1 /* $NetBSD: lfs_vfsops.c,v 1.247 2007/11/10 18:53:57 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /*- 39 * Copyright (c) 1989, 1991, 1993, 1994 40 * The Regents of the University of California. All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.247 2007/11/10 18:53:57 rmind Exp $"); 71 72 #if defined(_KERNEL_OPT) 73 #include "opt_quota.h" 74 #endif 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/namei.h> 79 #include <sys/proc.h> 80 #include <sys/kernel.h> 81 #include <sys/vnode.h> 82 #include <sys/mount.h> 83 #include <sys/kthread.h> 84 #include <sys/buf.h> 85 #include <sys/device.h> 86 #include <sys/mbuf.h> 87 #include <sys/file.h> 88 #include <sys/disklabel.h> 89 #include <sys/ioctl.h> 90 #include <sys/errno.h> 91 #include <sys/malloc.h> 92 #include <sys/pool.h> 93 #include <sys/socket.h> 94 #include <sys/syslog.h> 95 #include <uvm/uvm_extern.h> 96 #include <sys/sysctl.h> 97 #include <sys/conf.h> 98 #include <sys/kauth.h> 99 100 #include <miscfs/specfs/specdev.h> 101 102 #include <ufs/ufs/quota.h> 103 #include <ufs/ufs/inode.h> 104 #include <ufs/ufs/ufsmount.h> 105 #include <ufs/ufs/ufs_extern.h> 106 107 #include <uvm/uvm.h> 108 #include <uvm/uvm_stat.h> 109 #include <uvm/uvm_pager.h> 110 #include <uvm/uvm_pdaemon.h> 111 112 #include <ufs/lfs/lfs.h> 113 #include <ufs/lfs/lfs_extern.h> 114 115 #include <miscfs/genfs/genfs.h> 116 #include <miscfs/genfs/genfs_node.h> 117 118 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int); 119 static bool lfs_issequential_hole(const struct ufsmount *, 120 daddr_t, daddr_t); 121 122 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *); 123 124 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc; 125 extern const struct vnodeopv_desc lfs_specop_opv_desc; 126 extern const struct vnodeopv_desc lfs_fifoop_opv_desc; 127 128 pid_t lfs_writer_daemon = 0; 129 int lfs_do_flush = 0; 130 #ifdef LFS_KERNEL_RFW 131 int lfs_do_rfw = 0; 132 #endif 133 134 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = { 135 &lfs_vnodeop_opv_desc, 136 &lfs_specop_opv_desc, 137 &lfs_fifoop_opv_desc, 138 NULL, 139 }; 140 141 struct vfsops lfs_vfsops = { 142 MOUNT_LFS, 143 sizeof (struct ufs_args), 144 lfs_mount, 145 ufs_start, 146 lfs_unmount, 147 ufs_root, 148 ufs_quotactl, 149 lfs_statvfs, 150 lfs_sync, 151 lfs_vget, 152 lfs_fhtovp, 153 lfs_vptofh, 154 lfs_init, 155 lfs_reinit, 156 lfs_done, 157 lfs_mountroot, 158 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp, 159 vfs_stdextattrctl, 160 (void *)eopnotsupp, /* vfs_suspendctl */ 161 lfs_vnodeopv_descs, 162 0, 163 { NULL, NULL }, 164 }; 165 VFS_ATTACH(lfs_vfsops); 166 167 const struct genfs_ops lfs_genfsops = { 168 .gop_size = lfs_gop_size, 169 .gop_alloc = ufs_gop_alloc, 170 .gop_write = lfs_gop_write, 171 .gop_markupdate = ufs_gop_markupdate, 172 }; 173 174 static const struct ufs_ops lfs_ufsops = { 175 .uo_itimes = NULL, 176 .uo_update = lfs_update, 177 .uo_truncate = lfs_truncate, 178 .uo_valloc = lfs_valloc, 179 .uo_vfree = lfs_vfree, 180 .uo_balloc = lfs_balloc, 181 }; 182 183 /* 184 * XXX Same structure as FFS inodes? Should we share a common pool? 185 */ 186 struct pool lfs_inode_pool; 187 struct pool lfs_dinode_pool; 188 struct pool lfs_inoext_pool; 189 struct pool lfs_lbnentry_pool; 190 191 /* 192 * The writer daemon. UVM keeps track of how many dirty pages we are holding 193 * in lfs_subsys_pages; the daemon flushes the filesystem when this value 194 * crosses the (user-defined) threshhold LFS_MAX_PAGES. 195 */ 196 static void 197 lfs_writerd(void *arg) 198 { 199 struct mount *mp, *nmp; 200 struct lfs *fs; 201 int fsflags; 202 int loopcount; 203 204 lfs_writer_daemon = curproc->p_pid; 205 206 simple_lock(&lfs_subsys_lock); 207 for (;;) { 208 ltsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10, 209 &lfs_subsys_lock); 210 211 /* 212 * Look through the list of LFSs to see if any of them 213 * have requested pageouts. 214 */ 215 mutex_enter(&mountlist_lock); 216 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; 217 mp = nmp) { 218 if (vfs_busy(mp, LK_NOWAIT, &mountlist_lock)) { 219 nmp = CIRCLEQ_NEXT(mp, mnt_list); 220 continue; 221 } 222 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS, 223 sizeof(mp->mnt_stat.f_fstypename)) == 0) { 224 fs = VFSTOUFS(mp)->um_lfs; 225 simple_lock(&fs->lfs_interlock); 226 fsflags = 0; 227 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) || 228 lfs_dirvcount > LFS_MAX_DIROP) && 229 fs->lfs_dirops == 0) 230 fsflags |= SEGM_CKP; 231 if (fs->lfs_pdflush) { 232 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n")); 233 fs->lfs_pdflush = 0; 234 lfs_flush_fs(fs, fsflags); 235 simple_unlock(&fs->lfs_interlock); 236 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) { 237 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n")); 238 simple_unlock(&fs->lfs_interlock); 239 lfs_writer_enter(fs, "wrdirop"); 240 lfs_flush_pchain(fs); 241 lfs_writer_leave(fs); 242 } else 243 simple_unlock(&fs->lfs_interlock); 244 } 245 246 mutex_enter(&mountlist_lock); 247 nmp = CIRCLEQ_NEXT(mp, mnt_list); 248 vfs_unbusy(mp); 249 } 250 mutex_exit(&mountlist_lock); 251 252 /* 253 * If global state wants a flush, flush everything. 254 */ 255 simple_lock(&lfs_subsys_lock); 256 loopcount = 0; 257 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS || 258 locked_queue_bytes > LFS_MAX_BYTES || 259 lfs_subsys_pages > LFS_MAX_PAGES) { 260 261 if (lfs_do_flush) { 262 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n")); 263 } 264 if (locked_queue_count > LFS_MAX_BUFS) { 265 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n", 266 locked_queue_count, LFS_MAX_BUFS)); 267 } 268 if (locked_queue_bytes > LFS_MAX_BYTES) { 269 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n", 270 locked_queue_bytes, LFS_MAX_BYTES)); 271 } 272 if (lfs_subsys_pages > LFS_MAX_PAGES) { 273 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n", 274 lfs_subsys_pages, LFS_MAX_PAGES)); 275 } 276 277 lfs_flush(NULL, SEGM_WRITERD, 0); 278 lfs_do_flush = 0; 279 } 280 } 281 /* NOTREACHED */ 282 } 283 284 /* 285 * Initialize the filesystem, most work done by ufs_init. 286 */ 287 void 288 lfs_init() 289 { 290 291 malloc_type_attach(M_SEGMENT); 292 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0, 293 "lfsinopl", &pool_allocator_nointr, IPL_NONE); 294 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0, 295 "lfsdinopl", &pool_allocator_nointr, IPL_NONE); 296 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0, 297 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE); 298 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0, 299 "lfslbnpool", &pool_allocator_nointr, IPL_NONE); 300 ufs_init(); 301 302 #ifdef DEBUG 303 memset(lfs_log, 0, sizeof(lfs_log)); 304 #endif 305 simple_lock_init(&lfs_subsys_lock); 306 } 307 308 void 309 lfs_reinit() 310 { 311 ufs_reinit(); 312 } 313 314 void 315 lfs_done() 316 { 317 318 ufs_done(); 319 pool_destroy(&lfs_inode_pool); 320 pool_destroy(&lfs_dinode_pool); 321 pool_destroy(&lfs_inoext_pool); 322 pool_destroy(&lfs_lbnentry_pool); 323 malloc_type_detach(M_SEGMENT); 324 } 325 326 /* 327 * Called by main() when ufs is going to be mounted as root. 328 */ 329 int 330 lfs_mountroot() 331 { 332 extern struct vnode *rootvp; 333 struct mount *mp; 334 struct lwp *l = curlwp; /* XXX */ 335 int error; 336 337 if (device_class(root_device) != DV_DISK) 338 return (ENODEV); 339 340 if (rootdev == NODEV) 341 return (ENODEV); 342 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) { 343 vrele(rootvp); 344 return (error); 345 } 346 if ((error = lfs_mountfs(rootvp, mp, l))) { 347 mp->mnt_op->vfs_refcount--; 348 vfs_unbusy(mp); 349 free(mp, M_MOUNT); 350 return (error); 351 } 352 mutex_enter(&mountlist_lock); 353 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); 354 mutex_exit(&mountlist_lock); 355 (void)lfs_statvfs(mp, &mp->mnt_stat, l); 356 vfs_unbusy(mp); 357 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp)); 358 return (0); 359 } 360 361 /* 362 * VFS Operations. 