1 /* $NetBSD: pmap_tlb.c,v 1.52 2022/03/04 08:11:48 skrll Exp $ */ 2 3 /*- 4 * Copyright (c) 2010 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Matt Thomas at 3am Software Foundry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 34 __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.52 2022/03/04 08:11:48 skrll Exp $"); 35 36 /* 37 * Manages address spaces in a TLB. 38 * 39 * Normally there is a 1:1 mapping between a TLB and a CPU. However, some 40 * implementations may share a TLB between multiple CPUs (really CPU thread 41 * contexts). This requires the TLB abstraction to be separated from the 42 * CPU abstraction. It also requires that the TLB be locked while doing 43 * TLB activities. 44 * 45 * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps 46 * that have a valid ASID. 47 * 48 * We allocate ASIDs in increasing order until we have exhausted the supply, 49 * then reinitialize the ASID space, and start allocating again at 1. When 50 * allocating from the ASID bitmap, we skip any ASID who has a corresponding 51 * bit set in the ASID bitmap. Eventually this causes the ASID bitmap to fill 52 * and, when completely filled, a reinitialization of the ASID space. 53 * 54 * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs 55 * of non-kernel TLB entries get recorded in the ASID bitmap. If the entries 56 * in TLB consume more than half of the ASID space, all ASIDs are invalidated, 57 * the ASID bitmap is recleared, and the list of pmaps is emptied. Otherwise, 58 * (the normal case), any ASID present in the TLB (even those which are no 59 * longer used by a pmap) will remain active (allocated) and all other ASIDs 60 * will be freed. If the size of the TLB is much smaller than the ASID space, 61 * this algorithm completely avoids TLB invalidation. 62 * 63 * For multiprocessors, we also have to deal TLB invalidation requests from 64 * other CPUs, some of which are dealt with the reinitialization of the ASID 65 * space. Whereas above we keep the ASIDs of those pmaps which have active 66 * TLB entries, this type of reinitialization preserves the ASIDs of any 67 * "onproc" user pmap and all other ASIDs will be freed. We must do this 68 * since we can't change the current ASID. 69 * 70 * Each pmap has two bitmaps: pm_active and pm_onproc. Each bit in pm_active 71 * indicates whether that pmap has an allocated ASID for a CPU. Each bit in 72 * pm_onproc indicates that the pmap's ASID is in use, i.e. a CPU has it in its 73 * "current ASID" field, e.g. the ASID field of the COP 0 register EntryHi for 74 * MIPS, or the ASID field of TTBR0 for AA64. The bit number used in these 75 * bitmaps comes from the CPU's cpu_index(). Even though these bitmaps contain 76 * the bits for all CPUs, the bits that correspond to the bits belonging to 77 * the CPUs sharing a TLB can only be manipulated while holding that TLB's 78 * lock. Atomic ops must be used to update them since multiple CPUs may be 79 * changing different sets of bits at same time but these sets never overlap. 80 * 81 * When a change to the local TLB may require a change in the TLB's of other 82 * CPUs, we try to avoid sending an IPI if at all possible. For instance, if 83 * we are updating a PTE and that PTE previously was invalid and therefore 84 * couldn't support an active mapping, there's no need for an IPI since there 85 * can't be a TLB entry to invalidate. The other case is when we change a PTE 86 * to be modified we just update the local TLB. If another TLB has a stale 87 * entry, a TLB MOD exception will be raised and that will cause the local TLB 88 * to be updated. 89 * 90 * We never need to update a non-local TLB if the pmap doesn't have a valid 91 * ASID for that TLB. If it does have a valid ASID but isn't current "onproc" 92 * we simply reset its ASID for that TLB and then when it goes "onproc" it 93 * will allocate a new ASID and any existing TLB entries will be orphaned. 94 * Only in the case that pmap has an "onproc" ASID do we actually have to send 95 * an IPI. 96 * 97 * Once we determined we must send an IPI to shootdown a TLB, we need to send 98 * it to one of CPUs that share that TLB. We choose the lowest numbered CPU 99 * that has one of the pmap's ASID "onproc". In reality, any CPU sharing that 100 * TLB would do, but interrupting an active CPU seems best. 101 * 102 * A TLB might have multiple shootdowns active concurrently. The shootdown 103 * logic compresses these into a few cases: 104 * 0) nobody needs to have its TLB entries invalidated 105 * 1) one ASID needs to have its TLB entries invalidated 106 * 2) more than one ASID needs to have its TLB entries invalidated 107 * 3) the kernel needs to have its TLB entries invalidated 108 * 4) the kernel and one or more ASID need their TLB entries invalidated. 