1 /* $NetBSD: lfs_vfsops.c,v 1.264 2008/05/20 16:26:04 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Konrad E. Schroder <perseant@hhhh.org>. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 /*- 33 * Copyright (c) 1989, 1991, 1993, 1994 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.264 2008/05/20 16:26:04 ad Exp $"); 65 66 #if defined(_KERNEL_OPT) 67 #include "opt_lfs.h" 68 #include "opt_quota.h" 69 #endif 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/namei.h> 74 #include <sys/proc.h> 75 #include <sys/kernel.h> 76 #include <sys/vnode.h> 77 #include <sys/mount.h> 78 #include <sys/kthread.h> 79 #include <sys/buf.h> 80 #include <sys/device.h> 81 #include <sys/mbuf.h> 82 #include <sys/file.h> 83 #include <sys/disklabel.h> 84 #include <sys/ioctl.h> 85 #include <sys/errno.h> 86 #include <sys/malloc.h> 87 #include <sys/pool.h> 88 #include <sys/socket.h> 89 #include <sys/syslog.h> 90 #include <uvm/uvm_extern.h> 91 #include <sys/sysctl.h> 92 #include <sys/conf.h> 93 #include <sys/kauth.h> 94 #include <sys/module.h> 95 96 #include <miscfs/specfs/specdev.h> 97 98 #include <ufs/ufs/quota.h> 99 #include <ufs/ufs/inode.h> 100 #include <ufs/ufs/ufsmount.h> 101 #include <ufs/ufs/ufs_extern.h> 102 103 #include <uvm/uvm.h> 104 #include <uvm/uvm_stat.h> 105 #include <uvm/uvm_pager.h> 106 #include <uvm/uvm_pdaemon.h> 107 108 #include <ufs/lfs/lfs.h> 109 #include <ufs/lfs/lfs_extern.h> 110 111 #include <miscfs/genfs/genfs.h> 112 #include <miscfs/genfs/genfs_node.h> 113 114 MODULE(MODULE_CLASS_VFS, lfs, NULL); 115 116 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int); 117 static bool lfs_issequential_hole(const struct ufsmount *, 118 daddr_t, daddr_t); 119 120 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *); 121 122 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc; 123 extern const struct vnodeopv_desc lfs_specop_opv_desc; 124 extern const struct vnodeopv_desc lfs_fifoop_opv_desc; 125 126 pid_t lfs_writer_daemon = 0; 127 int lfs_do_flush = 0; 128 #ifdef LFS_KERNEL_RFW 129 int lfs_do_rfw = 0; 130 #endif 131 132 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = { 133 &lfs_vnodeop_opv_desc, 134 &lfs_specop_opv_desc, 135 &lfs_fifoop_opv_desc, 136 NULL, 137 }; 138 139 struct vfsops lfs_vfsops = { 140 MOUNT_LFS, 141 sizeof (struct ufs_args), 142 lfs_mount, 143 ufs_start, 144 lfs_unmount, 145 ufs_root, 146 ufs_quotactl, 147 lfs_statvfs, 148 lfs_sync, 149 lfs_vget, 150 lfs_fhtovp, 151 lfs_vptofh, 152 lfs_init, 153 lfs_reinit, 154 lfs_done, 155 lfs_mountroot, 156 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp, 157 vfs_stdextattrctl, 158 (void *)eopnotsupp, /* vfs_suspendctl */ 159 genfs_renamelock_enter, 160 genfs_renamelock_exit, 161 (void *)eopnotsupp, 162 lfs_vnodeopv_descs, 163 0, 164 { NULL, NULL }, 165 }; 166 167 const struct genfs_ops lfs_genfsops = { 168 .gop_size = lfs_gop_size, 169 .gop_alloc = ufs_gop_alloc, 170 .gop_write = lfs_gop_write, 171 .gop_markupdate = ufs_gop_markupdate, 172 }; 173 174 static const struct ufs_ops lfs_ufsops = { 175 .uo_itimes = NULL, 176 .uo_update = lfs_update, 177 .uo_truncate = lfs_truncate, 178 .uo_valloc = lfs_valloc, 179 .uo_vfree = lfs_vfree, 180 .uo_balloc = lfs_balloc, 181 }; 182 183 static int 184 lfs_modcmd(modcmd_t cmd, void *arg) 185 { 186 187 switch (cmd) { 188 case MODULE_CMD_INIT: 189 return vfs_attach(&lfs_vfsops); 190 case MODULE_CMD_FINI: 191 return vfs_detach(&lfs_vfsops); 192 default: 193 return ENOTTY; 194 } 195 } 196 197 /* 198 * XXX Same structure as FFS inodes? Should we share a common pool? 199 */ 200 struct pool lfs_inode_pool; 201 struct pool lfs_dinode_pool; 202 struct pool lfs_inoext_pool; 203 struct pool lfs_lbnentry_pool; 204 205 /* 206 * The writer daemon. UVM keeps track of how many dirty pages we are holding 207 * in lfs_subsys_pages; the daemon flushes the filesystem when this value 208 * crosses the (user-defined) threshhold LFS_MAX_PAGES. 209 */ 210 static void 211 lfs_writerd(void *arg) 212 { 213 struct mount *mp, *nmp; 214 struct lfs *fs; 215 int fsflags; 216 int loopcount; 217 218 lfs_writer_daemon = curproc->p_pid; 219 220 mutex_enter(&lfs_lock); 221 for (;;) { 222 mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10, 223 &lfs_lock); 224 225 /* 226 * Look through the list of LFSs to see if any of them 227 * have requested pageouts. 228 */ 229 mutex_enter(&mountlist_lock); 230 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; 231 mp = nmp) { 232 if (vfs_busy(mp, &nmp)) { 233 continue; 234 } 235 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS, 236 sizeof(mp->mnt_stat.f_fstypename)) == 0) { 237 fs = VFSTOUFS(mp)->um_lfs; 238 mutex_enter(&lfs_lock); 239 fsflags = 0; 240 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) || 241 lfs_dirvcount > LFS_MAX_DIROP) && 242 fs->lfs_dirops == 0) 243 fsflags |= SEGM_CKP; 244 if (fs->lfs_pdflush) { 245 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n")); 246 fs->lfs_pdflush = 0; 247 lfs_flush_fs(fs, fsflags); 248 mutex_exit(&lfs_lock); 249 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) { 250 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n")); 251 mutex_exit(&lfs_lock); 252 lfs_writer_enter(fs, "wrdirop"); 253 lfs_flush_pchain(fs); 254 lfs_writer_leave(fs); 255 } else 256 mutex_exit(&lfs_lock); 257 } 258 vfs_unbusy(mp, false, &nmp); 259 } 260 mutex_exit(&mountlist_lock); 261 262 /* 263 * If global state wants a flush, flush everything. 264 */ 265 mutex_enter(&lfs_lock); 266 loopcount = 0; 267 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS || 268 locked_queue_bytes > LFS_MAX_BYTES || 269 lfs_subsys_pages > LFS_MAX_PAGES) { 270 271 if (lfs_do_flush) { 272 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n")); 273 } 274 if (locked_queue_count > LFS_MAX_BUFS) { 275 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n", 276 locked_queue_count, LFS_MAX_BUFS)); 277 } 278 if (locked_queue_bytes > LFS_MAX_BYTES) { 279 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n", 280 locked_queue_bytes, LFS_MAX_BYTES)); 281 } 282 if (lfs_subsys_pages > LFS_MAX_PAGES) { 283 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n", 284 lfs_subsys_pages, LFS_MAX_PAGES)); 285 } 286 287 lfs_flush(NULL, SEGM_WRITERD, 0); 288 lfs_do_flush = 0; 289 } 290 } 291 /* NOTREACHED */ 292 } 293 294 /* 295 * Initialize the filesystem, most work done by ufs_init. 296 */ 297 void 298 lfs_init() 299 { 300 301 malloc_type_attach(M_SEGMENT); 302 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0, 303 "lfsinopl", &pool_allocator_nointr, IPL_NONE); 304 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0, 305 "lfsdinopl", &pool_allocator_nointr, IPL_NONE); 306 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0, 307 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE); 308 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0, 309 "lfslbnpool", &pool_allocator_nointr, IPL_NONE); 310 ufs_init(); 311 312 #ifdef DEBUG 313 memset(lfs_log, 0, sizeof(lfs_log)); 314 #endif 315 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE); 316 cv_init(&locked_queue_cv, "lfsbuf"); 317 cv_init(&lfs_writing_cv, "lfsflush"); 318 } 319 320 void 321 lfs_reinit() 322 { 323 ufs_reinit(); 324 } 325 326 void 327 lfs_done() 328 { 329 ufs_done(); 330 mutex_destroy(&lfs_lock); 331 cv_destroy(&locked_queue_cv); 332 cv_destroy(&lfs_writing_cv); 333 pool_destroy(&lfs_inode_pool); 334 pool_destroy(&lfs_dinode_pool); 335 pool_destroy(&lfs_inoext_pool); 336 pool_destroy(&lfs_lbnentry_pool); 337 malloc_type_detach(M_SEGMENT); 338 } 339 340 /* 341 * Called by main() when ufs is going to be mounted as root. 342 */ 343 int 344 lfs_mountroot() 345 { 346 extern struct vnode *rootvp; 347 struct mount *mp; 348 struct lwp *l = curlwp; 349 int error; 350 351 if (device_class(root_device) != DV_DISK) 352 return (ENODEV); 353 354 if (rootdev == NODEV) 355 return (ENODEV); 356 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) { 357 vrele(rootvp); 358 return (error); 359 } 360 if ((error = lfs_mountfs(rootvp, mp, l))) { 361 vfs_unbusy(mp, false, NULL); 362 vfs_destroy(mp); 363 return (error); 364 } 365 mutex_enter(&mountlist_lock); 366 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); 367 mutex_exit(&mountlist_lock); 368 (void)lfs_statvfs(mp, &mp->mnt_stat); 369 vfs_unbusy(mp, false, NULL); 370 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp)); 371 return (0); 372 } 373 374 /* 375 * VFS Operations. 