xref: /netbsd-src/sys/uvm/pmap/pmap_tlb.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: pmap_tlb.c,v 1.1 2012/10/03 00:51:47 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas at 3am Software Foundry.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 
34 __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.1 2012/10/03 00:51:47 christos Exp $");
35 
36 /*
37  * Manages address spaces in a TLB.
38  *
39  * Normally there is a 1:1 mapping between a TLB and a CPU.  However, some
40  * implementations may share a TLB between multiple CPUs (really CPU thread
41  * contexts).  This requires the TLB abstraction to be separated from the
42  * CPU abstraction.  It also requires that the TLB be locked while doing
43  * TLB activities.
44  *
45  * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps
46  * that have a valid ASID.
47  *
48  * We allocate ASIDs in increasing order until we have exhausted the supply,
49  * then reinitialize the ASID space, and start allocating again at 1.  When
50  * allocating from the ASID bitmap, we skip any ASID who has a corresponding
51  * bit set in the ASID bitmap.  Eventually this causes the ASID bitmap to fill
52  * and, when completely filled, a reinitialization of the ASID space.
53  *
54  * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs
55  * of non-kernel TLB entries get recorded in the ASID bitmap.  If the entries
56  * in TLB consume more than half of the ASID space, all ASIDs are invalidated,
57  * the ASID bitmap is recleared, and the list of pmaps is emptied.  Otherwise,
58  * (the normal case), any ASID present in the TLB (even those which are no
59  * longer used by a pmap) will remain active (allocated) and all other ASIDs
60  * will be freed.  If the size of the TLB is much smaller than the ASID space,
61  * this algorithm completely avoids TLB invalidation.
62  *
63  * For multiprocessors, we also have to deal TLB invalidation requests from
64  * other CPUs, some of which are dealt with the reinitialization of the ASID
65  * space.  Whereas above we keep the ASIDs of those pmaps which have active
66  * TLB entries, this type of reinitialization preserves the ASIDs of any
67  * "onproc" user pmap and all other ASIDs will be freed.  We must do this
68  * since we can't change the current ASID.
69  *
70  * Each pmap has two bitmaps: pm_active and pm_onproc.  Each bit in pm_active
71  * indicates whether that pmap has an allocated ASID for a CPU.  Each bit in
72  * pm_onproc indicates that pmap's ASID is active (equal to the ASID in COP 0
73  * register EntryHi) on a CPU.  The bit number comes from the CPU's cpu_index().
74  * Even though these bitmaps contain the bits for all CPUs, the bits that
75  * correspond to the bits belonging to the CPUs sharing a TLB can only be
76  * manipulated while holding that TLB's lock.  Atomic ops must be used to
77  * update them since multiple CPUs may be changing different sets of bits at
78  * same time but these sets never overlap.
79  *
80  * When a change to the local TLB may require a change in the TLB's of other
81  * CPUs, we try to avoid sending an IPI if at all possible.  For instance, if
82  * we are updating a PTE and that PTE previously was invalid and therefore
83  * couldn't support an active mapping, there's no need for an IPI since there
84  * can't be a TLB entry to invalidate.  The other case is when we change a PTE
85  * to be modified we just update the local TLB.  If another TLB has a stale
86  * entry, a TLB MOD exception will be raised and that will cause the local TLB
87  * to be updated.
88  *
89  * We never need to update a non-local TLB if the pmap doesn't have a valid
90  * ASID for that TLB.  If it does have a valid ASID but isn't current "onproc"
91  * we simply reset its ASID for that TLB and then when it goes "onproc" it
92  * will allocate a new ASID and any existing TLB entries will be orphaned.
93  * Only in the case that pmap has an "onproc" ASID do we actually have to send
94  * an IPI.
95  *
96  * Once we determined we must send an IPI to shootdown a TLB, we need to send
97  * it to one of CPUs that share that TLB.  We choose the lowest numbered CPU
98  * that has one of the pmap's ASID "onproc".  In reality, any CPU sharing that
99  * TLB would do, but interrupting an active CPU seems best.
100  *
101  * A TLB might have multiple shootdowns active concurrently.  The shootdown
102  * logic compresses these into a few cases:
103  *	0) nobody needs to have its TLB entries invalidated
104  *	1) one ASID needs to have its TLB entries invalidated
105  *	2) more than one ASID needs to have its TLB entries invalidated
106  *	3) the kernel needs to have its TLB entries invalidated
107  *	4) the kernel and one or more ASID need their TLB entries invalidated.