109 * 110 * And for each case we do: 111 * 0) nothing, 112 * 1) if that ASID is still "onproc", we invalidate the TLB entries for 113 * that single ASID. If not, just reset the pmap's ASID to invalidate 114 * and let it allocate a new ASID the next time it goes "onproc", 115 * 2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and 116 * invalidate all non-wired non-global TLB entries, 117 * 3) we invalidate all of the non-wired global TLB entries, 118 * 4) we reinitialize the ASID space (again preserving any "onproc" ASIDs) 119 * invalidate all non-wired TLB entries. 120 * 121 * As you can see, shootdowns are not concerned with addresses, just address 122 * spaces. Since the number of TLB entries is usually quite small, this avoids 123 * a lot of overhead for not much gain. 124 */ 125 126 #define __PMAP_PRIVATE 127 128 #include "opt_multiprocessor.h" 129 130 #include <sys/param.h> 131 132 #include <sys/atomic.h> 133 #include <sys/cpu.h> 134 #include <sys/kernel.h> /* for cold */ 135 #include <sys/mutex.h> 136 #include <sys/proc.h> 137 #include <sys/systm.h> 138 139 #include <uvm/uvm.h> 140 141 static kmutex_t pmap_tlb0_lock __cacheline_aligned; 142 143 #define IFCONSTANT(x) (__builtin_constant_p((x)) ? (x) : 0) 144 145 #if KERNEL_PID > 31 146 #error "KERNEL_PID expected in range 0-31" 147 #endif 148 149 #define TLBINFO_ASID_MARK_UNUSED(ti, asid) \ 150 __BITMAP_CLR((asid), &(ti)->ti_asid_bitmap) 151 #define TLBINFO_ASID_MARK_USED(ti, asid) \ 152 __BITMAP_SET((asid), &(ti)->ti_asid_bitmap) 153 #define TLBINFO_ASID_INUSE_P(ti, asid) \ 154 __BITMAP_ISSET((asid), &(ti)->ti_asid_bitmap) 155 #define TLBINFO_ASID_RESET(ti) \ 156 do { \ 157 __BITMAP_ZERO(&ti->ti_asid_bitmap); \ 158 for (tlb_asid_t asid = 0; asid <= KERNEL_PID; asid++) \ 159 TLBINFO_ASID_MARK_USED(ti, asid); \ 160 } while (0) 161 #define TLBINFO_ASID_INITIAL_FREE(asid_max) \ 162 (asid_max + 1 /* 0 */ - (1 + KERNEL_PID)) 163 164 struct pmap_tlb_info pmap_tlb0_info = { 165 .ti_name = "tlb0", 166 .ti_asid_hint = KERNEL_PID + 1, 167 #ifdef PMAP_TLB_NUM_PIDS 168 .ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1), 169 .ti_asids_free = IFCONSTANT( 170 TLBINFO_ASID_INITIAL_FREE(PMAP_TLB_NUM_PIDS - 1)), 171 #endif 172 .ti_asid_bitmap._b[0] = __BITS(0, KERNEL_PID), 173 #ifdef PMAP_TLB_WIRED_UPAGES 174 .ti_wired = PMAP_TLB_WIRED_UPAGES, 175 #endif 176 .ti_lock = &pmap_tlb0_lock, 177 .ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais), 178 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 179 .ti_tlbinvop = TLBINV_NOBODY, 180 #endif 181 }; 182 183 #undef IFCONSTANT 184 185 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 186 struct pmap_tlb_info *pmap_tlbs[PMAP_TLB_MAX] = { 187 [0] = &pmap_tlb0_info, 188 }; 189 u_int pmap_ntlbs = 1; 190 #endif 191 192 #ifdef MULTIPROCESSOR 193 __unused static inline bool 194 pmap_tlb_intersecting_active_p(pmap_t pm, struct pmap_tlb_info *ti) 195 { 196 #if PMAP_TLB_MAX == 1 197 return !kcpuset_iszero(pm->pm_active); 198 #else 199 return kcpuset_intersecting_p(pm->pm_active, ti->ti_kcpuset); 200 #endif 201 } 202 203 static inline bool 204 pmap_tlb_intersecting_onproc_p(pmap_t pm, struct pmap_tlb_info *ti) 205 { 206 #if PMAP_TLB_MAX == 1 207 return !kcpuset_iszero(pm->pm_onproc); 208 #else 209 return kcpuset_intersecting_p(pm->pm_onproc, ti->ti_kcpuset); 210 #endif 211 } 212 #endif 213 214 static void 215 pmap_tlb_pai_check(struct pmap_tlb_info *ti, bool locked_p) 216 { 217 UVMHIST_FUNC(__func__); 218 UVMHIST_CALLARGS(maphist, "(ti=%#jx)", (uintptr_t)ti, 0, 0, 0); 219 220 #ifdef DIAGNOSTIC 221 struct pmap_asid_info *pai; 222 if (!locked_p) 223 TLBINFO_LOCK(ti); 224 LIST_FOREACH(pai, &ti->ti_pais, pai_link) { 225 KASSERT(pai != NULL); 226 KASSERT(PAI_PMAP(pai, ti) != pmap_kernel()); 227 KASSERT(pai->pai_asid > KERNEL_PID); 228 KASSERTMSG(pai->pai_asid <= ti->ti_asid_max, 229 "pm %p asid %#x", PAI_PMAP(pai, ti), pai->pai_asid); 230 KASSERTMSG(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid), 231 "pm %p asid %u", PAI_PMAP(pai, ti), pai->pai_asid); 232 #ifdef MULTIPROCESSOR 233 KASSERT(pmap_tlb_intersecting_active_p(PAI_PMAP(pai, ti), ti)); 234 #endif 235 } 236 if (!locked_p) 237 TLBINFO_UNLOCK(ti); 238 #endif 239 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 240 } 241 242 static void 243 pmap_tlb_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai, 244 struct pmap *pm) 245 { 246 UVMHIST_FUNC(__func__); 247 UVMHIST_CALLARGS(maphist, "(ti=%#jx, pai=%#jx, pm=%#jx): asid %u", 248 (uintptr_t)ti, (uintptr_t)pai, (uintptr_t)pm, pai->pai_asid); 249 250 /* 251 * We must have an ASID but it must not be onproc (on a processor). 