xref: /netbsd-src/sys/ufs/lfs/lfs_subr.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: lfs_subr.c,v 1.47 2004/03/09 06:43:18 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 /*
39  * Copyright (c) 1991, 1993
40  *	The Regents of the University of California.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.47 2004/03/09 06:43:18 yamt Exp $");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/vnode.h>
76 #include <sys/buf.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/proc.h>
80 
81 #include <ufs/ufs/inode.h>
82 #include <ufs/lfs/lfs.h>
83 #include <ufs/lfs/lfs_extern.h>
84 
85 #include <uvm/uvm.h>
86 
87 /*
88  * Return buffer with the contents of block "offset" from the beginning of
89  * directory "ip".  If "res" is non-zero, fill it in with a pointer to the
90  * remaining space in the directory.
91  */
92 int
93 lfs_blkatoff(void *v)
94 {
95 	struct vop_blkatoff_args /* {
96 		struct vnode *a_vp;
97 		off_t a_offset;
98 		char **a_res;
99 		struct buf **a_bpp;
100 		} */ *ap = v;
101 	struct lfs *fs;
102 	struct inode *ip;
103 	struct buf *bp;
104 	daddr_t lbn;
105 	int bsize, error;
106 
107 	ip = VTOI(ap->a_vp);
108 	fs = ip->i_lfs;
109 	lbn = lblkno(fs, ap->a_offset);
110 	bsize = blksize(fs, ip, lbn);
111 
112 	*ap->a_bpp = NULL;
113 	if ((error = bread(ap->a_vp, lbn, bsize, NOCRED, &bp)) != 0) {
114 		brelse(bp);
115 		return (error);
116 	}
117 	if (ap->a_res)
118 		*ap->a_res = (char *)bp->b_data + blkoff(fs, ap->a_offset);
119 	*ap->a_bpp = bp;
120 	return (0);
121 }
122 
123 #ifdef LFS_DEBUG_MALLOC
124 char *lfs_res_names[LFS_NB_COUNT] = {
125 	"summary",
126 	"superblock",
127 	"ifile block",
128 	"cluster",
129 	"clean",
130 };
131 #endif
132 
133 int lfs_res_qty[LFS_NB_COUNT] = {
134 	LFS_N_SUMMARIES,
135 	LFS_N_SBLOCKS,
136 	LFS_N_IBLOCKS,
137 	LFS_N_CLUSTERS,
138 	LFS_N_CLEAN,
139 };
140 
141 void
142 lfs_setup_resblks(struct lfs *fs)
143 {
144 	int i, j;
145 	int maxbpp;
146 
147 	fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
148 					  M_WAITOK);
149 	for (i = 0; i < LFS_N_TOTAL; i++) {
150 		fs->lfs_resblk[i].inuse = 0;
151 		fs->lfs_resblk[i].p = NULL;
152 	}
153 	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
154 		LIST_INIT(fs->lfs_reshash + i);
155 
156 	/*
157 	 * These types of allocations can be larger than a page,
158 	 * so we can't use the pool subsystem for them.
159 	 */
160 	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
161 		fs->lfs_resblk[i].size = fs->lfs_sumsize;
162 	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
163 		fs->lfs_resblk[i].size = LFS_SBPAD;
164 	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
165 		fs->lfs_resblk[i].size = fs->lfs_bsize;
166 	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
167 		fs->lfs_resblk[i].size = MAXPHYS;
168 	for (j = 0; j < LFS_N_CLEAN; j++, i++)
169 		fs->lfs_resblk[i].size = MAXPHYS;
170 
171 	for (i = 0; i < LFS_N_TOTAL; i++) {
172 		fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
173 					     M_SEGMENT, M_WAITOK);
174 	}
175 
176 	/*
177 	 * Initialize pools for small types (XXX is BPP small?)
