the caller) 496 */ 497 498 void 499 amap_wipeout(amap) 500 struct vm_amap *amap; 501 { 502 int lcv, slot; 503 struct vm_anon *anon; 504 UVMHIST_FUNC("amap_wipeout"); UVMHIST_CALLED(maphist); 505 UVMHIST_LOG(maphist,"(amap=0x%x)", amap, 0,0,0); 506 507 amap_unlock(amap); 508 for (lcv = 0 ; lcv < amap->am_nused ; lcv++) { 509 int refs; 510 511 slot = amap->am_slots[lcv]; 512 anon = amap->am_anon[slot]; 513 514 if (anon == NULL || anon->an_ref == 0) 515 panic("amap_wipeout: corrupt amap"); 516 517 simple_lock(&anon->an_lock); 518 UVMHIST_LOG(maphist," processing anon 0x%x, ref=%d", anon, 519 anon->an_ref, 0, 0); 520 refs = --anon->an_ref; 521 simple_unlock(&anon->an_lock); 522 if (refs == 0) { 523 524 /* 525 * we had the last reference to a vm_anon. free it. 526 */ 527 528 uvm_anfree(anon); 529 } 530 531 /* 532 * XXX 533 * releasing the swap space held by an N anons is an O(N^2) 534 * operation because of the implementation of extents. 535 * if there are many anons, tearing down an exiting process' 536 * address space can take many seconds, which causes very 537 * annoying pauses. we yield here to give other processes 538 * a chance to run. this should be removed once the performance 539 * of swap space management is improved. 540 */ 541 542 if (curproc->p_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) 543 preempt(NULL); 544 } 545 546 /* 547 * now we free the map 548 */ 549 550 amap->am_ref = 0; /* ... was one */ 551 amap->am_nused = 0; 552 amap_free(amap); /* will unlock and free amap */ 553 UVMHIST_LOG(maphist,"<- done!", 0,0,0,0); 554 } 555 556 /* 557 * amap_copy: ensure that a map entry's "needs_copy" flag is false 558 * by copying the amap if necessary. 559 * 560 * => an entry with a null amap pointer will get a new (blank) one. 561 * => the map that the map entry belongs to must be locked by caller. 562 * => the amap currently attached to "entry" (if any) must be unlocked. 563 * => if canchunk is true, then we may clip the entry into a chunk 564 * => "startva" and "endva" are used only if canchunk is true. they are 565 * used to limit chunking (e.g. if you have a large space that you 566 * know you are going to need to allocate amaps for, there is no point 567 * in allowing that to be chunked) 568 */ 569 570 void 571 amap_copy(map, entry, waitf, canchunk, startva, endva) 572 struct vm_map *map; 573 struct vm_map_entry *entry; 574 int waitf; 575 boolean_t canchunk; 576 vaddr_t startva, endva; 577 { 578 struct vm_amap *amap, *srcamap; 579 int slots, lcv; 580 vaddr_t chunksize; 581 UVMHIST_FUNC("amap_copy"); UVMHIST_CALLED(maphist); 582 UVMHIST_LOG(maphist, " (map=%p, entry=%p, waitf=%d)", 583 map, entry, waitf, 0); 584 585 /* 586 * is there a map to copy? if not, create one from scratch. 587 */ 588 589 if (entry->aref.ar_amap == NULL) { 590 591 /* 592 * check to see if we have a large amap that we can 593 * chunk. we align startva/endva to chunk-sized 594 * boundaries and then clip to them. 595 */ 596 597 if (canchunk && atop(entry->end - entry->start) >= 598 UVM_AMAP_LARGE) { 599 /* convert slots to bytes */ 600 chunksize = UVM_AMAP_CHUNK << PAGE_SHIFT; 601 startva = (startva / chunksize) * chunksize; 602 endva = roundup(endva, chunksize); 603 UVMHIST_LOG(maphist, " chunk amap ==> clip 0x%x->0x%x" 604 "to 0x%x->0x%x", entry->start, entry->end, startva, 605 endva); 606 