252 */ 253 KASSERT(pai->pai_asid > KERNEL_PID); 254 KASSERT(pai->pai_asid <= ti->ti_asid_max); 255 #if defined(MULTIPROCESSOR) 256 KASSERT(pmap_tlb_intersecting_active_p(pm, ti)); 257 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 258 #endif 259 LIST_REMOVE(pai, pai_link); 260 #ifdef DIAGNOSTIC 261 pai->pai_link.le_prev = NULL; /* tagged as unlinked */ 262 #endif 263 /* 264 * If the platform has a cheap way to flush ASIDs then free the ASID 265 * back into the pool. On multiprocessor systems, we will flush the 266 * ASID from the TLB when it's allocated. That way we know the flush 267 * was always done in the correct TLB space. On uniprocessor systems, 268 * just do the flush now since we know that it has been used. This has 269 * a bit less overhead. Either way, this will mean that we will only 270 * need to flush all ASIDs if all ASIDs are in use and we need to 271 * allocate a new one. 272 */ 273 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 274 #ifndef MULTIPROCESSOR 275 UVMHIST_LOG(maphist, " ... asid %u flushed", pai->pai_asid, 0, 276 0, 0); 277 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 278 #endif 279 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 280 UVMHIST_LOG(maphist, " ... asid marked unused", 281 pai->pai_asid, 0, 0, 0); 282 TLBINFO_ASID_MARK_UNUSED(ti, pai->pai_asid); 283 ti->ti_asids_free++; 284 } 285 } 286 /* 287 * Note that we don't mark the ASID as not in use in the TLB's ASID 288 * bitmap (thus it can't be allocated until the ASID space is exhausted 289 * and therefore reinitialized). We don't want to flush the TLB for 290 * entries belonging to this ASID so we will let natural TLB entry 291 * replacement flush them out of the TLB. Any new entries for this 292 * pmap will need a new ASID allocated. 293 */ 294 pai->pai_asid = 0; 295 296 #if defined(MULTIPROCESSOR) 297 /* 298 * The bits in pm_active belonging to this TLB can only be changed 299 * while this TLB's lock is held. 300 */ 301 #if PMAP_TLB_MAX == 1 302 kcpuset_zero(pm->pm_active); 303 #else 304 kcpuset_remove(pm->pm_active, ti->ti_kcpuset); 305 #endif 306 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 307 #endif /* MULTIPROCESSOR */ 308 309 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 310 } 311 312 void 313 pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti) 314 { 315 #if defined(MULTIPROCESSOR) && !defined(PMAP_TLB_NO_SYNCI_EVCNT) 316 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired, 317 EVCNT_TYPE_MISC, NULL, 318 ti->ti_name, "icache syncs desired"); 319 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts, 320 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 321 ti->ti_name, "icache sync asts"); 322 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all, 323 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 324 ti->ti_name, "icache full syncs"); 325 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages, 326 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 327 ti->ti_name, "icache pages synced"); 328 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate, 329 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 330 ti->ti_name, "icache dup pages skipped"); 331 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred, 332 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 333 ti->ti_name, "icache pages deferred"); 334 #endif /* MULTIPROCESSOR && !PMAP_TLB_NO_SYNCI_EVCNT */ 335 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits, 336 EVCNT_TYPE_MISC, NULL, 337 ti->ti_name, "asid pool reinit"); 338 } 339 340 void 341 pmap_tlb_info_init(struct pmap_tlb_info *ti) 342 { 343 #if defined(MULTIPROCESSOR) 344 #if PMAP_TLB_MAX == 1 345 KASSERT(ti == &pmap_tlb0_info); 346 #else 347 if (ti != &pmap_tlb0_info) { 348 KASSERT(pmap_ntlbs < PMAP_TLB_MAX); 349 350 KASSERT(pmap_tlbs[pmap_ntlbs] == NULL); 351 352 ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 353 TLBINFO_ASID_RESET(ti); 354 ti->ti_asid_hint = KERNEL_PID + 1; 355 ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max; 356 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 357 ti->ti_tlbinvop = TLBINV_NOBODY; 358 ti->ti_victim = NULL; 359 kcpuset_create(&ti->ti_kcpuset, true); 360 ti->ti_index = pmap_ntlbs++; 361 ti->ti_wired = 0; 362 pmap_tlbs[ti->ti_index] = ti; 363 snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u", 364 