1 /* $NetBSD: pmap_tlb.c,v 1.30 2019/12/18 11:27:56 skrll Exp $ */ 2 3 /*- 4 * Copyright (c) 2010 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Matt Thomas at 3am Software Foundry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 34 __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.30 2019/12/18 11:27:56 skrll Exp $"); 35 36 /* 37 * Manages address spaces in a TLB. 38 * 39 * Normally there is a 1:1 mapping between a TLB and a CPU. However, some 40 * implementations may share a TLB between multiple CPUs (really CPU thread 41 * contexts). This requires the TLB abstraction to be separated from the 42 * CPU abstraction. It also requires that the TLB be locked while doing 43 * TLB activities. 44 * 45 * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps 46 * that have a valid ASID. 47 * 48 * We allocate ASIDs in increasing order until we have exhausted the supply, 49 * then reinitialize the ASID space, and start allocating again at 1. When 50 * allocating from the ASID bitmap, we skip any ASID who has a corresponding 51 * bit set in the ASID bitmap. Eventually this causes the ASID bitmap to fill 52 * and, when completely filled, a reinitialization of the ASID space. 53 * 54 * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs 55 * of non-kernel TLB entries get recorded in the ASID bitmap. If the entries 56 * in TLB consume more than half of the ASID space, all ASIDs are invalidated, 57 * the ASID bitmap is recleared, and the list of pmaps is emptied. Otherwise, 58 * (the normal case), any ASID present in the TLB (even those which are no 59 * longer used by a pmap) will remain active (allocated) and all other ASIDs 60 * will be freed. If the size of the TLB is much smaller than the ASID space, 61 * this algorithm completely avoids TLB invalidation. 62 * 63 * For multiprocessors, we also have to deal TLB invalidation requests from 64 * other CPUs, some of which are dealt with the reinitialization of the ASID 65 * space. Whereas above we keep the ASIDs of those pmaps which have active 66 * TLB entries, this type of reinitialization preserves the ASIDs of any 67 * "onproc" user pmap and all other ASIDs will be freed. We must do this 68 * since we can't change the current ASID. 69 * 70 * Each pmap has two bitmaps: pm_active and pm_onproc. Each bit in pm_active 71 * indicates whether that pmap has an allocated ASID for a CPU. Each bit in 72 * pm_onproc indicates that pmap's ASID is active (equal to the ASID in COP 0 73 * register EntryHi) on a CPU. The bit number comes from the CPU's cpu_index(). 74 * Even though these bitmaps contain the bits for all CPUs, the bits that 75 * correspond to the bits belonging to the CPUs sharing a TLB can only be 76 * manipulated while holding that TLB's lock. Atomic ops must be used to 77 * update them since multiple CPUs may be changing different sets of bits at 78 * same time but these sets never overlap. 79 * 80 * When a change to the local TLB may require a change in the TLB's of other 81 * CPUs, we try to avoid sending an IPI if at all possible. For instance, if 82 * we are updating a PTE and that PTE previously was invalid and therefore 83 * couldn't support an active mapping, there's no need for an IPI since there 84 * can't be a TLB entry to invalidate. The other case is when we change a PTE 85 * to be modified we just update the local TLB. If another TLB has a stale 86 * entry, a TLB MOD exception will be raised and that will cause the local TLB 87 * to be updated. 88 * 89 * We never need to update a non-local TLB if the pmap doesn't have a valid 90 * ASID for that TLB. If it does have a valid ASID but isn't current "onproc" 91 * we simply reset its ASID for that TLB and then when it goes "onproc" it 92 * will allocate a new ASID and any existing TLB entries will be orphaned. 93 * Only in the case that pmap has an "onproc" ASID do we actually have to send 94 * an IPI. 95 * 96 * Once we determined we must send an IPI to shootdown a TLB, we need to send 97 * it to one of CPUs that share that TLB. We choose the lowest numbered CPU 98 * that has one of the pmap's ASID "onproc". In reality, any CPU sharing that 99 * TLB would do, but interrupting an active CPU seems best. 100 * 101 * A TLB might have multiple shootdowns active concurrently. The shootdown 102 * logic compresses these into a few cases: 103 * 0) nobody needs to have its TLB entries invalidated 104 * 1) one ASID needs to have its TLB entries invalidated 105 * 2) more than one ASID needs to have its TLB entries invalidated 106 * 3) the kernel needs to have its TLB entries invalidated 107 * 4) the kernel and one or more ASID need their TLB entries invalidated. 