1 /* $NetBSD: pmap_tlb.c,v 1.28 2018/02/25 21:43:03 jdolecek Exp $ */ 2 3 /*- 4 * Copyright (c) 2010 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Matt Thomas at 3am Software Foundry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 34 __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.28 2018/02/25 21:43:03 jdolecek Exp $"); 35 36 /* 37 * Manages address spaces in a TLB. 38 * 39 * Normally there is a 1:1 mapping between a TLB and a CPU. However, some 40 * implementations may share a TLB between multiple CPUs (really CPU thread 41 * contexts). This requires the TLB abstraction to be separated from the 42 * CPU abstraction. It also requires that the TLB be locked while doing 43 * TLB activities. 44 * 45 * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps 46 * that have a valid ASID. 47 * 48 * We allocate ASIDs in increasing order until we have exhausted the supply, 49 * then reinitialize the ASID space, and start allocating again at 1. When 50 * allocating from the ASID bitmap, we skip any ASID who has a corresponding 51 * bit set in the ASID bitmap. Eventually this causes the ASID bitmap to fill 52 * and, when completely filled, a reinitialization of the ASID space. 53 * 54 * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs 55 * of non-kernel TLB entries get recorded in the ASID bitmap. If the entries 56 * in TLB consume more than half of the ASID space, all ASIDs are invalidated, 57 * the ASID bitmap is recleared, and the list of pmaps is emptied. Otherwise, 58 * (the normal case), any ASID present in the TLB (even those which are no 59 * longer used by a pmap) will remain active (allocated) and all other ASIDs 60 * will be freed. If the size of the TLB is much smaller than the ASID space, 61 * this algorithm completely avoids TLB invalidation. 62 * 63 * For multiprocessors, we also have to deal TLB invalidation requests from 64 * other CPUs, some of which are dealt with the reinitialization of the ASID 65 * space. Whereas above we keep the ASIDs of those pmaps which have active 66 * TLB entries, this type of reinitialization preserves the ASIDs of any 67 * "onproc" user pmap and all other ASIDs will be freed. We must do this 68 * since we can't change the current ASID. 69 * 70 * Each pmap has two bitmaps: pm_active and pm_onproc. Each bit in pm_active 71 * indicates whether that pmap has an allocated ASID for a CPU. Each bit in 72 * pm_onproc indicates that pmap's ASID is active (equal to the ASID in COP 0 73 * register EntryHi) on a CPU. The bit number comes from the CPU's cpu_index(). 74 * Even though these bitmaps contain the bits for all CPUs, the bits that 75 * correspond to the bits belonging to the CPUs sharing a TLB can only be 76 * manipulated while holding that TLB's lock. Atomic ops must be used to 77 * update them since multiple CPUs may be changing different sets of bits at 78 * same time but these sets never overlap. 79 * 80 * When a change to the local TLB may require a change in the TLB's of other 81 * CPUs, we try to avoid sending an IPI if at all possible. For instance, if 82 * we are updating a PTE and that PTE previously was invalid and therefore 83 * couldn't support an active mapping, there's no need for an IPI since there 84 * can't be a TLB entry to invalidate. The other case is when we change a PTE 85 * to be modified we just update the local TLB. If another TLB has a stale 86 * entry, a TLB MOD exception will be raised and that will cause the local TLB 87 * to be updated. 88 * 89 * We never need to update a non-local TLB if the pmap doesn't have a valid 90 * ASID for that TLB. If it does have a valid ASID but isn't current "onproc" 91 * we simply reset its ASID for that TLB and then when it goes "onproc" it 92 * will allocate a new ASID and any existing TLB entries will be orphaned. 93 * Only in the case that pmap has an "onproc" ASID do we actually have to send 94 * an IPI. 95 * 96 * Once we determined we must send an IPI to shootdown a TLB, we need to send 97 * it to one of CPUs that share that TLB. We choose the lowest numbered CPU 98 * that has one of the pmap's ASID "onproc". In reality, any CPU sharing that 99 * TLB would do, but interrupting an active CPU seems best. 100 * 101 * A TLB might have multiple shootdowns active concurrently. The shootdown 102 * logic compresses these into a few cases: 103 * 0) nobody needs to have its TLB entries invalidated 104 * 1) one ASID needs to have its TLB entries invalidated 105 * 2) more than one ASID needs to have its TLB entries invalidated 106 * 3) the kernel needs to have its TLB entries invalidated 107 * 4) the kernel and one or more ASID need their TLB entries invalidated. 