376 * 377 * mount system call 378 */ 379 int 380 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len) 381 { 382 struct lwp *l = curlwp; 383 struct nameidata nd; 384 struct vnode *devvp; 385 struct ufs_args *args = data; 386 struct ufsmount *ump = NULL; 387 struct lfs *fs = NULL; /* LFS */ 388 int error = 0, update; 389 mode_t accessmode; 390 391 if (*data_len < sizeof *args) 392 return EINVAL; 393 394 if (mp->mnt_flag & MNT_GETARGS) { 395 ump = VFSTOUFS(mp); 396 if (ump == NULL) 397 return EIO; 398 args->fspec = NULL; 399 *data_len = sizeof *args; 400 return 0; 401 } 402 403 update = mp->mnt_flag & MNT_UPDATE; 404 405 /* Check arguments */ 406 if (args->fspec != NULL) { 407 /* 408 * Look up the name and verify that it's sane. 409 */ 410 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec); 411 if ((error = namei(&nd)) != 0) 412 return (error); 413 devvp = nd.ni_vp; 414 415 if (!update) { 416 /* 417 * Be sure this is a valid block device 418 */ 419 if (devvp->v_type != VBLK) 420 error = ENOTBLK; 421 else if (bdevsw_lookup(devvp->v_rdev) == NULL) 422 error = ENXIO; 423 } else { 424 /* 425 * Be sure we're still naming the same device 426 * used for our initial mount 427 */ 428 ump = VFSTOUFS(mp); 429 if (devvp != ump->um_devvp) 430 error = EINVAL; 431 } 432 } else { 433 if (!update) { 434 /* New mounts must have a filename for the device */ 435 return (EINVAL); 436 } else { 437 /* Use the extant mount */ 438 ump = VFSTOUFS(mp); 439 devvp = ump->um_devvp; 440 vref(devvp); 441 } 442 } 443 444 445 /* 446 * If mount by non-root, then verify that user has necessary 447 * permissions on the device. 448 */ 449 if (error == 0 && kauth_authorize_generic(l->l_cred, 450 KAUTH_GENERIC_ISSUSER, NULL) != 0) { 451 accessmode = VREAD; 452 if (update ? 453 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 : 454 (mp->mnt_flag & MNT_RDONLY) == 0) 455 accessmode |= VWRITE; 456 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 457 error = VOP_ACCESS(devvp, accessmode, l->l_cred); 458 VOP_UNLOCK(devvp, 0); 459 } 460 461 if (error) { 462 vrele(devvp); 463 return (error); 464 } 465 466 if (!update) { 467 int flags; 468 469 if (mp->mnt_flag & MNT_RDONLY) 470 flags = FREAD; 471 else 472 flags = FREAD|FWRITE; 473 error = VOP_OPEN(devvp, flags, FSCRED); 474 if (error) 475 goto fail; 476 error = lfs_mountfs(devvp, mp, l); /* LFS */ 477 if (error) { 478 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 479 (void)VOP_CLOSE(devvp, flags, NOCRED); 480 VOP_UNLOCK(devvp, 0); 481 goto fail; 482 } 483 484 ump = VFSTOUFS(mp); 485 fs = ump->um_lfs; 486 } else { 487 /* 488 * Update the mount. 489 */ 490 491 /* 492 * The initial mount got a reference on this 493 * device, so drop the one obtained via 494 * namei(), above. 495 */ 496 vrele(devvp); 497 498 ump = VFSTOUFS(mp); 499 fs = ump->um_lfs; 500 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) { 501 /* 502 * Changing from read-only to read/write. 503 * Note in the superblocks that we're writing. 504 */ 505 fs->lfs_ronly = 0; 506 if (fs->lfs_pflags & LFS_PF_CLEAN) { 507 fs->lfs_pflags &= ~LFS_PF_CLEAN; 508 lfs_writesuper(fs, fs->lfs_sboffs[0]); 509 lfs_writesuper(fs, fs->lfs_sboffs[1]); 510 } 511 } 512 if (args->fspec == NULL) 513 return EINVAL; 514 } 515 516 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec, 517 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l); 518 if (error == 0) 519 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname, 520 sizeof(fs->lfs_fsmnt)); 521 return error; 522 523 fail: 524 vrele(devvp); 525 return (error); 526 } 527 528 529 /* 530 * Common code for mount and mountroot 531 * LFS specific 532 */ 533 int 534 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l) 535 { 536 struct dlfs *tdfs, *dfs, *adfs; 537 struct lfs *fs; 538 struct ufsmount *ump; 539 struct vnode *vp; 540 struct buf *bp, *abp; 541 struct partinfo dpart; 542 dev_t dev; 543 int error, i, ronly, secsize, fsbsize; 544 kauth_cred_t cred; 545 CLEANERINFO *cip; 546 SEGUSE *sup; 547 daddr_t sb_addr; 548 549 cred = l ? l->l_cred : NOCRED; 550 551 /* 552 * Flush out any old buffers remaining from a previous use. 553 */ 554 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 555 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0); 556 VOP_UNLOCK(devvp, 0); 557 if (error) 558 return (error); 559 560 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 561 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0) 562 secsize = DEV_BSIZE; 563 else 564 secsize = dpart.disklab->d_secsize; 565 566 /* Don't free random space on error. */ 567 bp = NULL; 568 abp = NULL; 569 ump = NULL; 570 571 sb_addr = LFS_LABELPAD / secsize; 572 while (1) { 573 /* Read in the superblock. */ 574 error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp); 575 if (error) 576 goto out; 577 dfs = (struct dlfs *)bp->b_data; 578 579 /* Check the basics. */ 580 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE || 581 dfs->dlfs_version > LFS_VERSION || 582 dfs->dlfs_bsize < sizeof(struct dlfs)) { 583 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n")); 584 error = EINVAL; /* XXX needs translation */ 585 goto out; 586 } 587 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) { 588 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n", 589 dfs->dlfs_inodefmt)); 590 error = EINVAL; 591 goto out; 592 } 593 594 if (dfs->dlfs_version == 1) 595 fsbsize = secsize; 596 else { 597 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb + 598 dfs->dlfs_fsbtodb); 599 /* 600 * Could be, if the frag size is large enough, that we 601 * don't have the "real" primary superblock. If that's 602 * the case, get the real one, and try again. 603 */ 604 if (sb_addr != dfs->dlfs_sboffs[0] << 605 dfs->dlfs_fsbtodb) { 606 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr" 607 " 0x%llx is not right, trying 0x%llx\n", 608 (long long)sb_addr, 609 (long long)(dfs->dlfs_sboffs[0] << 610 dfs->dlfs_fsbtodb))); 611 sb_addr = dfs->dlfs_sboffs[0] << 612 dfs->dlfs_fsbtodb; 613 brelse(bp, 0); 614 continue; 615 } 616 } 617 break; 618 } 619 620 /* 621 * Check the second superblock to see which is newer; then mount 622 * using the older of the two. This is necessary to ensure that 623 * the filesystem is valid if it was not unmounted cleanly. 