363 * 364 * mount system call 365 */ 366 int 367 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len, 368 struct lwp *l) 369 { 370 struct nameidata nd; 371 struct vnode *devvp; 372 struct ufs_args *args = data; 373 struct ufsmount *ump = NULL; 374 struct lfs *fs = NULL; /* LFS */ 375 int error = 0, update; 376 mode_t accessmode; 377 378 if (*data_len < sizeof *args) 379 return EINVAL; 380 381 if (mp->mnt_flag & MNT_GETARGS) { 382 ump = VFSTOUFS(mp); 383 if (ump == NULL) 384 return EIO; 385 args->fspec = NULL; 386 *data_len = sizeof *args; 387 return 0; 388 } 389 390 update = mp->mnt_flag & MNT_UPDATE; 391 392 /* Check arguments */ 393 if (args->fspec != NULL) { 394 /* 395 * Look up the name and verify that it's sane. 396 */ 397 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec, l); 398 if ((error = namei(&nd)) != 0) 399 return (error); 400 devvp = nd.ni_vp; 401 402 if (!update) { 403 /* 404 * Be sure this is a valid block device 405 */ 406 if (devvp->v_type != VBLK) 407 error = ENOTBLK; 408 else if (bdevsw_lookup(devvp->v_rdev) == NULL) 409 error = ENXIO; 410 } else { 411 /* 412 * Be sure we're still naming the same device 413 * used for our initial mount 414 */ 415 ump = VFSTOUFS(mp); 416 if (devvp != ump->um_devvp) 417 error = EINVAL; 418 } 419 } else { 420 if (!update) { 421 /* New mounts must have a filename for the device */ 422 return (EINVAL); 423 } else { 424 /* Use the extant mount */ 425 ump = VFSTOUFS(mp); 426 devvp = ump->um_devvp; 427 vref(devvp); 428 } 429 } 430 431 432 /* 433 * If mount by non-root, then verify that user has necessary 434 * permissions on the device. 435 */ 436 if (error == 0 && kauth_authorize_generic(l->l_cred, 437 KAUTH_GENERIC_ISSUSER, NULL) != 0) { 438 accessmode = VREAD; 439 if (update ? 440 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 : 441 (mp->mnt_flag & MNT_RDONLY) == 0) 442 accessmode |= VWRITE; 443 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 444 error = VOP_ACCESS(devvp, accessmode, l->l_cred, l); 445 VOP_UNLOCK(devvp, 0); 446 } 447 448 if (error) { 449 vrele(devvp); 450 return (error); 451 } 452 453 if (!update) { 454 int flags; 455 456 /* 457 * Disallow multiple mounts of the same device. 458 * Disallow mounting of a device that is currently in use 459 * (except for root, which might share swap device for 460 * miniroot). 461 */ 462 error = vfs_mountedon(devvp); 463 if (error) 464 goto fail; 465 if (vcount(devvp) > 1 && devvp != rootvp) { 466 error = EBUSY; 467 goto fail; 468 } 469 if (mp->mnt_flag & MNT_RDONLY) 470 flags = FREAD; 471 else 472 flags = FREAD|FWRITE; 473 error = VOP_OPEN(devvp, flags, FSCRED, l); 474 if (error) 475 goto fail; 476 error = lfs_mountfs(devvp, mp, l); /* LFS */ 477 if (error) { 478 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 479 (void)VOP_CLOSE(devvp, flags, NOCRED, l); 480 VOP_UNLOCK(devvp, 0); 481 goto fail; 482 } 483 484 ump = VFSTOUFS(mp); 485 fs = ump->um_lfs; 486 } else { 487 /* 488 * Update the mount. 489 */ 490 491 /* 492 * The initial mount got a reference on this 493 * device, so drop the one obtained via 494 * namei(), above. 495 */ 496 vrele(devvp); 497 498 ump = VFSTOUFS(mp); 499 fs = ump->um_lfs; 500 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) { 501 /* 502 * Changing from read-only to read/write. 503 * Note in the superblocks that we're writing. 504 */ 505 fs->lfs_ronly = 0; 506 if (fs->lfs_pflags & LFS_PF_CLEAN) { 507 fs->lfs_pflags &= ~LFS_PF_CLEAN; 508 lfs_writesuper(fs, fs->lfs_sboffs[0]); 509 lfs_writesuper(fs, fs->lfs_sboffs[1]); 510 } 511 } 512 if (args->fspec == NULL) 513 return EINVAL; 514 } 515 516 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec, 517 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l); 518 if (error == 0) 519 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname, 520 sizeof(fs->lfs_fsmnt)); 521 return error; 522 523 fail: 524 vrele(devvp); 525 return (error); 526 } 527 528 529 /* 530 * Common code for mount and mountroot 531 * LFS specific 532 */ 533 int 534 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l) 535 { 536 struct dlfs *tdfs, *dfs, *adfs; 537 struct lfs *fs; 538 struct ufsmount *ump; 539 struct vnode *vp; 540 struct buf *bp, *abp; 541 struct partinfo dpart; 542 dev_t dev; 543 int error, i, ronly, secsize, fsbsize; 544 kauth_cred_t cred; 545 CLEANERINFO *cip; 546 SEGUSE *sup; 547 daddr_t sb_addr; 548 549 cred = l ? l->l_cred : NOCRED; 550 551 /* 552 * Flush out any old buffers remaining from a previous use. 553 */ 554 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 555 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0); 556 VOP_UNLOCK(devvp, 0); 557 if (error) 558 return (error); 559 560 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 561 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred, l) != 0) 562 secsize = DEV_BSIZE; 563 else 564 secsize = dpart.disklab->d_secsize; 565 566 /* Don't free random space on error. */ 567 bp = NULL; 568 abp = NULL; 569 ump = NULL; 570 571 sb_addr = LFS_LABELPAD / secsize; 572 while (1) { 573 /* Read in the superblock. */ 574 error = bread(devvp, sb_addr, LFS_SBPAD, cred, &bp); 575 if (error) 576 goto out; 577 dfs = (struct dlfs *)bp->b_data; 578 579 /* Check the basics. */ 580 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE || 581 dfs->dlfs_version > LFS_VERSION || 582 dfs->dlfs_bsize < sizeof(struct dlfs)) { 583 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n")); 584 error = EINVAL; /* XXX needs translation */ 585 goto out; 586 } 587 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) { 588 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n", 589 dfs->dlfs_inodefmt)); 590 error = EINVAL; 591 goto out; 592 } 593 594 if (dfs->dlfs_version == 1) 595 fsbsize = secsize; 596 else { 597 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb + 598 dfs->dlfs_fsbtodb); 599 /* 600 * Could be, if the frag size is large enough, that we 601 * don't have the "real" primary superblock. If that's 602 * the case, get the real one, and try again. 603 */ 604 if (sb_addr != dfs->dlfs_sboffs[0] << 605 dfs->dlfs_fsbtodb) { 606 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr" 607 " 0x%llx is not right, trying 0x%llx\n", 608 (long long)sb_addr, 609 (long long)(dfs->dlfs_sboffs[0] << 610 dfs->dlfs_fsbtodb))); 611 sb_addr = dfs->dlfs_sboffs[0] << 612 dfs->dlfs_fsbtodb; 613 brelse(bp, 0); 614 continue; 615 } 616 } 617 break; 618 } 619 620 /* 621 * Check the second superblock to see which is newer; then mount 622 * using the older of the two. This is necessary to ensure that 623 * the filesystem is valid if it was not unmounted cleanly. 