108 * 109 * And for each case we do: 110 * 0) nothing, 111 * 1) if that ASID is still "onproc", we invalidate the TLB entries for 112 * that single ASID. If not, just reset the pmap's ASID to invalidate 113 * and let it allocate a new ASID the next time it goes "onproc", 114 * 2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and 115 * invalidate all non-wired non-global TLB entries, 116 * 3) we invalidate all of the non-wired global TLB entries, 117 * 4) we reinitialize the ASID space (again preserving any "onproc" ASIDs) 118 * invalidate all non-wired TLB entries. 119 * 120 * As you can see, shootdowns are not concerned with addresses, just address 121 * spaces. Since the number of TLB entries is usually quite small, this avoids 122 * a lot of overhead for not much gain. 123 */ 124 125 #define __PMAP_PRIVATE 126 127 #include "opt_multiprocessor.h" 128 129 #include <sys/param.h> 130 131 #include <sys/atomic.h> 132 #include <sys/cpu.h> 133 #include <sys/kernel.h> /* for cold */ 134 #include <sys/mutex.h> 135 #include <sys/proc.h> 136 #include <sys/systm.h> 137 138 #include <uvm/uvm.h> 139 140 static kmutex_t pmap_tlb0_lock __cacheline_aligned; 141 142 #define IFCONSTANT(x) (__builtin_constant_p((x)) ? (x) : 0) 143 144 #if KERNEL_PID > 31 145 #error "KERNEL_PID expected in range 0-31" 146 #endif 147 148 #define TLBINFO_ASID_MARK_UNUSED(ti, asid) \ 149 __BITMAP_CLR((asid), &(ti)->ti_asid_bitmap) 150 #define TLBINFO_ASID_MARK_USED(ti, asid) \ 151 __BITMAP_SET((asid), &(ti)->ti_asid_bitmap) 152 #define TLBINFO_ASID_INUSE_P(ti, asid) \ 153 __BITMAP_ISSET((asid), &(ti)->ti_asid_bitmap) 154 #define TLBINFO_ASID_RESET(ti) \ 155 do { \ 156 __BITMAP_ZERO(&ti->ti_asid_bitmap); \ 157 for (tlb_asid_t asid = 0; asid <= KERNEL_PID; asid++) \ 158 TLBINFO_ASID_MARK_USED(ti, asid); \ 159 } while (0) 160 #define TLBINFO_ASID_INITIAL_FREE(asid_max) \ 161 (asid_max + 1 /* 0 */ - (1 + KERNEL_PID)) 162 163 struct pmap_tlb_info pmap_tlb0_info = { 164 .ti_name = "tlb0", 165 .ti_asid_hint = KERNEL_PID + 1, 166 #ifdef PMAP_TLB_NUM_PIDS 167 .ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1), 168 .ti_asids_free = IFCONSTANT( 169 TLBINFO_ASID_INITIAL_FREE(PMAP_TLB_NUM_PIDS - 1)), 170 #endif 171 .ti_asid_bitmap._b[0] = __BITS(0, KERNEL_PID), 172 #ifdef PMAP_TLB_WIRED_UPAGES 173 .ti_wired = PMAP_TLB_WIRED_UPAGES, 174 #endif 175 .ti_lock = &pmap_tlb0_lock, 176 .ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais), 177 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 178 .ti_tlbinvop = TLBINV_NOBODY, 179 #endif 180 }; 181 182 #undef IFCONSTANT 183 184 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 185 struct pmap_tlb_info *pmap_tlbs[PMAP_TLB_MAX] = { 186 [0] = &pmap_tlb0_info, 187 }; 188 u_int pmap_ntlbs = 1; 189 #endif 190 191 #ifdef MULTIPROCESSOR 192 __unused static inline bool 193 pmap_tlb_intersecting_active_p(pmap_t pm, struct pmap_tlb_info *ti) 194 { 195 #if PMAP_TLB_MAX == 1 196 return !kcpuset_iszero(pm->pm_active); 197 #else 198 return kcpuset_intersecting_p(pm->pm_active, ti->ti_kcpuset); 199 #endif 200 } 201 202 static inline bool 203 pmap_tlb_intersecting_onproc_p(pmap_t pm, struct pmap_tlb_info *ti) 204 { 205 #if PMAP_TLB_MAX == 1 206 return !kcpuset_iszero(pm->pm_onproc); 207 #else 208 return kcpuset_intersecting_p(pm->pm_onproc, ti->ti_kcpuset); 209 #endif 210 } 211 #endif 212 213 static void 214 pmap_tlb_pai_check(struct pmap_tlb_info *ti, bool locked_p) 215 { 216 #ifdef DIAGNOSTIC 217 struct pmap_asid_info *pai; 218 if (!locked_p) 219 TLBINFO_LOCK(ti); 220 LIST_FOREACH(pai, &ti->ti_pais, pai_link) { 221 KASSERT(pai != NULL); 222 KASSERT(PAI_PMAP(pai, ti) != pmap_kernel()); 223 KASSERT(pai->pai_asid > KERNEL_PID); 224 KASSERTMSG(pai->pai_asid <= ti->ti_asid_max, 225 "pm %p asid %#x", PAI_PMAP(pai, ti), pai->pai_asid); 226 KASSERTMSG(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid), 227 "pm %p asid %u", PAI_PMAP(pai, ti), pai->pai_asid); 228 #ifdef MULTIPROCESSOR 229 KASSERT(pmap_tlb_intersecting_active_p(PAI_PMAP(pai, ti), ti)); 230 #endif 231 } 232 if (!locked_p) 233 TLBINFO_UNLOCK(ti); 234 #endif 235 } 236 237 static void 238 pmap_tlb_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai, 239 struct pmap *pm) 240 { 241 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 242 UVMHIST_LOG(maphist, "(ti=%#jx, pai=%#jx, pm=%#jx): asid %u", 243 (uintptr_t)ti, (uintptr_t)pai, (uintptr_t)pm, pai->pai_asid); 244 245 /* 246 * We must have an ASID but it must not be onproc (on a processor). 