108 * 109 * And for each case we do: 110 * 0) nothing, 111 * 1) if that ASID is still "onproc", we invalidate the TLB entries for 112 * that single ASID. If not, just reset the pmap's ASID to invalidate 113 * and let it allocate a new ASID the next time it goes "onproc", 114 * 2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and 115 * invalidate all non-wired non-global TLB entries, 116 * 3) we invalidate all of the non-wired global TLB entries, 117 * 4) we reinitialize the ASID space (again preserving any "onproc" ASIDs) 118 * invalidate all non-wired TLB entries. 119 * 120 * As you can see, shootdowns are not concerned with addresses, just address 121 * spaces. Since the number of TLB entries is usually quite small, this avoids 122 * a lot of overhead for not much gain. 123 */ 124 125 #define __PMAP_PRIVATE 126 127 #include "opt_multiprocessor.h" 128 129 #include <sys/param.h> 130 #include <sys/systm.h> 131 #include <sys/proc.h> 132 #include <sys/mutex.h> 133 #include <sys/atomic.h> 134 #include <sys/kernel.h> /* for cold */ 135 #include <sys/cpu.h> 136 137 #include <uvm/uvm.h> 138 139 static kmutex_t pmap_tlb0_lock __cacheline_aligned; 140 141 #define IFCONSTANT(x) (__builtin_constant_p((x)) ? (x) : 0) 142 143 #if KERNEL_PID > 31 144 #error "KERNEL_PID expected in range 0-31" 145 #endif 146 147 #define TLBINFO_ASID_MARK_UNUSED(ti, asid) \ 148 __BITMAP_CLR((asid), &(ti)->ti_asid_bitmap) 149 #define TLBINFO_ASID_MARK_USED(ti, asid) \ 150 __BITMAP_SET((asid), &(ti)->ti_asid_bitmap) 151 #define TLBINFO_ASID_INUSE_P(ti, asid) \ 152 __BITMAP_ISSET((asid), &(ti)->ti_asid_bitmap) 153 #define TLBINFO_ASID_RESET(ti) \ 154 do { \ 155 __BITMAP_ZERO(&ti->ti_asid_bitmap); \ 156 for (tlb_asid_t asid = 0; asid <= KERNEL_PID; asid++) \ 157 TLBINFO_ASID_MARK_USED(ti, asid); \ 158 } while (0) 159 #define TLBINFO_ASID_INITIAL_FREE(asid_max) \ 160 (asid_max + 1 /* 0 */ - (1 + KERNEL_PID)) 161 162 struct pmap_tlb_info pmap_tlb0_info = { 163 .ti_name = "tlb0", 164 .ti_asid_hint = KERNEL_PID + 1, 165 #ifdef PMAP_TLB_NUM_PIDS 166 .ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1), 167 .ti_asids_free = IFCONSTANT( 168 TLBINFO_ASID_INITIAL_FREE(PMAP_TLB_NUM_PIDS - 1)), 169 #endif 170 .ti_asid_bitmap._b[0] = __BITS(0, KERNEL_PID), 171 #ifdef PMAP_TLB_WIRED_UPAGES 172 .ti_wired = PMAP_TLB_WIRED_UPAGES, 173 #endif 174 .ti_lock = &pmap_tlb0_lock, 175 .ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais), 176 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 177 .ti_tlbinvop = TLBINV_NOBODY, 178 #endif 179 }; 180 181 #undef IFCONSTANT 182 183 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 184 struct pmap_tlb_info *pmap_tlbs[PMAP_TLB_MAX] = { 185 [0] = &pmap_tlb0_info, 186 }; 187 u_int pmap_ntlbs = 1; 188 #endif 189 190 #ifdef MULTIPROCESSOR 191 __unused static inline bool 192 pmap_tlb_intersecting_active_p(pmap_t pm, struct pmap_tlb_info *ti) 193 { 194 #if PMAP_TLB_MAX == 1 195 return !kcpuset_iszero(pm->pm_active); 196 #else 197 return kcpuset_intersecting_p(pm->pm_active, ti->ti_kcpuset); 198 #endif 199 } 200 201 static inline bool 202 pmap_tlb_intersecting_onproc_p(pmap_t pm, struct pmap_tlb_info *ti) 203 { 204 #if PMAP_TLB_MAX == 1 205 return !kcpuset_iszero(pm->pm_onproc); 206 #else 207 return kcpuset_intersecting_p(pm->pm_onproc, ti->ti_kcpuset); 208 #endif 209 } 210 #endif 211 212 static void 213 pmap_tlb_pai_check(struct pmap_tlb_info *ti, bool locked_p) 214 { 215 #ifdef DIAGNOSTIC 216 struct pmap_asid_info *pai; 217 if (!locked_p) 218 TLBINFO_LOCK(ti); 219 LIST_FOREACH(pai, &ti->ti_pais, pai_link) { 220 KASSERT(pai != NULL); 221 KASSERT(PAI_PMAP(pai, ti) != pmap_kernel()); 222 KASSERT(pai->pai_asid > KERNEL_PID); 223 KASSERTMSG(pai->pai_asid <= ti->ti_asid_max, 224 "pm %p asid %#x", PAI_PMAP(pai, ti), pai->pai_asid); 225 KASSERTMSG(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid), 226 "pm %p asid %u", PAI_PMAP(pai, ti), pai->pai_asid); 227 #ifdef MULTIPROCESSOR 228 KASSERT(pmap_tlb_intersecting_active_p(PAI_PMAP(pai, ti), ti)); 229 #endif 230 } 231 if (!locked_p) 232 TLBINFO_UNLOCK(ti); 233 #endif 234 } 235 236 static void 237 pmap_tlb_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai, 238 struct pmap *pm) 239 { 240 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 241 UVMHIST_LOG(maphist, "(ti=%#jx, pai=%#jx, pm=%#jx): asid %u", 242 (uintptr_t)ti, (uintptr_t)pai, (uintptr_t)pm, pai->pai_asid); 243 244 /* 245 * We must have an ASID but it must not be onproc (on a processor). 