UVM_MAP_CLIP_START(map, entry, startva); 607 /* watch out for endva wrap-around! */ 608 if (endva >= startva) 609 UVM_MAP_CLIP_END(map, entry, endva); 610 } 611 612 UVMHIST_LOG(maphist, "<- done [creating new amap 0x%x->0x%x]", 613 entry->start, entry->end, 0, 0); 614 entry->aref.ar_pageoff = 0; 615 entry->aref.ar_amap = amap_alloc(entry->end - entry->start, 0, 616 waitf); 617 if (entry->aref.ar_amap != NULL) 618 entry->etype &= ~UVM_ET_NEEDSCOPY; 619 return; 620 } 621 622 /* 623 * first check and see if we are the only map entry 624 * referencing the amap we currently have. if so, then we can 625 * just take it over rather than copying it. note that we are 626 * reading am_ref with the amap unlocked... the value can only 627 * be one if we have the only reference to the amap (via our 628 * locked map). if we are greater than one we fall through to 629 * the next case (where we double check the value). 630 */ 631 632 if (entry->aref.ar_amap->am_ref == 1) { 633 entry->etype &= ~UVM_ET_NEEDSCOPY; 634 UVMHIST_LOG(maphist, "<- done [ref cnt = 1, took it over]", 635 0, 0, 0, 0); 636 return; 637 } 638 639 /* 640 * looks like we need to copy the map. 641 */ 642 643 UVMHIST_LOG(maphist," amap=%p, ref=%d, must copy it", 644 entry->aref.ar_amap, entry->aref.ar_amap->am_ref, 0, 0); 645 AMAP_B2SLOT(slots, entry->end - entry->start); 646 amap = amap_alloc1(slots, 0, waitf); 647 if (amap == NULL) { 648 UVMHIST_LOG(maphist, " amap_alloc1 failed", 0,0,0,0); 649 return; 650 } 651 srcamap = entry->aref.ar_amap; 652 amap_lock(srcamap); 653 654 /* 655 * need to double check reference count now that we've got the 656 * src amap locked down. the reference count could have 657 * changed while we were in malloc. if the reference count 658 * dropped down to one we take over the old map rather than 659 * copying the amap. 660 */ 661 662 if (srcamap->am_ref == 1) { /* take it over? */ 663 entry->etype &= ~UVM_ET_NEEDSCOPY; 664 amap->am_ref--; /* drop final reference to map */ 665 amap_unlock(amap); 666 amap_free(amap); /* dispose of new (unused) amap */ 667 amap_unlock(srcamap); 668 return; 669 } 670 671 /* 672 * we must copy it now. 673 */ 674 675 UVMHIST_LOG(maphist, " copying amap now",0, 0, 0, 0); 676 for (lcv = 0 ; lcv < slots; lcv++) { 677 amap->am_anon[lcv] = 678 srcamap->am_anon[entry->aref.ar_pageoff + lcv]; 679 if (amap->am_anon[lcv] == NULL) 680 continue; 681 simple_lock(&amap->am_anon[lcv]->an_lock); 682 amap->am_anon[lcv]->an_ref++; 683 simple_unlock(&amap->am_anon[lcv]->an_lock); 684 amap->am_bckptr[lcv] = amap->am_nused; 685 amap->am_slots[amap->am_nused] = lcv; 686 amap->am_nused++; 687 } 688 memset(&amap->am_anon[lcv], 0, 689 (amap->am_maxslot - lcv) * sizeof(struct vm_anon *)); 690 691 /* 692 * drop our reference to the old amap (srcamap) and unlock. 693 * we know that the reference count on srcamap is greater than 694 * one (we checked above), so there is no way we could drop 695 * the count to zero. [and no need to worry about freeing it] 696 */ 697 698 srcamap->am_ref--; 699 if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0) 700 srcamap->am_flags &= ~AMAP_SHARED; /* clear shared flag */ 701 #ifdef UVM_AMAP_PPREF 702 if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) { 703 amap_pp_adjref(srcamap, entry->aref.ar_pageoff, 704 (entry->end - entry->start) >> PAGE_SHIFT, -1); 705 } 706 #endif 707 708 amap_unlock(srcamap); 709 710 /* 711 * install new amap. 712 */ 713 714 entry->aref.ar_pageoff = 0; 715 entry->aref.ar_amap = amap; 716 entry->etype &= ~UVM_ET_NEEDSCOPY; 717 UVMHIST_LOG(maphist, "<- done",0, 0, 0, 0); 718 } 719 720 /* 721 * amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2) 722 * 723 * called during fork(2) when the parent process has a wired map 724 * entry. in that case we want to avoid write-protecting pages 725 * in the parent's map (e.g. like what you'd do for a COW page) 726 * so we resolve the COW here. 727 * 728 * => assume parent's entry was wired, thus all pages are resident. 729 * => assume pages that are loaned out (loan_count) are already mapped 730 * read-only in all maps, and thus no need for us to worry about them 731 * => assume both parent and child vm_map's are locked 732 * => caller passes child's map/entry in to us 733 * => if we run out of memory we will unlock the amap and sleep _with_ the 734 * parent and child vm_map's locked(!). we have to do this since 735 * we are in the middle of a fork(2) and we can't let the parent 736 * map change until we are done copying all the map entrys. 737 * => XXXCDC: out of memory should cause fork to fail, but there is 738 * currently no easy way to do this (needs fix) 739 * => page queues must be unlocked (we may lock them) 740 */ 741 742 void 743 amap_cow_now(map, entry) 744 struct vm_map *map; 745 struct vm_map_entry *entry; 746 { 747 struct vm_amap *amap = entry->aref.ar_amap; 748 int lcv, slot; 749 struct vm_anon *anon, *nanon; 750 struct vm_page *pg, *npg; 751 752 /* 753 * note that if we unlock the amap then we must ReStart the "lcv" for 754 * loop because some other process could reorder the anon's in the 755 * am_anon[] array on us while the lock is dropped. 756 */ 757 758 ReStart: 759 amap_lock(amap); 760 761 for (lcv = 0 ; lcv < amap->am_nused ; lcv++) { 762 763 /* 764 * get the page 765 */ 766 767 slot = amap->am_slots[lcv]; 768 anon = amap->am_anon[slot]; 769 simple_lock(&anon->an_lock); 770 pg = anon->u.an_page; 771 772 /* 773 * page must be resident since parent is wired 774 */ 775 776 if (pg == NULL) 777 panic("amap_cow_now: non-resident wired page in anon %p", 778 anon); 779 780 /* 781 * if the anon ref count is one and the page is not loaned, 782 * then we are safe (the child has exclusive access to the 783 * page). if the page is loaned, then it must already be 784 * mapped read-only. 785 * 786 * we only need to get involved when these are not true. 787 * [note: if loan_count == 0, then the anon must own the page] 788 */ 789 790 if (anon->an_ref > 1 && pg->loan_count == 0) { 791 792 /* 793 * if the page is busy then we have to unlock, wait for 794 * it and then restart. 795 */ 796 if (pg->flags & PG_BUSY) { 797 pg->flags |= PG_WANTED; 798 amap_unlock(amap); 799 UVM_UNLOCK_AND_WAIT(pg, &anon->an_lock, FALSE, 800 "cownow", 0); 801 goto ReStart; 802 } 803 804 /* 805 * ok, time to do a copy-on-write to a new anon 806 */ 807 nanon = uvm_analloc(); 808 if (nanon) { 809 /* nanon is locked! */ 810 npg = uvm_pagealloc(NULL, 0, nanon, 0); 811 } else 812 npg = NULL; /* XXX: quiet gcc warning */ 813 814 if (nanon == NULL || npg == NULL) { 815 /* out of memory */ 816 /* 817 * XXXCDC: we should cause fork to fail, but 818 * we can't ... 