247 */ 248 KASSERT(pai->pai_asid > KERNEL_PID); 249 KASSERT(pai->pai_asid <= ti->ti_asid_max); 250 #if defined(MULTIPROCESSOR) 251 KASSERT(pmap_tlb_intersecting_active_p(pm, ti)); 252 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 253 #endif 254 LIST_REMOVE(pai, pai_link); 255 #ifdef DIAGNOSTIC 256 pai->pai_link.le_prev = NULL; /* tagged as unlinked */ 257 #endif 258 /* 259 * If the platform has a cheap way to flush ASIDs then free the ASID 260 * back into the pool. On multiprocessor systems, we will flush the 261 * ASID from the TLB when it's allocated. That way we know the flush 262 * was always done in the correct TLB space. On uniprocessor systems, 263 * just do the flush now since we know that it has been used. This has 264 * a bit less overhead. Either way, this will mean that we will only 265 * need to flush all ASIDs if all ASIDs are in use and we need to 266 * allocate a new one. 267 */ 268 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 269 #ifndef MULTIPROCESSOR 270 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 271 #endif 272 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 273 TLBINFO_ASID_MARK_UNUSED(ti, pai->pai_asid); 274 ti->ti_asids_free++; 275 } 276 } 277 /* 278 * Note that we don't mark the ASID as not in use in the TLB's ASID 279 * bitmap (thus it can't be allocated until the ASID space is exhausted 280 * and therefore reinitialized). We don't want to flush the TLB for 281 * entries belonging to this ASID so we will let natural TLB entry 282 * replacement flush them out of the TLB. Any new entries for this 283 * pmap will need a new ASID allocated. 284 */ 285 pai->pai_asid = 0; 286 287 #if defined(MULTIPROCESSOR) 288 /* 289 * The bits in pm_active belonging to this TLB can only be changed 290 * while this TLB's lock is held. 291 */ 292 #if PMAP_TLB_MAX == 1 293 kcpuset_zero(pm->pm_active); 294 #else 295 kcpuset_remove(pm->pm_active, ti->ti_kcpuset); 296 #endif 297 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 298 #endif /* MULTIPROCESSOR */ 299 300 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 301 } 302 303 void 304 pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti) 305 { 306 #if defined(MULTIPROCESSOR) && !defined(PMAP_TLB_NO_SYNCI_EVCNT) 307 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired, 308 EVCNT_TYPE_MISC, NULL, 309 ti->ti_name, "icache syncs desired"); 310 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts, 311 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 312 ti->ti_name, "icache sync asts"); 313 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all, 314 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 315 ti->ti_name, "icache full syncs"); 316 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages, 317 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts, 318 ti->ti_name, "icache pages synced"); 319 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate, 320 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 321 ti->ti_name, "icache dup pages skipped"); 322 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred, 323 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired, 324 ti->ti_name, "icache pages deferred"); 325 #endif /* MULTIPROCESSOR && !PMAP_TLB_NO_SYNCI_EVCNT */ 326 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits, 327 EVCNT_TYPE_MISC, NULL, 328 ti->ti_name, "asid pool reinit"); 329 } 330 331 void 332 pmap_tlb_info_init(struct pmap_tlb_info *ti) 333 { 334 #if defined(MULTIPROCESSOR) 335 #if PMAP_TLB_MAX == 1 336 KASSERT(ti == &pmap_tlb0_info); 337 #else 338 if (ti != &pmap_tlb0_info) { 339 KASSERT(pmap_ntlbs < PMAP_TLB_MAX); 340 341 KASSERT(pmap_tlbs[pmap_ntlbs] == NULL); 342 343 ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED); 344 TLBINFO_ASID_RESET(ti); 345 ti->ti_asid_hint = KERNEL_PID + 1; 346 ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max; 347 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 348 ti->ti_tlbinvop = TLBINV_NOBODY; 349 ti->ti_victim = NULL; 350 kcpuset_create(&ti->ti_kcpuset, true); 351 ti->ti_index = pmap_ntlbs++; 352 ti->ti_wired = 0; 353 pmap_tlbs[ti->ti_index] = ti; 354 snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u", 355 ti->ti_index); 356 pmap_tlb_info_evcnt_attach(ti); 357 358 KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); 359 return; 360 } 361 #endif 362 #endif /* MULTIPROCESSOR */ 363 KASSERT(ti == &pmap_tlb0_info); 364 KASSERT(ti->ti_lock == &pmap_tlb0_lock); 365 //printf("ti_lock %p ", ti->ti_lock); 366 mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED); 