624 */ 625 626 if (dfs->dlfs_sboffs[1] && 627 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize) 628 { 629 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize), 630 LFS_SBPAD, cred, &abp); 631 if (error) 632 goto out; 633 adfs = (struct dlfs *)abp->b_data; 634 635 if (dfs->dlfs_version == 1) { 636 /* 1s resolution comparison */ 637 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp) 638 tdfs = adfs; 639 else 640 tdfs = dfs; 641 } else { 642 /* monotonic infinite-resolution comparison */ 643 if (adfs->dlfs_serial < dfs->dlfs_serial) 644 tdfs = adfs; 645 else 646 tdfs = dfs; 647 } 648 649 /* Check the basics. */ 650 if (tdfs->dlfs_magic != LFS_MAGIC || 651 tdfs->dlfs_bsize > MAXBSIZE || 652 tdfs->dlfs_version > LFS_VERSION || 653 tdfs->dlfs_bsize < sizeof(struct dlfs)) { 654 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock" 655 " sanity failed\n")); 656 error = EINVAL; /* XXX needs translation */ 657 goto out; 658 } 659 } else { 660 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock" 661 " daddr=0x%x\n", dfs->dlfs_sboffs[1])); 662 error = EINVAL; 663 goto out; 664 } 665 666 /* Allocate the mount structure, copy the superblock into it. */ 667 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO); 668 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs)); 669 670 /* Compatibility */ 671 if (fs->lfs_version < 2) { 672 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE; 673 fs->lfs_ibsize = fs->lfs_bsize; 674 fs->lfs_start = fs->lfs_sboffs[0]; 675 fs->lfs_tstamp = fs->lfs_otstamp; 676 fs->lfs_fsbtodb = 0; 677 } 678 if (fs->lfs_resvseg == 0) 679 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \ 680 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1)); 681 682 /* 683 * If we aren't going to be able to write meaningfully to this 684 * filesystem, and were not mounted readonly, bomb out now. 685 */ 686 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) { 687 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write," 688 " we need BUFPAGES >= %lld\n", 689 (long long)((bufmem_hiwater / bufmem_lowater) * 690 LFS_INVERSE_MAX_BYTES( 691 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT))); 692 free(fs, M_UFSMNT); 693 error = EFBIG; /* XXX needs translation */ 694 goto out; 695 } 696 697 /* Before rolling forward, lock so vget will sleep for other procs */ 698 if (l != NULL) { 699 fs->lfs_flags = LFS_NOTYET; 700 fs->lfs_rfpid = l->l_proc->p_pid; 701 } 702 703 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 704 ump->um_lfs = fs; 705 ump->um_ops = &lfs_ufsops; 706 ump->um_fstype = UFS1; 707 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */ 708 brelse(bp, BC_INVAL); 709 brelse(abp, BC_INVAL); 710 } else { 711 brelse(bp, 0); 712 brelse(abp, 0); 713 } 714 bp = NULL; 715 abp = NULL; 716 717 718 /* Set up the I/O information */ 719 fs->lfs_devbsize = secsize; 720 fs->lfs_iocount = 0; 721 fs->lfs_diropwait = 0; 722 fs->lfs_activesb = 0; 723 fs->lfs_uinodes = 0; 724 fs->lfs_ravail = 0; 725 fs->lfs_favail = 0; 726 fs->lfs_sbactive = 0; 727 728 /* Set up the ifile and lock aflags */ 729 fs->lfs_doifile = 0; 730 fs->lfs_writer = 0; 731 fs->lfs_dirops = 0; 732 fs->lfs_nadirop = 0; 733 fs->lfs_seglock = 0; 734 fs->lfs_pdflush = 0; 735 fs->lfs_sleepers = 0; 736 fs->lfs_pages = 0; 737 simple_lock_init(&fs->lfs_interlock); 738 rw_init(&fs->lfs_fraglock); 739 lockinit(&fs->lfs_iflock, PINOD, "lfs_iflock", 0, 0); 740 lockinit(&fs->lfs_stoplock, PINOD, "lfs_stoplock", 0, 0); 741 742 /* Set the file system readonly/modify bits. */ 743 fs->lfs_ronly = ronly; 744 if (ronly == 0) 745 fs->lfs_fmod = 1; 746 747 /* Initialize the mount structure. */ 748 dev = devvp->v_rdev; 749 mp->mnt_data = ump; 750 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev; 751 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS); 752 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; 753 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN; 754 mp->mnt_stat.f_iosize = fs->lfs_bsize; 755 mp->mnt_flag |= MNT_LOCAL; 756 mp->mnt_fs_bshift = fs->lfs_bshift; 757 ump->um_flags = 0; 758 ump->um_mountp = mp; 759 ump->um_dev = dev; 760 ump->um_devvp = devvp; 761 ump->um_bptrtodb = fs->lfs_fsbtodb; 762 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag); 763 ump->um_nindir = fs->lfs_nindir; 764 ump->um_lognindir = ffs(fs->lfs_nindir) - 1; 765 for (i = 0; i < MAXQUOTAS; i++) 766 ump->um_quotas[i] = NULLVP; 767 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen; 768 ump->um_dirblksiz = DIRBLKSIZ; 769 ump->um_maxfilesize = fs->lfs_maxfilesize; 770 if (ump->um_maxsymlinklen > 0) 771 mp->mnt_iflag |= IMNT_DTYPE; 772 devvp->v_specmountpoint = mp; 773 774 /* Set up reserved memory for pageout */ 775 lfs_setup_resblks(fs); 776 /* Set up vdirop tailq */ 777 TAILQ_INIT(&fs->lfs_dchainhd); 778 /* and paging tailq */ 779 TAILQ_INIT(&fs->lfs_pchainhd); 780 /* and delayed segment accounting for truncation list */ 781 LIST_INIT(&fs->lfs_segdhd); 782 783 /* 784 * We use the ifile vnode for almost every operation. Instead of 785 * retrieving it from the hash table each time we retrieve it here, 786 * artificially increment the reference count and keep a pointer 787 * to it in the incore copy of the superblock. 788 */ 789 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) { 790 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error)); 791 goto out; 792 } 793 fs->lfs_ivnode = vp; 794 VREF(vp); 795 796 /* Set up inode bitmap and order free list */ 797 lfs_order_freelist(fs); 798 799 /* Set up segment usage flags for the autocleaner. */ 800 fs->lfs_nactive = 0; 801 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *), 802 M_SEGMENT, M_WAITOK); 803 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), 804 M_SEGMENT, M_WAITOK); 805 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), 806 M_SEGMENT, M_WAITOK); 807 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t)); 808 for (i = 0; i < fs->lfs_nseg; i++) { 809 int changed; 810 811 LFS_SEGENTRY(sup, fs, i, bp); 812 changed = 0; 813 if (!ronly) { 814 if (sup->su_nbytes == 0 && 815 !(sup->su_flags & SEGUSE_EMPTY)) { 816 sup->su_flags |= SEGUSE_EMPTY; 817 ++changed; 818 } else if (!(sup->su_nbytes == 0) && 819 (sup->su_flags & SEGUSE_EMPTY)) { 820 sup->su_flags &= ~SEGUSE_EMPTY; 821 ++changed; 822 } 823 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) { 824 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL); 825 ++changed; 826 } 827 } 828 fs->lfs_suflags[0][i] = sup->su_flags; 829 if (changed) 830 LFS_WRITESEGENTRY(sup, fs, i, bp); 831 else 832 brelse(bp, 0); 833 } 834 835 #ifdef LFS_KERNEL_RFW 836 lfs_roll_forward(fs, mp, l); 837 #endif 838 839 /* If writing, sb is not clean; record in case of immediate crash */ 840 if (!fs->lfs_ronly) { 841 fs->lfs_pflags &= ~LFS_PF_CLEAN; 842 lfs_writesuper(fs, fs->lfs_sboffs[0]); 843 lfs_writesuper(fs, fs->lfs_sboffs[1]); 844 } 845 846 /* Allow vget now that roll-forward is complete */ 847 fs->lfs_flags &= ~(LFS_NOTYET); 848 wakeup(&fs->lfs_flags); 849 850 /* 851 * Initialize the ifile cleaner info with information from 852 * the superblock. 