624 */ 625 626 if (dfs->dlfs_sboffs[1] && 627 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize) 628 { 629 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize), 630 LFS_SBPAD, cred, 0, &abp); 631 if (error) 632 goto out; 633 adfs = (struct dlfs *)abp->b_data; 634 635 if (dfs->dlfs_version == 1) { 636 /* 1s resolution comparison */ 637 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp) 638 tdfs = adfs; 639 else 640 tdfs = dfs; 641 } else { 642 /* monotonic infinite-resolution comparison */ 643 if (adfs->dlfs_serial < dfs->dlfs_serial) 644 tdfs = adfs; 645 else 646 tdfs = dfs; 647 } 648 649 /* Check the basics. */ 650 if (tdfs->dlfs_magic != LFS_MAGIC || 651 tdfs->dlfs_bsize > MAXBSIZE || 652 tdfs->dlfs_version > LFS_VERSION || 653 tdfs->dlfs_bsize < sizeof(struct dlfs)) { 654 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock" 655 " sanity failed\n")); 656 error = EINVAL; /* XXX needs translation */ 657 goto out; 658 } 659 } else { 660 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock" 661 " daddr=0x%x\n", dfs->dlfs_sboffs[1])); 662 error = EINVAL; 663 goto out; 664 } 665 666 /* Allocate the mount structure, copy the superblock into it. */ 667 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO); 668 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs)); 669 670 /* Compatibility */ 671 if (fs->lfs_version < 2) { 672 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE; 673 fs->lfs_ibsize = fs->lfs_bsize; 674 fs->lfs_start = fs->lfs_sboffs[0]; 675 fs->lfs_tstamp = fs->lfs_otstamp; 676 fs->lfs_fsbtodb = 0; 677 } 678 if (fs->lfs_resvseg == 0) 679 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \ 680 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1)); 681 682 /* 683 * If we aren't going to be able to write meaningfully to this 684 * filesystem, and were not mounted readonly, bomb out now. 685 */ 686 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) { 687 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write," 688 " we need BUFPAGES >= %lld\n", 689 (long long)((bufmem_hiwater / bufmem_lowater) * 690 LFS_INVERSE_MAX_BYTES( 691 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT))); 692 free(fs, M_UFSMNT); 693 error = EFBIG; /* XXX needs translation */ 694 goto out; 695 } 696 697 /* Before rolling forward, lock so vget will sleep for other procs */ 698 if (l != NULL) { 699 fs->lfs_flags = LFS_NOTYET; 700 fs->lfs_rfpid = l->l_proc->p_pid; 701 } 702 703 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 704 ump->um_lfs = fs; 705 ump->um_ops = &lfs_ufsops; 706 ump->um_fstype = UFS1; 707 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */ 708 brelse(bp, BC_INVAL); 709 brelse(abp, BC_INVAL); 710 } else { 711 brelse(bp, 0); 712 brelse(abp, 0); 713 } 714 bp = NULL; 715 abp = NULL; 716 717 718 /* Set up the I/O information */ 719 fs->lfs_devbsize = secsize; 720 fs->lfs_iocount = 0; 721 fs->lfs_diropwait = 0; 722 fs->lfs_activesb = 0; 723 fs->lfs_uinodes = 0; 724 fs->lfs_ravail = 0; 725 fs->lfs_favail = 0; 726 fs->lfs_sbactive = 0; 727 728 /* Set up the ifile and lock aflags */ 729 fs->lfs_doifile = 0; 730 fs->lfs_writer = 0; 731 fs->lfs_dirops = 0; 732 fs->lfs_nadirop = 0; 733 fs->lfs_seglock = 0; 734 fs->lfs_pdflush = 0; 735 fs->lfs_sleepers = 0; 736 fs->lfs_pages = 0; 737 rw_init(&fs->lfs_fraglock); 738 rw_init(&fs->lfs_iflock); 739 cv_init(&fs->lfs_stopcv, "lfsstop"); 740 741 /* Set the file system readonly/modify bits. */ 742 fs->lfs_ronly = ronly; 743 if (ronly == 0) 744 fs->lfs_fmod = 1; 745 746 /* Initialize the mount structure. */ 747 dev = devvp->v_rdev; 748 mp->mnt_data = ump; 749 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev; 750 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS); 751 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; 752 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN; 753 mp->mnt_stat.f_iosize = fs->lfs_bsize; 754 mp->mnt_flag |= MNT_LOCAL; 755 mp->mnt_fs_bshift = fs->lfs_bshift; 756 ump->um_flags = 0; 757 ump->um_mountp = mp; 758 ump->um_dev = dev; 759 ump->um_devvp = devvp; 760 ump->um_bptrtodb = fs->lfs_fsbtodb; 761 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag); 762 ump->um_nindir = fs->lfs_nindir; 763 ump->um_lognindir = ffs(fs->lfs_nindir) - 1; 764 for (i = 0; i < MAXQUOTAS; i++) 765 ump->um_quotas[i] = NULLVP; 766 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen; 767 ump->um_dirblksiz = DIRBLKSIZ; 768 ump->um_maxfilesize = fs->lfs_maxfilesize; 769 if (ump->um_maxsymlinklen > 0) 770 mp->mnt_iflag |= IMNT_DTYPE; 771 devvp->v_specmountpoint = mp; 772 773 /* Set up reserved memory for pageout */ 774 lfs_setup_resblks(fs); 775 /* Set up vdirop tailq */ 776 TAILQ_INIT(&fs->lfs_dchainhd); 777 /* and paging tailq */ 778 TAILQ_INIT(&fs->lfs_pchainhd); 779 /* and delayed segment accounting for truncation list */ 780 LIST_INIT(&fs->lfs_segdhd); 781 782 /* 783 * We use the ifile vnode for almost every operation. Instead of 784 * retrieving it from the hash table each time we retrieve it here, 785 * artificially increment the reference count and keep a pointer 786 * to it in the incore copy of the superblock. 787 */ 788 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) { 789 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error)); 790 goto out; 791 } 792 fs->lfs_ivnode = vp; 793 VREF(vp); 794 795 /* Set up inode bitmap and order free list */ 796 lfs_order_freelist(fs); 797 798 /* Set up segment usage flags for the autocleaner. */ 799 fs->lfs_nactive = 0; 800 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *), 801 M_SEGMENT, M_WAITOK); 802 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), 803 M_SEGMENT, M_WAITOK); 804 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), 805 M_SEGMENT, M_WAITOK); 806 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t)); 807 for (i = 0; i < fs->lfs_nseg; i++) { 808 int changed; 809 810 LFS_SEGENTRY(sup, fs, i, bp); 811 changed = 0; 812 if (!ronly) { 813 if (sup->su_nbytes == 0 && 814 !(sup->su_flags & SEGUSE_EMPTY)) { 815 sup->su_flags |= SEGUSE_EMPTY; 816 ++changed; 817 } else if (!(sup->su_nbytes == 0) && 818 (sup->su_flags & SEGUSE_EMPTY)) { 819 sup->su_flags &= ~SEGUSE_EMPTY; 820 ++changed; 821 } 822 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) { 823 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL); 824 ++changed; 825 } 826 } 827 fs->lfs_suflags[0][i] = sup->su_flags; 828 if (changed) 829 LFS_WRITESEGENTRY(sup, fs, i, bp); 830 else 831 brelse(bp, 0); 832 } 833 834 #ifdef LFS_KERNEL_RFW 835 lfs_roll_forward(fs, mp, l); 836 #endif 837 838 /* If writing, sb is not clean; record in case of immediate crash */ 839 if (!fs->lfs_ronly) { 840 fs->lfs_pflags &= ~LFS_PF_CLEAN; 841 lfs_writesuper(fs, fs->lfs_sboffs[0]); 842 lfs_writesuper(fs, fs->lfs_sboffs[1]); 843 } 844 845 /* Allow vget now that roll-forward is complete */ 846 fs->lfs_flags &= ~(LFS_NOTYET); 847 wakeup(&fs->lfs_flags); 848 849 /* 850 * Initialize the ifile cleaner info with information from 851 * the superblock. 