367 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1 368 kcpuset_create(&ti->ti_kcpuset, true); 369 kcpuset_set(ti->ti_kcpuset, cpu_index(curcpu())); 370 #endif 371 //printf("asid "); 372 if (ti->ti_asid_max == 0) { 373 ti->ti_asid_max = pmap_md_tlb_asid_max(); 374 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 375 } 376 377 KASSERT(ti->ti_asid_max < PMAP_TLB_BITMAP_LENGTH); 378 } 379 380 #if defined(MULTIPROCESSOR) 381 void 382 pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci) 383 { 384 KASSERT(!CPU_IS_PRIMARY(ci)); 385 KASSERT(ci->ci_data.cpu_idlelwp != NULL); 386 KASSERT(cold); 387 388 TLBINFO_LOCK(ti); 389 #if PMAP_TLB_MAX > 1 390 kcpuset_set(ti->ti_kcpuset, cpu_index(ci)); 391 cpu_set_tlb_info(ci, ti); 392 #endif 393 394 /* 395 * Do any MD tlb info init. 396 */ 397 pmap_md_tlb_info_attach(ti, ci); 398 399 /* 400 * The kernel pmap uses the kcpuset_running set so it's always 401 * up-to-date. 402 */ 403 TLBINFO_UNLOCK(ti); 404 } 405 #endif /* MULTIPROCESSOR */ 406 407 #ifdef DIAGNOSTIC 408 static size_t 409 pmap_tlb_asid_count(struct pmap_tlb_info *ti) 410 { 411 size_t count = 0; 412 for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) { 413 if (TLBINFO_ASID_INUSE_P(ti, asid)) 414 count++; 415 } 416 return count; 417 } 418 #endif 419 420 static void 421 pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op) 422 { 423 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 424 UVMHIST_LOG(maphist, "(ti=%#jx, op=%ju)", (uintptr_t)ti, op, 0, 0); 425 426 pmap_tlb_pai_check(ti, true); 427 428 ti->ti_evcnt_asid_reinits.ev_count++; 429 430 /* 431 * First, clear the ASID bitmap (except for ASID 0 which belongs 432 * to the kernel). 433 */ 434 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE(ti->ti_asid_max); 435 ti->ti_asid_hint = KERNEL_PID + 1; 436 TLBINFO_ASID_RESET(ti); 437 438 switch (op) { 439 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 440 case TLBINV_ALL: 441 tlb_invalidate_all(); 442 break; 443 case TLBINV_ALLUSER: 444 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 445 break; 446 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 447 case TLBINV_NOBODY: { 448 /* 449 * If we are just reclaiming ASIDs in the TLB, let's go find 450 * what ASIDs are in use in the TLB. Since this is a 451 * semi-expensive operation, we don't want to do it too often. 452 * So if more half of the ASIDs are in use, we don't have 453 * enough free ASIDs so invalidate the TLB entries with ASIDs 454 * and clear the ASID bitmap. That will force everyone to 455 * allocate a new ASID. 456 */ 457 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 458 pmap_tlb_asid_check(); 459 const u_int asids_found = tlb_record_asids( 460 ti->ti_asid_bitmap._b, ti->ti_asid_max); 461 pmap_tlb_asid_check(); 462 #ifdef DIAGNOSTIC 463 const u_int asids_count = pmap_tlb_asid_count(ti); 464 #endif 465 KASSERTMSG(asids_found == asids_count, 466 "found %u != count %u", asids_found, asids_count); 467 if (__predict_false(asids_found >= ti->ti_asid_max / 2)) { 468 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max); 469 #else /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 470 /* 471 * For those systems (PowerPC) that don't require 472 * cross cpu TLB shootdowns, we have to invalidate the 473 * entire TLB because we can't record the ASIDs in use 474 * on the other CPUs. This is hopefully cheaper than 475 * than trying to use an IPI to record all the ASIDs 476 * on all the CPUs (which would be a synchronization 477 * nightmare). 478 */ 479 tlb_invalidate_all(); 480 #endif /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */ 481 TLBINFO_ASID_RESET(ti); 482 ti->ti_asids_free = TLBINFO_ASID_INITIAL_FREE( 483 ti->ti_asid_max); 484 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN) 485 } else { 486 ti->ti_asids_free -= asids_found; 487 } 488 #endif /* !MULTIPROCESSOR || PMAP_TLB_NEED_SHOOTDOWN */ 489 KASSERTMSG(ti->ti_asids_free <= ti->ti_asid_max, "%u", 490 ti->ti_asids_free); 491 break; 492 } 493 default: 494 panic("%s: unexpected op %d", __func__, op); 495 } 496 497 /* 498 * Now go through the active ASIDs. If the ASID is on a processor or 499 * we aren't invalidating all ASIDs and the TLB has an entry owned by 500 * that ASID, mark it as in use. Otherwise release the ASID. 501 */ 502 struct pmap_asid_info *pai, *next; 503 for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) { 504 struct pmap * const pm = PAI_PMAP(pai, ti); 505 next = LIST_NEXT(pai, pai_link); 506 KASSERT(pm != pmap_kernel()); 507 KASSERT(pai->pai_asid > KERNEL_PID); 508 #if