853 */ 854 LFS_CLEANERINFO(cip, fs, bp); 855 cip->clean = fs->lfs_nclean; 856 cip->dirty = fs->lfs_nseg - fs->lfs_nclean; 857 cip->avail = fs->lfs_avail; 858 cip->bfree = fs->lfs_bfree; 859 (void) LFS_BWRITE_LOG(bp); /* Ifile */ 860 861 /* 862 * Mark the current segment as ACTIVE, since we're going to 863 * be writing to it. 864 */ 865 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); 866 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 867 fs->lfs_nactive++; 868 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */ 869 870 /* Now that roll-forward is done, unlock the Ifile */ 871 vput(vp); 872 873 /* Start the pagedaemon-anticipating daemon */ 874 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL, 875 lfs_writerd, NULL, NULL, "lfs_writer") != 0) 876 panic("fork lfs_writer"); 877 878 return (0); 879 880 out: 881 if (bp) 882 brelse(bp, 0); 883 if (abp) 884 brelse(abp, 0); 885 if (ump) { 886 free(ump->um_lfs, M_UFSMNT); 887 free(ump, M_UFSMNT); 888 mp->mnt_data = NULL; 889 } 890 891 return (error); 892 } 893 894 /* 895 * unmount system call 896 */ 897 int 898 lfs_unmount(struct mount *mp, int mntflags, struct lwp *l) 899 { 900 struct ufsmount *ump; 901 struct lfs *fs; 902 int error, flags, ronly; 903 int s; 904 905 flags = 0; 906 if (mntflags & MNT_FORCE) 907 flags |= FORCECLOSE; 908 909 ump = VFSTOUFS(mp); 910 fs = ump->um_lfs; 911 912 /* Two checkpoints */ 913 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); 914 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); 915 916 /* wake up the cleaner so it can die */ 917 lfs_wakeup_cleaner(fs); 918 simple_lock(&fs->lfs_interlock); 919 while (fs->lfs_sleepers) 920 ltsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0, 921 &fs->lfs_interlock); 922 simple_unlock(&fs->lfs_interlock); 923 924 #ifdef QUOTA 925 if (mp->mnt_flag & MNT_QUOTA) { 926 int i; 927 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags); 928 if (error) 929 return (error); 930 for (i = 0; i < MAXQUOTAS; i++) { 931 if (ump->um_quotas[i] == NULLVP) 932 continue; 933 quotaoff(l, mp, i); 934 } 935 /* 936 * Here we fall through to vflush again to ensure 937 * that we have gotten rid of all the system vnodes. 938 */ 939 } 940 #endif 941 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0) 942 return (error); 943 if ((error = VFS_SYNC(mp, 1, l->l_cred, l)) != 0) 944 return (error); 945 s = splbio(); 946 if (LIST_FIRST(&fs->lfs_ivnode->v_dirtyblkhd)) 947 panic("lfs_unmount: still dirty blocks on ifile vnode"); 948 splx(s); 949 950 /* Explicitly write the superblock, to update serial and pflags */ 951 fs->lfs_pflags |= LFS_PF_CLEAN; 952 lfs_writesuper(fs, fs->lfs_sboffs[0]); 953 lfs_writesuper(fs, fs->lfs_sboffs[1]); 954 simple_lock(&fs->lfs_interlock); 955 while (fs->lfs_iocount) 956 ltsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0, 957 &fs->lfs_interlock); 958 simple_unlock(&fs->lfs_interlock); 959 960 /* Finish with the Ifile, now that we're done with it */ 961 vrele(fs->lfs_ivnode); 962 vgone(fs->lfs_ivnode); 963 964 ronly = !fs->lfs_ronly; 965 if (ump->um_devvp->v_type != VBAD) 966 ump->um_devvp->v_specmountpoint = NULL; 967 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 968 error = VOP_CLOSE(ump->um_devvp, 969 ronly ? FREAD : FREAD|FWRITE, NOCRED, l); 970 vput(ump->um_devvp); 971 972 /* Complain about page leakage */ 973 if (fs->lfs_pages > 0) 974 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n", 975 fs->lfs_pages, lfs_subsys_pages); 976 977 /* Free per-mount data structures */ 978 free(fs->lfs_ino_bitmap, M_SEGMENT); 979 free(fs->lfs_suflags[0], M_SEGMENT); 980 free(fs->lfs_suflags[1], M_SEGMENT); 981 free(fs->lfs_suflags, M_SEGMENT); 982 lfs_free_resblks(fs); 983 rw_destroy(&fs->lfs_fraglock); 984 free(fs, M_UFSMNT); 985 free(ump, M_UFSMNT); 986 987 mp->mnt_data = NULL; 988 mp->mnt_flag &= ~MNT_LOCAL; 989 return (error); 990 } 991 992 /* 993 * Get file system statistics. 994 * 995 * NB: We don't lock to access the superblock here, because it's not 996 * really that important if we get it wrong. 997 */ 998 int 999 lfs_statvfs(struct mount *mp, struct statvfs *sbp, struct lwp *l) 1000 { 1001 struct lfs *fs; 1002 struct ufsmount *ump; 1003 1004 ump = VFSTOUFS(mp); 1005 fs = ump->um_lfs; 1006 if (fs->lfs_magic != LFS_MAGIC) 1007 panic("lfs_statvfs: magic"); 1008 1009 sbp->f_bsize = fs->lfs_bsize; 1010 sbp->f_frsize = fs->lfs_fsize; 1011 sbp->f_iosize = fs->lfs_bsize; 1012 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks); 1013 1014 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs)); 1015 KASSERT(sbp->f_bfree <= fs->lfs_dsize); 1016 #if 0 1017 if (sbp->f_bfree < 0) 1018 sbp->f_bfree = 0; 1019 #endif 1020 1021 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs)); 1022 if (sbp->f_bfree > sbp->f_bresvd) 1023 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd; 1024 else 1025 sbp->f_bavail = 0; 1026 1027 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs); 1028 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles; 1029 sbp->f_favail = sbp->f_ffree; 1030 sbp->f_fresvd = 0; 1031 copy_statvfs_info(sbp, mp); 1032 return (0); 1033 } 1034 1035 /* 1036 * Go through the disk queues to initiate sandbagged IO; 1037 * go through the inodes to write those that have been modified; 1038 * initiate the writing of the super block if it has been modified. 1039 * 1040 * Note: we are always called with the filesystem marked `MPBUSY'. 1041 */ 1042 int 1043 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred, 1044 struct lwp *l) 1045 { 1046 int error; 1047 struct lfs *fs; 1048 1049 fs = VFSTOUFS(mp)->um_lfs; 1050 if (fs->lfs_ronly) 1051 return 0; 1052 1053 /* Snapshots should not hose the syncer */ 1054 /* 1055 * XXX Sync can block here anyway, since we don't have a very 1056 * XXX good idea of how much data is pending. If it's more 1057 * XXX than a segment and lfs_nextseg is close to the end of 1058 * XXX the log, we'll likely block. 1059 */ 1060 simple_lock(&fs->lfs_interlock); 1061 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) { 1062 simple_unlock(&fs->lfs_interlock); 1063 return 0; 1064 } 1065 simple_unlock(&fs->lfs_interlock); 1066 1067 lfs_writer_enter(fs, "lfs_dirops"); 1068 1069 /* All syncs must be checkpoints until roll-forward is implemented. */ 1070 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset)); 1071 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0)); 1072 lfs_writer_leave(fs); 1073 #ifdef QUOTA 1074 qsync(mp); 1075 #endif 1076 return (error); 1077 } 1078 1079 extern kmutex_t ufs_hashlock; 1080 1081 /* 1082 * Look up an LFS dinode number to find its incore vnode. If not already 1083 * in core, read it in from the specified device. Return the inode locked. 1084 * Detection and handling of mount points must be done by the calling routine. 1085 */ 1086 int 1087 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp) 1088 { 1089 struct lfs *fs; 1090 struct ufs1_dinode *dip; 1091 struct inode *ip; 1092 struct buf *bp; 1093 struct ifile *ifp; 1094 struct vnode *vp; 1095 struct ufsmount *ump; 1096 daddr_t daddr; 1097 dev_t dev; 1098 int error, retries; 1099 struct timespec ts; 1100 1101 memset(&ts, 0, sizeof ts); /* XXX gcc */ 1102 1103 ump = VFSTOUFS(mp); 1104 dev = ump->um_dev; 1105 fs = ump->um_lfs; 1106 1107 /* 1108 * If the filesystem is not completely mounted yet, suspend 1109 * any access requests (wait for roll-forward to complete). 1110 */ 1111 simple_lock(&fs->lfs_interlock); 1112 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid) 1113 ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0, 1114 &fs->lfs_interlock); 1115 simple_unlock(&fs->lfs_interlock); 1116 1117 retry: 1118 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) 1119 return (0); 1120 1121 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) { 1122 *vpp = NULL; 1123 return (error); 1124 } 1125 1126 mutex_enter(&ufs_hashlock); 1127 if (ufs_ihashget(dev, ino, 0) != NULL) { 1128 mutex_exit(&ufs_hashlock); 1129 ungetnewvnode(vp); 1130 goto retry; 1131 } 1132 1133 /* Translate the inode number to a disk address. */ 1134 if (ino == LFS_IFILE_INUM) 1135 daddr = fs->lfs_idaddr; 1136 else { 1137 /* XXX bounds-check this too */ 1138 LFS_IENTRY(ifp, fs, ino, bp); 1139 daddr = ifp->if_daddr; 1140 if (fs->lfs_version > 1) { 1141 ts.tv_sec = ifp->if_atime_sec; 1142 ts.tv_nsec = ifp->if_atime_nsec; 1143 } 1144 1145 brelse(bp, 0); 1146 if (daddr == LFS_UNUSED_DADDR) { 1147 *vpp = NULLVP; 1148 mutex_exit(&ufs_hashlock); 1149 ungetnewvnode(vp); 1150 return (ENOENT); 1151 } 1152 } 1153 1154 /* Allocate/init new vnode/inode. */ 1155 lfs_vcreate(mp, ino, vp); 1156 1157 /* 1158 * Put it onto its hash chain and lock it so that other requests for 1159 * this inode will block if they arrive while we are sleeping waiting 1160 * for old data structures to be purged or for the contents of the 1161 * disk portion of this inode to be read. 1162 */ 1163 ip = VTOI(vp); 1164 ufs_ihashins(ip); 1165 mutex_exit(&ufs_hashlock); 1166 1167 /* 1168 * XXX 1169 * This may not need to be here, logically it should go down with 1170 * the i_devvp initialization. 