ti->ti_index); 365 pmap_tlb_info_evcnt_attach(ti); 366 367 KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); 368 return; 369 } 370 #endif 371 #endif /* MULTIPROCESSOR */ 372 KASSERT(ti == &pmap_tlb0_info); 373 KASSERT(ti->ti_lock == &pmap_tlb0_lock); 374 375 mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED); 376 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 377 kcpuset_create(&ti->ti_kcpuset, true); 378 kcpuset_set(ti->ti_kcpuset, cpu_index(curcpu())); 379 #endif 380 381 const tlb_asid_t asid_max = pmap_md_tlb_asid_max(); 382 if (ti->ti_asid_max == 0 || asid_max < ti->ti_asid_max) { 383 ti->ti_asid_max = asid_max; 384 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 385 } 386 387 KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); 388 } 389 390 #if defined(MULTIPROCESSOR) 391 void 392 pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci) 393 { 394 KASSERT(!CPU_IS_PRIMARY(ci)); 395 KASSERT(ci->ci_data.cpu_idlelwp != NULL); 396 KASSERT(cold); 397 398 TLBINFO_LOCK(ti); 399 #if PMAP_TLB_MAX > 1 400 kcpuset_set(ti->ti_kcpuset, cpu_index(ci)); 401 cpu_set_tlb_info(ci, ti); 402 #endif 403 404 /* 405 * Do any MD tlb info init. 406 */ 407 pmap_md_tlb_info_attach(ti, ci); 408 409 /* 410 * The kernel pmap uses the kcpuset_running set so it's always 411 * up-to-date. 412 */ 413 TLBINFO_UNLOCK(ti); 414 } 415 #endif /* MULTIPROCESSOR */ 416 417 #ifdef DIAGNOSTIC 418 static size_t 419 pmap_tlb_asid_count(struct pmap_tlb_info *ti) 420 { 421 size_t count = 0; 422 for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) { 423 if (TLBINFO_ASID_INUSE_P(ti, asid)) 424 count++; 425 } 426 return count; 427 } 428 #endif 429 430 static void 431 pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op) 432 { 433 UVMHIST_FUNC(__func__); 434 UVMHIST_CALLARGS(maphist, "(ti=%#jx, op=%ju)", (uintptr_t)ti, op, 0, 0); 435 436 pmap_tlb_pai_check(ti, true); 437 438 ti->ti_evcnt_asid_reinits.ev_count++; 439 440 /* 441 * First, clear the ASID bitmap (except for ASID 0 which belongs 442 * to the kernel). 443 */ 444 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 445 ti->ti_asid_hint = KERNEL_PID + 1; 446 TLBINFO_ASID_RESET(ti); 447 448 switch (op) { 449 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 450 case TLBINV_ALL: 451 tlb_invalidate_all(); 452 break; 453 case TLBINV_ALLUSER: 454 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 455 break; 456 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 457 case TLBINV_NOBODY: { 458 /* 459 * If we are just reclaiming ASIDs in the TLB, let's go find 460 * what ASIDs are in use in the TLB. Since this is a 461 * semi-expensive operation, we don't want to do it too often. 462 * So if more half of the ASIDs are in use, we don't have 463 * enough free ASIDs so invalidate the TLB entries with ASIDs 464 * and clear the ASID bitmap. That will force everyone to 465 * allocate a new ASID. 466 */ 467 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 468 pmap_tlb_asid_check(); 469 const u_int asids_found = tlb_record_asids( 470 ti->ti_asid_bitmap._b, ti->ti_asid_max); 471 pmap_tlb_asid_check(); 472 #ifdef DIAGNOSTIC 473 const u_int asids_count = pmap_tlb_asid_count(ti); 474 KASSERTMSG(asids_found == asids_count, 475 "found %u != count %u", asids_found, asids_count); 476 #endif 477 if (__predict_false(asids_found >= ti->ti_asid_max / 2)) { 478 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 479 #else /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 480 /* 481 * For those systems (PowerPC) that don't require 482 * cross cpu TLB shootdowns, we have to invalidate the 483 * entire TLB because we can't record the ASIDs in use 484 * on the other CPUs. This is hopefully cheaper than 485 * than trying to use an IPI to record all the ASIDs 486 * on all the CPUs (which would be a synchronization 487 * nightmare). 488 */ 489 tlb_invalidate_all(); 490 #endif /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 491 TLBINFO_ASID_RESET(ti); 492 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE( 493 ti->ti_asid_max); 494 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 495 } else { 496 ti->ti_asids_free -= asids_found; 497 } 498 #endif /* !MULTIPROCESSOR || PMAP_TLB_NEED_SHOOTDOWN */ 499 KASSERTMSG(ti->ti_asids_free <= ti->ti_asid_max, "%u", 500 ti->ti_asids_free); 501 break; 502 } 503 default: 504 panic("%s: unexpected op %d", __func__, op); 505 } 506 507 /* 508 * Now go through the active ASIDs. If the ASID is on a processor or 509 * we aren't invalidating all ASIDs and the TLB has an entry owned by 510 * that ASID, mark it as in