108  *
109  * And for each case we do:
110  *	0) nothing,
111  *	1) if that ASID is still "onproc", we invalidate the TLB entries for
112  *	   that single ASID.  If not, just reset the pmap's ASID to invalidate
113  *	   and let it allocate a new ASID the next time it goes "onproc",
114  *	2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and
115  *	   invalidate all non-wired non-global TLB entries,
116  *	3) we invalidate all of the non-wired global TLB entries,
117  *	4) we reinitialize the ASID space (again preserving any "onproc" ASIDs)
118  *	   invalidate all non-wired TLB entries.
119  *
120  * As you can see, shootdowns are not concerned with addresses, just address
121  * spaces.  Since the number of TLB entries is usually quite small, this avoids
122  * a lot of overhead for not much gain.
123  */
124 
125 #define __PMAP_PRIVATE
126 
127 #include "opt_multiprocessor.h"
128 
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/mutex.h>
133 #include <sys/atomic.h>
134 #include <sys/kernel.h>			/* for cold */
135 #include <sys/cpu.h>
136 
137 #include <uvm/uvm.h>
138 
139 static kmutex_t pmap_tlb0_mutex __cacheline_aligned;
140 
141 #define	IFCONSTANT(x)	(__builtin_constant_p((x)) ? (x) : 0)
142 
143 struct pmap_tlb_info pmap_tlb0_info = {
144 	.ti_name = "tlb0",
145 	.ti_asid_hint = KERNEL_PID + 1,
146 #ifdef PMAP_TLB_NUM_PIDS
147 	.ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1),
148 	.ti_asids_free = IFCONSTANT(PMAP_TLB_NUM_PIDS - (KERNEL_PID + 1)),
149 #endif
150 	.ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1,
151 #ifdef PMAP_TLB_WIRED_UPAGES
152 	.ti_wired = PMAP_TLB_WIRED_UPAGES,
153 #endif
154 	.ti_lock = &pmap_tlb0_mutex,
155 	.ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais),
156 #if defined(MULTIPROCESSOR)
157 	.ti_cpu_mask = 1,
158 	.ti_tlbinvop = TLBINV_NOBODY,
159 #endif
160 };
161 
162 #undef IFCONSTANT
163 
164 #if defined(MULTIPROCESSOR)
165 struct pmap_tlb_info *pmap_tlbs[MAXCPUS] = {
166 	[0] = &pmap_tlb0_info,
167 };
168 u_int pmap_ntlbs = 1;
169 #endif
170 
171 #define	__BITMAP_SET(bm, n) \
172 	((bm)[(n) / (8*sizeof(bm[0]))] |= 1LU << ((n) % (8*sizeof(bm[0]))))
173 #define	__BITMAP_CLR(bm, n) \
174 	((bm)[(n) / (8*sizeof(bm[0]))] &= ~(1LU << ((n) % (8*sizeof(bm[0])))))
175 #define	__BITMAP_ISSET_P(bm, n) \
176 	(((bm)[(n) / (8*sizeof(bm[0]))] & (1LU << ((n) % (8*sizeof(bm[0]))))) != 0)
177 
178 #define	TLBINFO_ASID_MARK_USED(ti, asid) \
179 	__BITMAP_SET((ti)->ti_asid_bitmap, (asid))
180 #define	TLBINFO_ASID_INUSE_P(ti, asid) \
181 	__BITMAP_ISSET_P((ti)->ti_asid_bitmap, (asid))
182 
183 static void
184 pmap_pai_check(struct pmap_tlb_info *ti)
185 {
186 #ifdef DIAGNOSTIC
187 	struct pmap_asid_info *pai;
188 	LIST_FOREACH(pai, &ti->ti_pais, pai_link) {
189 		KASSERT(pai != NULL);
190 		KASSERT(PAI_PMAP(pai, ti) != pmap_kernel());
191 		KASSERT(pai->pai_asid > KERNEL_PID);
192 		KASSERT(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid));
193 	}
194 #endif
195 }
196 
197 static inline void
198 pmap_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai,
199 	struct pmap *pm)
200 {
201 	/*
202 	 * We must have an ASID but it must not be onproc (on a processor).
203 	 */
204 	KASSERT(pai->pai_asid > KERNEL_PID);
205 #if defined(MULTIPROCESSOR)
206 	KASSERT((pm->pm_onproc & ti->ti_cpu_mask) == 0);
207 #endif
208 	LIST_REMOVE(pai, pai_link);
209 #ifdef DIAGNOSTIC
210 	pai->pai_link.le_prev = NULL;	/* tagged as unlinked */
211 #endif
212 	/*
213 	 * Note that we don't mark the ASID as not in use in the TLB's ASID
214 	 * bitmap (thus it can't be allocated until the ASID space is exhausted
215 	 * and therefore reinitialized).  We don't want to flush the TLB for
216 	 * entries belonging to this ASID so we will let natural TLB entry
217 	 * replacement flush them out of the TLB.  Any new entries for this
218 	 * pmap will need a new ASID allocated.