1171 * Ask Kirk. 1172 */ 1173 ip->i_lfs = ump->um_lfs; 1174 1175 /* Read in the disk contents for the inode, copy into the inode. */ 1176 retries = 0; 1177 again: 1178 error = bread(ump->um_devvp, fsbtodb(fs, daddr), 1179 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize), 1180 NOCRED, &bp); 1181 if (error) { 1182 /* 1183 * The inode does not contain anything useful, so it would 1184 * be misleading to leave it on its hash chain. With mode 1185 * still zero, it will be unlinked and returned to the free 1186 * list by vput(). 1187 */ 1188 vput(vp); 1189 brelse(bp, 0); 1190 *vpp = NULL; 1191 return (error); 1192 } 1193 1194 dip = lfs_ifind(fs, ino, bp); 1195 if (dip == NULL) { 1196 /* Assume write has not completed yet; try again */ 1197 brelse(bp, BC_INVAL); 1198 ++retries; 1199 if (retries > LFS_IFIND_RETRIES) { 1200 #ifdef DEBUG 1201 /* If the seglock is held look at the bpp to see 1202 what is there anyway */ 1203 simple_lock(&fs->lfs_interlock); 1204 if (fs->lfs_seglock > 0) { 1205 struct buf **bpp; 1206 struct ufs1_dinode *dp; 1207 int i; 1208 1209 for (bpp = fs->lfs_sp->bpp; 1210 bpp != fs->lfs_sp->cbpp; ++bpp) { 1211 if ((*bpp)->b_vp == fs->lfs_ivnode && 1212 bpp != fs->lfs_sp->bpp) { 1213 /* Inode block */ 1214 printf("lfs_vget: block 0x%" PRIx64 ": ", 1215 (*bpp)->b_blkno); 1216 dp = (struct ufs1_dinode *)(*bpp)->b_data; 1217 for (i = 0; i < INOPB(fs); i++) 1218 if (dp[i].di_u.inumber) 1219 printf("%d ", dp[i].di_u.inumber); 1220 printf("\n"); 1221 } 1222 } 1223 } 1224 simple_unlock(&fs->lfs_interlock); 1225 #endif /* DEBUG */ 1226 panic("lfs_vget: dinode not found"); 1227 } 1228 simple_lock(&fs->lfs_interlock); 1229 if (fs->lfs_iocount) { 1230 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino)); 1231 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1, 1232 "lfs ifind", 1, &fs->lfs_interlock); 1233 } else 1234 retries = LFS_IFIND_RETRIES; 1235 simple_unlock(&fs->lfs_interlock); 1236 goto again; 1237 } 1238 *ip->i_din.ffs1_din = *dip; 1239 brelse(bp, 0); 1240 1241 if (fs->lfs_version > 1) { 1242 ip->i_ffs1_atime = ts.tv_sec; 1243 ip->i_ffs1_atimensec = ts.tv_nsec; 1244 } 1245 1246 lfs_vinit(mp, &vp); 1247 1248 *vpp = vp; 1249 1250 KASSERT(VOP_ISLOCKED(vp)); 1251 1252 return (0); 1253 } 1254 1255 /* 1256 * File handle to vnode 1257 */ 1258 int 1259 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp) 1260 { 1261 struct lfid lfh; 1262 struct buf *bp; 1263 IFILE *ifp; 1264 int32_t daddr; 1265 struct lfs *fs; 1266 1267 if (fhp->fid_len != sizeof(struct lfid)) 1268 return EINVAL; 1269 1270 memcpy(&lfh, fhp, sizeof(lfh)); 1271 if (lfh.lfid_ino < LFS_IFILE_INUM) 1272 return ESTALE; 1273 1274 fs = VFSTOUFS(mp)->um_lfs; 1275 if (lfh.lfid_ident != fs->lfs_ident) 1276 return ESTALE; 1277 1278 if (lfh.lfid_ino > 1279 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) - 1280 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb) 1281 return ESTALE; 1282 1283 if (ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino) == NULLVP) { 1284 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp); 1285 daddr = ifp->if_daddr; 1286 brelse(bp, 0); 1287 if (daddr == LFS_UNUSED_DADDR) 1288 return ESTALE; 1289 } 1290 1291 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp)); 1292 } 1293 1294 /* 1295 * Vnode pointer to File handle 1296 */ 1297 /* ARGSUSED */ 1298 int 1299 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size) 1300 { 1301 struct inode *ip; 1302 struct lfid lfh; 1303 1304 if (*fh_size < sizeof(struct lfid)) { 1305 *fh_size = sizeof(struct lfid); 1306 return E2BIG; 1307 } 1308 *fh_size = sizeof(struct lfid); 1309 ip = VTOI(vp); 1310 memset(&lfh, 0, sizeof(lfh)); 1311 lfh.lfid_len = sizeof(struct lfid); 1312 lfh.lfid_ino = ip->i_number; 1313 lfh.lfid_gen = ip->i_gen; 1314 lfh.lfid_ident = ip->i_lfs->lfs_ident; 1315 memcpy(fhp, &lfh, sizeof(lfh)); 1316 return (0); 1317 } 1318 1319 static int 1320 sysctl_lfs_dostats(SYSCTLFN_ARGS) 1321 { 1322 extern struct lfs_stats lfs_stats; 1323 extern int lfs_dostats; 1324 int error; 1325 1326 error = sysctl_lookup(SYSCTLFN_CALL(rnode)); 1327 if (error || newp == NULL) 1328 return (error); 1329 1330 if (lfs_dostats == 0) 1331 memset(&lfs_stats, 0, sizeof(lfs_stats)); 1332 1333 return (0); 1334 } 1335 1336 struct shortlong { 1337 const char *sname; 1338 const char *lname; 1339 }; 1340 1341 SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup") 1342 { 1343 int i; 1344 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead, 1345 lfs_fs_pagetrip, lfs_ignore_lazy_sync; 1346 #ifdef DEBUG 1347 extern int lfs_debug_log_subsys[DLOG_MAX]; 1348 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */ 1349 { "rollforward", "Debug roll-forward code" }, 1350 { "alloc", "Debug inode allocation and free list" }, 1351 { "avail", "Debug space-available-now accounting" }, 1352 { "flush", "Debug flush triggers" }, 1353 { "lockedlist", "Debug locked list accounting" }, 1354 { "vnode_verbose", "Verbose per-vnode-written debugging" }, 1355 { "vnode", "Debug vnode use during segment write" }, 1356 { "segment", "Debug segment writing" }, 1357 { "seguse", "Debug segment used-bytes accounting" }, 1358 { "cleaner", "Debug cleaning routines" }, 1359 { "mount", "Debug mount/unmount routines" }, 1360 { "pagecache", "Debug UBC interactions" }, 1361 { "dirop", "Debug directory-operation accounting" }, 1362 { "malloc", "Debug private malloc accounting" }, 1363 }; 1364 #endif /* DEBUG */ 1365 struct shortlong stat_names[] = { /* Must match lfs.h! */ 1366 { "segsused", "Number of new segments allocated" }, 1367 { "psegwrites", "Number of partial-segment writes" }, 1368 { "psyncwrites", "Number of synchronous partial-segment" 1369 " writes" }, 1370 { "pcleanwrites", "Number of partial-segment writes by the" 1371 " cleaner" }, 1372 { "blocktot", "Number of blocks written" }, 1373 { "cleanblocks", "Number of blocks written by the cleaner" }, 1374 { "ncheckpoints", "Number of checkpoints made" }, 1375 { "nwrites", "Number of whole writes" }, 1376 { "nsync_writes", "Number of synchronous writes" }, 1377 { "wait_exceeded", "Number of times writer waited for" 1378 " cleaner" }, 1379 { "write_exceeded", "Number of times writer invoked flush" }, 1380 { "flush_invoked", "Number of times flush was invoked" }, 1381 { "vflush_invoked", "Number of time vflush was called" }, 1382 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" }, 1383 { "clean_vnlocked", "Number of vnodes skipped for vget failure" }, 1384 { "segs_reclaimed", "Number of segments reclaimed" }, 1385 }; 1386 1387 sysctl_createv(clog, 0, NULL, NULL, 1388 CTLFLAG_PERMANENT, 1389 CTLTYPE_NODE, "vfs", NULL, 1390 NULL, 0, NULL, 0, 1391 CTL_VFS, CTL_EOL); 1392 sysctl_createv(clog, 0, NULL, NULL, 1393 CTLFLAG_PERMANENT, 1394 CTLTYPE_NODE, "lfs", 1395 SYSCTL_DESCR("Log-structured file system"), 1396 NULL, 0, NULL, 0, 1397 CTL_VFS, 5, CTL_EOL); 1398 /* 1399 * XXX the "5" above could be dynamic, thereby eliminating one 1400 * more instance of the "number to vfs" mapping problem, but 1401 * "5" is the order as taken from sys/mount.h 1402 */ 1403 1404 sysctl_createv(clog, 0, NULL, NULL, 1405 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1406 