use. Otherwise release the ASID. 511 */ 512 struct pmap_asid_info *pai, *next; 513 for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) { 514 struct pmap * const pm = PAI_PMAP(pai, ti); 515 next = LIST_NEXT(pai, pai_link); 516 KASSERT(pm != pmap_kernel()); 517 KASSERT(pai->pai_asid > KERNEL_PID); 518 #if defined(MULTIPROCESSOR) 519 if (pmap_tlb_intersecting_onproc_p(pm, ti)) { 520 if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 521 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 522 ti->ti_asids_free--; 523 } 524 continue; 525 } 526 #endif /* MULTIPROCESSOR */ 527 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 528 KASSERT(op == TLBINV_NOBODY); 529 } else { 530 pmap_tlb_pai_reset(ti, pai, pm); 531 } 532 } 533 #ifdef DIAGNOSTIC 534 size_t free_count __diagused = ti->ti_asid_max - pmap_tlb_asid_count(ti); 535 KASSERTMSG(free_count == ti->ti_asids_free, 536 "bitmap error: %zu != %u", free_count, ti->ti_asids_free); 537 #endif 538 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 539 } 540 541 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 542 #if PMAP_TLB_MAX == 1 543 #error shootdown not required for single TLB systems 544 #endif 545 void 546 pmap_tlb_shootdown_process(void) 547 { 548 struct cpu_info * const ci = curcpu(); 549 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 550 551 KASSERT(cpu_intr_p()); 552 KASSERTMSG(ci->ci_cpl >= IPL_SCHED, "%s: cpl (%d) < IPL_SCHED (%d)", 553 __func__, ci->ci_cpl, IPL_SCHED); 554 555 TLBINFO_LOCK(ti); 556 557 switch (ti->ti_tlbinvop) { 558 case TLBINV_ONE: { 559 /* 560 * We only need to invalidate one user ASID. 561 */ 562 struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti); 563 KASSERT(ti->ti_victim != pmap_kernel()); 564 if (pmap_tlb_intersecting_onproc_p(ti->ti_victim, ti)) { 565 /* 566 * The victim is an active pmap so we will just 567 * invalidate its TLB entries. 568 */ 569 KASSERT(pai->pai_asid > KERNEL_PID); 570 pmap_tlb_asid_check(); 571 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 572 pmap_tlb_asid_check(); 573 } else if (pai->pai_asid) { 574 /* 575 * The victim is no longer an active pmap for this TLB. 576 * So simply clear its ASID and when pmap_activate is 577 * next called for this pmap, it will allocate a new 578 * ASID. 579 */ 580 pmap_tlb_pai_reset(ti, pai, PAI_PMAP(pai, ti)); 581 } 582 break; 583 } 584 case TLBINV_ALLUSER: 585 /* 586 * Flush all user TLB entries. 587 */ 588 pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER); 589 break; 590 case TLBINV_ALLKERNEL: 591 /* 592 * We need to invalidate all global TLB entries. 593 */ 594 pmap_tlb_asid_check(); 595 tlb_invalidate_globals(); 596 pmap_tlb_asid_check(); 597 break; 598 case TLBINV_ALL: 599 /* 600 * Flush all the TLB entries (user and kernel). 601 */ 602 pmap_tlb_asid_reinitialize(ti, TLBINV_ALL); 603 break; 604 case TLBINV_NOBODY: 605 /* 606 * Might be spurious or another SMT CPU sharing this TLB 607 * could have already done the work. 608 */ 609 break; 610 } 611 612 /* 613 * Indicate we are done with shutdown event. 614 */ 615 ti->ti_victim = NULL; 616 ti->ti_tlbinvop = TLBINV_NOBODY; 617 TLBINFO_UNLOCK(ti); 618 } 619 620 /* 621 * This state machine could be encoded into an array of integers but since all 622 * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which 623 * can be loaded in a single instruction. 624 */ 625 #define TLBINV_MAP(op, nobody, one, alluser, allkernel, all) \ 626 (((( (nobody) << 3 * TLBINV_NOBODY) \ 627 | ( (one) << 3 * TLBINV_ONE) \ 628 | ( (alluser) << 3 * TLBINV_ALLUSER) \ 629 | ((allkernel) << 3 * TLBINV_ALLKERNEL) \ 630 | ( (all) << 3 * TLBINV_ALL)) >> 3 * (op)) & 7) 631 632 #define TLBINV_USER_MAP(op) \ 633 TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER, \ 634 TLBINV_ALL, TLBINV_ALL) 635 636 #define TLBINV_KERNEL_MAP(op) \ 637 TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL, \ 638 TLBINV_ALLKERNEL, TLBINV_ALL) 639 640 bool 641 pmap_tlb_shootdown_bystanders(pmap_t pm) 642 { 643 /* 644 * We don't need to deal with our own TLB. 645 */ 646 647 UVMHIST_FUNC(__func__); 648 UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0); 649 650 const struct cpu_info * const ci = curcpu(); 651 kcpuset_t *pm_active = ci->ci_shootdowncpus; 652 kcpuset_copy(pm_active, pm->pm_active); 653 kcpuset_remove(pm_active, cpu_tlb_info(curcpu())->ti_kcpuset); 654 const bool kernel_p = (pm == pmap_kernel()); 655 bool ipi_sent = false; 656 657 /* 658 * If pm_active gets more bits set, then it's after all our changes 659 * have been made so they will already be cognizant of them. 660 */ 661 662 for (size_t