852 */ 853 LFS_CLEANERINFO(cip, fs, bp); 854 cip->clean = fs->lfs_nclean; 855 cip->dirty = fs->lfs_nseg - fs->lfs_nclean; 856 cip->avail = fs->lfs_avail; 857 cip->bfree = fs->lfs_bfree; 858 (void) LFS_BWRITE_LOG(bp); /* Ifile */ 859 860 /* 861 * Mark the current segment as ACTIVE, since we're going to 862 * be writing to it. 863 */ 864 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); 865 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 866 fs->lfs_nactive++; 867 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */ 868 869 /* Now that roll-forward is done, unlock the Ifile */ 870 vput(vp); 871 872 /* Start the pagedaemon-anticipating daemon */ 873 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL, 874 lfs_writerd, NULL, NULL, "lfs_writer") != 0) 875 panic("fork lfs_writer"); 876 877 printf("WARNING: the log file system is experimental and " 878 "may be unstable\n"); 879 880 return (0); 881 882 out: 883 if (bp) 884 brelse(bp, 0); 885 if (abp) 886 brelse(abp, 0); 887 if (ump) { 888 free(ump->um_lfs, M_UFSMNT); 889 free(ump, M_UFSMNT); 890 mp->mnt_data = NULL; 891 } 892 893 return (error); 894 } 895 896 /* 897 * unmount system call 898 */ 899 int 900 lfs_unmount(struct mount *mp, int mntflags) 901 { 902 struct lwp *l = curlwp; 903 struct ufsmount *ump; 904 struct lfs *fs; 905 int error, flags, ronly; 906 vnode_t *vp; 907 908 flags = 0; 909 if (mntflags & MNT_FORCE) 910 flags |= FORCECLOSE; 911 912 ump = VFSTOUFS(mp); 913 fs = ump->um_lfs; 914 915 /* Two checkpoints */ 916 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); 917 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); 918 919 /* wake up the cleaner so it can die */ 920 lfs_wakeup_cleaner(fs); 921 mutex_enter(&lfs_lock); 922 while (fs->lfs_sleepers) 923 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0, 924 &lfs_lock); 925 mutex_exit(&lfs_lock); 926 927 #ifdef QUOTA 928 if (mp->mnt_flag & MNT_QUOTA) { 929 int i; 930 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags); 931 if (error) 932 return (error); 933 for (i = 0; i < MAXQUOTAS; i++) { 934 if (ump->um_quotas[i] == NULLVP) 935 continue; 936 quotaoff(l, mp, i); 937 } 938 /* 939 * Here we fall through to vflush again to ensure 940 * that we have gotten rid of all the system vnodes. 941 */ 942 } 943 #endif 944 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0) 945 return (error); 946 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0) 947 return (error); 948 vp = fs->lfs_ivnode; 949 mutex_enter(&vp->v_interlock); 950 if (LIST_FIRST(&vp->v_dirtyblkhd)) 951 panic("lfs_unmount: still dirty blocks on ifile vnode"); 952 mutex_exit(&vp->v_interlock); 953 954 /* Explicitly write the superblock, to update serial and pflags */ 955 fs->lfs_pflags |= LFS_PF_CLEAN; 956 lfs_writesuper(fs, fs->lfs_sboffs[0]); 957 lfs_writesuper(fs, fs->lfs_sboffs[1]); 958 mutex_enter(&lfs_lock); 959 while (fs->lfs_iocount) 960 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0, 961 &lfs_lock); 962 mutex_exit(&lfs_lock); 963 964 /* Finish with the Ifile, now that we're done with it */ 965 vgone(fs->lfs_ivnode); 966 967 ronly = !fs->lfs_ronly; 968 if (ump->um_devvp->v_type != VBAD) 969 ump->um_devvp->v_specmountpoint = NULL; 970 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 971 error = VOP_CLOSE(ump->um_devvp, 972 ronly ? FREAD : FREAD|FWRITE, NOCRED); 973 vput(ump->um_devvp); 974 975 /* Complain about page leakage */ 976 if (fs->lfs_pages > 0) 977 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n", 978 fs->lfs_pages, lfs_subsys_pages); 979 980 /* Free per-mount data structures */ 981 free(fs->lfs_ino_bitmap, M_SEGMENT); 982 free(fs->lfs_suflags[0], M_SEGMENT); 983 free(fs->lfs_suflags[1], M_SEGMENT); 984 free(fs->lfs_suflags, M_SEGMENT); 985 lfs_free_resblks(fs); 986 cv_destroy(&fs->lfs_stopcv); 987 rw_destroy(&fs->lfs_fraglock); 988 rw_destroy(&fs->lfs_iflock); 989 free(fs, M_UFSMNT); 990 free(ump, M_UFSMNT); 991 992 mp->mnt_data = NULL; 993 mp->mnt_flag &= ~MNT_LOCAL; 994 return (error); 995 } 996 997 /* 998 * Get file system statistics. 999 * 1000 * NB: We don't lock to access the superblock here, because it's not 1001 * really that important if we get it wrong. 1002 */ 1003 int 1004 lfs_statvfs(struct mount *mp, struct statvfs *sbp) 1005 { 1006 struct lfs *fs; 1007 struct ufsmount *ump; 1008 1009 ump = VFSTOUFS(mp); 1010 fs = ump->um_lfs; 1011 if (fs->lfs_magic != LFS_MAGIC) 1012 panic("lfs_statvfs: magic"); 1013 1014 sbp->f_bsize = fs->lfs_bsize; 1015 sbp->f_frsize = fs->lfs_fsize; 1016 sbp->f_iosize = fs->lfs_bsize; 1017 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks); 1018 1019 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs)); 1020 KASSERT(sbp->f_bfree <= fs->lfs_dsize); 1021 #if 0 1022 if (sbp->f_bfree < 0) 1023 sbp->f_bfree = 0; 1024 #endif 1025 1026 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs)); 1027 if (sbp->f_bfree > sbp->f_bresvd) 1028 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd; 1029 else 1030 sbp->f_bavail = 0; 1031 1032 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs); 1033 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles; 1034 sbp->f_favail = sbp->f_ffree; 1035 sbp->f_fresvd = 0; 1036 copy_statvfs_info(sbp, mp); 1037 return (0); 1038 } 1039 1040 /* 1041 * Go through the disk queues to initiate sandbagged IO; 1042 * go through the inodes to write those that have been modified; 1043 * initiate the writing of the super block if it has been modified. 1044 * 1045 * Note: we are always called with the filesystem marked `MPBUSY'. 1046 */ 1047 int 1048 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred) 1049 { 1050 int error; 1051 struct lfs *fs; 1052 1053 fs = VFSTOUFS(mp)->um_lfs; 1054 if (fs->lfs_ronly) 1055 return 0; 1056 1057 /* Snapshots should not hose the syncer */ 1058 /* 1059 * XXX Sync can block here anyway, since we don't have a very 1060 * XXX good idea of how much data is pending. If it's more 1061 * XXX than a segment and lfs_nextseg is close to the end of 1062 * XXX the log, we'll likely block. 1063 */ 1064 mutex_enter(&lfs_lock); 1065 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) { 1066 mutex_exit(&lfs_lock); 1067 return 0; 1068 } 1069 mutex_exit(&lfs_lock); 1070 1071 lfs_writer_enter(fs, "lfs_dirops"); 1072 1073 /* All syncs must be checkpoints until roll-forward is implemented. */ 1074 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset)); 1075 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0)); 1076 lfs_writer_leave(fs); 1077 #ifdef QUOTA 1078 qsync(mp); 1079 #endif 1080 return (error); 1081 } 1082 1083 extern kmutex_t ufs_hashlock; 1084 1085 /* 1086 * Look up an LFS dinode number to find its incore vnode. If not already 1087 * in core, read it in from the specified device. Return the inode locked. 1088 * Detection and handling of mount points must be done by the calling routine. 1089 */ 1090 int 1091 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp) 1092 { 1093 struct lfs *fs; 1094 struct ufs1_dinode *dip; 1095 struct inode *ip; 1096 struct buf *bp; 1097 struct ifile *ifp; 1098 struct vnode *vp; 1099 struct ufsmount *ump; 1100 daddr_t daddr; 1101 dev_t dev; 1102 int error, retries; 1103 struct timespec ts; 1104 1105 memset(&ts, 0, sizeof ts); /* XXX gcc */ 1106 1107 ump = VFSTOUFS(mp); 1108 dev = ump->um_dev; 1109 fs = ump->um_lfs; 1110 1111 /* 1112 * If the filesystem is not completely mounted yet, suspend 1113 * any access requests (wait for roll-forward to complete). 1114 */ 1115 mutex_enter(&lfs_lock); 1116 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid) 1117 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0, 1118 &lfs_lock); 1119 mutex_exit(&lfs_lock); 1120 1121 retry: 1122 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) 1123 return (0); 1124 1125 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) { 1126 *vpp = NULL; 1127 return (error); 1128 } 1129 1130 mutex_enter(&ufs_hashlock); 1131 if (ufs_ihashget(dev, ino, 0) != NULL) { 1132 mutex_exit(&ufs_hashlock); 1133 ungetnewvnode(vp); 1134 goto retry; 1135 } 1136 1137 /* Translate the inode number to a disk address. */ 1138 if (ino == LFS_IFILE_INUM) 1139 daddr = fs->lfs_idaddr; 1140 else { 1141 /* XXX bounds-check this too */ 1142 LFS_IENTRY(ifp, fs, ino, bp); 1143 daddr = ifp->if_daddr; 1144 if (fs->lfs_version > 1) { 1145 ts.tv_sec = ifp->if_atime_sec; 1146 ts.tv_nsec = ifp->if_atime_nsec; 1147 } 1148 1149 brelse(bp, 0); 1150 if (daddr == LFS_UNUSED_DADDR) { 1151 *vpp = NULLVP; 1152 mutex_exit(&ufs_hashlock); 1153 ungetnewvnode(vp); 1154 return (ENOENT); 1155 } 1156 } 1157 1158 /* Allocate/init new vnode/inode. */ 1159 lfs_vcreate(mp, ino, vp); 1160 1161 /* 1162 * Put it onto its hash chain and lock it so that other requests for 1163 * this inode will block if they arrive while we are sleeping waiting 1164 * for old data structures to be purged or for the contents of the 1165 * disk portion of this inode to be read. 1166 */ 1167 ip = VTOI(vp); 1168 ufs_ihashins(ip); 1169 mutex_exit(&ufs_hashlock); 1170 1171 /* 1172 * XXX 1173 * This may not need to be here, logically it should go down with 1174 * the i_devvp initialization. 