CTLTYPE_INT, "flushindir", NULL, 1407 NULL, 0, &lfs_writeindir, 0, 1408 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL); 1409 sysctl_createv(clog, 0, NULL, NULL, 1410 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1411 CTLTYPE_INT, "clean_vnhead", NULL, 1412 NULL, 0, &lfs_clean_vnhead, 0, 1413 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL); 1414 sysctl_createv(clog, 0, NULL, NULL, 1415 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1416 CTLTYPE_INT, "dostats", 1417 SYSCTL_DESCR("Maintain statistics on LFS operations"), 1418 sysctl_lfs_dostats, 0, &lfs_dostats, 0, 1419 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL); 1420 sysctl_createv(clog, 0, NULL, NULL, 1421 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1422 CTLTYPE_INT, "pagetrip", 1423 SYSCTL_DESCR("How many dirty pages in fs triggers" 1424 " a flush"), 1425 NULL, 0, &lfs_fs_pagetrip, 0, 1426 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL); 1427 sysctl_createv(clog, 0, NULL, NULL, 1428 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1429 CTLTYPE_INT, "ignore_lazy_sync", 1430 SYSCTL_DESCR("Lazy Sync is ignored entirely"), 1431 NULL, 0, &lfs_ignore_lazy_sync, 0, 1432 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL); 1433 #ifdef LFS_KERNEL_RFW 1434 sysctl_createv(clog, 0, NULL, NULL, 1435 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1436 CTLTYPE_INT, "rfw", 1437 SYSCTL_DESCR("Use in-kernel roll-forward on mount"), 1438 NULL, 0, &lfs_do_rfw, 0, 1439 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL); 1440 #endif 1441 1442 sysctl_createv(clog, 0, NULL, NULL, 1443 CTLFLAG_PERMANENT, 1444 CTLTYPE_NODE, "stats", 1445 SYSCTL_DESCR("Debugging options"), 1446 NULL, 0, NULL, 0, 1447 CTL_VFS, 5, LFS_STATS, CTL_EOL); 1448 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) { 1449 sysctl_createv(clog, 0, NULL, NULL, 1450 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1451 CTLTYPE_INT, stat_names[i].sname, 1452 SYSCTL_DESCR(stat_names[i].lname), 1453 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]), 1454 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL); 1455 } 1456 1457 #ifdef DEBUG 1458 sysctl_createv(clog, 0, NULL, NULL, 1459 CTLFLAG_PERMANENT, 1460 CTLTYPE_NODE, "debug", 1461 SYSCTL_DESCR("Debugging options"), 1462 NULL, 0, NULL, 0, 1463 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL); 1464 for (i = 0; i < DLOG_MAX; i++) { 1465 sysctl_createv(clog, 0, NULL, NULL, 1466 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1467 CTLTYPE_INT, dlog_names[i].sname, 1468 SYSCTL_DESCR(dlog_names[i].lname), 1469 NULL, 0, &(lfs_debug_log_subsys[i]), 0, 1470 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL); 1471 } 1472 #endif 1473 } 1474 1475 /* 1476 * ufs_bmaparray callback function for writing. 1477 * 1478 * Since blocks will be written to the new segment anyway, 1479 * we don't care about current daddr of them. 1480 */ 1481 static bool 1482 lfs_issequential_hole(const struct ufsmount *ump, 1483 daddr_t daddr0, daddr_t daddr1) 1484 { 1485 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */ 1486 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */ 1487 1488 KASSERT(daddr0 == UNWRITTEN || 1489 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR)); 1490 KASSERT(daddr1 == UNWRITTEN || 1491 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR)); 1492 1493 /* NOTE: all we want to know here is 'hole or not'. */ 1494 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */ 1495 1496 /* 1497 * treat UNWRITTENs and all resident blocks as 'contiguous' 1498 */ 1499 if (daddr0 != 0 && daddr1 != 0) 1500 return true; 1501 1502 /* 1503 * both are in hole? 1504 */ 1505 if (daddr0 == 0 && daddr1 == 0) 1506 return true; /* all holes are 'contiguous' for us. */ 1507 1508 return false; 1509 } 1510 1511 /* 1512 * lfs_gop_write functions exactly like genfs_gop_write, except that 1513 * (1) it requires the seglock to be held by its caller, and sp->fip 1514 * to be properly initialized (it will return without re-initializing 1515 * sp->fip, and without calling lfs_writeseg). 1516 * (2) it uses the remaining space in the segment, rather than VOP_BMAP, 1517 * to determine how large a block it can write at once (though it does 1518 * still use VOP_BMAP to find holes in the file); 1519 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks 1520 * (leaving lfs_writeseg to deal with the cluster blocks, so we might 1521 * now have clusters of clusters, ick.) 1522 */ 1523 static int 1524 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1525 int flags) 1526 { 1527 int i, s, error, run, haveeof = 0; 1528 int fs_bshift; 1529 vaddr_t kva; 1530 off_t eof, offset, startoffset = 0; 1531 size_t bytes, iobytes, skipbytes; 1532 daddr_t lbn, blkno; 1533 struct vm_page *pg; 1534 struct buf *mbp, *bp; 1535 struct vnode *devvp = VTOI(vp)->i_devvp; 1536 struct inode *ip = VTOI(vp); 1537 struct lfs *fs = ip->i_lfs; 1538 struct segment *sp = fs->lfs_sp; 1539 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist); 1540 1541 ASSERT_SEGLOCK(fs); 1542 1543 /* The Ifile lives in the buffer cache */ 1544 KASSERT(vp != fs->lfs_ivnode); 1545 1546 /* 1547 * We don't want to fill the disk before the cleaner has a chance 1548 * to make room for us. If we're in danger of doing that, fail 1549 * with EAGAIN. The caller will have to notice this, unlock 1550 * so the cleaner can run, relock and try again. 1551 * 1552 * We must write everything, however, if our vnode is being 1553 * reclaimed. 1554 */ 1555 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp) 1556 goto tryagain; 1557 1558 /* 1559 * Sometimes things slip past the filters in lfs_putpages, 1560 * and the pagedaemon tries to write pages---problem is 1561 * that the pagedaemon never acquires the segment lock. 1562 * 1563 * Alternatively, pages that were clean when we called 1564 * genfs_putpages may have become dirty in the meantime. In this 1565 * case the segment header is not properly set up for blocks 1566 * to be added to it. 1567 * 1568 * Unbusy and unclean the pages, and put them on the ACTIVE 1569 * queue under the hypothesis that they couldn't have got here 1570 * unless they were modified *quite* recently. 1571 * 1572 * XXXUBC that last statement is an oversimplification of course. 1573 */ 1574 if (!LFS_SEGLOCK_HELD(fs) || 1575 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) || 1576 (pgs[0]->offset & fs->lfs_bmask) != 0) { 1577 goto tryagain; 1578 } 1579 1580 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1581 vp, pgs, npages, flags); 1582 1583 GOP_SIZE(vp, vp->v_size, &eof, 0); 1584 haveeof = 1; 1585 1586 if (vp->v_type == VREG) 1587 fs_bshift = vp->v_mount->mnt_fs_bshift; 1588 else 1589 fs_bshift = DEV_BSHIFT; 1590 error = 0; 1591 pg = pgs[0]; 1592 startoffset = pg->offset; 1593 KASSERT(eof >= 0); 1594 1595 if (startoffset >= eof) { 1596 goto tryagain; 1597 } else 1598 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1599 skipbytes = 0; 1600 1601 KASSERT(bytes != 0); 1602 1603 /* Swap PG_DELWRI for PG_PAGEOUT */ 1604 for (i = 0; i < npages; i++) { 1605 if (pgs[i]->flags & PG_DELWRI) { 1606 KASSERT(!(pgs[i]->flags & PG_PAGEOUT)); 1607 pgs[i]->flags &= ~PG_DELWRI; 1608 pgs[i]->flags |= PG_PAGEOUT; 1609 uvmexp.paging++; 1610 uvm_lock_pageq(); 1611 uvm_pageunwire(pgs[i]); 1612 uvm_unlock_pageq(); 1613 } 1614 } 1615 1616 /* 1617 * Check to make sure we're starting on a block boundary. 1618 * We'll check later to make sure we always write entire 1619 * blocks (or fragments). 