178 	 */
179 	pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
180 		"lfsclpl", &pool_allocator_nointr);
181 	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
182 		"lfssegpool", &pool_allocator_nointr);
183 	maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
184 	maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
185 	pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
186 		"lfsbpppl", &pool_allocator_nointr);
187 }
188 
189 void
190 lfs_free_resblks(struct lfs *fs)
191 {
192 	int i;
193 
194 	pool_destroy(&fs->lfs_bpppool);
195 	pool_destroy(&fs->lfs_segpool);
196 	pool_destroy(&fs->lfs_clpool);
197 
198 	for (i = 0; i < LFS_N_TOTAL; i++) {
199 		while (fs->lfs_resblk[i].inuse)
200 			tsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0);
201 		if (fs->lfs_resblk[i].p != NULL)
202 			free(fs->lfs_resblk[i].p, M_SEGMENT);
203 	}
204 	free(fs->lfs_resblk, M_SEGMENT);
205 }
206 
207 static unsigned int
208 lfs_mhash(void *vp)
209 {
210 	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
211 }
212 
213 /*
214  * Return memory of the given size for the given purpose, or use one of a
215  * number of spare last-resort buffers, if malloc returns NULL.
216  */
217 void *
218 lfs_malloc(struct lfs *fs, size_t size, int type)
219 {
220 	struct lfs_res_blk *re;
221 	void *r;
222 	int i, s, start;
223 	unsigned int h;
224 
225 	r = NULL;
226 
227 	/* If no mem allocated for this type, it just waits */
228 	if (lfs_res_qty[type] == 0) {
229 		r = malloc(size, M_SEGMENT, M_WAITOK);
230 		return r;
231 	}
232 
233 	/* Otherwise try a quick malloc, and if it works, great */
234 	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
235 		return r;
236 	}
237 
238 	/*
239 	 * If malloc returned NULL, we are forced to use one of our
240 	 * reserve blocks.  We have on hand at least one summary block,
241 	 * at least one cluster block, at least one superblock,
242 	 * and several indirect blocks.
243 	 */
244 	/* skip over blocks of other types */
245 	for (i = 0, start = 0; i < type; i++)
246 		start += lfs_res_qty[i];
247 	while (r == NULL) {
248 		for (i = 0; i < lfs_res_qty[type]; i++) {
249 			if (fs->lfs_resblk[start + i].inuse == 0) {
250 				re = fs->lfs_resblk + start + i;
251 				re->inuse = 1;
252 				r = re->p;
253 				KASSERT(re->size >= size);
254 				h = lfs_mhash(r);
255 				s = splbio();
256 				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
257 				splx(s);
258 				return r;
259 			}
260 		}
261 #ifdef LFS_DEBUG_MALLOC
262 		printf("sleeping on %s (%d)\n", lfs_res_names[type], lfs_res_qty[type]);
263 #endif
264 		tsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0);
265 #ifdef LFS_DEBUG_MALLOC
266 		printf("done sleeping on %s\n", lfs_res_names[type]);
267 #endif
268 	}
269 	/* NOTREACHED */
270 	return r;
271 }
272 
273 void
274 lfs_free(struct lfs *fs, void *p, int type)
275 {
276 	int s;
277 	unsigned int h;
278 	res_t *re;
279 #ifdef DEBUG
280 	int i;
281 #endif
282 
283 	h = lfs_mhash(p);
284 	s = splbio();
285 	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
286 		if (re->p == p) {
287 			KASSERT(re->inuse == 1);
288 			LIST_REMOVE(re, res);
289 			re->inuse = 0;
290 			wakeup(&fs->lfs_resblk);
291 			splx(s);
292 			return;
293 		}
294 	}
295 #ifdef DEBUG
296 	for (i = 0; i < LFS_N_TOTAL; i++) {
297 		if (fs->lfs_resblk[i].p == p)
298 			panic("lfs_free: inconsistent reserved block");
299 	}
300 #endif
301 	splx(s);
302 
303 	/*
304 	 * If we didn't find it, free it.
305 	 */
306 	free(p, M_SEGMENT);
307 }
308 
309 /*
310  * lfs_seglock --
311  *	Single thread the segment writer.