219 	 */
220 	pai->pai_asid = 0;
221 
222 #if defined(MULTIPROCESSOR)
223 	/*
224 	 * The bits in pm_active belonging to this TLB can only be changed
225 	 * while this TLB's lock is held.
226 	 */
227 	CPUSET_DELSET(pm->pm_active, ti->ti_cpu_mask);
228 #endif /* MULTIPROCESSOR */
229 }
230 
231 void
232 pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti)
233 {
234 #if defined(MULTIPROCESSOR)
235 	evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired,
236 	    EVCNT_TYPE_MISC, NULL,
237 	    ti->ti_name, "icache syncs desired");
238 	evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts,
239 	    EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
240 	    ti->ti_name, "icache sync asts");
241 	evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all,
242 	    EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts,
243 	    ti->ti_name, "icache full syncs");
244 	evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages,
245 	    EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts,
246 	    ti->ti_name, "icache pages synced");
247 	evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate,
248 	    EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
249 	    ti->ti_name, "icache dup pages skipped");
250 	evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred,
251 	    EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
252 	    ti->ti_name, "icache pages deferred");
253 #endif /* MULTIPROCESSOR */
254 	evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits,
255 	    EVCNT_TYPE_MISC, NULL,
256 	    ti->ti_name, "asid pool reinit");
257 }
258 
259 void
260 pmap_tlb_info_init(struct pmap_tlb_info *ti)
261 {
262 #if defined(MULTIPROCESSOR)
263 	if (ti != &pmap_tlb0_info) {
264 
265 		KASSERT(pmap_tlbs[pmap_ntlbs] == NULL);
266 
267 		ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
268 		ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
269 		ti->ti_asid_hint = KERNEL_PID + 1;
270 		ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max;
271 		ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
272 		ti->ti_tlbinvop = TLBINV_NOBODY,
273 		ti->ti_victim = NULL;
274 		ti->ti_cpu_mask = 0;
275 		ti->ti_index = pmap_ntlbs++;
276 		ti->ti_wired = 0;
277 		pmap_tlbs[ti->ti_index] = ti;
278 		snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u",
279 		    ti->ti_index);
280 		pmap_tlb_info_evcnt_attach(ti);
281 		return;
282 	}
283 #endif /* MULTIPROCESSOR */
284 	KASSERT(ti == &pmap_tlb0_info);
285 	mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED);
286 	if (ti->ti_asid_max == 0) {
287 		ti->ti_asid_max = pmap_md_tlb_asid_max();
288 		ti->ti_asids_free = ti->ti_asid_max - (KERNEL_PID + 1);
289 	}
290 
291 	KASSERT(ti->ti_asid_max < sizeof(ti->ti_asid_bitmap)*8);
292 }
293 
294 #if defined(MULTIPROCESSOR)
295 void
296 pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
297 {
298 	KASSERT(!CPU_IS_PRIMARY(ci));
299 	KASSERT(ci->ci_data.cpu_idlelwp != NULL);
300 	KASSERT(cold);
301 
302 	TLBINFO_LOCK(ti);
303 	const __cpuset_t cpu_mask = CPUSET_SINGLE(cpu_index(ci));
304 	CPUSET_ADDSET(ti->ti_cpu_mask, cpu_mask);
305 	ci->ci_tlb_info = ti;
306 
307 	/*
308 	 * Do any MD tlb info init.
309 	 */
310 	pmap_md_tlb_info_attach(ti, ci);
311 
312 	/*
313 	 * Mark the kernel as active and "onproc" for this cpu.  We assume
314 	 * we are the only CPU running so atomic ops are not needed.
