1 /* $NetBSD: pmap_tlb.c,v 1.19 2016/10/09 14:51:50 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2010 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Matt Thomas at 3am Software Foundry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 34 __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.19 2016/10/09 14:51:50 christos Exp $"); 35 36 /* 37 * Manages address spaces in a TLB. 38 * 39 * Normally there is a 1:1 mapping between a TLB and a CPU. However, some 40 * implementations may share a TLB between multiple CPUs (really CPU thread 41 * contexts). This requires the TLB abstraction to be separated from the 42 * CPU abstraction. It also requires that the TLB be locked while doing 43 * TLB activities. 44 * 45 * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps 46 * that have a valid ASID. 47 * 48 * We allocate ASIDs in increasing order until we have exhausted the supply, 49 * then reinitialize the ASID space, and start allocating again at 1. When 50 * allocating from the ASID bitmap, we skip any ASID who has a corresponding 51 * bit set in the ASID bitmap. Eventually this causes the ASID bitmap to fill 52 * and, when completely filled, a reinitialization of the ASID space. 53 * 54 * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs 55 * of non-kernel TLB entries get recorded in the ASID bitmap. If the entries 56 * in TLB consume more than half of the ASID space, all ASIDs are invalidated, 57 * the ASID bitmap is recleared, and the list of pmaps is emptied. Otherwise, 58 * (the normal case), any ASID present in the TLB (even those which are no 59 * longer used by a pmap) will remain active (allocated) and all other ASIDs 60 * will be freed. If the size of the TLB is much smaller than the ASID space, 61 * this algorithm completely avoids TLB invalidation. 62 * 63 * For multiprocessors, we also have to deal TLB invalidation requests from 64 * other CPUs, some of which are dealt with the reinitialization of the ASID 65 * space. Whereas above we keep the ASIDs of those pmaps which have active 66 * TLB entries, this type of reinitialization preserves the ASIDs of any 67 * "onproc" user pmap and all other ASIDs will be freed. We must do this 68 * since we can't change the current ASID. 69 * 70 * Each pmap has two bitmaps: pm_active and pm_onproc. Each bit in pm_active 71 * indicates whether that pmap has an allocated ASID for a CPU. Each bit in 72 * pm_onproc indicates that pmap's ASID is active (equal to the ASID in COP 0 73 * register EntryHi) on a CPU. The bit number comes from the CPU's cpu_index(). 74 * Even though these bitmaps contain the bits for all CPUs, the bits that 75 * correspond to the bits belonging to the CPUs sharing a TLB can only be 76 * manipulated while holding that TLB's lock. Atomic ops must be used to 77 * update them since multiple CPUs may be changing different sets of bits at 78 * same time but these sets never overlap. 79 * 80 * When a change to the local TLB may require a change in the TLB's of other 81 * CPUs, we try to avoid sending an IPI if at all possible. For instance, if 82 * we are updating a PTE and that PTE previously was invalid and therefore 83 * couldn't support an active mapping, there's no need for an IPI since there 84 * can't be a TLB entry to invalidate. The other case is when we change a PTE 85 * to be modified we just update the local TLB. If another TLB has a stale 86 * entry, a TLB MOD exception will be raised and that will cause the local TLB 87 * to be updated. 88 * 89 * We never need to update a non-local TLB if the pmap doesn't have a valid 90 * ASID for that TLB. If it does have a valid ASID but isn't current "onproc" 91 * we simply reset its ASID for that TLB and then when it goes "onproc" it 92 * will allocate a new ASID and any existing TLB entries will be orphaned. 93 * Only in the case that pmap has an "onproc" ASID do we actually have to send 94 * an IPI. 95 * 96 * Once we determined we must send an IPI to shootdown a TLB, we need to send 97 * it to one of CPUs that share that TLB. We choose the lowest numbered CPU 98 * that has one of the pmap's ASID "onproc". In reality, any CPU sharing that 99 * TLB would do, but interrupting an active CPU seems best. 100 * 101 * A TLB might have multiple shootdowns active concurrently. The shootdown 102 * logic compresses these into a few cases: 103 * 0) nobody needs to have its TLB entries invalidated 104 * 1) one ASID needs to have its TLB entries invalidated 105 * 2) more than one ASID needs to have its TLB entries invalidated 106 * 3) the kernel needs to have its TLB entries invalidated 107 * 4) the kernel and one or more ASID need their TLB entries invalidated. 