246 */ 247 KASSERT(pai->pai_asid > KERNEL_PID); 248 KASSERT(pai->pai_asid <= ti->ti_asid_max); 249 #if defined(MULTIPROCESSOR) 250 KASSERT(pmap_tlb_intersecting_active_p(pm, ti)); 251 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 252 #endif 253 LIST_REMOVE(pai, pai_link); 254 #ifdef DIAGNOSTIC 255 pai->pai_link.le_prev = NULL; /* tagged as unlinked */ 256 #endif 257 /* 258 * If the platform has a cheap way to flush ASIDs then free the ASID 259 * back into the pool. On multiprocessor systems, we will flush the 260 * ASID from the TLB when it's allocated. That way we know the flush 261 * was always done in the correct TLB space. On uniprocessor systems, 262 * just do the flush now since we know that it has been used. This has 263 * a bit less overhead. Either way, this will mean that we will only 264 * need to flush all ASIDs if all ASIDs are in use and we need to 265 * allocate a new one. 266 */ 267 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 268 #ifndef MULTIPROCESSOR 269 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 270 #endif 271 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 272 TLBINFO_ASID_MARK_UNUSED(ti, pai->pai_asid); 273 ti->ti_asids_free++; 274 } 275 } 276 /* 277 * Note that we don't mark the ASID as not in use in the TLB's ASID 278 * bitmap (thus it can't be allocated until the ASID space is exhausted 279 * and therefore reinitialized). We don't want to flush the TLB for 280 * entries belonging to this ASID so we will let natural TLB entry 281 * replacement flush them out of the TLB. Any new entries for this 282 * pmap will need a new ASID allocated. 283 */ 284 pai->pai_asid = 0; 285 286 #if defined(MULTIPROCESSOR) 287 /* 288 * The bits in pm_active belonging to this TLB can only be changed 289 * while this TLB's lock is held. 290 */ 291 #if PMAP_TLB_MAX == 1 292 kcpuset_zero(pm->pm_active); 293 #else 294 kcpuset_remove(pm->pm_active, ti->ti_kcpuset); 295 #endif 296 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 297 #endif /* MULTIPROCESSOR */ 298 299 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 300 } 301 302 void 303 pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti) 304 { 305 #if defined(MULTIPROCESSOR) && !defined(PMAP_TLB_NO_SYNCI_EVCNT) 306 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired, 307 EVCNT_TYPE_MISC, NULL, 308 ti->ti_name, "icache syncs desired"); 309 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts, 310 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 311 ti->ti_name, "icache sync asts"); 312 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all, 313 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 314 ti->ti_name, "icache full syncs"); 315 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages, 316 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 317 ti->ti_name, "icache pages synced"); 318 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate, 319 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 320 ti->ti_name, "icache dup pages skipped"); 321 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred, 322 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 323 ti->ti_name, "icache pages deferred"); 324 #endif /* MULTIPROCESSOR && !PMAP_TLB_NO_SYNCI_EVCNT */ 325 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits, 326 EVCNT_TYPE_MISC, NULL, 327 ti->ti_name, "asid pool reinit"); 328 } 329 330 void 331 pmap_tlb_info_init(struct pmap_tlb_info *ti) 332 { 333 #if defined(MULTIPROCESSOR) 334 #if PMAP_TLB_MAX == 1 335 KASSERT(ti == &pmap_tlb0_info); 336 #else 337 if (ti != &pmap_tlb0_info) { 338 KASSERT(pmap_ntlbs < PMAP_TLB_MAX); 339 340 KASSERT(pmap_tlbs[pmap_ntlbs] == NULL); 341 342 ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 343 TLBINFO_ASID_RESET(ti); 344 ti->ti_asid_hint = KERNEL_PID + 1; 345 ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max; 346 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 347 ti->ti_tlbinvop = TLBINV_NOBODY; 348 ti->ti_victim = NULL; 349 kcpuset_create(&ti->ti_kcpuset, true); 350 ti->ti_index = pmap_ntlbs++; 351 ti->ti_wired = 0; 352 pmap_tlbs[ti->ti_index] = ti; 353 snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u", 354 ti->ti_index); 355 pmap_tlb_info_evcnt_attach(ti); 356 357 KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); 358 return; 359 } 360 #endif 361 #endif /* MULTIPROCESSOR */ 362 KASSERT(ti == &pmap_tlb0_info); 363 KASSERT(ti->ti_lock == &pmap_tlb0_lock); 364 //printf("ti_lock %p ", ti->ti_lock); 365 mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED); 