i = 0; !kcpuset_iszero(pm_active); i++) { 663 KASSERT(i < pmap_ntlbs); 664 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 665 KASSERT(tlbinfo_index(ti) == i); 666 /* 667 * Skip this TLB if there are no active mappings for it. 668 */ 669 if (!kcpuset_intersecting_p(pm_active, ti->ti_kcpuset)) 670 continue; 671 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 672 kcpuset_remove(pm_active, ti->ti_kcpuset); 673 TLBINFO_LOCK(ti); 674 cpuid_t j = kcpuset_ffs_intersecting(pm->pm_onproc, 675 ti->ti_kcpuset); 676 // post decrement since ffs returns bit + 1 or 0 if no bit 677 if (j-- > 0) { 678 if (kernel_p) { 679 ti->ti_tlbinvop = 680 TLBINV_KERNEL_MAP(ti->ti_tlbinvop); 681 ti->ti_victim = NULL; 682 } else { 683 KASSERT(pai->pai_asid); 684 if (__predict_false(ti->ti_victim == pm)) { 685 KASSERT(ti->ti_tlbinvop == TLBINV_ONE); 686 /* 687 * We still need to invalidate this one 688 * ASID so there's nothing to change. 689 */ 690 } else { 691 ti->ti_tlbinvop = 692 TLBINV_USER_MAP(ti->ti_tlbinvop); 693 if (ti->ti_tlbinvop == TLBINV_ONE) 694 ti->ti_victim = pm; 695 else 696 ti->ti_victim = NULL; 697 } 698 } 699 TLBINFO_UNLOCK(ti); 700 /* 701 * Now we can send out the shootdown IPIs to a CPU 702 * that shares this TLB and is currently using this 703 * pmap. That CPU will process the IPI and do the 704 * all the work. Any other CPUs sharing that TLB 705 * will take advantage of that work. pm_onproc might 706 * change now that we have released the lock but we 707 * can tolerate spurious shootdowns. 708 */ 709 cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN); 710 ipi_sent = true; 711 continue; 712 } 713 if (!pmap_tlb_intersecting_active_p(pm, ti)) { 714 /* 715 * If this pmap has an ASID assigned but it's not 716 * currently running, nuke its ASID. Next time the 717 * pmap is activated, it will allocate a new ASID. 718 * And best of all, we avoid an IPI. 719 */ 720 KASSERT(!kernel_p); 721 pmap_tlb_pai_reset(ti, pai, pm); 722 //ti->ti_evcnt_lazy_shots.ev_count++; 723 } 724 TLBINFO_UNLOCK(ti); 725 } 726 727 UVMHIST_LOG(maphist, " <-- done (ipi_sent=%jd)", ipi_sent, 0, 0, 0); 728 729 return ipi_sent; 730 } 731 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 732 733 int 734 pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pte, u_int flags) 735 { 736 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 737 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 738 int rv = -1; 739 740 UVMHIST_FUNC(__func__); 741 UVMHIST_CALLARGS(maphist, " (pm=%#jx va=%#jx, pte=%#jx flags=%#jx)", 742 (uintptr_t)pm, va, pte_value(pte), flags); 743 744 KASSERT(kpreempt_disabled()); 745 746 KASSERTMSG(pte_valid_p(pte), "va %#"PRIxVADDR" %#"PRIxPTE, 747 va, pte_value(pte)); 748 749 TLBINFO_LOCK(ti); 750 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 751 pmap_tlb_asid_check(); 752 rv = tlb_update_addr(va, pai->pai_asid, pte, 753 (flags & PMAP_TLB_INSERT) != 0); 754 pmap_tlb_asid_check(); 755 UVMHIST_LOG(maphist, 756 " %jd <-- tlb_update_addr(%#jx, %#jx, %#jx, ...)", 757 rv, va, pai->pai_asid, pte_value(pte)); 758 KASSERTMSG((flags & PMAP_TLB_INSERT) == 0 || rv == 1, 759 "pmap %p (asid %u) va %#"PRIxVADDR" pte %#"PRIxPTE" rv %d", 760 pm, pai->pai_asid, va, pte_value(pte), rv); 761 } 762 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 763 if (flags & PMAP_TLB_NEED_IPI) 764 pm->pm_shootdown_pending = 1; 765 #endif 766 TLBINFO_UNLOCK(ti); 767 768 UVMHIST_LOG(maphist, " <-- done (rv=%jd)", rv, 0, 0, 0); 769 770 return rv; 771 } 772 773 void 774 pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va) 775 { 776 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 777 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 778 779 UVMHIST_FUNC(__func__); 780 UVMHIST_CALLARGS(maphist, " (pm=%#jx va=%#jx) ti=%#jx asid=%#jx", 781 (uintptr_t)pm, va, (uintptr_t)ti, pai->pai_asid); 782 783 KASSERT(kpreempt_disabled()); 784 785 TLBINFO_LOCK(ti); 786 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 787 pmap_tlb_asid_check(); 788 UVMHIST_LOG(maphist, " invalidating %#jx asid %#jx", 789 va, pai->pai_asid, 0, 0); 790 tlb_invalidate_addr(va, pai->pai_asid); 791 pmap_tlb_asid_check(); 792 } 793 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 794 pm->pm_shootdown_pending = 1; 795 #endif 796 TLBINFO_UNLOCK(ti); 797 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 798 } 799 800 static inline void 801 pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm, 802 struct pmap_asid_info *pai) 803 { 804 /* 805 * We shouldn't have an ASID assigned, and thusly must not be onproc 806 * nor active. 