defined(MULTIPROCESSOR) 509 if (pmap_tlb_intersecting_onproc_p(pm, ti)) { 510 if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 511 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 512 ti->ti_asids_free--; 513 } 514 continue; 515 } 516 #endif /* MULTIPROCESSOR */ 517 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) { 518 KASSERT(op == TLBINV_NOBODY); 519 } else { 520 pmap_tlb_pai_reset(ti, pai, pm); 521 } 522 } 523 #ifdef DIAGNOSTIC 524 size_t free_count __diagused = ti->ti_asid_max - pmap_tlb_asid_count(ti); 525 KASSERTMSG(free_count == ti->ti_asids_free, 526 "bitmap error: %zu != %u", free_count, ti->ti_asids_free); 527 #endif 528 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 529 } 530 531 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 532 #if PMAP_TLB_MAX == 1 533 #error shootdown not required for single TLB systems 534 #endif 535 void 536 pmap_tlb_shootdown_process(void) 537 { 538 struct cpu_info * const ci = curcpu(); 539 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 540 #ifdef DIAGNOSTIC 541 struct pmap * const pm = curlwp->l_proc->p_vmspace->vm_map.pmap; 542 #endif 543 544 KASSERT(cpu_intr_p()); 545 KASSERTMSG(ci->ci_cpl >= IPL_SCHED, 546 "%s: cpl (%d) < IPL_SCHED (%d)", 547 __func__, ci->ci_cpl, IPL_SCHED); 548 549 TLBINFO_LOCK(ti); 550 551 switch (ti->ti_tlbinvop) { 552 case TLBINV_ONE: { 553 /* 554 * We only need to invalidate one user ASID. 555 */ 556 struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti); 557 KASSERT(ti->ti_victim != pmap_kernel()); 558 if (!pmap_tlb_intersecting_onproc_p(ti->ti_victim, ti)) { 559 /* 560 * The victim is an active pmap so we will just 561 * invalidate its TLB entries. 562 */ 563 KASSERT(pai->pai_asid > KERNEL_PID); 564 pmap_tlb_asid_check(); 565 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 566 pmap_tlb_asid_check(); 567 } else if (pai->pai_asid) { 568 /* 569 * The victim is no longer an active pmap for this TLB. 570 * So simply clear its ASID and when pmap_activate is 571 * next called for this pmap, it will allocate a new 572 * ASID. 573 */ 574 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 575 pmap_tlb_pai_reset(ti, pai, PAI_PMAP(pai, ti)); 576 } 577 break; 578 } 579 case TLBINV_ALLUSER: 580 /* 581 * Flush all user TLB entries. 582 */ 583 pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER); 584 break; 585 case TLBINV_ALLKERNEL: 586 /* 587 * We need to invalidate all global TLB entries. 588 */ 589 pmap_tlb_asid_check(); 590 tlb_invalidate_globals(); 591 pmap_tlb_asid_check(); 592 break; 593 case TLBINV_ALL: 594 /* 595 * Flush all the TLB entries (user and kernel). 596 */ 597 pmap_tlb_asid_reinitialize(ti, TLBINV_ALL); 598 break; 599 case TLBINV_NOBODY: 600 /* 601 * Might be spurious or another SMT CPU sharing this TLB 602 * could have already done the work. 603 */ 604 break; 605 } 606 607 /* 608 * Indicate we are done with shutdown event. 609 */ 610 ti->ti_victim = NULL; 611 ti->ti_tlbinvop = TLBINV_NOBODY; 612 TLBINFO_UNLOCK(ti); 613 } 614 615 /* 616 * This state machine could be encoded into an array of integers but since all 617 * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which 618 * can be loaded in a single instruction. 619 */ 620 #define TLBINV_MAP(op, nobody, one, alluser, allkernel, all) \ 621 (((( (nobody) << 3*TLBINV_NOBODY) \ 622 | ( (one) << 3*TLBINV_ONE) \ 623 | ( (alluser) << 3*TLBINV_ALLUSER) \ 624 | ((allkernel) << 3*TLBINV_ALLKERNEL) \ 625 | ( (all) << 3*TLBINV_ALL)) >> 3*(op)) & 7) 626 627 #define TLBINV_USER_MAP(op) \ 628 TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER, \ 629 TLBINV_ALL, TLBINV_ALL) 630 631 #define TLBINV_KERNEL_MAP(op) \ 632 TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL, \ 633 TLBINV_ALLKERNEL, TLBINV_ALL) 634 635 bool 636 pmap_tlb_shootdown_bystanders(pmap_t pm) 637 { 638 /* 639 * We don't need to deal with our own TLB. 640 */ 641 642 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 643 644 kcpuset_t *pm_active; 645 kcpuset_clone(&pm_active, pm->pm_active); 646 kcpuset_remove(pm_active, cpu_tlb_info(curcpu())->ti_kcpuset); 647 const bool kernel_p = (pm == pmap_kernel()); 648 bool ipi_sent = false; 649 650 /* 651 * If pm_active gets more bits set, then it's after all our changes 652 * have been made so they will already be cognizant of them. 653 */ 654 655 for (size_t i = 0; !kcpuset_iszero(pm_active); i++) { 656 KASSERT(i < pmap_ntlbs); 657 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 658 KASSERT(tlbinfo_index(ti) == i); 659 /* 660 * Skip this TLB if there are no active mappings for it. 661 */ 662 if (!kcpuset_intersecting_p(pm_active, ti->ti_kcpuset)) 663 continue; 664 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 665 kcpuset_remove(pm_active, ti->ti_kcpuset); 666 TLBINFO_LOCK(ti); 667 cpuid_t j = kcpuset_ffs_intersecting(pm->pm_onproc, 668 ti->ti_kcpuset); 669 // post decrement since ffs returns bit + 1 or 0 if no bit 670 if (j-- > 0) { 671 if (kernel_p) { 672 ti->ti_tlbinvop = 673 TLBINV_KERNEL_MAP(ti->ti_tlbinvop); 674 ti->ti_victim = NULL; 675 } else { 676 KASSERT(pai->pai_asid); 677 if (__predict_false(ti->ti_victim == pm)) { 678 KASSERT(ti->ti_tlbinvop == TLBINV_ONE); 679 /* 680 * We still need to invalidate this one 681 * ASID so there's nothing to change. 