1175 * Ask Kirk. 1176 */ 1177 ip->i_lfs = ump->um_lfs; 1178 1179 /* Read in the disk contents for the inode, copy into the inode. */ 1180 retries = 0; 1181 again: 1182 error = bread(ump->um_devvp, fsbtodb(fs, daddr), 1183 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize), 1184 NOCRED, 0, &bp); 1185 if (error) { 1186 /* 1187 * The inode does not contain anything useful, so it would 1188 * be misleading to leave it on its hash chain. With mode 1189 * still zero, it will be unlinked and returned to the free 1190 * list by vput(). 1191 */ 1192 vput(vp); 1193 brelse(bp, 0); 1194 *vpp = NULL; 1195 return (error); 1196 } 1197 1198 dip = lfs_ifind(fs, ino, bp); 1199 if (dip == NULL) { 1200 /* Assume write has not completed yet; try again */ 1201 brelse(bp, BC_INVAL); 1202 ++retries; 1203 if (retries > LFS_IFIND_RETRIES) { 1204 #ifdef DEBUG 1205 /* If the seglock is held look at the bpp to see 1206 what is there anyway */ 1207 mutex_enter(&lfs_lock); 1208 if (fs->lfs_seglock > 0) { 1209 struct buf **bpp; 1210 struct ufs1_dinode *dp; 1211 int i; 1212 1213 for (bpp = fs->lfs_sp->bpp; 1214 bpp != fs->lfs_sp->cbpp; ++bpp) { 1215 if ((*bpp)->b_vp == fs->lfs_ivnode && 1216 bpp != fs->lfs_sp->bpp) { 1217 /* Inode block */ 1218 printf("lfs_vget: block 0x%" PRIx64 ": ", 1219 (*bpp)->b_blkno); 1220 dp = (struct ufs1_dinode *)(*bpp)->b_data; 1221 for (i = 0; i < INOPB(fs); i++) 1222 if (dp[i].di_u.inumber) 1223 printf("%d ", dp[i].di_u.inumber); 1224 printf("\n"); 1225 } 1226 } 1227 } 1228 mutex_exit(&lfs_lock); 1229 #endif /* DEBUG */ 1230 panic("lfs_vget: dinode not found"); 1231 } 1232 mutex_enter(&lfs_lock); 1233 if (fs->lfs_iocount) { 1234 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino)); 1235 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, 1236 "lfs ifind", 1, &lfs_lock); 1237 } else 1238 retries = LFS_IFIND_RETRIES; 1239 mutex_exit(&lfs_lock); 1240 goto again; 1241 } 1242 *ip->i_din.ffs1_din = *dip; 1243 brelse(bp, 0); 1244 1245 if (fs->lfs_version > 1) { 1246 ip->i_ffs1_atime = ts.tv_sec; 1247 ip->i_ffs1_atimensec = ts.tv_nsec; 1248 } 1249 1250 lfs_vinit(mp, &vp); 1251 1252 *vpp = vp; 1253 1254 KASSERT(VOP_ISLOCKED(vp)); 1255 1256 return (0); 1257 } 1258 1259 /* 1260 * File handle to vnode 1261 */ 1262 int 1263 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp) 1264 { 1265 struct lfid lfh; 1266 struct buf *bp; 1267 IFILE *ifp; 1268 int32_t daddr; 1269 struct lfs *fs; 1270 vnode_t *vp; 1271 1272 if (fhp->fid_len != sizeof(struct lfid)) 1273 return EINVAL; 1274 1275 memcpy(&lfh, fhp, sizeof(lfh)); 1276 if (lfh.lfid_ino < LFS_IFILE_INUM) 1277 return ESTALE; 1278 1279 fs = VFSTOUFS(mp)->um_lfs; 1280 if (lfh.lfid_ident != fs->lfs_ident) 1281 return ESTALE; 1282 1283 if (lfh.lfid_ino > 1284 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) - 1285 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb) 1286 return ESTALE; 1287 1288 mutex_enter(&ufs_ihash_lock); 1289 vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino); 1290 mutex_exit(&ufs_ihash_lock); 1291 if (vp == NULL) { 1292 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp); 1293 daddr = ifp->if_daddr; 1294 brelse(bp, 0); 1295 if (daddr == LFS_UNUSED_DADDR) 1296 return ESTALE; 1297 } 1298 1299 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp)); 1300 } 1301 1302 /* 1303 * Vnode pointer to File handle 1304 */ 1305 /* ARGSUSED */ 1306 int 1307 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size) 1308 { 1309 struct inode *ip; 1310 struct lfid lfh; 1311 1312 if (*fh_size < sizeof(struct lfid)) { 1313 *fh_size = sizeof(struct lfid); 1314 return E2BIG; 1315 } 1316 *fh_size = sizeof(struct lfid); 1317 ip = VTOI(vp); 1318 memset(&lfh, 0, sizeof(lfh)); 1319 lfh.lfid_len = sizeof(struct lfid); 1320 lfh.lfid_ino = ip->i_number; 1321 lfh.lfid_gen = ip->i_gen; 1322 lfh.lfid_ident = ip->i_lfs->lfs_ident; 1323 memcpy(fhp, &lfh, sizeof(lfh)); 1324 return (0); 1325 } 1326 1327 static int 1328 sysctl_lfs_dostats(SYSCTLFN_ARGS) 1329 { 1330 extern struct lfs_stats lfs_stats; 1331 extern int lfs_dostats; 1332 int error; 1333 1334 error = sysctl_lookup(SYSCTLFN_CALL(rnode)); 1335 if (error || newp == NULL) 1336 return (error); 1337 1338 if (lfs_dostats == 0) 1339 memset(&lfs_stats, 0, sizeof(lfs_stats)); 1340 1341 return (0); 1342 } 1343 1344 struct shortlong { 1345 const char *sname; 1346 const char *lname; 1347 }; 1348 1349 SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup") 1350 { 1351 int i; 1352 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead, 1353 lfs_fs_pagetrip, lfs_ignore_lazy_sync; 1354 #ifdef DEBUG 1355 extern int lfs_debug_log_subsys[DLOG_MAX]; 1356 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */ 1357 { "rollforward", "Debug roll-forward code" }, 1358 { "alloc", "Debug inode allocation and free list" }, 1359 { "avail", "Debug space-available-now accounting" }, 1360 { "flush", "Debug flush triggers" }, 1361 { "lockedlist", "Debug locked list accounting" }, 1362 { "vnode_verbose", "Verbose per-vnode-written debugging" }, 1363 { "vnode", "Debug vnode use during segment write" }, 1364 { "segment", "Debug segment writing" }, 1365 { "seguse", "Debug segment used-bytes accounting" }, 1366 { "cleaner", "Debug cleaning routines" }, 1367 { "mount", "Debug mount/unmount routines" }, 1368 { "pagecache", "Debug UBC interactions" }, 1369 { "dirop", "Debug directory-operation accounting" }, 1370 { "malloc", "Debug private malloc accounting" }, 1371 }; 1372 #endif /* DEBUG */ 1373 struct shortlong stat_names[] = { /* Must match lfs.h! */ 1374 { "segsused", "Number of new segments allocated" }, 1375 { "psegwrites", "Number of partial-segment writes" }, 1376 { "psyncwrites", "Number of synchronous partial-segment" 1377 " writes" }, 1378 { "pcleanwrites", "Number of partial-segment writes by the" 1379 " cleaner" }, 1380 { "blocktot", "Number of blocks written" }, 1381 { "cleanblocks", "Number of blocks written by the cleaner" }, 1382 { "ncheckpoints", "Number of checkpoints made" }, 1383 { "nwrites", "Number of whole writes" }, 1384 { "nsync_writes", "Number of synchronous writes" }, 1385 { "wait_exceeded", "Number of times writer waited for" 1386 " cleaner" }, 1387 { "write_exceeded", "Number of times writer invoked flush" }, 1388 { "flush_invoked", "Number of times flush was invoked" }, 1389 { "vflush_invoked", "Number of time vflush was called" }, 1390 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" }, 1391 { "clean_vnlocked", "Number of vnodes skipped for vget failure" }, 1392 { "segs_reclaimed", "Number of segments reclaimed" }, 1393 }; 1394 1395 sysctl_createv(clog, 0, NULL, NULL, 1396 CTLFLAG_PERMANENT, 1397 CTLTYPE_NODE, "vfs", NULL, 1398 NULL, 0, NULL, 0, 1399 CTL_VFS, CTL_EOL); 1400 sysctl_createv(clog, 0, NULL, NULL, 1401 CTLFLAG_PERMANENT, 1402 CTLTYPE_NODE, "lfs", 1403 SYSCTL_DESCR("Log-structured file system"), 1404 NULL, 0, NULL, 0, 1405 CTL_VFS, 5, CTL_EOL); 1406 /* 1407 * XXX the "5" above could be dynamic, thereby eliminating one 1408 * more instance of the "number to vfs" mapping problem, but 1409 * "5" is the order as taken from sys/mount.h 1410 */ 1411 1412 