366 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 367 kcpuset_create(&ti->ti_kcpuset, true); 368 kcpuset_set(ti->ti_kcpuset, cpu_index(curcpu())); 369 #endif 370 //printf("asid "); 371 if (ti->ti_asid_max == 0) { 372 ti->ti_asid_max = pmap_md_tlb_asid_max(); 373 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 374 } 375 376 KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); 377 } 378 379 #if defined(MULTIPROCESSOR) 380 void 381 pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci) 382 { 383 KASSERT(!CPU_IS_PRIMARY(ci)); 384 KASSERT(ci->ci_data.cpu_idlelwp != NULL); 385 KASSERT(cold); 386 387 TLBINFO_LOCK(ti); 388 #if PMAP_TLB_MAX > 1 389 kcpuset_set(ti->ti_kcpuset, cpu_index(ci)); 390 cpu_set_tlb_info(ci, ti); 391 #endif 392 393 /* 394 * Do any MD tlb info init. 395 */ 396 pmap_md_tlb_info_attach(ti, ci); 397 398 /* 399 * The kernel pmap uses the kcpuset_running set so it's always 400 * up-to-date. 401 */ 402 TLBINFO_UNLOCK(ti); 403 } 404 #endif /* MULTIPROCESSOR */ 405 406 #ifdef DIAGNOSTIC 407 static size_t 408 pmap_tlb_asid_count(struct pmap_tlb_info *ti) 409 { 410 size_t count = 0; 411 for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) { 412 if (TLBINFO_ASID_INUSE_P(ti, asid)) 413 count++; 414 } 415 return count; 416 } 417 #endif 418 419 static void 420 pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op) 421 { 422 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 423 UVMHIST_LOG(maphist, "(ti=%#jx, op=%ju)", (uintptr_t)ti, op, 0, 0); 424 425 pmap_tlb_pai_check(ti, true); 426 427 ti->ti_evcnt_asid_reinits.ev_count++; 428 429 /* 430 * First, clear the ASID bitmap (except for ASID 0 which belongs 431 * to the kernel). 432 */ 433 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 434 ti->ti_asid_hint = KERNEL_PID + 1; 435 TLBINFO_ASID_RESET(ti); 436 437 switch (op) { 438 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 439 case TLBINV_ALL: 440 tlb_invalidate_all(); 441 break; 442 case TLBINV_ALLUSER: 443 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 444 break; 445 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 446 case TLBINV_NOBODY: { 447 /* 448 * If we are just reclaiming ASIDs in the TLB, let's go find 449 * what ASIDs are in use in the TLB. Since this is a 450 * semi-expensive operation, we don't want to do it too often. 451 * So if more half of the ASIDs are in use, we don't have 452 * enough free ASIDs so invalidate the TLB entries with ASIDs 453 * and clear the ASID bitmap. That will force everyone to 454 * allocate a new ASID. 455 */ 456 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 457 pmap_tlb_asid_check(); 458 const u_int asids_found = tlb_record_asids( 459 ti->ti_asid_bitmap._b, ti->ti_asid_max); 460 pmap_tlb_asid_check(); 461 #ifdef DIAGNOSTIC 462 const u_int asids_count = pmap_tlb_asid_count(ti); 463 #endif 464 KASSERTMSG(asids_found == asids_count, 465 "found %u != count %u", asids_found, asids_count); 466 if (__predict_false(asids_found >= ti->ti_asid_max / 2)) { 467 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 468 #else /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 469 /* 470 * For those systems (PowerPC) that don't require 471 * cross cpu TLB shootdowns, we have to invalidate the 472 * entire TLB because we can't record the ASIDs in use 473 * on the other CPUs. This is hopefully cheaper than 474 * than trying to use an IPI to record all the ASIDs 475 * on all the CPUs (which would be a synchronization 476 * nightmare). 477 */ 478 tlb_invalidate_all(); 479 #endif /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 480 TLBINFO_ASID_RESET(ti); 481 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE( 482 ti->ti_asid_max); 483 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 484 } else { 485 ti->ti_asids_free -= asids_found; 486 } 487 #endif /* !MULTIPROCESSOR || PMAP_TLB_NEED_SHOOTDOWN */ 488 KASSERTMSG(ti->ti_asids_free <= ti->ti_asid_max, "%u", 489 ti->ti_asids_free); 490 break; 491 } 492 default: 493 panic("%s: unexpected op %d", __func__, op); 494 } 495 496 /* 497 * Now go through the active ASIDs. If the ASID is on a processor or 498 * we aren't invalidating all ASIDs and the TLB has an entry owned by 499 * that ASID, mark it as in use. Otherwise release the ASID. 500 */ 501 struct pmap_asid_info *pai, *next; 502 for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) { 503 struct pmap * const pm = PAI_PMAP(pai, ti); 504 next = LIST_NEXT(pai, pai_link); 505 KASSERT(pm != pmap_kernel()); 506 KASSERT(pai->pai_asid > KERNEL_PID); 507 #if defined(MULTIPROCESSOR) 