807 */ 808 KASSERT(pm != pmap_kernel()); 809 KASSERT(pai->pai_asid == 0); 810 KASSERT(pai->pai_link.le_prev == NULL); 811 #if defined(MULTIPROCESSOR) 812 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 813 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 814 #endif 815 KASSERT(ti->ti_asids_free > 0); 816 KASSERT(ti->ti_asid_hint > KERNEL_PID); 817 818 /* 819 * If the last ASID allocated was the maximum ASID, then the 820 * hint will be out of range. Reset the hint to first 821 * available ASID. 822 */ 823 if (PMAP_TLB_FLUSH_ASID_ON_RESET 824 && ti->ti_asid_hint > ti->ti_asid_max) { 825 ti->ti_asid_hint = KERNEL_PID + 1; 826 } 827 KASSERTMSG(ti->ti_asid_hint <= ti->ti_asid_max, "hint %u", 828 ti->ti_asid_hint); 829 830 /* 831 * Let's see if the hinted ASID is free. If not search for 832 * a new one. 833 */ 834 if (__predict_true(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) { 835 const size_t nbpw = NBBY * sizeof(ti->ti_asid_bitmap._b[0]); 836 size_t i; 837 u_long bits; 838 for (i = 0; (bits = ~ti->ti_asid_bitmap._b[i]) == 0; i++) { 839 KASSERT(i < __arraycount(ti->ti_asid_bitmap._b) - 1); 840 } 841 /* 842 * ffs wants to find the first bit set while we want 843 * to find the first bit cleared. 844 */ 845 const u_int n = __builtin_ffsl(bits) - 1; 846 KASSERTMSG((bits << (nbpw - (n+1))) == (1ul << (nbpw-1)), 847 "n %u bits %#lx", n, bits); 848 KASSERT(n < nbpw); 849 ti->ti_asid_hint = n + i * nbpw; 850 } 851 852 KASSERT(ti->ti_asid_hint > KERNEL_PID); 853 KASSERT(ti->ti_asid_hint <= ti->ti_asid_max); 854 KASSERTMSG(PMAP_TLB_FLUSH_ASID_ON_RESET 855 || TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint - 1), 856 "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); 857 KASSERTMSG(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint), 858 "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); 859 860 /* 861 * The hint contains our next ASID so take it and advance the hint. 862 * Mark it as used and insert the pai into the list of active asids. 863 * There is also one less asid free in this TLB. 864 */ 865 pai->pai_asid = ti->ti_asid_hint++; 866 #ifdef MULTIPROCESSOR 867 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 868 /* 869 * Clean the new ASID from the TLB. 870 */ 871 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 872 } 873 #endif 874 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 875 LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link); 876 ti->ti_asids_free--; 877 878 #if defined(MULTIPROCESSOR) 879 /* 880 * Mark that we now have an active ASID for all CPUs sharing this TLB. 881 * The bits in pm_active belonging to this TLB can only be changed 882 * while this TLBs lock is held. 883 */ 884 #if PMAP_TLB_MAX == 1 885 kcpuset_copy(pm->pm_active, kcpuset_running); 886 #else 887 kcpuset_merge(pm->pm_active, ti->ti_kcpuset); 888 #endif 889 #endif 890 } 891 892 /* 893 * Acquire a TLB address space tag (called ASID or TLBPID) and return it. 894 * ASID might have already been previously acquired. 895 */ 896 void 897 pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l) 898 { 899 struct cpu_info * const ci = l->l_cpu; 900 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 901 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 902 903 UVMHIST_FUNC(__func__); 904 UVMHIST_CALLARGS(maphist, "(pm=%#jx, l=%#jx, ti=%#jx)", (uintptr_t)pm, 905 (uintptr_t)l, (uintptr_t)ti, 0); 906 907 KASSERT(kpreempt_disabled()); 908 909 /* 910 * Kernels use a fixed ASID and thus doesn't need to acquire one. 911 */ 912 if (pm == pmap_kernel()) { 913 UVMHIST_LOG(maphist, " <-- done (kernel)", 0, 0, 0, 0); 914 return; 915 } 916 917 TLBINFO_LOCK(ti); 918 KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL); 919 KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL); 920 pmap_tlb_pai_check(ti, true); 921 if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) { 922 /* 923 * If we've run out ASIDs, reinitialize the ASID space. 