108 * 109 * And for each case we do: 110 * 0) nothing, 111 * 1) if that ASID is still "onproc", we invalidate the TLB entries for 112 * that single ASID. If not, just reset the pmap's ASID to invalidate 113 * and let it allocate a new ASID the next time it goes "onproc", 114 * 2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and 115 * invalidate all non-wired non-global TLB entries, 116 * 3) we invalidate all of the non-wired global TLB entries, 117 * 4) we reinitialize the ASID space (again preserving any "onproc" ASIDs) 118 * invalidate all non-wired TLB entries. 119 * 120 * As you can see, shootdowns are not concerned with addresses, just address 121 * spaces. Since the number of TLB entries is usually quite small, this avoids 122 * a lot of overhead for not much gain. 123 */ 124 125 #define __PMAP_PRIVATE 126 127 #include "opt_multiprocessor.h" 128 129 #include <sys/param.h> 130 #include <sys/systm.h> 131 #include <sys/proc.h> 132 #include <sys/mutex.h> 133 #include <sys/atomic.h> 134 #include <sys/kernel.h> /* for cold */ 135 #include <sys/cpu.h> 136 137 #include <uvm/uvm.h> 138 139 static kmutex_t pmap_tlb0_lock __cacheline_aligned; 140 141 #define IFCONSTANT(x) (__builtin_constant_p((x)) ? (x) : 0) 142 143 struct pmap_tlb_info pmap_tlb0_info = { 144 .ti_name = "tlb0", 145 .ti_asid_hint = KERNEL_PID + 1, 146 #ifdef PMAP_TLB_NUM_PIDS 147 .ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1), 148 .ti_asids_free = IFCONSTANT(PMAP_TLB_NUM_PIDS - (1 + KERNEL_PID)), 149 #endif 150 .ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1, 151 #ifdef PMAP_TLB_WIRED_UPAGES 152 .ti_wired = PMAP_TLB_WIRED_UPAGES, 153 #endif 154 .ti_lock = &pmap_tlb0_lock, 155 .ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais), 156 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 157 .ti_tlbinvop = TLBINV_NOBODY, 158 #endif 159 }; 160 161 #undef IFCONSTANT 162 163 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 164 struct pmap_tlb_info *pmap_tlbs[PMAP_TLB_MAX] = { 165 [0] = &pmap_tlb0_info, 166 }; 167 u_int pmap_ntlbs = 1; 168 #endif 169 170 #define __BITMAP_SET(bm, n) \ 171 ((bm)[(n) / (8*sizeof(bm[0]))] |= 1LU << ((n) % (8*sizeof(bm[0])))) 172 #define __BITMAP_CLR(bm, n) \ 173 ((bm)[(n) / (8*sizeof(bm[0]))] &= ~(1LU << ((n) % (8*sizeof(bm[0]))))) 174 #define __BITMAP_ISSET_P(bm, n) \ 175 (((bm)[(n) / (8*sizeof(bm[0]))] & (1LU << ((n) % (8*sizeof(bm[0]))))) != 0) 176 177 #define TLBINFO_ASID_MARK_UNUSED(ti, asid) \ 178 __BITMAP_CLR((ti)->ti_asid_bitmap, (asid)) 179 #define TLBINFO_ASID_MARK_USED(ti, asid) \ 180 __BITMAP_SET((ti)->ti_asid_bitmap, (asid)) 181 #define TLBINFO_ASID_INUSE_P(ti, asid) \ 182 __BITMAP_ISSET_P((ti)->ti_asid_bitmap, (asid)) 183 184 #ifdef MULTIPROCESSOR 185 __unused static inline bool 186 pmap_tlb_intersecting_active_p(pmap_t pm, struct pmap_tlb_info *ti) 187 { 188 #if PMAP_TLB_MAX == 1 189 return !kcpuset_iszero(pm->pm_active); 190 #else 191 return kcpuset_intersecting_p(pm->pm_active, ti->ti_kcpuset); 192 #endif 193 } 194 195 static inline bool 196 pmap_tlb_intersecting_onproc_p(pmap_t pm, struct pmap_tlb_info *ti) 197 { 198 #if PMAP_TLB_MAX == 1 199 return !kcpuset_iszero(pm->pm_onproc); 200 #else 201 return kcpuset_intersecting_p(pm->pm_onproc, ti->ti_kcpuset); 202 #endif 203 } 204 #endif 205 206 static void 207 pmap_tlb_pai_check(struct pmap_tlb_info *ti, bool locked_p) 208 { 209 #ifdef DIAGNOSTIC 210 struct pmap_asid_info *pai; 211 if (!locked_p) 212 TLBINFO_LOCK(ti); 213 LIST_FOREACH(pai, &ti->ti_pais, pai_link) { 214 KASSERT(pai != NULL); 215 KASSERT(PAI_PMAP(pai, ti) != pmap_kernel()); 216 KASSERT(pai->pai_asid > KERNEL_PID); 217 KASSERTMSG(pai->pai_asid <= ti->ti_asid_max, 218 "pm %p asid %#x", PAI_PMAP(pai, ti), pai->pai_asid); 219 KASSERTMSG(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid), 220 "pm %p asid %u", PAI_PMAP(pai, ti), pai->pai_asid); 221 #ifdef MULTIPROCESSOR 222 KASSERT(pmap_tlb_intersecting_active_p(PAI_PMAP(pai, ti), ti)); 223 #endif 224 } 225 if (!locked_p) 226 TLBINFO_UNLOCK(ti); 227 #endif 228 } 229 230 static void 231 pmap_tlb_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai, 232 struct pmap *pm) 233 { 234 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 235 UVMHIST_LOG(maphist, "(ti=%p, pai=%p, pm=%p): asid %u", 236 ti, pai, pm, pai->pai_asid); 237 238 /* 239 * We must have an ASID but it must not be onproc (on a processor). 