508 if (pmap_tlb_intersecting_onproc_p(pm, ti)) { 509 if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 510 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 511 ti->ti_asids_free--; 512 } 513 continue; 514 } 515 #endif /* MULTIPROCESSOR */ 516 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 517 KASSERT(op == TLBINV_NOBODY); 518 } else { 519 pmap_tlb_pai_reset(ti, pai, pm); 520 } 521 } 522 #ifdef DIAGNOSTIC 523 size_t free_count __diagused = ti->ti_asid_max - pmap_tlb_asid_count(ti); 524 KASSERTMSG(free_count == ti->ti_asids_free, 525 "bitmap error: %zu != %u", free_count, ti->ti_asids_free); 526 #endif 527 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 528 } 529 530 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 531 #if PMAP_TLB_MAX == 1 532 #error shootdown not required for single TLB systems 533 #endif 534 void 535 pmap_tlb_shootdown_process(void) 536 { 537 struct cpu_info * const ci = curcpu(); 538 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 539 #ifdef DIAGNOSTIC 540 struct pmap * const pm = curlwp->l_proc->p_vmspace->vm_map.pmap; 541 #endif 542 543 KASSERT(cpu_intr_p()); 544 KASSERTMSG(ci->ci_cpl >= IPL_SCHED, 545 "%s: cpl (%d) < IPL_SCHED (%d)", 546 __func__, ci->ci_cpl, IPL_SCHED); 547 548 TLBINFO_LOCK(ti); 549 550 switch (ti->ti_tlbinvop) { 551 case TLBINV_ONE: { 552 /* 553 * We only need to invalidate one user ASID. 554 */ 555 struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti); 556 KASSERT(ti->ti_victim != pmap_kernel()); 557 if (!pmap_tlb_intersecting_onproc_p(ti->ti_victim, ti)) { 558 /* 559 * The victim is an active pmap so we will just 560 * invalidate its TLB entries. 561 */ 562 KASSERT(pai->pai_asid > KERNEL_PID); 563 pmap_tlb_asid_check(); 564 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 565 pmap_tlb_asid_check(); 566 } else if (pai->pai_asid) { 567 /* 568 * The victim is no longer an active pmap for this TLB. 569 * So simply clear its ASID and when pmap_activate is 570 * next called for this pmap, it will allocate a new 571 * ASID. 572 */ 573 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 574 pmap_tlb_pai_reset(ti, pai, PAI_PMAP(pai, ti)); 575 } 576 break; 577 } 578 case TLBINV_ALLUSER: 579 /* 580 * Flush all user TLB entries. 581 */ 582 pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER); 583 break; 584 case TLBINV_ALLKERNEL: 585 /* 586 * We need to invalidate all global TLB entries. 587 */ 588 pmap_tlb_asid_check(); 589 tlb_invalidate_globals(); 590 pmap_tlb_asid_check(); 591 break; 592 case TLBINV_ALL: 593 /* 594 * Flush all the TLB entries (user and kernel). 595 */ 596 pmap_tlb_asid_reinitialize(ti, TLBINV_ALL); 597 break; 598 case TLBINV_NOBODY: 599 /* 600 * Might be spurious or another SMT CPU sharing this TLB 601 * could have already done the work. 602 */ 603 break; 604 } 605 606 /* 607 * Indicate we are done with shutdown event. 608 */ 609 ti->ti_victim = NULL; 610 ti->ti_tlbinvop = TLBINV_NOBODY; 611 TLBINFO_UNLOCK(ti); 612 } 613 614 /* 615 * This state machine could be encoded into an array of integers but since all 616 * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which 617 * can be loaded in a single instruction. 618 */ 619 #define TLBINV_MAP(op, nobody, one, alluser, allkernel, all) \ 620 (((( (nobody) << 3*TLBINV_NOBODY) \ 621 | ( (one) << 3*TLBINV_ONE) \ 622 | ( (alluser) << 3*TLBINV_ALLUSER) \ 623 | ((allkernel) << 3*TLBINV_ALLKERNEL) \ 624 | ( (all) << 3*TLBINV_ALL)) >> 3*(op)) & 7) 625 626 #define TLBINV_USER_MAP(op) \ 627 TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER, \ 628 TLBINV_ALL, TLBINV_ALL) 629 630 #define TLBINV_KERNEL_MAP(op) \ 631 TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL, \ 632 TLBINV_ALLKERNEL, TLBINV_ALL) 633 634 bool 635 pmap_tlb_shootdown_bystanders(pmap_t pm) 636 { 637 /* 638 * We don't need to deal with our own TLB. 639 */ 640 641 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 642 643 kcpuset_t *pm_active; 644 kcpuset_clone(&pm_active, pm->pm_active); 645 kcpuset_remove(pm_active, cpu_tlb_info(curcpu())->ti_kcpuset); 646 const bool kernel_p = (pm == pmap_kernel()); 647 bool ipi_sent = false; 648 649 /* 650 * If pm_active gets more bits set, then it's after all our changes 651 * have been made so they will already be cognizant of them. 652 */ 653 654 for (size_t i = 0; !kcpuset_iszero(pm_active); i++) { 655 KASSERT(i < pmap_ntlbs); 656 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 657 KASSERT(tlbinfo_index(ti) == i); 658 /* 659 * Skip this TLB if there are no active mappings for it. 660 */ 661 if (!kcpuset_intersecting_p(pm_active, ti->ti_kcpuset)) 662 continue; 663 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 664 kcpuset_remove(pm_active, ti->ti_kcpuset); 665 TLBINFO_LOCK(ti); 666 cpuid_t j = kcpuset_ffs_intersecting(pm->pm_onproc, 667 ti->ti_kcpuset); 668 // post decrement since ffs returns bit + 1 or 0 if no bit 669 if (j-- > 0) { 670 if (kernel_p) { 671 ti->ti_tlbinvop = 672 TLBINV_KERNEL_MAP(ti->ti_tlbinvop); 673 ti->ti_victim = NULL; 674 } else { 675 KASSERT(pai->pai_asid); 676 if (__predict_false(ti->ti_victim == pm)) { 677 KASSERT(ti->ti_tlbinvop == TLBINV_ONE); 678 /* 679 * We still need to invalidate this one 680 * ASID so there's nothing to change. 681 */ 682 } else { 683 ti->ti_tlbinvop = 684 TLBINV_USER_MAP(ti->ti_tlbinvop); 685 if (ti->ti_tlbinvop == TLBINV_ONE) 686 ti->ti_victim = pm; 687 else 688 ti->ti_victim = NULL; 689 } 690 } 691 TLBINFO_UNLOCK(ti); 692 /* 693 * Now we can send out the shootdown IPIs to a CPU 694 * that shares this TLB and is currently using this 695 * pmap. That CPU will process the IPI and do the 696 * all the work. Any other CPUs sharing that TLB 697 * will take advantage of that work. pm_onproc might 698 * change now that we have released the lock but we 699 * can tolerate spurious shootdowns. 700 */ 701 cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN); 702 ipi_sent = true; 703 continue; 704 } 705 if (!pmap_tlb_intersecting_active_p(pm, ti)) { 706 /* 707 * If this pmap has an ASID assigned but it's not 708 * currently running, nuke its ASID. Next time the 709 * pmap is activated, it will allocate a new ASID. 710 * And best of all, we avoid an IPI. 711 */ 712 KASSERT(!kernel_p); 713 pmap_tlb_pai_reset(ti, pai, pm); 714 //ti->ti_evcnt_lazy_shots.ev_count++; 715 } 716 TLBINFO_UNLOCK(ti); 717 } 718 719 kcpuset_destroy(pm_active); 720 721 UVMHIST_LOG(maphist, " <-- done (ipi_sent=%jd)", ipi_sent, 0, 0, 0); 722 723 return ipi_sent; 724 } 725 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 726 727 #ifndef PMAP_HWPAGEWALKER 728 int 729 pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pte, u_int flags) 730 { 731 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 732 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 733 int rv = -1; 734 735 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 736 UVMHIST_LOG(maphist, 737 " (pm=%#jx va=%#j, pte=%#jx flags=%#jx)", 738 (uintptr_t)pm, va, pte_value(pte), flags); 739 740 KASSERT(kpreempt_disabled()); 741 742 KASSERTMSG(pte_valid_p(pte), "va %#"PRIxVADDR" %#"PRIxPTE, 743 va, pte_value(pte)); 744 745 TLBINFO_LOCK(ti); 746 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 747 pmap_tlb_asid_check(); 748 rv = tlb_update_addr(va, pai->pai_asid, pte, 749 (flags & PMAP_TLB_INSERT) != 0); 750 pmap_tlb_asid_check(); 751 UVMHIST_LOG(maphist, 752 " %jd <-- tlb_update_addr(%#jx, %#jx, %#jx, ...)", 753 rv, va, pai->pai_asid, pte_value(pte)); 754 KASSERTMSG((flags & PMAP_TLB_INSERT) == 0 || rv == 1, 755 "pmap %p (asid %u) va %#"PRIxVADDR" pte %#"PRIxPTE" rv %d", 756 pm, pai->pai_asid, va, pte_value(pte), rv); 757 } 758 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 759 if (flags & PMAP_TLB_NEED_IPI) 760 pm->pm_shootdown_pending = 1; 761 #endif 762 TLBINFO_UNLOCK(ti); 763 764 UVMHIST_LOG(maphist, " <-- done (rv=%jd)", rv, 0, 0, 0); 765 766 return rv; 767 } 768 #endif /* !PMAP_HWPAGEWALKER */ 769 770 void 771 pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va) 772 { 773 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 774 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 775 776 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 777 UVMHIST_LOG(maphist, " (pm=%#jx va=%#jx) ti=%#jx asid=%#jx", 778 (uintptr_t)pm, va, (uintptr_t)ti, pai->pai_asid); 779 780 KASSERT(kpreempt_disabled()); 781 782 TLBINFO_LOCK(ti); 783 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 784 pmap_tlb_asid_check(); 785 UVMHIST_LOG(maphist, " invalidating %#jx asid %#jx", 786 va, pai->pai_asid, 0, 0); 787 tlb_invalidate_addr(va, pai->pai_asid); 788 pmap_tlb_asid_check(); 789 } 790 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 791 pm->pm_shootdown_pending = 1; 792 #endif 793 TLBINFO_UNLOCK(ti); 794 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 795 } 796 797 static inline void 798 pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm, 799 struct pmap_asid_info *pai) 800 { 801 /* 802 * We shouldn't have an ASID assigned, and thusly must not be onproc 803 * nor active. 