sysctl_createv(clog, 0, NULL, NULL, 1413 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1414 CTLTYPE_INT, "flushindir", NULL, 1415 NULL, 0, &lfs_writeindir, 0, 1416 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL); 1417 sysctl_createv(clog, 0, NULL, NULL, 1418 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1419 CTLTYPE_INT, "clean_vnhead", NULL, 1420 NULL, 0, &lfs_clean_vnhead, 0, 1421 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL); 1422 sysctl_createv(clog, 0, NULL, NULL, 1423 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1424 CTLTYPE_INT, "dostats", 1425 SYSCTL_DESCR("Maintain statistics on LFS operations"), 1426 sysctl_lfs_dostats, 0, &lfs_dostats, 0, 1427 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL); 1428 sysctl_createv(clog, 0, NULL, NULL, 1429 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1430 CTLTYPE_INT, "pagetrip", 1431 SYSCTL_DESCR("How many dirty pages in fs triggers" 1432 " a flush"), 1433 NULL, 0, &lfs_fs_pagetrip, 0, 1434 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL); 1435 sysctl_createv(clog, 0, NULL, NULL, 1436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1437 CTLTYPE_INT, "ignore_lazy_sync", 1438 SYSCTL_DESCR("Lazy Sync is ignored entirely"), 1439 NULL, 0, &lfs_ignore_lazy_sync, 0, 1440 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL); 1441 #ifdef LFS_KERNEL_RFW 1442 sysctl_createv(clog, 0, NULL, NULL, 1443 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1444 CTLTYPE_INT, "rfw", 1445 SYSCTL_DESCR("Use in-kernel roll-forward on mount"), 1446 NULL, 0, &lfs_do_rfw, 0, 1447 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL); 1448 #endif 1449 1450 sysctl_createv(clog, 0, NULL, NULL, 1451 CTLFLAG_PERMANENT, 1452 CTLTYPE_NODE, "stats", 1453 SYSCTL_DESCR("Debugging options"), 1454 NULL, 0, NULL, 0, 1455 CTL_VFS, 5, LFS_STATS, CTL_EOL); 1456 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) { 1457 sysctl_createv(clog, 0, NULL, NULL, 1458 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1459 CTLTYPE_INT, stat_names[i].sname, 1460 SYSCTL_DESCR(stat_names[i].lname), 1461 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]), 1462 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL); 1463 } 1464 1465 #ifdef DEBUG 1466 sysctl_createv(clog, 0, NULL, NULL, 1467 CTLFLAG_PERMANENT, 1468 CTLTYPE_NODE, "debug", 1469 SYSCTL_DESCR("Debugging options"), 1470 NULL, 0, NULL, 0, 1471 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL); 1472 for (i = 0; i < DLOG_MAX; i++) { 1473 sysctl_createv(clog, 0, NULL, NULL, 1474 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1475 CTLTYPE_INT, dlog_names[i].sname, 1476 SYSCTL_DESCR(dlog_names[i].lname), 1477 NULL, 0, &(lfs_debug_log_subsys[i]), 0, 1478 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL); 1479 } 1480 #endif 1481 } 1482 1483 /* 1484 * ufs_bmaparray callback function for writing. 1485 * 1486 * Since blocks will be written to the new segment anyway, 1487 * we don't care about current daddr of them. 1488 */ 1489 static bool 1490 lfs_issequential_hole(const struct ufsmount *ump, 1491 daddr_t daddr0, daddr_t daddr1) 1492 { 1493 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */ 1494 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */ 1495 1496 KASSERT(daddr0 == UNWRITTEN || 1497 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR)); 1498 KASSERT(daddr1 == UNWRITTEN || 1499 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR)); 1500 1501 /* NOTE: all we want to know here is 'hole or not'. */ 1502 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */ 1503 1504 /* 1505 * treat UNWRITTENs and all resident blocks as 'contiguous' 1506 */ 1507 if (daddr0 != 0 && daddr1 != 0) 1508 return true; 1509 1510 /* 1511 * both are in hole? 1512 */ 1513 if (daddr0 == 0 && daddr1 == 0) 1514 return true; /* all holes are 'contiguous' for us. */ 1515 1516 return false; 1517 } 1518 1519 /* 1520 * lfs_gop_write functions exactly like genfs_gop_write, except that 1521 * (1) it requires the seglock to be held by its caller, and sp->fip 1522 * to be properly initialized (it will return without re-initializing 1523 * sp->fip, and without calling lfs_writeseg). 1524 * (2) it uses the remaining space in the segment, rather than VOP_BMAP, 1525 * to determine how large a block it can write at once (though it does 1526 * still use VOP_BMAP to find holes in the file); 1527 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks 1528 * (leaving lfs_writeseg to deal with the cluster blocks, so we might 1529 * now have clusters of clusters, ick.) 1530 */ 1531 static int 1532 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1533 int flags) 1534 { 1535 int i, error, run, haveeof = 0; 1536 int fs_bshift; 1537 vaddr_t kva; 1538 off_t eof, offset, startoffset = 0; 1539 size_t bytes, iobytes, skipbytes; 1540 daddr_t lbn, blkno; 1541 struct vm_page *pg; 1542 struct buf *mbp, *bp; 1543 struct vnode *devvp = VTOI(vp)->i_devvp; 1544 struct inode *ip = VTOI(vp); 1545 struct lfs *fs = ip->i_lfs; 1546 struct segment *sp = fs->lfs_sp; 1547 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist); 1548 1549 ASSERT_SEGLOCK(fs); 1550 1551 /* The Ifile lives in the buffer cache */ 1552 KASSERT(vp != fs->lfs_ivnode); 1553 1554 /* 1555 * We don't want to fill the disk before the cleaner has a chance 1556 * to make room for us. If we're in danger of doing that, fail 1557 * with EAGAIN. The caller will have to notice this, unlock 1558 * so the cleaner can run, relock and try again. 1559 * 1560 * We must write everything, however, if our vnode is being 1561 * reclaimed. 1562 */ 1563 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp) 1564 goto tryagain; 1565 1566 /* 1567 * Sometimes things slip past the filters in lfs_putpages, 1568 * and the pagedaemon tries to write pages---problem is 1569 * that the pagedaemon never acquires the segment lock. 1570 * 1571 * Alternatively, pages that were clean when we called 1572 * genfs_putpages may have become dirty in the meantime. In this 1573 * case the segment header is not properly set up for blocks 1574 * to be added to it. 1575 * 1576 * Unbusy and unclean the pages, and put them on the ACTIVE 1577 * queue under the hypothesis that they couldn't have got here 1578 * unless they were modified *quite* recently. 1579 * 1580 * XXXUBC that last statement is an oversimplification of course. 1581 */ 1582 if (!LFS_SEGLOCK_HELD(fs) || 1583 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) || 1584 (pgs[0]->offset & fs->lfs_bmask) != 0) { 1585 goto tryagain; 1586 } 1587 1588 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1589 vp, pgs, npages, flags); 1590 1591 GOP_SIZE(vp, vp->v_size, &eof, 0); 1592 haveeof = 1; 1593 1594 if (vp->v_type == VREG) 1595 fs_bshift = vp->v_mount->mnt_fs_bshift; 1596 else 1597 fs_bshift = DEV_BSHIFT; 1598 error = 0; 1599 pg = pgs[0]; 1600 startoffset = pg->offset; 1601 KASSERT(eof >= 0); 1602 1603 if (startoffset >= eof) { 1604 goto tryagain; 1605 } else 1606 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1607 skipbytes = 0; 1608 1609 KASSERT(bytes != 0); 1610 1611 /* Swap PG_DELWRI for PG_PAGEOUT */ 1612 for (i = 0; i < npages; i++) { 1613 if (pgs[i]->flags & PG_DELWRI) { 1614 KASSERT(!(pgs[i]->flags & PG_PAGEOUT)); 1615 pgs[i]->flags &= ~PG_DELWRI; 1616 pgs[i]->flags |= PG_PAGEOUT; 1617 uvm_pageout_start(1); 1618 mutex_enter(&uvm_pageqlock); 1619 uvm_pageunwire(pgs[i]); 1620 mutex_exit(&uvm_pageqlock); 1621 } 1622 } 1623 1624 /* 1625 * Check to make sure we're starting on a block boundary. 1626 * We'll check later to make sure we always write entire 1627 * blocks (or fragments). 