682 */ 683 } else { 684 ti->ti_tlbinvop = 685 TLBINV_USER_MAP(ti->ti_tlbinvop); 686 if (ti->ti_tlbinvop == TLBINV_ONE) 687 ti->ti_victim = pm; 688 else 689 ti->ti_victim = NULL; 690 } 691 } 692 TLBINFO_UNLOCK(ti); 693 /* 694 * Now we can send out the shootdown IPIs to a CPU 695 * that shares this TLB and is currently using this 696 * pmap. That CPU will process the IPI and do the 697 * all the work. Any other CPUs sharing that TLB 698 * will take advantage of that work. pm_onproc might 699 * change now that we have released the lock but we 700 * can tolerate spurious shootdowns. 701 */ 702 cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN); 703 ipi_sent = true; 704 continue; 705 } 706 if (!pmap_tlb_intersecting_active_p(pm, ti)) { 707 /* 708 * If this pmap has an ASID assigned but it's not 709 * currently running, nuke its ASID. Next time the 710 * pmap is activated, it will allocate a new ASID. 711 * And best of all, we avoid an IPI. 712 */ 713 KASSERT(!kernel_p); 714 pmap_tlb_pai_reset(ti, pai, pm); 715 //ti->ti_evcnt_lazy_shots.ev_count++; 716 } 717 TLBINFO_UNLOCK(ti); 718 } 719 720 kcpuset_destroy(pm_active); 721 722 UVMHIST_LOG(maphist, " <-- done (ipi_sent=%jd)", ipi_sent, 0, 0, 0); 723 724 return ipi_sent; 725 } 726 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */ 727 728 #ifndef PMAP_HWPAGEWALKER 729 int 730 pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pte, u_int flags) 731 { 732 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 733 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 734 int rv = -1; 735 736 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 737 UVMHIST_LOG(maphist, 738 " (pm=%#jx va=%#jx, pte=%#jx flags=%#jx)", 739 (uintptr_t)pm, va, pte_value(pte), flags); 740 741 KASSERT(kpreempt_disabled()); 742 743 KASSERTMSG(pte_valid_p(pte), "va %#"PRIxVADDR" %#"PRIxPTE, 744 va, pte_value(pte)); 745 746 TLBINFO_LOCK(ti); 747 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 748 pmap_tlb_asid_check(); 749 rv = tlb_update_addr(va, pai->pai_asid, pte, 750 (flags & PMAP_TLB_INSERT) != 0); 751 pmap_tlb_asid_check(); 752 UVMHIST_LOG(maphist, 753 " %jd <-- tlb_update_addr(%#jx, %#jx, %#jx, ...)", 754 rv, va, pai->pai_asid, pte_value(pte)); 755 KASSERTMSG((flags & PMAP_TLB_INSERT) == 0 || rv == 1, 756 "pmap %p (asid %u) va %#"PRIxVADDR" pte %#"PRIxPTE" rv %d", 757 pm, pai->pai_asid, va, pte_value(pte), rv); 758 } 759 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 760 if (flags & PMAP_TLB_NEED_IPI) 761 pm->pm_shootdown_pending = 1; 762 #endif 763 TLBINFO_UNLOCK(ti); 764 765 UVMHIST_LOG(maphist, " <-- done (rv=%jd)", rv, 0, 0, 0); 766 767 return rv; 768 } 769 #endif /* !PMAP_HWPAGEWALKER */ 770 771 void 772 pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va) 773 { 774 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 775 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 776 777 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 778 UVMHIST_LOG(maphist, " (pm=%#jx va=%#jx) ti=%#jx asid=%#jx", 779 (uintptr_t)pm, va, (uintptr_t)ti, pai->pai_asid); 780 781 KASSERT(kpreempt_disabled()); 782 783 TLBINFO_LOCK(ti); 784 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) { 785 pmap_tlb_asid_check(); 786 UVMHIST_LOG(maphist, " invalidating %#jx asid %#jx", 787 va, pai->pai_asid, 0, 0); 788 tlb_invalidate_addr(va, pai->pai_asid); 789 pmap_tlb_asid_check(); 790 } 791 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN) 792 pm->pm_shootdown_pending = 1; 793 #endif 794 TLBINFO_UNLOCK(ti); 795 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 796 } 797 798 static inline void 799 pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm, 800 struct pmap_asid_info *pai) 801 { 802 /* 803 * We shouldn't have an ASID assigned, and thusly must not be onproc 804 * nor active. 