315 	 */
316 	CPUSET_ADDSET(pmap_kernel()->pm_active, cpu_mask);
317 	CPUSET_ADDSET(pmap_kernel()->pm_onproc, cpu_mask);
318 	TLBINFO_UNLOCK(ti);
319 }
320 #endif /* MULTIPROCESSOR */
321 
322 #ifdef DIAGNOSTIC
323 static size_t
324 pmap_tlb_asid_count(struct pmap_tlb_info *ti)
325 {
326 	size_t count = 0;
327 	for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) {
328 		count += TLBINFO_ASID_INUSE_P(ti, asid);
329 	}
330 	return count;
331 }
332 #endif
333 
334 static void
335 pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op)
336 {
337 	const size_t asid_bitmap_words =
338 	    ti->ti_asid_max / (8 * sizeof(ti->ti_asid_bitmap[0]));
339 
340 	pmap_pai_check(ti);
341 
342 	/*
343 	 * First, clear the ASID bitmap (except for ASID 0 which belongs
344 	 * to the kernel).
345 	 */
346 	ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
347 	ti->ti_asid_hint = KERNEL_PID + 1;
348 	ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
349 	for (size_t word = 1; word <= asid_bitmap_words; word++) {
350 		ti->ti_asid_bitmap[word] = 0;
351 	}
352 
353 	switch (op) {
354 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
355 	case TLBINV_ALL:
356 		tlb_invalidate_all();
357 		break;
358 	case TLBINV_ALLUSER:
359 		tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max);
360 		break;
361 #endif /* MULTIPROCESSOR && PMAP_NEED_TLB_SHOOTDOWN */
362 	case TLBINV_NOBODY: {
363 		/*
364 		 * If we are just reclaiming ASIDs in the TLB, let's go find
365 		 * what ASIDs are in use in the TLB.  Since this is a
366 		 * semi-expensive operation, we don't want to do it too often.
367 		 * So if more half of the ASIDs are in use, we don't have
368 		 * enough free ASIDs so invalidate the TLB entries with ASIDs
369 		 * and clear the ASID bitmap.  That will force everyone to
370 		 * allocate a new ASID.
371 		 */
372 #if !defined(MULTIPROCESSOR) || defined(PMAP_NEED_TLB_SHOOTDOWN)
373 		pmap_tlb_asid_check();
374 		const u_int asids_found = tlb_record_asids(ti->ti_asid_bitmap);
375 		pmap_tlb_asid_check();
376 		KASSERT(asids_found == pmap_tlb_asid_count(ti));
377 		if (__predict_false(asids_found >= ti->ti_asid_max / 2)) {
378 			tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max);
379 #else /* MULTIPROCESSOR && !PMAP_NEED_TLB_SHOOTDOWN */
380 			/*
381 			 * For those systems (PowerPC) that don't need require
382 			 * cross cpu TLB shootdowns, we have to invalidate the
383 			 * entire TLB because we can't record the ASIDs in use
384 			 * on the other CPUs.  This is hopefully cheaper than
385 			 * than trying to use an IPI to record all the ASIDs
386 			 * on all the CPUs (which would be a synchronization
387 			 * nightmare).
388 			 */
389 			tlb_invalidate_all();
390 #endif /* MULTIPROCESSOR && !PMAP_NEED_TLB_SHOOTDOWN */
391 			ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
392 			for (size_t word = 1;
393 			     word <= asid_bitmap_words;
394 			     word++) {
395 				ti->ti_asid_bitmap[word] = 0;
396 			}
397 #if !defined(MULTIPROCESSOR) || defined(PMAP_NEED_TLB_SHOOTDOWN)
398 		} else {
399 			ti->ti_asids_free -= asids_found;
400 		}
401 #endif /* !MULTIPROCESSOR || PMAP_NEED_TLB_SHOOTDOWN */
402 		break;
403 	}
404 	default:
405 		panic("%s: unexpected op %d", __func__, op);
406 	}
407 
408 	/*
409 	 * Now go through the active ASIDs.  If the ASID is on a processor or
410 	 * we aren't invalidating all ASIDs and the TLB has an entry owned by
411 	 * that ASID, mark it as in use.  Otherwise release the ASID.