312  */
313 int
314 lfs_seglock(struct lfs *fs, unsigned long flags)
315 {
316 	struct segment *sp;
317 
318 	simple_lock(&fs->lfs_interlock);
319 	if (fs->lfs_seglock) {
320 		if (fs->lfs_lockpid == curproc->p_pid) {
321 			simple_unlock(&fs->lfs_interlock);
322 			++fs->lfs_seglock;
323 			fs->lfs_sp->seg_flags |= flags;
324 			return 0;
325 		} else if (flags & SEGM_PAGEDAEMON) {
326 			simple_unlock(&fs->lfs_interlock);
327 			return EWOULDBLOCK;
328 		} else while (fs->lfs_seglock)
329 			(void)ltsleep(&fs->lfs_seglock, PRIBIO + 1,
330 				      "lfs seglock", 0, &fs->lfs_interlock);
331 	}
332 
333 	fs->lfs_seglock = 1;
334 	fs->lfs_lockpid = curproc->p_pid;
335 	simple_unlock(&fs->lfs_interlock);
336 	fs->lfs_cleanind = 0;
337 
338 	/* Drain fragment size changes out */
339 	lockmgr(&fs->lfs_fraglock, LK_EXCLUSIVE, 0);
340 
341 	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
342 	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
343 	sp->seg_flags = flags;
344 	sp->vp = NULL;
345 	sp->seg_iocount = 0;
346 	(void) lfs_initseg(fs);
347 
348 	/*
349 	 * Keep a cumulative count of the outstanding I/O operations.  If the
350 	 * disk drive catches up with us it could go to zero before we finish,
351 	 * so we artificially increment it by one until we've scheduled all of
352 	 * the writes we intend to do.
353 	 */
354 	++fs->lfs_iocount;
355 	return 0;
356 }
357 
358 static void lfs_unmark_dirop(struct lfs *);
359 
360 static void
361 lfs_unmark_dirop(struct lfs *fs)
362 {
363 	struct inode *ip, *nip;
364 	struct vnode *vp;
365 	int doit;
366 
367 	simple_lock(&fs->lfs_interlock);
368 	doit = !(fs->lfs_flags & LFS_UNDIROP);
369 	if (doit)
370 		fs->lfs_flags |= LFS_UNDIROP;
371 	simple_unlock(&fs->lfs_interlock);
372 	if (!doit)
373 		return;
374 
375 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
376 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
377 		vp = ITOV(ip);
378 
379 		if (VOP_ISLOCKED(vp) &&
380 			   vp->v_lock.lk_lockholder != curproc->p_pid) {
381 			continue;
382 		}
383 		if ((VTOI(vp)->i_flag & IN_ADIROP) == 0) {
384 			--lfs_dirvcount;
385 			vp->v_flag &= ~VDIROP;
386 			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
387 			wakeup(&lfs_dirvcount);
388 			fs->lfs_unlockvp = vp;
389 			vrele(vp);
390 			fs->lfs_unlockvp = NULL;
391 		}
392 	}
393 
394 	simple_lock(&fs->lfs_interlock);
395 	fs->lfs_flags &= ~LFS_UNDIROP;
396 	simple_unlock(&fs->lfs_interlock);
397 }
398 
399 static void
400 lfs_auto_segclean(struct lfs *fs)
401 {
402 	int i, error;
403 
404 	/*
405 	 * Now that we've swapped lfs_activesb, but while we still
406 	 * hold the segment lock, run through the segment list marking
407 	 * the empty ones clean.
408 	 * XXX - do we really need to do them all at once?
409 	 */
410 	for (i = 0; i < fs->lfs_nseg; i++) {
411 		if ((fs->lfs_suflags[0][i] &
412 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
413 		    (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
414 		    (fs->lfs_suflags[1][i] &
415 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
416 		    (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
417 
418 			if ((error = lfs_do_segclean(fs, i)) != 0) {
419 #ifdef DEBUG
420 				printf("lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i);
421 #endif /* DEBUG */
422 			}
423 		}
424 		fs->lfs_suflags[1 - fs->lfs_activesb][i] =
425 			fs->lfs_suflags[fs->lfs_activesb][i];
426 	}
427 }
428 
429 /*
430  * lfs_segunlock --
431  *	Single thread the segment writer.
432  */
433 void
434 lfs_segunlock(struct lfs *fs)
435 {
436 	struct segment *sp;
437 	unsigned long sync, ckp;
438 	struct buf *bp;
439 	int do_unmark_dirop = 0;
440 
441 	sp = fs->lfs_sp;
442 
443 	simple_lock(&fs->lfs_interlock);
444 	if (fs->lfs_seglock == 1) {
445 		if ((sp->seg_flags & SEGM_PROT) == 0)
446 			do_unmark_dirop = 1;
447 		simple_unlock(&fs->lfs_interlock);
448 		sync = sp->seg_flags & SEGM_SYNC;
449 		ckp = sp->seg_flags & SEGM_CKP;
450 		if (sp->bpp != sp->cbpp) {
451 			/* Free allocated segment summary */
452 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
453 			bp = *sp->bpp;
454 			lfs_freebuf(fs, bp);
455 		} else
456 			printf ("unlock to 0 with no summary");
457 
458 		pool_put(&fs->lfs_bpppool, sp->bpp);
459 		sp->bpp = NULL;
460 
461 		/*
462 		 * If we're not sync, we're done with sp, get rid of it.