240 */ 241 KASSERT(pai->pai_asid > KERNEL_PID); 242 KASSERT(pai->pai_asid <= ti->ti_asid_max); 243 #if defined(MULTIPROCESSOR) 244 KASSERT(pmap_tlb_intersecting_active_p(pm, ti)); 245 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 246 #endif 247 LIST_REMOVE(pai, pai_link); 248 #ifdef DIAGNOSTIC 249 pai->pai_link.le_prev = NULL; /* tagged as unlinked */ 250 #endif 251 /* 252 * If the platform has a cheap way to flush ASIDs then free the ASID 253 * back into the pool. On multiprocessor systems, we will flush the 254 * ASID from the TLB when it's allocated. That way we know the flush 255 * was always done in the correct TLB space. On uniprocessor systems, 256 * just do the flush now since we know that it has been used. This has 257 * a bit less overhead. Either way, this will mean that we will only 258 * need to flush all ASIDs if all ASIDs are in use and we need to 259 * allocate a new one. 260 */ 261 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 262 #ifndef MULTIPROCESSOR 263 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 264 #endif 265 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 266 TLBINFO_ASID_MARK_UNUSED(ti, pai->pai_asid); 267 ti->ti_asids_free++; 268 } 269 } 270 /* 271 * Note that we don't mark the ASID as not in use in the TLB's ASID 272 * bitmap (thus it can't be allocated until the ASID space is exhausted 273 * and therefore reinitialized). We don't want to flush the TLB for 274 * entries belonging to this ASID so we will let natural TLB entry 275 * replacement flush them out of the TLB. Any new entries for this 276 * pmap will need a new ASID allocated. 277 */ 278 pai->pai_asid = 0; 279 280 #if defined(MULTIPROCESSOR) 281 /* 282 * The bits in pm_active belonging to this TLB can only be changed 283 * while this TLB's lock is held. 284 */ 285 #if PMAP_TLB_MAX == 1 286 kcpuset_zero(pm->pm_active); 287 #else 288 kcpuset_remove(pm->pm_active, ti->ti_kcpuset); 289 #endif 290 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 291 #endif /* MULTIPROCESSOR */ 292 293 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 294 } 295 296 void 297 pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti) 298 { 299 #if defined(MULTIPROCESSOR) 300 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired, 301 EVCNT_TYPE_MISC, NULL, 302 ti->ti_name, "icache syncs desired"); 303 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts, 304 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 305 ti->ti_name, "icache sync asts"); 306 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all, 307 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 308 ti->ti_name, "icache full syncs"); 309 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages, 310 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 311 ti->ti_name, "icache pages synced"); 312 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate, 313 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 314 ti->ti_name, "icache dup pages skipped"); 315 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred, 316 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 317 ti->ti_name, "icache pages deferred"); 318 #endif /* MULTIPROCESSOR */ 319 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits, 320 EVCNT_TYPE_MISC, NULL, 321 ti->ti_name, "asid pool reinit"); 322 } 323 324 void 325 pmap_tlb_info_init(struct pmap_tlb_info *ti) 326 { 327 #if defined(MULTIPROCESSOR) 328 #if PMAP_TLB_MAX == 1 329 KASSERT(ti == &pmap_tlb0_info); 330 #else 331 if (ti != &pmap_tlb0_info) { 332 KASSERT(pmap_ntlbs < PMAP_TLB_MAX); 333 334 KASSERT(pmap_tlbs[pmap_ntlbs] == NULL); 335 336 ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 337 ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1; 338 ti->ti_asid_hint = KERNEL_PID + 1; 339 ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max; 340 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID; 341 ti->ti_tlbinvop = TLBINV_NOBODY; 342 ti->ti_victim = NULL; 343 kcpuset_create(&ti->ti_kcpuset, true); 344 ti->ti_index = pmap_ntlbs++; 345 ti->ti_wired = 0; 346 pmap_tlbs[ti->ti_index] = ti; 347 snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u", 348 ti->ti_index); 349 pmap_tlb_info_evcnt_attach(ti); 350 return; 351 } 352 #endif 353 #endif /* MULTIPROCESSOR */ 354 KASSERT(ti == &pmap_tlb0_info); 355 KASSERT(ti->ti_lock == &pmap_tlb0_lock); 356 //printf("ti_lock %p ", ti->ti_lock); 357 mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED); 358 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 359 kcpuset_create(&ti->ti_kcpuset, true); 360 kcpuset_set(ti->ti_kcpuset, cpu_index(curcpu())); 