412 	 */
413 	struct pmap_asid_info *pai, *next;
414 	for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) {
415 		struct pmap * const pm = PAI_PMAP(pai, ti);
416 		next = LIST_NEXT(pai, pai_link);
417 		KASSERT(pm != pmap_kernel());
418 		KASSERT(pai->pai_asid > KERNEL_PID);
419 #if defined(MULTIPROCESSOR)
420 		if (!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_onproc, ti->ti_cpu_mask))) {
421 			if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) {
422 				TLBINFO_ASID_MARK_USED(ti, pai->pai_asid);
423 				ti->ti_asids_free--;
424 			}
425 			continue;
426 		}
427 #endif /* MULTIPROCESSOR */
428 		if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) {
429 			KASSERT(op == TLBINV_NOBODY);
430 		} else {
431 			pmap_pai_reset(ti, pai, pm);
432 		}
433 	}
434 #ifdef DIAGNOSTIC
435 	size_t free_count = ti->ti_asid_max - pmap_tlb_asid_count(ti);
436 	if (free_count != ti->ti_asids_free)
437 		panic("%s: bitmap error: %zu != %u",
438 		    __func__, free_count, ti->ti_asids_free);
439 #endif
440 }
441 
442 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
443 void
444 pmap_tlb_shootdown_process(void)
445 {
446 	struct cpu_info * const ci = curcpu();
447 	struct pmap_tlb_info * const ti = ci->ci_tlb_info;
448 #ifdef DIAGNOSTIC
449 	struct pmap * const pm = curlwp->l_proc->p_vmspace->vm_map.pmap;
450 #endif
451 
452 	KASSERT(cpu_intr_p());
453 	KASSERTMSG(ci->ci_cpl >= IPL_SCHED,
454 	    "%s: cpl (%d) < IPL_SCHED (%d)",
455 	    __func__, ci->ci_cpl, IPL_SCHED);
456 
457 	TLBINFO_LOCK(ti);
458 
459 	switch (ti->ti_tlbinvop) {
460 	case TLBINV_ONE: {
461 		/*
462 		 * We only need to invalidate one user ASID.
463 		 */
464 		struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti);
465 		KASSERT(ti->ti_victim != pmap_kernel());
466 		if (!CPUSET_EMPTY_P(CPUSET_SUBSET(ti->ti_victim->pm_onproc, ti->ti_cpu_mask))) {
467 			/*
468 			 * The victim is an active pmap so we will just
469 			 * invalidate its TLB entries.
470 			 */
471 			KASSERT(pai->pai_asid > KERNEL_PID);
472 			pmap_tlb_asid_check();
473 			tlb_invalidate_asids(pai->pai_asid, pai->pai_asid);
474 			pmap_tlb_asid_check();
475 		} else if (pai->pai_asid) {
476 			/*
477 			 * The victim is no longer an active pmap for this TLB.
478 			 * So simply clear its ASID and when pmap_activate is
479 			 * next called for this pmap, it will allocate a new
480 			 * ASID.
481 			 */
482 			KASSERT(!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_onproc, ti->ti_cpu_mask)));
483 			pmap_pai_reset(ti, pai, PAI_PMAP(pai, ti));
484 		}
485 		break;
486 	}
487 	case TLBINV_ALLUSER:
488 		/*
489 		 * Flush all user TLB entries.
490 		 */
491 		pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER);
492 		break;
493 	case TLBINV_ALLKERNEL:
494 		/*
495 		 * We need to invalidate all global TLB entries.
496 		 */
497 		pmap_tlb_asid_check();
498 		tlb_invalidate_globals();
499 		pmap_tlb_asid_check();
500 		break;
501 	case TLBINV_ALL:
502 		/*
503 		 * Flush all the TLB entries (user and kernel).
504 		 */
505 		pmap_tlb_asid_reinitialize(ti, TLBINV_ALL);
506 		break;
507 	case TLBINV_NOBODY:
508 		/*
509 		 * Might be spurious or another SMT CPU sharing this TLB
510 		 * could have already done the work.
511 		 */
512 		break;
513 	}
514 
515 	/*
516 	 * Indicate we are done with shutdown event.
517 	 */
518 	ti->ti_victim = NULL;
519 	ti->ti_tlbinvop = TLBINV_NOBODY;
520 	TLBINFO_UNLOCK(ti);
521 }
522 
523 /*
524  * This state machine could be encoded into an array of integers but since all
525  * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which
526  * can be loaded in a single instruction.
527  */
528 #define	TLBINV_MAP(op, nobody, one, alluser, allkernel, all)	\
529 	((((   (nobody) << 3*TLBINV_NOBODY)			\
530 	 | (      (one) << 3*TLBINV_ONE)			\
531 	 | (  (alluser) << 3*TLBINV_ALLUSER)			\
532 	 | ((allkernel) << 3*TLBINV_ALLKERNEL)			\
533 	 | (      (all) << 3*TLBINV_ALL)) >> 3*(op)) & 7)
534 
535 #define	TLBINV_USER_MAP(op)	\
536 	TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER,	\
537 	    TLBINV_ALL, TLBINV_ALL)
538 
539 #define	TLBINV_KERNEL_MAP(op)	\
540 	TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL,	\
541 	    TLBINV_ALLKERNEL, TLBINV_ALL)
542 
543 bool
544 pmap_tlb_shootdown_bystanders(pmap_t pm)
545 {
546 	/*
547 	 * We don't need to deal our own TLB.