924 */ 925 if (__predict_false(tlbinfo_noasids_p(ti))) { 926 KASSERT(l == curlwp); 927 UVMHIST_LOG(maphist, " asid reinit", 0, 0, 0, 0); 928 pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY); 929 KASSERT(!tlbinfo_noasids_p(ti)); 930 } 931 932 /* 933 * Get an ASID. 934 */ 935 pmap_tlb_asid_alloc(ti, pm, pai); 936 UVMHIST_LOG(maphist, "allocated asid %#jx", pai->pai_asid, 937 0, 0, 0); 938 } 939 pmap_tlb_pai_check(ti, true); 940 #if defined(MULTIPROCESSOR) 941 KASSERT(kcpuset_isset(pm->pm_active, cpu_index(ci))); 942 #endif 943 944 if (l == curlwp) { 945 #if defined(MULTIPROCESSOR) 946 /* 947 * The bits in pm_onproc belonging to this TLB can only 948 * be changed while this TLBs lock is held unless atomic 949 * operations are used. 950 */ 951 KASSERT(pm != pmap_kernel()); 952 kcpuset_atomic_set(pm->pm_onproc, cpu_index(ci)); 953 #endif 954 ci->ci_pmap_asid_cur = pai->pai_asid; 955 UVMHIST_LOG(maphist, "setting asid to %#jx", pai->pai_asid, 956 0, 0, 0); 957 tlb_set_asid(pai->pai_asid, pm); 958 pmap_tlb_asid_check(); 959 } else { 960 printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp); 961 } 962 TLBINFO_UNLOCK(ti); 963 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 964 } 965 966 void 967 pmap_tlb_asid_deactivate(pmap_t pm) 968 { 969 UVMHIST_FUNC(__func__); 970 UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0); 971 972 KASSERT(kpreempt_disabled()); 973 #if defined(MULTIPROCESSOR) 974 /* 975 * The kernel pmap is aways onproc and active and must never have 976 * those bits cleared. If pmap_remove_all was called, it has already 977 * deactivated the pmap and thusly onproc will be 0 so there's nothing 978 * to do. 979 */ 980 if (pm != pmap_kernel() && !kcpuset_iszero(pm->pm_onproc)) { 981 struct cpu_info * const ci = curcpu(); 982 KASSERT(!cpu_intr_p()); 983 KASSERTMSG(kcpuset_isset(pm->pm_onproc, cpu_index(ci)), 984 "%s: pmap %p onproc %p doesn't include cpu %d (%p)", 985 __func__, pm, pm->pm_onproc, cpu_index(ci), ci); 986 /* 987 * The bits in pm_onproc that belong to this TLB can 988 * be changed while this TLBs lock is not held as long 989 * as we use atomic ops. 990 */ 991 kcpuset_atomic_clear(pm->pm_onproc, cpu_index(ci)); 992 } 993 #endif 994 curcpu()->ci_pmap_asid_cur = KERNEL_PID; 995 tlb_set_asid(KERNEL_PID, pmap_kernel()); 996 997 pmap_tlb_pai_check(cpu_tlb_info(curcpu()), false); 998 #if defined(DEBUG) 999 pmap_tlb_asid_check(); 1000 #endif 1001 UVMHIST_LOG(maphist, " <-- done (pm=%#jx)", (uintptr_t)pm, 0, 0, 0); 1002 } 1003 1004 void 1005 pmap_tlb_asid_release_all(struct pmap *pm) 1006 { 1007 UVMHIST_FUNC(__func__); 1008 UVMHIST_CALLARGS(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0); 1009 1010 KASSERT(pm != pmap_kernel()); 1011 #if defined(MULTIPROCESSOR) 1012 //KASSERT(!kcpuset_iszero(pm->pm_onproc)); // XXX 1013 struct cpu_info * const ci __diagused = curcpu(); 1014 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci))); 1015 #if PMAP_TLB_MAX > 1 1016 for (u_int i = 0; !kcpuset_iszero(pm->pm_active); i++) { 1017 KASSERT(i < pmap_ntlbs); 1018 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 1019 #else 1020 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1021 #endif 1022 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1023 TLBINFO_LOCK(ti); 1024 if (PMAP_PAI_ASIDVALID_P(pai, ti)) { 1025 /* 1026 * This pmap should not be in use by any other cpu so 1027 * we can just reset and be happy. 1028 */ 1029 if (ti->ti_victim == pm) 1030 ti->ti_victim = NULL; 1031 pmap_tlb_pai_reset(ti, pai, pm); 1032 } 1033 KASSERT(pai->pai_link.le_prev == NULL); 1034 TLBINFO_UNLOCK(ti); 1035 #if PMAP_TLB_MAX > 1 1036 } 1037 #endif 1038 #ifdef DIAGNOSTIC 1039 for (size_t i = 0; i < (PMAP_TLB_MAX > 1 ? pmap_ntlbs : 1); i++) { 1040 KASSERTMSG(pm->pm_pai[i].pai_asid == 0, 1041 "pm %p i %zu asid %u", 1042 pm, i, pm->pm_pai[i].pai_asid); 1043 } 1044 #endif 1045 #else 1046 /* 1047 * Handle the case of an UP kernel which only has, at most, one TLB. 1048 * If the pmap has an ASID allocated, free it. 1049 */ 1050 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1051 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1052 TLBINFO_LOCK(ti); 1053 if (pai->pai_asid > KERNEL_PID) { 1054 if (curcpu()->ci_pmap_asid_cur == pai->pai_asid) { 1055 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 1056 } else { 1057 pmap_tlb_pai_reset(ti, pai, pm); 1058 } 1059 } 1060 TLBINFO_UNLOCK(ti); 1061 #endif /* MULTIPROCESSOR */ 1062 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 1063 } 1064 1065 void 1066 pmap_tlb_asid_check(void) 1067 { 1068 #ifdef DEBUG 1069 kpreempt_disable(); 1070 const tlb_asid_t asid __debugused = tlb_get_asid(); 1071 KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur, 1072 "%s: asid (%#x) != current asid (%#x)", 1073 __func__, asid, curcpu()->ci_pmap_asid_cur); 1074 kpreempt_enable(); 1075 #endif 1076 } 1077 1078 #ifdef DEBUG 1079 void 1080 pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t)) 1081 { 1082 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 1083 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1084 TLBINFO_LOCK(ti); 1085 if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID) 1086 tlb_walk(pm, func); 1087 TLBINFO_UNLOCK(ti); 1088 } 1089 #endif /* DEBUG */ 1090