361 #endif 362 //printf("asid "); 363 if (ti->ti_asid_max == 0) { 364 ti->ti_asid_max = pmap_md_tlb_asid_max(); 365 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID; 366 } 367 368 KASSERT(ti->ti_asid_max < sizeof(ti->ti_asid_bitmap)*8); 369 } 370 371 #if defined(MULTIPROCESSOR) 372 void 373 pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci) 374 { 375 KASSERT(!CPU_IS_PRIMARY(ci)); 376 KASSERT(ci->ci_data.cpu_idlelwp != NULL); 377 KASSERT(cold); 378 379 TLBINFO_LOCK(ti); 380 #if PMAP_TLB_MAX > 1 381 kcpuset_set(ti->ti_kcpuset, cpu_index(ci)); 382 cpu_set_tlb_info(ci, ti); 383 #endif 384 385 /* 386 * Do any MD tlb info init. 387 */ 388 pmap_md_tlb_info_attach(ti, ci); 389 390 /* 391 * The kernel pmap uses the kcpuset_running set so it's always 392 * up-to-date. 393 */ 394 TLBINFO_UNLOCK(ti); 395 } 396 #endif /* MULTIPROCESSOR */ 397 398 #ifdef DIAGNOSTIC 399 static size_t 400 pmap_tlb_asid_count(struct pmap_tlb_info *ti) 401 { 402 size_t count = 0; 403 for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) { 404 count += TLBINFO_ASID_INUSE_P(ti, asid); 405 } 406 return count; 407 } 408 #endif 409 410 static void 411 pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op) 412 { 413 const size_t asid_bitmap_words = 414 ti->ti_asid_max / (8 * sizeof(ti->ti_asid_bitmap[0])); 415 416 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 417 UVMHIST_LOG(maphist, "(ti=%p, op=%u)", ti, op, 0, 0); 418 419 pmap_tlb_pai_check(ti, true); 420 421 ti->ti_evcnt_asid_reinits.ev_count++; 422 423 /* 424 * First, clear the ASID bitmap (except for ASID 0 which belongs 425 * to the kernel). 426 */ 427 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID; 428 ti->ti_asid_hint = KERNEL_PID + 1; 429 ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1; 430 for (size_t word = 1; word <= asid_bitmap_words; word++) { 431 ti->ti_asid_bitmap[word] = 0; 432 } 433 434 switch (op) { 435 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 436 case TLBINV_ALL: 437 tlb_invalidate_all(); 438 break; 439 case TLBINV_ALLUSER: 440 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 441 break; 442 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 443 case TLBINV_NOBODY: { 444 /* 445 * If we are just reclaiming ASIDs in the TLB, let's go find 446 * what ASIDs are in use in the TLB. Since this is a 447 * semi-expensive operation, we don't want to do it too often. 448 * So if more half of the ASIDs are in use, we don't have 449 * enough free ASIDs so invalidate the TLB entries with ASIDs 450 * and clear the ASID bitmap. That will force everyone to 451 * allocate a new ASID. 452 */ 453 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 454 pmap_tlb_asid_check(); 455 const u_int asids_found = tlb_record_asids(ti->ti_asid_bitmap, 456 ti->ti_asid_max); 457 pmap_tlb_asid_check(); 458 KASSERT(asids_found == pmap_tlb_asid_count(ti)); 459 if (__predict_false(asids_found >= ti->ti_asid_max / 2)) { 460 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 461 #else /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 462 /* 463 * For those systems (PowerPC) that don't require 464 * cross cpu TLB shootdowns, we have to invalidate the 465 * entire TLB because we can't record the ASIDs in use 466 * on the other CPUs. This is hopefully cheaper than 467 * than trying to use an IPI to record all the ASIDs 468 * on all the CPUs (which would be a synchronization 469 * nightmare). 470 */ 471 tlb_invalidate_all(); 472 #endif /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 473 ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1; 474 for (size_t word = 1; 475 word <= asid_bitmap_words; 476 word++) { 477 ti->ti_asid_bitmap[word] = 0; 478 } 479 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID; 480 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 481 } else { 482 ti->ti_asids_free -= asids_found; 483 } 484 #endif /* !MULTIPROCESSOR || PMAP_TLB_NEED_SHOOTDOWN */ 485 KASSERTMSG(ti->ti_asids_free <= ti->ti_asid_max, "%u", 486 ti->ti_asids_free); 487 break; 488 } 489 default: 490 panic("%s: unexpected op %d", __func__, op); 491 } 492 493 /* 494 * Now go through the active ASIDs. If the ASID is on a processor or 495 * we aren't invalidating all ASIDs and the TLB has an entry owned by 496 * that ASID, mark it as in use. Otherwise release the ASID. 497 */ 498 struct pmap_asid_info *pai, *next; 499 for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) { 500 struct pmap * const pm = PAI_PMAP(pai, ti); 501 next = LIST_NEXT(pai, pai_link); 502 KASSERT(pm != pmap_kernel()); 503 