1620 */ 1621 if (startoffset & fs->lfs_bmask) 1622 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n", 1623 startoffset, fs->lfs_bmask, 1624 startoffset & fs->lfs_bmask); 1625 KASSERT((startoffset & fs->lfs_bmask) == 0); 1626 if (bytes & fs->lfs_ffmask) { 1627 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes); 1628 panic("lfs_gop_write: non-integer blocks"); 1629 } 1630 1631 /* 1632 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK. 1633 * If we would, write what we have and try again. If we don't 1634 * have anything to write, we'll have to sleep. 1635 */ 1636 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | 1637 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ? 1638 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) { 1639 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n")); 1640 #if 0 1641 " with nfinfo=%d at offset 0x%x\n", 1642 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo, 1643 (unsigned)fs->lfs_offset)); 1644 #endif 1645 lfs_updatemeta(sp); 1646 lfs_release_finfo(fs); 1647 (void) lfs_writeseg(fs, sp); 1648 1649 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 1650 1651 /* 1652 * Having given up all of the pager_map we were holding, 1653 * we can now wait for aiodoned to reclaim it for us 1654 * without fear of deadlock. 1655 */ 1656 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | 1657 UVMPAGER_MAPIN_WAITOK); 1658 } 1659 1660 s = splbio(); 1661 simple_lock(&global_v_numoutput_slock); 1662 vp->v_numoutput += 2; /* one for biodone, one for aiodone */ 1663 simple_unlock(&global_v_numoutput_slock); 1664 splx(s); 1665 1666 mbp = getiobuf(); 1667 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1668 vp, mbp, vp->v_numoutput, bytes); 1669 mbp->b_bufsize = npages << PAGE_SHIFT; 1670 mbp->b_data = (void *)kva; 1671 mbp->b_resid = mbp->b_bcount = bytes; 1672 mbp->b_flags = B_BUSY|B_WRITE|B_AGE|B_CALL; 1673 mbp->b_iodone = uvm_aio_biodone; 1674 mbp->b_vp = vp; 1675 1676 bp = NULL; 1677 for (offset = startoffset; 1678 bytes > 0; 1679 offset += iobytes, bytes -= iobytes) { 1680 lbn = offset >> fs_bshift; 1681 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run, 1682 lfs_issequential_hole); 1683 if (error) { 1684 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d", 1685 error,0,0,0); 1686 skipbytes += bytes; 1687 bytes = 0; 1688 break; 1689 } 1690 1691 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1692 bytes); 1693 if (blkno == (daddr_t)-1) { 1694 skipbytes += iobytes; 1695 continue; 1696 } 1697 1698 /* 1699 * Discover how much we can really pack into this buffer. 1700 */ 1701 /* If no room in the current segment, finish it up */ 1702 if (sp->sum_bytes_left < sizeof(int32_t) || 1703 sp->seg_bytes_left < (1 << fs->lfs_bshift)) { 1704 int vers; 1705 1706 lfs_updatemeta(sp); 1707 vers = sp->fip->fi_version; 1708 lfs_release_finfo(fs); 1709 (void) lfs_writeseg(fs, sp); 1710 1711 lfs_acquire_finfo(fs, ip->i_number, vers); 1712 } 1713 /* Check both for space in segment and space in segsum */ 1714 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift) 1715 << fs_bshift); 1716 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t)) 1717 << fs_bshift); 1718 KASSERT(iobytes > 0); 1719 1720 /* if it's really one i/o, don't make a second buf */ 1721 if (offset == startoffset && iobytes == bytes) { 1722 bp = mbp; 1723 /* correct overcount if there is no second buffer */ 1724 s = splbio(); 1725 simple_lock(&global_v_numoutput_slock); 1726 --vp->v_numoutput; 1727 simple_unlock(&global_v_numoutput_slock); 1728 splx(s); 1729 } else { 1730 bp = getiobuf(); 1731 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1732 vp, bp, vp->v_numoutput, 0); 1733 bp->b_data = (char *)kva + 1734 (vaddr_t)(offset - pg->offset); 1735 bp->b_resid = bp->b_bcount = iobytes; 1736 bp->b_flags = B_BUSY|B_WRITE|B_CALL; 1737 bp->b_iodone = uvm_aio_biodone1; 1738 } 1739 1740 /* XXX This is silly ... is this necessary? */ 1741 bp->b_vp = NULL; 1742 s = splbio(); 1743 bgetvp(vp, bp); 1744 splx(s); 1745 1746 bp->b_lblkno = lblkno(fs, offset); 1747 bp->b_private = mbp; 1748 if (devvp->v_type == VBLK) { 1749 bp->b_dev = devvp->v_rdev; 1750 } 1751 VOP_BWRITE(bp); 1752 while (lfs_gatherblock(sp, bp, NULL)) 1753 continue; 1754 } 1755 1756 if (skipbytes) { 1757 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1758 s = splbio(); 1759 if (error) { 1760 mbp->b_error = error; 1761 } 1762 mbp->b_resid -= skipbytes; 1763 if (mbp->b_resid == 0) { 1764 biodone(mbp); 1765 } 1766 splx(s); 1767 } 1768 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0); 1769 return (0); 1770 1771 tryagain: 1772 /* 1773 * We can't write the pages, for whatever reason. 1774 * Clean up after ourselves, and make the caller try again. 1775 */ 1776 simple_lock(&vp->v_interlock); 1777 1778 /* Tell why we're here, if we know */ 1779 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) { 1780 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n")); 1781 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) { 1782 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n")); 1783 } else if (haveeof && startoffset >= eof) { 1784 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64 1785 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number, 1786 pgs[0]->offset, eof, npages)); 1787 } else if (LFS_STARVED_FOR_SEGS(fs)) { 1788 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n")); 1789 } else { 1790 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n")); 1791 } 1792 1793 uvm_lock_pageq(); 1794 for (i = 0; i < npages; i++) { 1795 pg = pgs[i]; 1796 1797 if (pg->flags & PG_PAGEOUT) 1798 uvmexp.paging--; 1799 if (pg->flags & PG_DELWRI) { 1800 uvm_pageunwire(pg); 1801 } 1802 uvm_pageactivate(pg); 1803 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED); 1804 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg, 1805 vp, pg->offset)); 1806 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags)); 1807 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags)); 1808 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon)); 1809 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject)); 1810 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i, 1811 pg->wire_count)); 1812 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i, 1813 pg->loan_count)); 1814 } 1815 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */ 1816 uvm_page_unbusy(pgs, npages); 1817 uvm_unlock_pageq(); 1818 simple_unlock(&vp->v_interlock); 1819 return EAGAIN; 1820 } 1821 1822 /* 1823 * finish vnode/inode initialization. 1824 * used by lfs_vget and lfs_fastvget. 1825 */ 1826 void 1827 lfs_vinit(struct mount *mp, struct vnode **vpp) 1828 { 1829 struct vnode *vp = *vpp; 1830 struct inode *ip = VTOI(vp); 1831 struct ufsmount *ump = VFSTOUFS(mp); 1832 struct lfs *fs = ump->um_lfs; 1833 int i; 1834 1835 ip->i_mode = ip->i_ffs1_mode; 1836 ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink; 1837 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size; 1838 ip->i_flags = ip->i_ffs1_flags; 1839 ip->i_gen = ip->i_ffs1_gen; 1840 ip->i_uid = ip->i_ffs1_uid; 1841 ip->i_gid = ip->i_ffs1_gid; 1842 1843 ip->i_lfs_effnblks = ip->i_ffs1_blocks; 1844 ip->i_lfs_odnlink = ip->i_ffs1_nlink; 1845 1846 /* 1847 * Initialize the vnode from the inode, check for aliases. In all 1848 * cases re-init ip, the underlying vnode/inode may have changed. 