548 	 */
549 	__cpuset_t pm_active =
550 	   CPUSET_EXCLUDE(pm->pm_active, curcpu()->ci_tlb_info->ti_cpu_mask);
551 	const bool kernel_p = (pm == pmap_kernel());
552 	bool ipi_sent = false;
553 
554 	/*
555 	 * If pm_active gets more bits set, then it's after all our changes
556 	 * have been made so they will already be cognizant of them.
557 	 */
558 
559 	for (size_t i = 0; !CPUSET_EMPTY_P(pm_active); i++) {
560 		KASSERT(i < pmap_ntlbs);
561 		struct pmap_tlb_info * const ti = pmap_tlbs[i];
562 		KASSERT(tlbinfo_index(ti) == i);
563 		/*
564 		 * Skip this TLB if there are no active mappings for it.
565 		 */
566 		if (CPUSET_EMPTY_P(CPUSET_SUBSET(pm_active, ti->ti_cpu_mask)))
567 			continue;
568 		struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
569 		CPUSET_DELSET(pm_active, ti->ti_cpu_mask);
570 		TLBINFO_LOCK(ti);
571 		const __cpuset onproc = CPUSET_SUBSET(pm->pm_onproc,
572 		    ti->ti_cpu_mask);
573 		if (onproc != 0) {
574 			if (kernel_p) {
575 				ti->ti_tlbinvop =
576 				    TLBINV_KERNEL_MAP(ti->ti_tlbinvop);
577 				ti->ti_victim = NULL;
578 			} else {
579 				KASSERT(pai->pai_asid);
580 				if (__predict_false(ti->ti_victim == pm)) {
581 					KASSERT(ti->ti_tlbinvop == TLBINV_ONE);
582 					/*
583 					 * We still need to invalidate this one
584 					 * ASID so there's nothing to change.
585 					 */
586 				} else {
587 					ti->ti_tlbinvop =
588 					    TLBINV_USER_MAP(ti->ti_tlbinvop);
589 					if (ti->ti_tlbinvop == TLBINV_ONE)
590 						ti->ti_victim = pm;
591 					else
592 						ti->ti_victim = NULL;
593 				}
594 			}
595 			TLBINFO_UNLOCK(ti);
596 			/*
597 			 * Now we can send out the shootdown IPIs to a CPU
598 			 * that shares this TLB and is currently using this
599 			 * pmap.  That CPU will process the IPI and do the
600 			 * all the work.  Any other CPUs sharing that TLB
601 			 * will take advantage of that work.  pm_onproc might
602 			 * change now that we have released the lock but we
603 			 * can tolerate spurious shootdowns.
604 			 */
605 			KASSERT(!CPUSET_EMPTY_P(onproc));
606 			u_int j = CPUSET_NEXT(onproc);
607 			cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN);
608 			ipi_sent = true;
609 			continue;
610 		}
611 		if (!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_active, ti->ti_cpu_mask) {
612 			/*
613 			 * If this pmap has an ASID assigned but it's not
614 			 * currently running, nuke its ASID.  Next time the
615 			 * pmap is activated, it will allocate a new ASID.
616 			 * And best of all, we avoid an IPI.
617 			 */
618 			KASSERT(!kernel_p);
619 			pmap_pai_reset(ti, pai, pm);
620 			//ti->ti_evcnt_lazy_shots.ev_count++;
621 		}
622 		TLBINFO_UNLOCK(ti);
623 	}
624 
625 	return ipi_sent;
626 }
627 #endif /* MULTIPROCESSOR && PMAP_NEED_TLB_SHOOTDOWN */
628 
629 int
630 pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pt_entry, u_int flags)
631 {
632 	struct pmap_tlb_info * const ti = curcpu()->ci_tlb_info;
633 	struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
634 	int rv = -1;
635 
636 	KASSERT(kpreempt_disabled());
637 
638 	TLBINFO_LOCK(ti);
639 	if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) {
640 		pmap_tlb_asid_check();
641 		rv = tlb_update_addr(va, pai->pai_asid, pt_entry,
642 		    (flags & PMAP_TLB_INSERT) != 0);
643 		pmap_tlb_asid_check();
644 	}
645 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
646 	pm->pm_shootdown_pending = (flags & PMAP_TLB_NEED_IPI) != 0;
647 #endif
648 	TLBINFO_UNLOCK(ti);
649 
650 	return rv;
651 }
652 
653 void
654 pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va)
655 {
656 	struct pmap_tlb_info * const ti = curcpu()->ci_tlb_info;
657 	struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
658 
659 	KASSERT(kpreempt_disabled());
660 
661 	TLBINFO_LOCK(ti);
662 	if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) {
663 		pmap_tlb_asid_check();
664 		tlb_invalidate_addr(va, pai->pai_asid);
665 		pmap_tlb_asid_check();
666 	}
667 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
668 	pm->pm_shootdown_pending = 1;
669 #endif
670 	TLBINFO_UNLOCK(ti);
671 }
672 
673 static inline void
674 pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm,
675 	struct pmap_asid_info *pai)
676 {
677 	/*
678 	 * We shouldn't have an ASID assigned, and thusly must not be onproc
679 	 * nor active.