KASSERT(pai->pai_asid > KERNEL_PID); 504 #if defined(MULTIPROCESSOR) 505 if (pmap_tlb_intersecting_onproc_p(pm, ti)) { 506 if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 507 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 508 ti->ti_asids_free--; 509 } 510 continue; 511 } 512 #endif /* MULTIPROCESSOR */ 513 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 514 KASSERT(op == TLBINV_NOBODY); 515 } else { 516 pmap_tlb_pai_reset(ti, pai, pm); 517 } 518 } 519 #ifdef DIAGNOSTIC 520 size_t free_count __diagused = ti->ti_asid_max - pmap_tlb_asid_count(ti); 521 KASSERTMSG(free_count == ti->ti_asids_free, 522 "bitmap error: %zu != %u", free_count, ti->ti_asids_free); 523 #endif 524 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 525 } 526 527 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 528 #if PMAP_TLB_MAX == 1 529 #error shootdown not required for single TLB systems 530 #endif 531 void 532 pmap_tlb_shootdown_process(void) 533 { 534 struct cpu_info * const ci = curcpu(); 535 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 536 #ifdef DIAGNOSTIC 537 struct pmap * const pm = curlwp->l_proc->p_vmspace->vm_map.pmap; 538 #endif 539 540 KASSERT(cpu_intr_p()); 541 KASSERTMSG(ci->ci_cpl >= IPL_SCHED, 542 "%s: cpl (%d) < IPL_SCHED (%d)", 543 __func__, ci->ci_cpl, IPL_SCHED); 544 545 TLBINFO_LOCK(ti); 546 547 switch (ti->ti_tlbinvop) { 548 case TLBINV_ONE: { 549 /* 550 * We only need to invalidate one user ASID. 551 */ 552 struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti); 553 KASSERT(ti->ti_victim != pmap_kernel()); 554 if (!pmap_tlb_intersecting_onproc_p(ti->ti_victim, ti)) { 555 /* 556 * The victim is an active pmap so we will just 557 * invalidate its TLB entries. 558 */ 559 KASSERT(pai->pai_asid > KERNEL_PID); 560 pmap_tlb_asid_check(); 561 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 562 pmap_tlb_asid_check(); 563 } else if (pai->pai_asid) { 564 /* 565 * The victim is no longer an active pmap for this TLB. 566 * So simply clear its ASID and when pmap_activate is 567 * next called for this pmap, it will allocate a new 568 * ASID. 569 */ 570 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 571 pmap_tlb_pai_reset(ti, pai, PAI_PMAP(pai, ti)); 572 } 573 break; 574 } 575 case TLBINV_ALLUSER: 576 /* 577 * Flush all user TLB entries. 578 */ 579 pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER); 580 break; 581 case TLBINV_ALLKERNEL: 582 /* 583 * We need to invalidate all global TLB entries. 584 */ 585 pmap_tlb_asid_check(); 586 tlb_invalidate_globals(); 587 pmap_tlb_asid_check(); 588 break; 589 case TLBINV_ALL: 590 /* 591 * Flush all the TLB entries (user and kernel). 592 */ 593 pmap_tlb_asid_reinitialize(ti, TLBINV_ALL); 594 break; 595 case TLBINV_NOBODY: 596 /* 597 * Might be spurious or another SMT CPU sharing this TLB 598 * could have already done the work. 599 */ 600 break; 601 } 602 603 /* 604 * Indicate we are done with shutdown event. 605 */ 606 ti->ti_victim = NULL; 607 ti->ti_tlbinvop = TLBINV_NOBODY; 608 TLBINFO_UNLOCK(ti); 609 } 610 611 /* 612 * This state machine could be encoded into an array of integers but since all 613 * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which 614 * can be loaded in a single instruction. 615 */ 616 #define TLBINV_MAP(op, nobody, one, alluser, allkernel, all) \ 617 (((( (nobody) << 3*TLBINV_NOBODY) \ 618 | ( (one) << 3*TLBINV_ONE) \ 619 | ( (alluser) << 3*TLBINV_ALLUSER) \ 620 | ((allkernel) << 3*TLBINV_ALLKERNEL) \ 621 | ( (all) << 3*TLBINV_ALL)) >> 3*(op)) & 7) 622 623 #define TLBINV_USER_MAP(op) \ 624 TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER, \ 625 TLBINV_ALL, TLBINV_ALL) 626 627 #define TLBINV_KERNEL_MAP(op) \ 628 TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL, \ 629 TLBINV_ALLKERNEL, TLBINV_ALL) 630 631 bool 632 pmap_tlb_shootdown_bystanders(pmap_t pm) 633 { 634 /* 635 * We don't need to deal with our own TLB. 636 */ 637 638 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 639 640 kcpuset_t *pm_active; 641 kcpuset_clone(&pm_active, pm->pm_active); 642 kcpuset_remove(pm_active, cpu_tlb_info(curcpu())->ti_kcpuset); 643 const bool kernel_p = (pm == pmap_kernel()); 644 bool ipi_sent = false; 645 646 /* 647 * If pm_active gets more bits set, then it's after all our changes 648 * have been made so they will already be cognizant of them. 649 */ 650 651 for (size_t i = 0; !kcpuset_iszero(pm_active); i++) { 652 KASSERT(i < pmap_ntlbs); 653 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 654 KASSERT(tlbinfo_index(ti) == i); 655 /* 656 * Skip this TLB