804 */ 805 KASSERT(pm != pmap_kernel()); 806 KASSERT(pai->pai_asid == 0); 807 KASSERT(pai->pai_link.le_prev == NULL); 808 #if defined(MULTIPROCESSOR) 809 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 810 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 811 #endif 812 KASSERT(ti->ti_asids_free > 0); 813 KASSERT(ti->ti_asid_hint > KERNEL_PID); 814 815 /* 816 * If the last ASID allocated was the maximum ASID, then the 817 * hint will be out of range. Reset the hint to first 818 * available ASID. 819 */ 820 if (PMAP_TLB_FLUSH_ASID_ON_RESET 821 && ti->ti_asid_hint > ti->ti_asid_max) { 822 ti->ti_asid_hint = KERNEL_PID + 1; 823 } 824 KASSERTMSG(ti->ti_asid_hint <= ti->ti_asid_max, "hint %u", 825 ti->ti_asid_hint); 826 827 /* 828 * Let's see if the hinted ASID is free. If not search for 829 * a new one. 830 */ 831 if (__predict_true(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) { 832 const size_t nbpw = NBBY * sizeof(ti->ti_asid_bitmap._b[0]); 833 size_t i; 834 u_long bits; 835 for (i = 0; (bits = ~ti->ti_asid_bitmap._b[i]) == 0; i++) { 836 KASSERT(i < __arraycount(ti->ti_asid_bitmap._b) - 1); 837 } 838 /* 839 * ffs wants to find the first bit set while we want 840 * to find the first bit cleared. 841 */ 842 const u_int n = __builtin_ffsl(bits) - 1; 843 KASSERTMSG((bits << (nbpw - (n+1))) == (1ul << (nbpw-1)), 844 "n %u bits %#lx", n, bits); 845 KASSERT(n < nbpw); 846 ti->ti_asid_hint = n + i * nbpw; 847 } 848 849 KASSERT(ti->ti_asid_hint > KERNEL_PID); 850 KASSERT(ti->ti_asid_hint <= ti->ti_asid_max); 851 KASSERTMSG(PMAP_TLB_FLUSH_ASID_ON_RESET 852 || TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint - 1), 853 "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); 854 KASSERTMSG(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint), 855 "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); 856 857 /* 858 * The hint contains our next ASID so take it and advance the hint. 859 * Mark it as used and insert the pai into the list of active asids. 860 * There is also one less asid free in this TLB. 861 */ 862 KASSERT(ti->ti_asid_hint > KERNEL_PID); 863 pai->pai_asid = ti->ti_asid_hint++; 864 #ifdef MULTIPROCESSOR 865 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 866 /* 867 * Clean the new ASID from the TLB. 868 */ 869 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 870 } 871 #endif 872 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 873 LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link); 874 ti->ti_asids_free--; 875 876 #if defined(MULTIPROCESSOR) 877 /* 878 * Mark that we now have an active ASID for all CPUs sharing this TLB. 879 * The bits in pm_active belonging to this TLB can only be changed 880 * while this TLBs lock is held. 881 */ 882 #if PMAP_TLB_MAX == 1 883 kcpuset_copy(pm->pm_active, kcpuset_running); 884 #else 885 kcpuset_merge(pm->pm_active, ti->ti_kcpuset); 886 #endif 887 #endif 888 } 889 890 /* 891 * Acquire a TLB address space tag (called ASID or TLBPID) and return it. 892 * ASID might have already been previously acquired. 893 */ 894 void 895 pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l) 896 { 897 struct cpu_info * const ci = l->l_cpu; 898 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 899 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 900 901 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 902 UVMHIST_LOG(maphist, "(pm=%#jx, l=%#jx, ti=%#jx)", (uintptr_t)pm, 903 (uintptr_t)l, (uintptr_t)ti, 0); 904 905 KASSERT(kpreempt_disabled()); 906 907 /* 908 * Kernels use a fixed ASID and thus doesn't need to acquire one. 909 */ 910 if (pm == pmap_kernel()) { 911 UVMHIST_LOG(maphist, " <-- done (kernel)", 0, 0, 0, 0); 912 return; 913 } 914 915 TLBINFO_LOCK(ti); 916 KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL); 917 KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL); 918 pmap_tlb_pai_check(ti, true); 919 if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) { 920 /* 921 * If we've run out ASIDs, reinitialize the ASID space. 