680 	 */
681 	KASSERT(pm != pmap_kernel());
682 	KASSERT(pai->pai_asid == 0);
683 	KASSERT(pai->pai_link.le_prev == NULL);
684 #if defined(MULTIPROCESSOR)
685 	KASSERT(CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_onproc, ti->ti_cpu_mask)));
686 	KASSERT(CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_active, ti->ti_cpu_mask)));
687 #endif
688 	KASSERT(ti->ti_asids_free > 0);
689 	KASSERT(ti->ti_asid_hint <= ti->ti_asid_max);
690 
691 	/*
692 	 * Let's see if the hinted ASID is free.  If not search for
693 	 * a new one.
694 	 */
695 	if (__predict_false(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) {
696 #ifdef DIAGNOSTIC
697 		const size_t words = __arraycount(ti->ti_asid_bitmap);
698 #endif
699 		const size_t nbpw = 8 * sizeof(ti->ti_asid_bitmap[0]);
700 		for (size_t i = 0; i < ti->ti_asid_hint / nbpw; i++) {
701 			KASSERT(~ti->ti_asid_bitmap[i] == 0);
702 		}
703 		for (size_t i = ti->ti_asid_hint / nbpw;; i++) {
704 			KASSERT(i < words);
705 			/*
706 			 * ffs wants to find the first bit set while we want
707 			 * to find the first bit cleared.
708 			 */
709 			u_long bits = ~ti->ti_asid_bitmap[i];
710 			if (__predict_true(bits)) {
711 				u_int n = 0;
712 				if ((bits & 0xffffffff) == 0)  {
713 					bits = (bits >> 31) >> 1;
714 					KASSERT(bits);
715 					n += 32;
716 				}
717 				n += ffs(bits) - 1;
718 				KASSERT(n < nbpw);
719 				ti->ti_asid_hint = n + i * nbpw;
720 				break;
721 			}
722 		}
723 		KASSERT(ti->ti_asid_hint > KERNEL_PID);
724 		KASSERT(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint-1));
725 		KASSERT(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint));
726 	}
727 
728 	/*
729 	 * The hint contains our next ASID so take it and advance the hint.
730 	 * Mark it as used and insert the pai into the list of active asids.
731 	 * There is also one less asid free in this TLB.
732 	 */
733 	pai->pai_asid = ti->ti_asid_hint++;
734 	TLBINFO_ASID_MARK_USED(ti, pai->pai_asid);
735 	LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link);
736 	ti->ti_asids_free--;
737 
738 #if defined(MULTIPROCESSOR)
739 	/*
740 	 * Mark that we now have an active ASID for all CPUs sharing this TLB.
741 	 * The bits in pm_active belonging to this TLB can only be changed
742 	 * while this TLBs lock is held.
743 	 */
744 	atomic_or_32(&pm->pm_active, ti->ti_cpu_mask);
745 #endif
746 }
747 
748 /*
749  * Acquire a TLB address space tag (called ASID or TLBPID) and return it.
750  * ASID might have already been previously acquired.
751  */
752 void
753 pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l)
754 {
755 	struct cpu_info * const ci = l->l_cpu;
756 	struct pmap_tlb_info * const ti = ci->ci_tlb_info;
757 	struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
758 
759 	KASSERT(kpreempt_disabled());
760 
761 	/*
762 	 * Kernels use a fixed ASID and thus doesn't need to acquire one.
763 	 */
764 	if (pm == pmap_kernel())
765 		return;
766 
767 	TLBINFO_LOCK(ti);
768 	KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL);
769 	KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL);
770 	pmap_pai_check(ti);
771 	if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) {
772 		/*
773 		 * If we've run out ASIDs, reinitialize the ASID space.