1628 */ 1629 if (startoffset & fs->lfs_bmask) 1630 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n", 1631 startoffset, fs->lfs_bmask, 1632 startoffset & fs->lfs_bmask); 1633 KASSERT((startoffset & fs->lfs_bmask) == 0); 1634 if (bytes & fs->lfs_ffmask) { 1635 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes); 1636 panic("lfs_gop_write: non-integer blocks"); 1637 } 1638 1639 /* 1640 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK. 1641 * If we would, write what we have and try again. If we don't 1642 * have anything to write, we'll have to sleep. 1643 */ 1644 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | 1645 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ? 1646 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) { 1647 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n")); 1648 #if 0 1649 " with nfinfo=%d at offset 0x%x\n", 1650 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo, 1651 (unsigned)fs->lfs_offset)); 1652 #endif 1653 lfs_updatemeta(sp); 1654 lfs_release_finfo(fs); 1655 (void) lfs_writeseg(fs, sp); 1656 1657 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 1658 1659 /* 1660 * Having given up all of the pager_map we were holding, 1661 * we can now wait for aiodoned to reclaim it for us 1662 * without fear of deadlock. 1663 */ 1664 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | 1665 UVMPAGER_MAPIN_WAITOK); 1666 } 1667 1668 mutex_enter(&vp->v_interlock); 1669 vp->v_numoutput += 2; /* one for biodone, one for aiodone */ 1670 mutex_exit(&vp->v_interlock); 1671 1672 mbp = getiobuf(NULL, true); 1673 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1674 vp, mbp, vp->v_numoutput, bytes); 1675 mbp->b_bufsize = npages << PAGE_SHIFT; 1676 mbp->b_data = (void *)kva; 1677 mbp->b_resid = mbp->b_bcount = bytes; 1678 mbp->b_cflags = BC_BUSY|BC_AGE; 1679 mbp->b_iodone = uvm_aio_biodone; 1680 1681 bp = NULL; 1682 for (offset = startoffset; 1683 bytes > 0; 1684 offset += iobytes, bytes -= iobytes) { 1685 lbn = offset >> fs_bshift; 1686 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run, 1687 lfs_issequential_hole); 1688 if (error) { 1689 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d", 1690 error,0,0,0); 1691 skipbytes += bytes; 1692 bytes = 0; 1693 break; 1694 } 1695 1696 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1697 bytes); 1698 if (blkno == (daddr_t)-1) { 1699 skipbytes += iobytes; 1700 continue; 1701 } 1702 1703 /* 1704 * Discover how much we can really pack into this buffer. 1705 */ 1706 /* If no room in the current segment, finish it up */ 1707 if (sp->sum_bytes_left < sizeof(int32_t) || 1708 sp->seg_bytes_left < (1 << fs->lfs_bshift)) { 1709 int vers; 1710 1711 lfs_updatemeta(sp); 1712 vers = sp->fip->fi_version; 1713 lfs_release_finfo(fs); 1714 (void) lfs_writeseg(fs, sp); 1715 1716 lfs_acquire_finfo(fs, ip->i_number, vers); 1717 } 1718 /* Check both for space in segment and space in segsum */ 1719 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift) 1720 << fs_bshift); 1721 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t)) 1722 << fs_bshift); 1723 KASSERT(iobytes > 0); 1724 1725 /* if it's really one i/o, don't make a second buf */ 1726 if (offset == startoffset && iobytes == bytes) { 1727 bp = mbp; 1728 /* correct overcount if there is no second buffer */ 1729 mutex_enter(&vp->v_interlock); 1730 --vp->v_numoutput; 1731 mutex_exit(&vp->v_interlock); 1732 } else { 1733 bp = getiobuf(NULL, true); 1734 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1735 vp, bp, vp->v_numoutput, 0); 1736 bp->b_data = (char *)kva + 1737 (vaddr_t)(offset - pg->offset); 1738 bp->b_resid = bp->b_bcount = iobytes; 1739 bp->b_cflags = BC_BUSY; 1740 bp->b_iodone = uvm_aio_biodone1; 1741 } 1742 1743 /* XXX This is silly ... is this necessary? */ 1744 mutex_enter(&bufcache_lock); 1745 mutex_enter(&vp->v_interlock); 1746 bgetvp(vp, bp); 1747 mutex_exit(&vp->v_interlock); 1748 mutex_exit(&bufcache_lock); 1749 1750 bp->b_lblkno = lblkno(fs, offset); 1751 bp->b_private = mbp; 1752 if (devvp->v_type == VBLK) { 1753 bp->b_dev = devvp->v_rdev; 1754 } 1755 VOP_BWRITE(bp); 1756 while (lfs_gatherblock(sp, bp, NULL)) 1757 continue; 1758 } 1759 1760 if (skipbytes) { 1761 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1762 mutex_enter(mbp->b_objlock); 1763 if (error) { 1764 mbp->b_error = error; 1765 } 1766 mbp->b_resid -= skipbytes; 1767 mutex_exit(mbp->b_objlock); 1768 if (mbp->b_resid == 0) { 1769 biodone(mbp); 1770 } 1771 } 1772 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0); 1773 return (0); 1774 1775 tryagain: 1776 /* 1777 * We can't write the pages, for whatever reason. 1778 * Clean up after ourselves, and make the caller try again. 1779 */ 1780 mutex_enter(&vp->v_interlock); 1781 1782 /* Tell why we're here, if we know */ 1783 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) { 1784 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n")); 1785 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) { 1786 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n")); 1787 } else if (haveeof && startoffset >= eof) { 1788 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64 1789 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number, 1790 pgs[0]->offset, eof, npages)); 1791 } else if (LFS_STARVED_FOR_SEGS(fs)) { 1792 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n")); 1793 } else { 1794 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n")); 1795 } 1796 1797 mutex_enter(&uvm_pageqlock); 1798 for (i = 0; i < npages; i++) { 1799 pg = pgs[i]; 1800 1801 if (pg->flags & PG_PAGEOUT) 1802 uvm_pageout_done(1); 1803 if (pg->flags & PG_DELWRI) { 1804 uvm_pageunwire(pg); 1805 } 1806 uvm_pageactivate(pg); 1807 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED); 1808 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg, 1809 vp, pg->offset)); 1810 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags)); 1811 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags)); 1812 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon)); 1813 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject)); 1814 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i, 1815 pg->wire_count)); 1816 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i, 1817 pg->loan_count)); 1818 } 1819 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */ 1820 uvm_page_unbusy(pgs, npages); 1821 mutex_exit(&uvm_pageqlock); 1822 mutex_exit(&vp->v_interlock); 1823 return EAGAIN; 1824 } 1825 1826 /* 1827 * finish vnode/inode initialization. 1828 * used by lfs_vget and lfs_fastvget. 1829 */ 1830 void 1831 lfs_vinit(struct mount *mp, struct vnode **vpp) 1832 { 1833 struct vnode *vp = *vpp; 1834 struct inode *ip = VTOI(vp); 1835 struct ufsmount *ump = VFSTOUFS(mp); 1836 struct lfs *fs = ump->um_lfs; 1837 int i; 1838 1839 ip->i_mode = ip->i_ffs1_mode; 1840 ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink; 1841 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size; 1842 ip->i_flags = ip->i_ffs1_flags; 1843 ip->i_gen = ip->i_ffs1_gen; 1844 ip->i_uid = ip->i_ffs1_uid; 1845 ip->i_gid = ip->i_ffs1_gid; 1846 1847 ip->i_lfs_effnblks = ip->i_ffs1_blocks; 1848 ip->i_lfs_odnlink = ip->i_ffs1_nlink; 1849 1850 /* 1851 * Initialize the vnode from the inode, check for aliases. In all 1852 * cases re-init ip, the underlying vnode/inode may have changed. 