if there are no active mappings for it. 657 */ 658 if (!kcpuset_intersecting_p(pm_active, ti->ti_kcpuset)) 659 continue; 660 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 661 kcpuset_remove(pm_active, ti->ti_kcpuset); 662 TLBINFO_LOCK(ti); 663 cpuid_t j = kcpuset_ffs_intersecting(pm->pm_onproc, 664 ti->ti_kcpuset); 665 // post decrement since ffs returns bit + 1 or 0 if no bit 666 if (j-- > 0) { 667 if (kernel_p) { 668 ti->ti_tlbinvop = 669 TLBINV_KERNEL_MAP(ti->ti_tlbinvop); 670 ti->ti_victim = NULL; 671 } else { 672 KASSERT(pai->pai_asid); 673 if (__predict_false(ti->ti_victim == pm)) { 674 KASSERT(ti->ti_tlbinvop == TLBINV_ONE); 675 /* 676 * We still need to invalidate this one 677 * ASID so there's nothing to change. 678 */ 679 } else { 680 ti->ti_tlbinvop = 681 TLBINV_USER_MAP(ti->ti_tlbinvop); 682 if (ti->ti_tlbinvop == TLBINV_ONE) 683 ti->ti_victim = pm; 684 else 685 ti->ti_victim = NULL; 686 } 687 } 688 TLBINFO_UNLOCK(ti); 689 /* 690 * Now we can send out the shootdown IPIs to a CPU 691 * that shares this TLB and is currently using this 692 * pmap. That CPU will process the IPI and do the 693 * all the work. Any other CPUs sharing that TLB 694 * will take advantage of that work. pm_onproc might 695 * change now that we have released the lock but we 696 * can tolerate spurious shootdowns. 697 */ 698 cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN); 699 ipi_sent = true; 700 continue; 701 } 702 if (!pmap_tlb_intersecting_active_p(pm, ti)) { 703 /* 704 * If this pmap has an ASID assigned but it's not 705 * currently running, nuke its ASID. Next time the 706 * pmap is activated, it will allocate a new ASID. 707 * And best of all, we avoid an IPI. 708 */ 709 KASSERT(!kernel_p); 710 pmap_tlb_pai_reset(ti, pai, pm); 711 //ti->ti_evcnt_lazy_shots.ev_count++; 712 } 713 TLBINFO_UNLOCK(ti); 714 } 715 716 kcpuset_destroy(pm_active); 717 718 UVMHIST_LOG(maphist, " <-- done (ipi_sent=%d)", ipi_sent, 0, 0, 0); 719 720 return ipi_sent; 721 } 722 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 723 724 #ifndef PMAP_TLB_HWPAGEWALKER 725 int 726 pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pte, u_int flags) 727 { 728 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 729 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 730 int rv = -1; 731 732 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 733 UVMHIST_LOG(maphist, 734 " (pm=%p va=%#"PRIxVADDR", pte=%#"PRIxPTE" flags=%#x)", 735 pm, va, pte_value(pte), flags); 736 737 KASSERT(kpreempt_disabled()); 738 739 KASSERTMSG(pte_valid_p(pte), "va %#"PRIxVADDR" %#"PRIxPTE, 740 va, pte_value(pte)); 741 742 TLBINFO_LOCK(ti); 743 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 744 pmap_tlb_asid_check(); 745 rv = tlb_update_addr(va, pai->pai_asid, pte, 746 (flags & PMAP_TLB_INSERT) != 0); 747 pmap_tlb_asid_check(); 748 UVMHIST_LOG(maphist, 749 " %d <-- tlb_update_addr(%#"PRIxVADDR", %#x, %#"PRIxPTE", ...)", 750 rv, va, pai->pai_asid, pte_value(pte)); 751 KASSERTMSG((flags & PMAP_TLB_INSERT) == 0 || rv == 1, 752 "pmap %p (asid %u) va %#"PRIxVADDR" pte %#"PRIxPTE" rv %d", 753 pm, pai->pai_asid, va, pte_value(pte), rv); 754 } 755 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 756 if (flags & PMAP_TLB_NEED_IPI) 757 pm->pm_shootdown_pending = 1; 758 #endif 759 TLBINFO_UNLOCK(ti); 760 761 UVMHIST_LOG(maphist, " <-- done (rv=%d)", rv, 0, 0, 0); 762 763 return rv; 764 } 765 #endif /* !PMAP_TLB_HWPAGEWALKER */ 766 767 void 768 pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va) 769 { 770 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 771 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 772 773 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 774 UVMHIST_LOG(maphist, " (pm=%p va=%#"PRIxVADDR") ti=%p asid=%#x", 775 pm, va, ti, pai->pai_asid); 776 777 KASSERT(kpreempt_disabled()); 778 779 TLBINFO_LOCK(ti); 780 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 781 pmap_tlb_asid_check(); 782 UVMHIST_LOG(maphist, " invalidating %#"PRIxVADDR" asid %#x", 783 va, pai->pai_asid, 0, 0); 784 tlb_invalidate_addr(va, pai->pai_asid); 785 pmap_tlb_asid_check(); 786 } 787 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 788 pm->pm_shootdown_pending = 1; 789 #endif 790 TLBINFO_UNLOCK(ti); 791 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 792 } 793 794 static inline void 795 pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm, 796 struct pmap_asid_info *pai) 797 { 798 /* 799 * We shouldn't have an ASID assigned, and thusly must not be onproc 800 * nor active. 