819 */ 820 if (nanon) { 821 nanon->an_ref--; 822 simple_unlock(&nanon->an_lock); 823 uvm_anfree(nanon); 824 } 825 simple_unlock(&anon->an_lock); 826 amap_unlock(amap); 827 uvm_wait("cownowpage"); 828 goto ReStart; 829 } 830 831 /* 832 * got it... now we can copy the data and replace anon 833 * with our new one... 834 */ 835 836 uvm_pagecopy(pg, npg); /* old -> new */ 837 anon->an_ref--; /* can't drop to zero */ 838 amap->am_anon[slot] = nanon; /* replace */ 839 840 /* 841 * drop PG_BUSY on new page ... since we have had it's 842 * owner locked the whole time it can't be 843 * PG_RELEASED | PG_WANTED. 844 */ 845 846 npg->flags &= ~(PG_BUSY|PG_FAKE); 847 UVM_PAGE_OWN(npg, NULL); 848 uvm_lock_pageq(); 849 uvm_pageactivate(npg); 850 uvm_unlock_pageq(); 851 simple_unlock(&nanon->an_lock); 852 } 853 simple_unlock(&anon->an_lock); 854 } 855 amap_unlock(amap); 856 } 857 858 /* 859 * amap_splitref: split a single reference into two separate references 860 * 861 * => called from uvm_map's clip routines 862 * => origref's map should be locked 863 * => origref->ar_amap should be unlocked (we will lock) 864 */ 865 void 866 amap_splitref(origref, splitref, offset) 867 struct vm_aref *origref, *splitref; 868 vaddr_t offset; 869 { 870 int leftslots; 871 872 AMAP_B2SLOT(leftslots, offset); 873 if (leftslots == 0) 874 panic("amap_splitref: split at zero offset"); 875 876 amap_lock(origref->ar_amap); 877 878 /* 879 * now: amap is locked and we have a valid am_mapped array. 880 */ 881 882 if (origref->ar_amap->am_nslot - origref->ar_pageoff - leftslots <= 0) 883 panic("amap_splitref: map size check failed"); 884 885 #ifdef UVM_AMAP_PPREF 886 /* 887 * establish ppref before we add a duplicate reference to the amap 888 */ 889 if (origref->ar_amap->am_ppref == NULL) 890 amap_pp_establish(origref->ar_amap); 891 #endif 892 893 splitref->ar_amap = origref->ar_amap; 894 splitref->ar_amap->am_ref++; /* not a share reference */ 895 splitref->ar_pageoff = origref->ar_pageoff + leftslots; 896 897 amap_unlock(origref->ar_amap); 898 } 899 900 #ifdef UVM_AMAP_PPREF 901 902 /* 903 * amap_pp_establish: add a ppref array to an amap, if possible 904 * 905 * => amap locked by caller 906 */ 907 void 908 amap_pp_establish(amap) 909 struct vm_amap *amap; 910 { 911 amap->am_ppref = malloc(sizeof(int) * amap->am_maxslot, 912 M_UVMAMAP, M_NOWAIT); 913 914 /* 915 * if we fail then we just won't use ppref for this amap 916 */ 917 918 if (amap->am_ppref == NULL) { 919 amap->am_ppref = PPREF_NONE; /* not using it */ 920 return; 921 } 922 memset(amap->am_ppref, 0, sizeof(int) * amap->am_maxslot); 923 pp_setreflen(amap->am_ppref, 0, amap->am_ref, amap->am_nslot); 924 return; 925 } 926 927 /* 928 * amap_pp_adjref: adjust reference count to a part of an amap using the 929 * per-page reference count array. 930 * 931 * => map and amap locked by caller 932 * => caller must check that ppref != PPREF_NONE before calling 933 */ 934 void 935 amap_pp_adjref(amap, curslot, slotlen, adjval) 936 struct vm_amap *amap; 937 int curslot; 938 vsize_t slotlen; 939 int adjval; 940 { 941 int stopslot, *ppref, lcv, prevlcv; 942 int ref, len, prevref, prevlen; 943 944 stopslot = curslot + slotlen; 945 ppref = amap->am_ppref; 946 prevlcv = 0; 947 948 /* 949 * first advance to the correct place in the ppref array, 950 * fragment if needed. 