1853 */ 1854 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp); 1855 ip = VTOI(vp); 1856 1857 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize)); 1858 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) { 1859 #ifdef DEBUG 1860 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; 1861 i < NDADDR; i++) { 1862 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1863 i == 0) 1864 continue; 1865 if (ip->i_ffs1_db[i] != 0) { 1866 inconsistent: 1867 lfs_dump_dinode(ip->i_din.ffs1_din); 1868 panic("inconsistent inode"); 1869 } 1870 } 1871 for ( ; i < NDADDR + NIADDR; i++) { 1872 if (ip->i_ffs1_ib[i - NDADDR] != 0) { 1873 goto inconsistent; 1874 } 1875 } 1876 #endif /* DEBUG */ 1877 for (i = 0; i < NDADDR; i++) 1878 if (ip->i_ffs1_db[i] != 0) 1879 ip->i_lfs_fragsize[i] = blksize(fs, ip, i); 1880 } 1881 1882 #ifdef DIAGNOSTIC 1883 if (vp->v_type == VNON) { 1884 # ifdef DEBUG 1885 lfs_dump_dinode(ip->i_din.ffs1_din); 1886 # endif 1887 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n", 1888 (unsigned long long)ip->i_number, 1889 (ip->i_mode & IFMT) >> 12); 1890 } 1891 #endif /* DIAGNOSTIC */ 1892 1893 /* 1894 * Finish inode initialization now that aliasing has been resolved. 1895 */ 1896 1897 ip->i_devvp = ump->um_devvp; 1898 VREF(ip->i_devvp); 1899 genfs_node_init(vp, &lfs_genfsops); 1900 uvm_vnp_setsize(vp, ip->i_size); 1901 1902 /* Initialize hiblk from file size */ 1903 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1; 1904 1905 *vpp = vp; 1906 } 1907 1908 /* 1909 * Resize the filesystem to contain the specified number of segments. 1910 */ 1911 int 1912 lfs_resize_fs(struct lfs *fs, int newnsegs) 1913 { 1914 SEGUSE *sup; 1915 struct buf *bp, *obp; 1916 daddr_t olast, nlast, ilast, noff, start, end; 1917 struct vnode *ivp; 1918 struct inode *ip; 1919 int error, badnews, inc, oldnsegs; 1920 int sbbytes, csbbytes, gain, cgain; 1921 int i; 1922 1923 /* Only support v2 and up */ 1924 if (fs->lfs_version < 2) 1925 return EOPNOTSUPP; 1926 1927 /* If we're doing nothing, do it fast */ 1928 oldnsegs = fs->lfs_nseg; 1929 if (newnsegs == oldnsegs) 1930 return 0; 1931 1932 /* We always have to have two superblocks */ 1933 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1])) 1934 return EFBIG; 1935 1936 ivp = fs->lfs_ivnode; 1937 ip = VTOI(ivp); 1938 error = 0; 1939 1940 /* Take the segment lock so no one else calls lfs_newseg() */ 1941 lfs_seglock(fs, SEGM_PROT); 1942 1943 /* 1944 * Make sure the segments we're going to be losing, if any, 1945 * are in fact empty. We hold the seglock, so their status 1946 * cannot change underneath us. Count the superblocks we lose, 1947 * while we're at it. 1948 */ 1949 sbbytes = csbbytes = 0; 1950 cgain = 0; 1951 for (i = newnsegs; i < oldnsegs; i++) { 1952 LFS_SEGENTRY(sup, fs, i, bp); 1953 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL); 1954 if (sup->su_flags & SEGUSE_SUPERBLOCK) 1955 sbbytes += LFS_SBPAD; 1956 if (!(sup->su_flags & SEGUSE_DIRTY)) { 1957 ++cgain; 1958 if (sup->su_flags & SEGUSE_SUPERBLOCK) 1959 csbbytes += LFS_SBPAD; 1960 } 1961 brelse(bp, 0); 1962 if (badnews) { 1963 error = EBUSY; 1964 goto out; 1965 } 1966 } 1967 1968 /* Note old and new segment table endpoints, and old ifile size */ 1969 olast = fs->lfs_cleansz + fs->lfs_segtabsz; 1970 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz; 1971 ilast = ivp->v_size >> fs->lfs_bshift; 1972 noff = nlast - olast; 1973 1974 /* 1975 * Make sure no one can use the Ifile while we change it around. 1976 * Even after taking the iflock we need to make sure no one still 1977 * is holding Ifile buffers, so we get each one, to drain them. 1978 * (XXX this could be done better.) 1979 */ 1980 rw_enter(&fs->lfs_iflock, RW_WRITER); 1981 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY); 1982 for (i = 0; i < ilast; i++) { 1983 bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp); 1984 brelse(bp, 0); 1985 } 1986 1987 /* Allocate new Ifile blocks */ 1988 for (i = ilast; i < ilast + noff; i++) { 1989 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0, 1990 &bp) != 0) 1991 panic("balloc extending ifile"); 1992 memset(bp->b_data, 0, fs->lfs_bsize); 1993 VOP_BWRITE(bp); 1994 } 1995 1996 /* Register new ifile size */ 1997 ip->i_size += noff * fs->lfs_bsize; 1998 ip->i_ffs1_size = ip->i_size; 1999 uvm_vnp_setsize(ivp, ip->i_size); 2000 2001 /* Copy the inode table to its new position */ 2002 if (noff != 0) { 2003 if (noff < 0) { 2004 start = nlast; 2005 end = ilast + noff; 2006 inc = 1; 2007 } else { 2008 start = ilast + noff - 1; 2009 end = nlast - 1; 2010 inc = -1; 2011 } 2012 for (i = start; i != end; i += inc) { 2013 if (bread(ivp, i, fs->lfs_bsize, NOCRED, 2014 B_MODIFY, &bp) != 0) 2015 panic("resize: bread dst blk failed"); 2016 if (bread(ivp, i - noff, fs->lfs_bsize, 2017 NOCRED, 0, &obp)) 2018 panic("resize: bread src blk failed"); 2019 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize); 2020 VOP_BWRITE(bp); 2021 brelse(obp, 0); 2022 } 2023 } 2024 2025 /* If we are expanding, write the new empty SEGUSE entries */ 2026 if (newnsegs > oldnsegs) { 2027 for (i = oldnsegs; i < newnsegs; i++) { 2028 if ((error = bread(ivp, i / fs->lfs_sepb + 2029 fs->lfs_cleansz, fs->lfs_bsize, 2030 NOCRED, B_MODIFY, &bp)) != 0) 2031 panic("lfs: ifile read: %d", error); 2032 while ((i + 1) % fs->lfs_sepb && i < newnsegs) { 2033 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb]; 2034 memset(sup, 0, sizeof(*sup)); 2035 i++; 2036 } 2037 VOP_BWRITE(bp); 2038 } 2039 } 2040 2041 /* Zero out unused superblock offsets */ 2042 for (i = 2; i < LFS_MAXNUMSB; i++) 2043 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs) 2044 fs->lfs_sboffs[i] = 0x0; 2045 2046 /* 2047 * Correct superblock entries that depend on fs size. 2048 * The computations of these are as follows: 2049 * 2050 * size = segtod(fs, nseg) 2051 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD) 2052 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used 2053 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD) 2054 * + (segtod(fs, 1) - (offset - curseg)) 2055 * - segtod(fs, minfreeseg - (minfreeseg / 2)) 2056 * 2057 * XXX - we should probably adjust minfreeseg as well. 2058 */ 2059 gain = (newnsegs - oldnsegs); 2060 fs->lfs_nseg = newnsegs; 2061 fs->lfs_segtabsz = nlast - fs->lfs_cleansz; 2062 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize); 2063 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes); 2064 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes) 2065 - gain * btofsb(fs, fs->lfs_bsize / 2); 2066 if (gain > 0) { 2067 fs->lfs_nclean += gain; 2068 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize); 2069 } else { 2070 fs->lfs_nclean -= cgain; 2071 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) - 2072 btofsb(fs, csbbytes); 2073 } 2074 2075 /* Resize segment flag cache */ 2076 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0], 2077 fs->lfs_nseg * sizeof(u_int32_t), 2078 M_SEGMENT, M_WAITOK); 2079 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1], 2080 fs->lfs_nseg * sizeof(u_int32_t), 2081 M_SEGMENT, M_WAITOK); 2082 for (i = oldnsegs; i < newnsegs; i++) 2083 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0; 2084 2085 /* Truncate Ifile if necessary */ 2086 if (noff < 0) 2087 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0, 2088 NOCRED); 2089 2090 /* Update cleaner info so the cleaner can die */ 2091 bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp); 2092 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean; 2093 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean; 2094 VOP_BWRITE(bp); 2095 2096 /* Let Ifile accesses proceed */ 2097 VOP_UNLOCK(ivp, 0); 2098 rw_exit(&fs->lfs_iflock); 2099 2100 out: 2101 lfs_segunlock(fs); 2102 return error; 2103 } 2104