463 		 * Otherwise, we keep a local copy around but free
464 		 * fs->lfs_sp so another process can use it (we have to
465 		 * wait but they don't have to wait for us).
466 		 */
467 		if (!sync)
468 			pool_put(&fs->lfs_segpool, sp);
469 		fs->lfs_sp = NULL;
470 
471 		/*
472 		 * If the I/O count is non-zero, sleep until it reaches zero.
473 		 * At the moment, the user's process hangs around so we can
474 		 * sleep.
475 		 */
476 		if (--fs->lfs_iocount == 0)
477 			LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
478 		if (fs->lfs_iocount <= 1)
479 			wakeup(&fs->lfs_iocount);
480 		/*
481 		 * If we're not checkpointing, we don't have to block
482 		 * other processes to wait for a synchronous write
483 		 * to complete.
484 		 */
485 		if (!ckp) {
486 			simple_lock(&fs->lfs_interlock);
487 			--fs->lfs_seglock;
488 			fs->lfs_lockpid = 0;
489 			simple_unlock(&fs->lfs_interlock);
490 			wakeup(&fs->lfs_seglock);
491 		}
492 		/*
493 		 * We let checkpoints happen asynchronously.  That means
494 		 * that during recovery, we have to roll forward between
495 		 * the two segments described by the first and second
496 		 * superblocks to make sure that the checkpoint described
497 		 * by a superblock completed.
498 		 */
499 		while (ckp && sync && fs->lfs_iocount)
500 			(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
501 				     "lfs_iocount", 0);
502 		while (sync && sp->seg_iocount) {
503 			(void)tsleep(&sp->seg_iocount, PRIBIO + 1,
504 				     "seg_iocount", 0);
505 			/* printf("sleeping on iocount %x == %d\n", sp, sp->seg_iocount); */
506 		}
507 		if (sync)
508 			pool_put(&fs->lfs_segpool, sp);
509 
510 		if (ckp) {
511 			fs->lfs_nactive = 0;
512 			/* If we *know* everything's on disk, write both sbs */
513 			/* XXX should wait for this one	 */
514 			if (sync)
515 				lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
516 			lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
517 			if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT))
518 				lfs_auto_segclean(fs);
519 			fs->lfs_activesb = 1 - fs->lfs_activesb;
520 			simple_lock(&fs->lfs_interlock);
521 			--fs->lfs_seglock;
522 			fs->lfs_lockpid = 0;
523 			simple_unlock(&fs->lfs_interlock);
524 			wakeup(&fs->lfs_seglock);
525 		}
526 		/* Reenable fragment size changes */
527 		lockmgr(&fs->lfs_fraglock, LK_RELEASE, 0);
528 		if (do_unmark_dirop)
529 			lfs_unmark_dirop(fs);
530 	} else if (fs->lfs_seglock == 0) {
531 		simple_unlock(&fs->lfs_interlock);
532 		panic ("Seglock not held");
533 	} else {
534 		--fs->lfs_seglock;
535 		simple_unlock(&fs->lfs_interlock);
536 	}
537 }
538 
539 /*
540  * drain dirops and start writer.
541  */
542 int
543 lfs_writer_enter(struct lfs *fs, const char *wmesg)
544 {
545 	int error = 0;
546 
547 	simple_lock(&fs->lfs_interlock);
548 
549 	/* disallow dirops during flush */
550 	fs->lfs_writer++;
551 
552 	while (fs->lfs_dirops > 0) {
553 		++fs->lfs_diropwait;
554 		error = ltsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
555 		    &fs->lfs_interlock);
556 		--fs->lfs_diropwait;
557 	}
558 
559 	if (error)
560 		fs->lfs_writer--;
561 
562 	simple_unlock(&fs->lfs_interlock);
563 
564 	return error;
565 }
566 
567 void
568 lfs_writer_leave(struct lfs *fs)
569 {
570 	boolean_t dowakeup;
571 
572 	simple_lock(&fs->lfs_interlock);
573 	dowakeup = !(--fs->lfs_writer);
574 	simple_unlock(&fs->lfs_interlock);
575 	if (dowakeup)
576 		wakeup(&fs->lfs_dirops);
577 }
578