951 */ 952 953 for (lcv = 0 ; lcv < curslot ; lcv += len) { 954 pp_getreflen(ppref, lcv, &ref, &len); 955 if (lcv + len > curslot) { /* goes past start? */ 956 pp_setreflen(ppref, lcv, ref, curslot - lcv); 957 pp_setreflen(ppref, curslot, ref, len - (curslot -lcv)); 958 len = curslot - lcv; /* new length of entry @ lcv */ 959 } 960 prevlcv = lcv; 961 } 962 if (lcv != 0) 963 pp_getreflen(ppref, prevlcv, &prevref, &prevlen); 964 else { 965 /* Ensure that the "prevref == ref" test below always 966 * fails, since we're starting from the beginning of 967 * the ppref array; that is, there is no previous 968 * chunk. 969 */ 970 prevref = -1; 971 prevlen = 0; 972 } 973 974 /* 975 * now adjust reference counts in range. merge the first 976 * changed entry with the last unchanged entry if possible. 977 */ 978 979 if (lcv != curslot) 980 panic("amap_pp_adjref: overshot target"); 981 982 for (/* lcv already set */; lcv < stopslot ; lcv += len) { 983 pp_getreflen(ppref, lcv, &ref, &len); 984 if (lcv + len > stopslot) { /* goes past end? */ 985 pp_setreflen(ppref, lcv, ref, stopslot - lcv); 986 pp_setreflen(ppref, stopslot, ref, 987 len - (stopslot - lcv)); 988 len = stopslot - lcv; 989 } 990 ref += adjval; 991 if (ref < 0) 992 panic("amap_pp_adjref: negative reference count"); 993 if (lcv == prevlcv + prevlen && ref == prevref) { 994 pp_setreflen(ppref, prevlcv, ref, prevlen + len); 995 } else { 996 pp_setreflen(ppref, lcv, ref, len); 997 } 998 if (ref == 0) 999 amap_wiperange(amap, lcv, len); 1000 } 1001 1002 } 1003 1004 /* 1005 * amap_wiperange: wipe out a range of an amap 1006 * [different from amap_wipeout because the amap is kept intact] 1007 * 1008 * => both map and amap must be locked by caller. 1009 */ 1010 void 1011 amap_wiperange(amap, slotoff, slots) 1012 struct vm_amap *amap; 1013 int slotoff, slots; 1014 { 1015 int byanon, lcv, stop, curslot, ptr, slotend; 1016 struct vm_anon *anon; 1017 1018 /* 1019 * we can either traverse the amap by am_anon or by am_slots depending 1020 * on which is cheaper. decide now. 1021 */ 1022 1023 if (slots < amap->am_nused) { 1024 byanon = TRUE; 1025 lcv = slotoff; 1026 stop = slotoff + slots; 1027 } else { 1028 byanon = FALSE; 1029 lcv = 0; 1030 stop = amap->am_nused; 1031 slotend = slotoff + slots; 1032 } 1033 1034 while (lcv < stop) { 1035 int refs; 1036 1037 if (byanon) { 1038 curslot = lcv++; /* lcv advances here */ 1039 if (amap->am_anon[curslot] == NULL) 1040 continue; 1041 } else { 1042 curslot = amap->am_slots[lcv]; 1043 if (curslot < slotoff || curslot >= slotend) { 1044 lcv++; /* lcv advances here */ 1045 continue; 1046 } 1047 stop--; /* drop stop, since anon will be removed */ 1048 } 1049 anon = amap->am_anon[curslot]; 1050 1051 /* 1052 * remove it from the amap 1053 */ 1054 1055 amap->am_anon[curslot] = NULL; 1056 ptr = amap->am_bckptr[curslot]; 1057 if (ptr != (amap->am_nused - 1)) { 1058 amap->am_slots[ptr] = 1059 amap->am_slots[amap->am_nused - 1]; 1060 amap->am_bckptr[amap->am_slots[ptr]] = 1061 ptr; /* back ptr. */ 1062 } 1063 amap->am_nused--; 1064 1065 /* 1066 * drop anon reference count 1067 */ 1068 1069 simple_lock(&anon->an_lock); 1070 refs = --anon->an_ref; 1071 simple_unlock(&anon->an_lock); 1072 if (refs == 0) { 1073 1074 /* 1075 * we just eliminated the last reference to an anon. 1076 * free it. 1077 */ 1078 1079 uvm_anfree(anon); 1080 } 1081 } 1082 } 1083 1084 #endif 1085