1849 */ 1850 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp); 1851 ip = VTOI(vp); 1852 1853 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize)); 1854 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) { 1855 #ifdef DEBUG 1856 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; 1857 i < NDADDR; i++) { 1858 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1859 i == 0) 1860 continue; 1861 if (ip->i_ffs1_db[i] != 0) { 1862 inconsistent: 1863 lfs_dump_dinode(ip->i_din.ffs1_din); 1864 panic("inconsistent inode"); 1865 } 1866 } 1867 for ( ; i < NDADDR + NIADDR; i++) { 1868 if (ip->i_ffs1_ib[i - NDADDR] != 0) { 1869 goto inconsistent; 1870 } 1871 } 1872 #endif /* DEBUG */ 1873 for (i = 0; i < NDADDR; i++) 1874 if (ip->i_ffs1_db[i] != 0) 1875 ip->i_lfs_fragsize[i] = blksize(fs, ip, i); 1876 } 1877 1878 #ifdef DIAGNOSTIC 1879 if (vp->v_type == VNON) { 1880 # ifdef DEBUG 1881 lfs_dump_dinode(ip->i_din.ffs1_din); 1882 # endif 1883 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n", 1884 (unsigned long long)ip->i_number, 1885 (ip->i_mode & IFMT) >> 12); 1886 } 1887 #endif /* DIAGNOSTIC */ 1888 1889 /* 1890 * Finish inode initialization now that aliasing has been resolved. 1891 */ 1892 1893 ip->i_devvp = ump->um_devvp; 1894 VREF(ip->i_devvp); 1895 genfs_node_init(vp, &lfs_genfsops); 1896 uvm_vnp_setsize(vp, ip->i_size); 1897 1898 /* Initialize hiblk from file size */ 1899 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1; 1900 1901 *vpp = vp; 1902 } 1903 1904 /* 1905 * Resize the filesystem to contain the specified number of segments. 1906 */ 1907 int 1908 lfs_resize_fs(struct lfs *fs, int newnsegs) 1909 { 1910 SEGUSE *sup; 1911 struct buf *bp, *obp; 1912 daddr_t olast, nlast, ilast, noff, start, end; 1913 struct vnode *ivp; 1914 struct inode *ip; 1915 int error, badnews, inc, oldnsegs; 1916 int sbbytes, csbbytes, gain, cgain; 1917 int i; 1918 1919 /* Only support v2 and up */ 1920 if (fs->lfs_version < 2) 1921 return EOPNOTSUPP; 1922 1923 /* If we're doing nothing, do it fast */ 1924 oldnsegs = fs->lfs_nseg; 1925 if (newnsegs == oldnsegs) 1926 return 0; 1927 1928 /* We always have to have two superblocks */ 1929 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1])) 1930 return EFBIG; 1931 1932 ivp = fs->lfs_ivnode; 1933 ip = VTOI(ivp); 1934 error = 0; 1935 1936 /* Take the segment lock so no one else calls lfs_newseg() */ 1937 lfs_seglock(fs, SEGM_PROT); 1938 1939 /* 1940 * Make sure the segments we're going to be losing, if any, 1941 * are in fact empty. We hold the seglock, so their status 1942 * cannot change underneath us. Count the superblocks we lose, 1943 * while we're at it. 1944 */ 1945 sbbytes = csbbytes = 0; 1946 cgain = 0; 1947 for (i = newnsegs; i < oldnsegs; i++) { 1948 LFS_SEGENTRY(sup, fs, i, bp); 1949 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL); 1950 if (sup->su_flags & SEGUSE_SUPERBLOCK) 1951 sbbytes += LFS_SBPAD; 1952 if (!(sup->su_flags & SEGUSE_DIRTY)) { 1953 ++cgain; 1954 if (sup->su_flags & SEGUSE_SUPERBLOCK) 1955 csbbytes += LFS_SBPAD; 1956 } 1957 brelse(bp, 0); 1958 if (badnews) { 1959 error = EBUSY; 1960 goto out; 1961 } 1962 } 1963 1964 /* Note old and new segment table endpoints, and old ifile size */ 1965 olast = fs->lfs_cleansz + fs->lfs_segtabsz; 1966 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz; 1967 ilast = ivp->v_size >> fs->lfs_bshift; 1968 noff = nlast - olast; 1969 1970 /* 1971 * Make sure no one can use the Ifile while we change it around. 1972 * Even after taking the iflock we need to make sure no one still 1973 * is holding Ifile buffers, so we get each one, to drain them. 1974 * (XXX this could be done better.) 1975 */ 1976 simple_lock(&fs->lfs_interlock); 1977 lockmgr(&fs->lfs_iflock, LK_EXCLUSIVE, &fs->lfs_interlock); 1978 simple_unlock(&fs->lfs_interlock); 1979 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY); 1980 for (i = 0; i < ilast; i++) { 1981 bread(ivp, i, fs->lfs_bsize, NOCRED, &bp); 1982 brelse(bp, 0); 1983 } 1984 1985 /* Allocate new Ifile blocks */ 1986 for (i = ilast; i < ilast + noff; i++) { 1987 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0, 1988 &bp) != 0) 1989 panic("balloc extending ifile"); 1990 memset(bp->b_data, 0, fs->lfs_bsize); 1991 VOP_BWRITE(bp); 1992 } 1993 1994 /* Register new ifile size */ 1995 ip->i_size += noff * fs->lfs_bsize; 1996 ip->i_ffs1_size = ip->i_size; 1997 uvm_vnp_setsize(ivp, ip->i_size); 1998 1999 /* Copy the inode table to its new position */ 2000 if (noff != 0) { 2001 if (noff < 0) { 2002 start = nlast; 2003 end = ilast + noff; 2004 inc = 1; 2005 } else { 2006 start = ilast + noff - 1; 2007 end = nlast - 1; 2008 inc = -1; 2009 } 2010 for (i = start; i != end; i += inc) { 2011 if (bread(ivp, i, fs->lfs_bsize, NOCRED, &bp) != 0) 2012 panic("resize: bread dst blk failed"); 2013 if (bread(ivp, i - noff, fs->lfs_bsize, NOCRED, &obp)) 2014 panic("resize: bread src blk failed"); 2015 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize); 2016 VOP_BWRITE(bp); 2017 brelse(obp, 0); 2018 } 2019 } 2020 2021 /* If we are expanding, write the new empty SEGUSE entries */ 2022 if (newnsegs > oldnsegs) { 2023 for (i = oldnsegs; i < newnsegs; i++) { 2024 if ((error = bread(ivp, i / fs->lfs_sepb + 2025 fs->lfs_cleansz, 2026 fs->lfs_bsize, NOCRED, &bp)) != 0) 2027 panic("lfs: ifile read: %d", error); 2028 while ((i + 1) % fs->lfs_sepb && i < newnsegs) { 2029 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb]; 2030 memset(sup, 0, sizeof(*sup)); 2031 i++; 2032 } 2033 VOP_BWRITE(bp); 2034 } 2035 } 2036 2037 /* Zero out unused superblock offsets */ 2038 for (i = 2; i < LFS_MAXNUMSB; i++) 2039 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs) 2040 fs->lfs_sboffs[i] = 0x0; 2041 2042 /* 2043 * Correct superblock entries that depend on fs size. 2044 * The computations of these are as follows: 2045 * 2046 * size = segtod(fs, nseg) 2047 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD) 2048 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used 2049 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD) 2050 * + (segtod(fs, 1) - (offset - curseg)) 2051 * - segtod(fs, minfreeseg - (minfreeseg / 2)) 2052 * 2053 * XXX - we should probably adjust minfreeseg as well. 2054 */ 2055 gain = (newnsegs - oldnsegs); 2056 fs->lfs_nseg = newnsegs; 2057 fs->lfs_segtabsz = nlast - fs->lfs_cleansz; 2058 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize); 2059 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes); 2060 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes) 2061 - gain * btofsb(fs, fs->lfs_bsize / 2); 2062 if (gain > 0) { 2063 fs->lfs_nclean += gain; 2064 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize); 2065 } else { 2066 fs->lfs_nclean -= cgain; 2067 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) - 2068 btofsb(fs, csbbytes); 2069 } 2070 2071 /* Resize segment flag cache */ 2072 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0], 2073 fs->lfs_nseg * sizeof(u_int32_t), 2074 M_SEGMENT, M_WAITOK); 2075 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1], 2076 fs->lfs_nseg * sizeof(u_int32_t), 2077 M_SEGMENT, M_WAITOK); 2078 for (i = oldnsegs; i < newnsegs; i++) 2079 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0; 2080 2081 /* Truncate Ifile if necessary */ 2082 if (noff < 0) 2083 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0, 2084 NOCRED, curlwp); 2085 2086 /* Update cleaner info so the cleaner can die */ 2087 bread(ivp, 0, fs->lfs_bsize, NOCRED, &bp); 2088 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean; 2089 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean; 2090 VOP_BWRITE(bp); 2091 2092 /* Let Ifile accesses proceed */ 2093 VOP_UNLOCK(ivp, 0); 2094 simple_lock(&fs->lfs_interlock); 2095 lockmgr(&fs->lfs_iflock, LK_RELEASE, &fs->lfs_interlock); 2096 simple_unlock(&fs->lfs_interlock); 2097 2098 out: 2099 lfs_segunlock(fs); 2100 return error; 2101 } 2102