801 */ 802 KASSERT(pm != pmap_kernel()); 803 KASSERT(pai->pai_asid == 0); 804 KASSERT(pai->pai_link.le_prev == NULL); 805 #if defined(MULTIPROCESSOR) 806 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 807 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 808 #endif 809 KASSERT(ti->ti_asids_free > 0); 810 KASSERT(ti->ti_asid_hint > KERNEL_PID); 811 812 /* 813 * If the last ASID allocated was the maximum ASID, then the 814 * hint will be out of range. Reset the hint to first 815 * available ASID. 816 */ 817 if (PMAP_TLB_FLUSH_ASID_ON_RESET 818 && ti->ti_asid_hint > ti->ti_asid_max) { 819 ti->ti_asid_hint = KERNEL_PID + 1; 820 } 821 KASSERTMSG(ti->ti_asid_hint <= ti->ti_asid_max, "hint %u", 822 ti->ti_asid_hint); 823 824 /* 825 * Let's see if the hinted ASID is free. If not search for 826 * a new one. 827 */ 828 if (__predict_true(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) { 829 const size_t nbpw __diagused = 8*sizeof(ti->ti_asid_bitmap[0]); 830 size_t i; 831 u_long bits; 832 for (i = 0; (bits = ~ti->ti_asid_bitmap[i]) == 0; i++) { 833 KASSERT(i < __arraycount(ti->ti_asid_bitmap) - 1); 834 } 835 /* 836 * ffs wants to find the first bit set while we want 837 * to find the first bit cleared. 838 */ 839 const u_int n = __builtin_ffsl(bits) - 1; 840 KASSERTMSG((bits << (nbpw - (n+1))) == (1ul << (nbpw-1)), 841 "n %u bits %#lx", n, bits); 842 KASSERT(n < nbpw); 843 ti->ti_asid_hint = n + i * nbpw; 844 } 845 846 KASSERT(ti->ti_asid_hint > KERNEL_PID); 847 KASSERT(ti->ti_asid_hint <= ti->ti_asid_max); 848 KASSERTMSG(PMAP_TLB_FLUSH_ASID_ON_RESET 849 || TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint - 1), 850 "hint %u bitmap %p", ti->ti_asid_hint, ti->ti_asid_bitmap); 851 KASSERTMSG(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint), 852 "hint %u bitmap %p", ti->ti_asid_hint, ti->ti_asid_bitmap); 853 854 /* 855 * The hint contains our next ASID so take it and advance the hint. 856 * Mark it as used and insert the pai into the list of active asids. 857 * There is also one less asid free in this TLB. 858 */ 859 KASSERT(ti->ti_asid_hint > KERNEL_PID); 860 pai->pai_asid = ti->ti_asid_hint++; 861 #ifdef MULTIPROCESSOR 862 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 863 /* 864 * Clean the new ASID from the TLB. 865 */ 866 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 867 } 868 #endif 869 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 870 LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link); 871 ti->ti_asids_free--; 872 873 #if defined(MULTIPROCESSOR) 874 /* 875 * Mark that we now have an active ASID for all CPUs sharing this TLB. 876 * The bits in pm_active belonging to this TLB can only be changed 877 * while this TLBs lock is held. 878 */ 879 #if PMAP_TLB_MAX == 1 880 kcpuset_copy(pm->pm_active, kcpuset_running); 881 #else 882 kcpuset_merge(pm->pm_active, ti->ti_kcpuset); 883 #endif 884 #endif 885 } 886 887 /* 888 * Acquire a TLB address space tag (called ASID or TLBPID) and return it. 889 * ASID might have already been previously acquired. 890 */ 891 void 892 pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l) 893 { 894 struct cpu_info * const ci = l->l_cpu; 895 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 896 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 897 898 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 899 UVMHIST_LOG(maphist, "(pm=%p, l=%p, ti=%p)", pm, l, ti, 0); 900 901 KASSERT(kpreempt_disabled()); 902 903 /* 904 * Kernels use a fixed ASID and thus doesn't need to acquire one. 905 */ 906 if (pm == pmap_kernel()) { 907 UVMHIST_LOG(maphist, " <-- done (kernel)", 0, 0, 0, 0); 908 return; 909 } 910 911 TLBINFO_LOCK(ti); 912 KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL); 913 KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL); 914 pmap_tlb_pai_check(ti, true); 915 if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) { 916 /* 917 * If we've run out ASIDs, reinitialize the ASID space. 