805 */ 806 KASSERT(pm != pmap_kernel()); 807 KASSERT(pai->pai_asid == 0); 808 KASSERT(pai->pai_link.le_prev == NULL); 809 #if defined(MULTIPROCESSOR) 810 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti)); 811 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti)); 812 #endif 813 KASSERT(ti->ti_asids_free > 0); 814 KASSERT(ti->ti_asid_hint > KERNEL_PID); 815 816 /* 817 * If the last ASID allocated was the maximum ASID, then the 818 * hint will be out of range. Reset the hint to first 819 * available ASID. 820 */ 821 if (PMAP_TLB_FLUSH_ASID_ON_RESET 822 && ti->ti_asid_hint > ti->ti_asid_max) { 823 ti->ti_asid_hint = KERNEL_PID + 1; 824 } 825 KASSERTMSG(ti->ti_asid_hint <= ti->ti_asid_max, "hint %u", 826 ti->ti_asid_hint); 827 828 /* 829 * Let's see if the hinted ASID is free. If not search for 830 * a new one. 831 */ 832 if (__predict_true(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) { 833 const size_t nbpw = NBBY * sizeof(ti->ti_asid_bitmap._b[0]); 834 size_t i; 835 u_long bits; 836 for (i = 0; (bits = ~ti->ti_asid_bitmap._b[i]) == 0; i++) { 837 KASSERT(i < __arraycount(ti->ti_asid_bitmap._b) - 1); 838 } 839 /* 840 * ffs wants to find the first bit set while we want 841 * to find the first bit cleared. 842 */ 843 const u_int n = __builtin_ffsl(bits) - 1; 844 KASSERTMSG((bits << (nbpw - (n+1))) == (1ul << (nbpw-1)), 845 "n %u bits %#lx", n, bits); 846 KASSERT(n < nbpw); 847 ti->ti_asid_hint = n + i * nbpw; 848 } 849 850 KASSERT(ti->ti_asid_hint > KERNEL_PID); 851 KASSERT(ti->ti_asid_hint <= ti->ti_asid_max); 852 KASSERTMSG(PMAP_TLB_FLUSH_ASID_ON_RESET 853 || TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint - 1), 854 "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); 855 KASSERTMSG(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint), 856 "hint %u bitmap %p", ti->ti_asid_hint, &ti->ti_asid_bitmap); 857 858 /* 859 * The hint contains our next ASID so take it and advance the hint. 860 * Mark it as used and insert the pai into the list of active asids. 861 * There is also one less asid free in this TLB. 862 */ 863 KASSERT(ti->ti_asid_hint > KERNEL_PID); 864 pai->pai_asid = ti->ti_asid_hint++; 865 #ifdef MULTIPROCESSOR 866 if (PMAP_TLB_FLUSH_ASID_ON_RESET) { 867 /* 868 * Clean the new ASID from the TLB. 869 */ 870 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 871 } 872 #endif 873 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid); 874 LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link); 875 ti->ti_asids_free--; 876 877 #if defined(MULTIPROCESSOR) 878 /* 879 * Mark that we now have an active ASID for all CPUs sharing this TLB. 880 * The bits in pm_active belonging to this TLB can only be changed 881 * while this TLBs lock is held. 882 */ 883 #if PMAP_TLB_MAX == 1 884 kcpuset_copy(pm->pm_active, kcpuset_running); 885 #else 886 kcpuset_merge(pm->pm_active, ti->ti_kcpuset); 887 #endif 888 #endif 889 } 890 891 /* 892 * Acquire a TLB address space tag (called ASID or TLBPID) and return it. 893 * ASID might have already been previously acquired. 894 */ 895 void 896 pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l) 897 { 898 struct cpu_info * const ci = l->l_cpu; 899 struct pmap_tlb_info * const ti = cpu_tlb_info(ci); 900 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 901 902 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 903 UVMHIST_LOG(maphist, "(pm=%#jx, l=%#jx, ti=%#jx)", (uintptr_t)pm, 904 (uintptr_t)l, (uintptr_t)ti, 0); 905 906 KASSERT(kpreempt_disabled()); 907 908 /* 909 * Kernels use a fixed ASID and thus doesn't need to acquire one. 910 */ 911 if (pm == pmap_kernel()) { 912 UVMHIST_LOG(maphist, " <-- done (kernel)", 0, 0, 0, 0); 913 return; 914 } 915 916 TLBINFO_LOCK(ti); 917 KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL); 918 KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL); 919 pmap_tlb_pai_check(ti, true); 920 if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) { 921 /* 922 * If we've run out ASIDs, reinitialize the ASID space. 