774 		 */
775 		if (__predict_false(tlbinfo_noasids_p(ti))) {
776 			KASSERT(l == curlwp);
777 			pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY);
778 		}
779 
780 		/*
781 		 * Get an ASID.
782 		 */
783 		pmap_tlb_asid_alloc(ti, pm, pai);
784 	}
785 
786 	if (l == curlwp) {
787 #if defined(MULTIPROCESSOR)
788 		/*
789 		 * The bits in pm_onproc belonging to this TLB can only
790 		 * be changed while this TLBs lock is held unless atomic
791 		 * operations are used.
792 		 */
793 		CPUSET_ADD(pm->pm_onproc, cpu_index(ci));
794 #endif
795 		ci->ci_pmap_asid_cur = pai->pai_asid;
796 		tlb_set_asid(pai->pai_asid);
797 		pmap_tlb_asid_check();
798 	} else {
799 		printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp);
800 	}
801 	TLBINFO_UNLOCK(ti);
802 }
803 
804 void
805 pmap_tlb_asid_deactivate(pmap_t pm)
806 {
807 	KASSERT(kpreempt_disabled());
808 #if defined(MULTIPROCESSOR)
809 	/*
810 	 * The kernel pmap is aways onproc and active and must never have
811 	 * those bits cleared.  If pmap_remove_all was called, it has already
812 	 * deactivated the pmap and thusly onproc will be 0 so there's nothing
813 	 * to do.
814 	 */
815 	if (pm != pmap_kernel() && pm->pm_onproc != 0) {
816 		struct cpu_info * const ci = curcpu();
817 		KASSERT(!cpu_intr_p());
818 		KASSERTMSG(pm->pm_onproc & CPUSET_SINGLE(cpu_index(ci)),
819 		    "%s: pmap %p onproc %#x doesn't include cpu %d (%p)",
820 		    __func__, pm, pm->pm_onproc, cpu_index(ci), ci);
821 		/*
822 		 * The bits in pm_onproc that belong to this TLB can
823 		 * be changed while this TLBs lock is not held as long
824 		 * as we use atomic ops.
825 		 */
826 		CPUSET_DEL(pm->pm_onproc, cpu_index(ci));
827 	}
828 #elif defined(DEBUG)
829 	curcpu()->ci_pmap_asid_cur = 0;
830 	tlb_set_asid(0);
831 	pmap_tlb_asid_check();
832 #endif
833 }
834 
835 void
836 pmap_tlb_asid_release_all(struct pmap *pm)
837 {
838 	KASSERT(pm != pmap_kernel());
839 #if defined(MULTIPROCESSOR)
840 	KASSERT(CPUSET_EMPTY_P(pm->pm_onproc));
841 	for (u_int i = 0; !CPUSET_EMPTY_P(pm->pm_active); i++) {
842 		KASSERT(i < pmap_ntlbs);
843 		struct pmap_tlb_info * const ti = pmap_tlbs[i];
844 		if (!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_active, ti->ti_cpu_mask))) {
845 			struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
846 			TLBINFO_LOCK(ti);
847 			KASSERT(ti->ti_victim != pm);
848 			pmap_pai_reset(ti, pai, pm);
849 			TLBINFO_UNLOCK(ti);
850 		}
851 	}
852 #else
853 	/*
854 	 * Handle the case of an UP kernel which only has, at most, one ASID.
855 	 * If the pmap has an ASID allocated, free it.
856 	 */
857 	struct pmap_tlb_info * const ti = &pmap_tlb0_info;
858 	struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
859 	TLBINFO_LOCK(ti);
860 	if (pai->pai_asid > KERNEL_PID) {
861 		pmap_pai_reset(ti, pai, pm);
862 	}
863 	TLBINFO_UNLOCK(ti);
864 #endif /* MULTIPROCESSOR */
865 }
866 
867 void
868 pmap_tlb_asid_check(void)
869 {
870 #ifdef DEBUG
871 	kpreempt_disable();
872 	const tlb_asid_t asid = tlb_get_asid();
873 	KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur,
874 	   "%s: asid (%#x) != current asid (%#x)",
875 	    __func__, asid, curcpu()->ci_pmap_asid_cur);
876 	kpreempt_enable();
877 #endif
878 }
879 
880 #ifdef DEBUG
881 void
882 pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t))
883 {
884         struct pmap_tlb_info * const ti = curcpu()->ci_tlb_info;
885         struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
886         TLBINFO_LOCK(ti);
887         if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID)
888 		tlb_walk(pm, func);
889         TLBINFO_UNLOCK(ti);
890 }
891 #endif /* DEBUG */
892