922 */ 923 if (__predict_false(tlbinfo_noasids_p(ti))) { 924 KASSERT(l == curlwp); 925 UVMHIST_LOG(maphist, " asid reinit", 0, 0, 0, 0); 926 pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY); 927 KASSERT(!tlbinfo_noasids_p(ti)); 928 } 929 930 /* 931 * Get an ASID. 932 */ 933 pmap_tlb_asid_alloc(ti, pm, pai); 934 UVMHIST_LOG(maphist, "allocated asid %#jx", pai->pai_asid, 935 0, 0, 0); 936 } 937 pmap_tlb_pai_check(ti, true); 938 #if defined(MULTIPROCESSOR) 939 KASSERT(kcpuset_isset(pm->pm_active, cpu_index(ci))); 940 #endif 941 942 if (l == curlwp) { 943 #if defined(MULTIPROCESSOR) 944 /* 945 * The bits in pm_onproc belonging to this TLB can only 946 * be changed while this TLBs lock is held unless atomic 947 * operations are used. 948 */ 949 KASSERT(pm != pmap_kernel()); 950 kcpuset_atomic_set(pm->pm_onproc, cpu_index(ci)); 951 #endif 952 ci->ci_pmap_asid_cur = pai->pai_asid; 953 UVMHIST_LOG(maphist, "setting asid to %#jx", pai->pai_asid, 954 0, 0, 0); 955 tlb_set_asid(pai->pai_asid); 956 pmap_tlb_asid_check(); 957 } else { 958 printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp); 959 } 960 TLBINFO_UNLOCK(ti); 961 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 962 } 963 964 void 965 pmap_tlb_asid_deactivate(pmap_t pm) 966 { 967 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 968 969 KASSERT(kpreempt_disabled()); 970 #if defined(MULTIPROCESSOR) 971 /* 972 * The kernel pmap is aways onproc and active and must never have 973 * those bits cleared. If pmap_remove_all was called, it has already 974 * deactivated the pmap and thusly onproc will be 0 so there's nothing 975 * to do. 976 */ 977 if (pm != pmap_kernel() && !kcpuset_iszero(pm->pm_onproc)) { 978 struct cpu_info * const ci = curcpu(); 979 KASSERT(!cpu_intr_p()); 980 KASSERTMSG(kcpuset_isset(pm->pm_onproc, cpu_index(ci)), 981 "%s: pmap %p onproc %p doesn't include cpu %d (%p)", 982 __func__, pm, pm->pm_onproc, cpu_index(ci), ci); 983 /* 984 * The bits in pm_onproc that belong to this TLB can 985 * be changed while this TLBs lock is not held as long 986 * as we use atomic ops. 987 */ 988 kcpuset_atomic_clear(pm->pm_onproc, cpu_index(ci)); 989 } 990 #endif 991 curcpu()->ci_pmap_asid_cur = KERNEL_PID; 992 UVMHIST_LOG(maphist, " <-- done (pm=%#jx)", (uintptr_t)pm, 0, 0, 0); 993 tlb_set_asid(KERNEL_PID); 994 pmap_tlb_pai_check(cpu_tlb_info(curcpu()), false); 995 #if defined(DEBUG) 996 pmap_tlb_asid_check(); 997 #endif 998 } 999 1000 void 1001 pmap_tlb_asid_release_all(struct pmap *pm) 1002 { 1003 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1004 UVMHIST_LOG(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0); 1005 1006 KASSERT(pm != pmap_kernel()); 1007 #if defined(MULTIPROCESSOR) 1008 //KASSERT(!kcpuset_iszero(pm->pm_onproc)); // XXX 1009 struct cpu_info * const ci __diagused = curcpu(); 1010 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci))); 1011 #if PMAP_TLB_MAX > 1 1012 for (u_int i = 0; !kcpuset_iszero(pm->pm_active); i++) { 1013 KASSERT(i < pmap_ntlbs); 1014 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 1015 #else 1016 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1017 #endif 1018 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1019 TLBINFO_LOCK(ti); 1020 if (PMAP_PAI_ASIDVALID_P(pai, ti)) { 1021 /* 1022 * This pmap should not be in use by any other cpu so 1023 * we can just reset and be happy. 1024 */ 1025 if (ti->ti_victim == pm) 1026 ti->ti_victim = NULL; 1027 pmap_tlb_pai_reset(ti, pai, pm); 1028 } 1029 KASSERT(pai->pai_link.le_prev == NULL); 1030 TLBINFO_UNLOCK(ti); 1031 #if PMAP_TLB_MAX > 1 1032 } 1033 #endif 1034 #ifdef DIAGNOSTIC 1035 for (size_t i = 0; i < (PMAP_TLB_MAX > 1 ? pmap_ntlbs : 1); i++) { 1036 KASSERTMSG(pm->pm_pai[i].pai_asid == 0, 1037 "pm %p i %zu asid %u", 1038 pm, i, pm->pm_pai[i].pai_asid); 1039 } 1040 #endif 1041 #else 1042 /* 1043 * Handle the case of an UP kernel which only has, at most, one TLB. 1044 * If the pmap has an ASID allocated, free it. 1045 */ 1046 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1047 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1048 TLBINFO_LOCK(ti); 1049 if (pai->pai_asid > KERNEL_PID) { 1050 if (curcpu()->ci_pmap_asid_cur == pai->pai_asid) { 1051 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 1052 } else { 1053 pmap_tlb_pai_reset(ti, pai, pm); 1054 } 1055 } 1056 TLBINFO_UNLOCK(ti); 1057 #endif /* MULTIPROCESSOR */ 1058 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 1059 } 1060 1061 void 1062 pmap_tlb_asid_check(void) 1063 { 1064 #ifdef DEBUG 1065 kpreempt_disable(); 1066 const tlb_asid_t asid __debugused = tlb_get_asid(); 1067 KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur, 1068 "%s: asid (%#x) != current asid (%#x)", 1069 __func__, asid, curcpu()->ci_pmap_asid_cur); 1070 kpreempt_enable(); 1071 #endif 1072 } 1073 1074 #ifdef DEBUG 1075 void 1076 pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t)) 1077 { 1078 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 1079 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1080 TLBINFO_LOCK(ti); 1081 if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID) 1082 tlb_walk(pm, func); 1083 TLBINFO_UNLOCK(ti); 1084 } 1085 #endif /* DEBUG */ 1086