918 */ 919 if (__predict_false(tlbinfo_noasids_p(ti))) { 920 KASSERT(l == curlwp); 921 UVMHIST_LOG(maphist, " asid reinit", 0, 0, 0, 0); 922 pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY); 923 KASSERT(!tlbinfo_noasids_p(ti)); 924 } 925 926 /* 927 * Get an ASID. 928 */ 929 pmap_tlb_asid_alloc(ti, pm, pai); 930 UVMHIST_LOG(maphist, "allocated asid %#x", pai->pai_asid, 0, 0, 0); 931 } 932 pmap_tlb_pai_check(ti, true); 933 #if defined(MULTIPROCESSOR) 934 KASSERT(kcpuset_isset(pm->pm_active, cpu_index(ci))); 935 #endif 936 937 if (l == curlwp) { 938 #if defined(MULTIPROCESSOR) 939 /* 940 * The bits in pm_onproc belonging to this TLB can only 941 * be changed while this TLBs lock is held unless atomic 942 * operations are used. 943 */ 944 KASSERT(pm != pmap_kernel()); 945 kcpuset_atomic_set(pm->pm_onproc, cpu_index(ci)); 946 #endif 947 ci->ci_pmap_asid_cur = pai->pai_asid; 948 UVMHIST_LOG(maphist, "setting asid to %#x", pai->pai_asid, 0, 0, 0); 949 tlb_set_asid(pai->pai_asid); 950 pmap_tlb_asid_check(); 951 } else { 952 printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp); 953 } 954 TLBINFO_UNLOCK(ti); 955 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 956 } 957 958 void 959 pmap_tlb_asid_deactivate(pmap_t pm) 960 { 961 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 962 963 KASSERT(kpreempt_disabled()); 964 #if defined(MULTIPROCESSOR) 965 /* 966 * The kernel pmap is aways onproc and active and must never have 967 * those bits cleared. If pmap_remove_all was called, it has already 968 * deactivated the pmap and thusly onproc will be 0 so there's nothing 969 * to do. 970 */ 971 if (pm != pmap_kernel() && !kcpuset_iszero(pm->pm_onproc)) { 972 struct cpu_info * const ci = curcpu(); 973 KASSERT(!cpu_intr_p()); 974 KASSERTMSG(kcpuset_isset(pm->pm_onproc, cpu_index(ci)), 975 "%s: pmap %p onproc %p doesn't include cpu %d (%p)", 976 __func__, pm, pm->pm_onproc, cpu_index(ci), ci); 977 /* 978 * The bits in pm_onproc that belong to this TLB can 979 * be changed while this TLBs lock is not held as long 980 * as we use atomic ops. 981 */ 982 kcpuset_atomic_clear(pm->pm_onproc, cpu_index(ci)); 983 } 984 #endif 985 curcpu()->ci_pmap_asid_cur = KERNEL_PID; 986 UVMHIST_LOG(maphist, " <-- done (pm=%p)", pm, 0, 0, 0); 987 tlb_set_asid(KERNEL_PID); 988 pmap_tlb_pai_check(cpu_tlb_info(curcpu()), false); 989 #if defined(DEBUG) 990 pmap_tlb_asid_check(); 991 #endif 992 } 993 994 void 995 pmap_tlb_asid_release_all(struct pmap *pm) 996 { 997 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 998 UVMHIST_LOG(maphist, "(pm=%p)", pm, 0, 0, 0); 999 1000 KASSERT(pm != pmap_kernel()); 1001 #if defined(MULTIPROCESSOR) 1002 //KASSERT(!kcpuset_iszero(pm->pm_onproc)); // XXX 1003 struct cpu_info * const ci __diagused = curcpu(); 1004 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci))); 1005 #if PMAP_TLB_MAX > 1 1006 for (u_int i = 0; !kcpuset_iszero(pm->pm_active); i++) { 1007 KASSERT(i < pmap_ntlbs); 1008 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 1009 #else 1010 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1011 #endif 1012 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1013 TLBINFO_LOCK(ti); 1014 if (PMAP_PAI_ASIDVALID_P(pai, ti)) { 1015 /* 1016 * This pmap should not be in use by any other cpu so 1017 * we can just reset and be happy. 1018 */ 1019 if (ti->ti_victim == pm) 1020 ti->ti_victim = NULL; 1021 pmap_tlb_pai_reset(ti, pai, pm); 1022 } 1023 KASSERT(pai->pai_link.le_prev == NULL); 1024 TLBINFO_UNLOCK(ti); 1025 #if PMAP_TLB_MAX > 1 1026 } 1027 #endif 1028 #ifdef DIAGNOSTIC 1029 for (size_t i = 0; i < (PMAP_TLB_MAX > 1 ? pmap_ntlbs : 1); i++) { 1030 KASSERTMSG(pm->pm_pai[i].pai_asid == 0, 1031 "pm %p i %zu asid %u", 1032 pm, i, pm->pm_pai[i].pai_asid); 1033 } 1034 #endif 1035 #else 1036 /* 1037 * Handle the case of an UP kernel which only has, at most, one TLB. 1038 * If the pmap has an ASID allocated, free it. 1039 */ 1040 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1041 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1042 TLBINFO_LOCK(ti); 1043 if (pai->pai_asid > KERNEL_PID) { 1044 if (curcpu()->ci_pmap_asid_cur == pai->pai_asid) { 1045 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 1046 } else { 1047 pmap_tlb_pai_reset(ti, pai, pm); 1048 } 1049 } 1050 TLBINFO_UNLOCK(ti); 1051 #endif /* MULTIPROCESSOR */ 1052 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 1053 } 1054 1055 void 1056 pmap_tlb_asid_check(void) 1057 { 1058 #ifdef DEBUG 1059 kpreempt_disable(); 1060 const tlb_asid_t asid __debugused = tlb_get_asid(); 1061 KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur, 1062 "%s: asid (%#x) != current asid (%#x)", 1063 __func__, asid, curcpu()->ci_pmap_asid_cur); 1064 kpreempt_enable(); 1065 #endif 1066 } 1067 1068 #ifdef DEBUG 1069 void 1070 pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t)) 1071 { 1072 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 1073 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1074 TLBINFO_LOCK(ti); 1075 if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID) 1076 tlb_walk(pm, func); 1077 TLBINFO_UNLOCK(ti); 1078 } 1079 #endif /* DEBUG */ 1080