923 */ 924 if (__predict_false(tlbinfo_noasids_p(ti))) { 925 KASSERT(l == curlwp); 926 UVMHIST_LOG(maphist, " asid reinit", 0, 0, 0, 0); 927 pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY); 928 KASSERT(!tlbinfo_noasids_p(ti)); 929 } 930 931 /* 932 * Get an ASID. 933 */ 934 pmap_tlb_asid_alloc(ti, pm, pai); 935 UVMHIST_LOG(maphist, "allocated asid %#jx", pai->pai_asid, 936 0, 0, 0); 937 } 938 pmap_tlb_pai_check(ti, true); 939 #if defined(MULTIPROCESSOR) 940 KASSERT(kcpuset_isset(pm->pm_active, cpu_index(ci))); 941 #endif 942 943 if (l == curlwp) { 944 #if defined(MULTIPROCESSOR) 945 /* 946 * The bits in pm_onproc belonging to this TLB can only 947 * be changed while this TLBs lock is held unless atomic 948 * operations are used. 949 */ 950 KASSERT(pm != pmap_kernel()); 951 kcpuset_atomic_set(pm->pm_onproc, cpu_index(ci)); 952 #endif 953 ci->ci_pmap_asid_cur = pai->pai_asid; 954 UVMHIST_LOG(maphist, "setting asid to %#jx", pai->pai_asid, 955 0, 0, 0); 956 tlb_set_asid(pai->pai_asid); 957 pmap_tlb_asid_check(); 958 } else { 959 printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp); 960 } 961 TLBINFO_UNLOCK(ti); 962 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 963 } 964 965 void 966 pmap_tlb_asid_deactivate(pmap_t pm) 967 { 968 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 969 970 KASSERT(kpreempt_disabled()); 971 #if defined(MULTIPROCESSOR) 972 /* 973 * The kernel pmap is aways onproc and active and must never have 974 * those bits cleared. If pmap_remove_all was called, it has already 975 * deactivated the pmap and thusly onproc will be 0 so there's nothing 976 * to do. 977 */ 978 if (pm != pmap_kernel() && !kcpuset_iszero(pm->pm_onproc)) { 979 struct cpu_info * const ci = curcpu(); 980 KASSERT(!cpu_intr_p()); 981 KASSERTMSG(kcpuset_isset(pm->pm_onproc, cpu_index(ci)), 982 "%s: pmap %p onproc %p doesn't include cpu %d (%p)", 983 __func__, pm, pm->pm_onproc, cpu_index(ci), ci); 984 /* 985 * The bits in pm_onproc that belong to this TLB can 986 * be changed while this TLBs lock is not held as long 987 * as we use atomic ops. 988 */ 989 kcpuset_atomic_clear(pm->pm_onproc, cpu_index(ci)); 990 } 991 #endif 992 curcpu()->ci_pmap_asid_cur = KERNEL_PID; 993 UVMHIST_LOG(maphist, " <-- done (pm=%#jx)", (uintptr_t)pm, 0, 0, 0); 994 tlb_set_asid(KERNEL_PID); 995 pmap_tlb_pai_check(cpu_tlb_info(curcpu()), false); 996 #if defined(DEBUG) 997 pmap_tlb_asid_check(); 998 #endif 999 } 1000 1001 void 1002 pmap_tlb_asid_release_all(struct pmap *pm) 1003 { 1004 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 1005 UVMHIST_LOG(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0); 1006 1007 KASSERT(pm != pmap_kernel()); 1008 #if defined(MULTIPROCESSOR) 1009 //KASSERT(!kcpuset_iszero(pm->pm_onproc)); // XXX 1010 struct cpu_info * const ci __diagused = curcpu(); 1011 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci))); 1012 #if PMAP_TLB_MAX > 1 1013 for (u_int i = 0; !kcpuset_iszero(pm->pm_active); i++) { 1014 KASSERT(i < pmap_ntlbs); 1015 struct pmap_tlb_info * const ti = pmap_tlbs[i]; 1016 #else 1017 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1018 #endif 1019 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1020 TLBINFO_LOCK(ti); 1021 if (PMAP_PAI_ASIDVALID_P(pai, ti)) { 1022 /* 1023 * This pmap should not be in use by any other cpu so 1024 * we can just reset and be happy. 1025 */ 1026 if (ti->ti_victim == pm) 1027 ti->ti_victim = NULL; 1028 pmap_tlb_pai_reset(ti, pai, pm); 1029 } 1030 KASSERT(pai->pai_link.le_prev == NULL); 1031 TLBINFO_UNLOCK(ti); 1032 #if PMAP_TLB_MAX > 1 1033 } 1034 #endif 1035 #ifdef DIAGNOSTIC 1036 for (size_t i = 0; i < (PMAP_TLB_MAX > 1 ? pmap_ntlbs : 1); i++) { 1037 KASSERTMSG(pm->pm_pai[i].pai_asid == 0, 1038 "pm %p i %zu asid %u", 1039 pm, i, pm->pm_pai[i].pai_asid); 1040 } 1041 #endif 1042 #else 1043 /* 1044 * Handle the case of an UP kernel which only has, at most, one TLB. 1045 * If the pmap has an ASID allocated, free it. 1046 */ 1047 struct pmap_tlb_info * const ti = &pmap_tlb0_info; 1048 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1049 TLBINFO_LOCK(ti); 1050 if (pai->pai_asid > KERNEL_PID) { 1051 if (curcpu()->ci_pmap_asid_cur == pai->pai_asid) { 1052 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid); 1053 } else { 1054 pmap_tlb_pai_reset(ti, pai, pm); 1055 } 1056 } 1057 TLBINFO_UNLOCK(ti); 1058 #endif /* MULTIPROCESSOR */ 1059 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0); 1060 } 1061 1062 void 1063 pmap_tlb_asid_check(void) 1064 { 1065 #ifdef DEBUG 1066 kpreempt_disable(); 1067 const tlb_asid_t asid __debugused = tlb_get_asid(); 1068 KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur, 1069 "%s: asid (%#x) != current asid (%#x)", 1070 __func__, asid, curcpu()->ci_pmap_asid_cur); 1071 kpreempt_enable(); 1072 #endif 1073 } 1074 1075 #ifdef DEBUG 1076 void 1077 pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t)) 1078 { 1079 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu()); 1080 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti); 1081 TLBINFO_LOCK(ti); 1082 if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID) 1083 tlb_walk(pm, func); 1084 TLBINFO_UNLOCK(ti); 1085 } 1086 #endif /* DEBUG */ 1087