xref: /netbsd-src/sys/ufs/lfs/lfs_subr.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: lfs_subr.c,v 1.73 2008/04/28 20:24:11 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright (c) 1991, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.73 2008/04/28 20:24:11 martin Exp $");
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/namei.h>
68 #include <sys/vnode.h>
69 #include <sys/buf.h>
70 #include <sys/mount.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/kauth.h>
74 
75 #include <ufs/ufs/inode.h>
76 #include <ufs/lfs/lfs.h>
77 #include <ufs/lfs/lfs_extern.h>
78 
79 #include <uvm/uvm.h>
80 
81 #ifdef DEBUG
82 const char *lfs_res_names[LFS_NB_COUNT] = {
83 	"summary",
84 	"superblock",
85 	"file block",
86 	"cluster",
87 	"clean",
88 	"blkiov",
89 };
90 #endif
91 
92 int lfs_res_qty[LFS_NB_COUNT] = {
93 	LFS_N_SUMMARIES,
94 	LFS_N_SBLOCKS,
95 	LFS_N_IBLOCKS,
96 	LFS_N_CLUSTERS,
97 	LFS_N_CLEAN,
98 	LFS_N_BLKIOV,
99 };
100 
101 void
102 lfs_setup_resblks(struct lfs *fs)
103 {
104 	int i, j;
105 	int maxbpp;
106 
107 	ASSERT_NO_SEGLOCK(fs);
108 	fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
109 					  M_WAITOK);
110 	for (i = 0; i < LFS_N_TOTAL; i++) {
111 		fs->lfs_resblk[i].inuse = 0;
112 		fs->lfs_resblk[i].p = NULL;
113 	}
114 	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
115 		LIST_INIT(fs->lfs_reshash + i);
116 
117 	/*
118 	 * These types of allocations can be larger than a page,
119 	 * so we can't use the pool subsystem for them.
120 	 */
121 	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
122 		fs->lfs_resblk[i].size = fs->lfs_sumsize;
123 	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
124 		fs->lfs_resblk[i].size = LFS_SBPAD;
125 	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
126 		fs->lfs_resblk[i].size = fs->lfs_bsize;
127 	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
128 		fs->lfs_resblk[i].size = MAXPHYS;
129 	for (j = 0; j < LFS_N_CLEAN; j++, i++)
130 		fs->lfs_resblk[i].size = MAXPHYS;
131 	for (j = 0; j < LFS_N_BLKIOV; j++, i++)
132 		fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
133 
134 	for (i = 0; i < LFS_N_TOTAL; i++) {
135 		fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
136 					     M_SEGMENT, M_WAITOK);
137 	}
138 
139 	/*
140 	 * Initialize pools for small types (XXX is BPP small?)
141 	 */
142 	pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
143 		"lfsclpl", &pool_allocator_nointr, IPL_NONE);
144 	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
145 		"lfssegpool", &pool_allocator_nointr, IPL_NONE);
146 	maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
147 	maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
148 	pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
149 		"lfsbpppl", &pool_allocator_nointr, IPL_NONE);
150 }
151 
152 void
153 lfs_free_resblks(struct lfs *fs)
154 {
155 	int i;
156 
157 	pool_destroy(&fs->lfs_bpppool);
158 	pool_destroy(&fs->lfs_segpool);
159 	pool_destroy(&fs->lfs_clpool);
160 
161 	mutex_enter(&lfs_lock);
162 	for (i = 0; i < LFS_N_TOTAL; i++) {
163 		while (fs->lfs_resblk[i].inuse)
164 			mtsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
165 				&lfs_lock);
166 		if (fs->lfs_resblk[i].p != NULL)
167 			free(fs->lfs_resblk[i].p, M_SEGMENT);
168 	}
169 	free(fs->lfs_resblk, M_SEGMENT);
170 	mutex_exit(&lfs_lock);
171 }
172 
173 static unsigned int
174 lfs_mhash(void *vp)
175 {
176 	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
177 }
178 
179 /*
180  * Return memory of the given size for the given purpose, or use one of a
181  * number of spare last-resort buffers, if malloc returns NULL.
182  */
183 void *
184 lfs_malloc(struct lfs *fs, size_t size, int type)
185 {
186 	struct lfs_res_blk *re;
187 	void *r;
188 	int i, s, start;
189 	unsigned int h;
190 
191 	ASSERT_MAYBE_SEGLOCK(fs);
192 	r = NULL;
193 
194 	/* If no mem allocated for this type, it just waits */
195 	if (lfs_res_qty[type] == 0) {
196 		r = malloc(size, M_SEGMENT, M_WAITOK);
197 		return r;
198 	}
199 
200 	/* Otherwise try a quick malloc, and if it works, great */
201 	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
202 		return r;
203 	}
204 
205 	/*
206 	 * If malloc returned NULL, we are forced to use one of our
207 	 * reserve blocks.  We have on hand at least one summary block,
208 	 * at least one cluster block, at least one superblock,
209 	 * and several indirect blocks.
210 	 */
211 
212 	mutex_enter(&lfs_lock);
213 	/* skip over blocks of other types */
214 	for (i = 0, start = 0; i < type; i++)
215 		start += lfs_res_qty[i];
216 	while (r == NULL) {
217 		for (i = 0; i < lfs_res_qty[type]; i++) {
218 			if (fs->lfs_resblk[start + i].inuse == 0) {
219 				re = fs->lfs_resblk + start + i;
220 				re->inuse = 1;
221 				r = re->p;
222 				KASSERT(re->size >= size);
223 				h = lfs_mhash(r);
224 				s = splbio();
225 				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
226 				splx(s);
227 				mutex_exit(&lfs_lock);
228 				return r;
229 			}
230 		}
231 		DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
232 		      lfs_res_names[type], lfs_res_qty[type]));
233 		mtsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
234 			&lfs_lock);
235 		DLOG((DLOG_MALLOC, "done sleeping on %s\n",
236 		      lfs_res_names[type]));
237 	}
238 	/* NOTREACHED */
239 	mutex_exit(&lfs_lock);
240 	return r;
241 }
242 
243 void
244 lfs_free(struct lfs *fs, void *p, int type)
245 {
246 	int s;
247 	unsigned int h;
248 	res_t *re;
249 #ifdef DEBUG
250 	int i;
251 #endif
252 
253 	ASSERT_MAYBE_SEGLOCK(fs);
254 	h = lfs_mhash(p);
255 	mutex_enter(&lfs_lock);
256 	s = splbio();
257 	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
258 		if (re->p == p) {
259 			KASSERT(re->inuse == 1);
260 			LIST_REMOVE(re, res);
261 			re->inuse = 0;
262 			wakeup(&fs->lfs_resblk);
263 			splx(s);
264 			mutex_exit(&lfs_lock);
265 			return;
266 		}
267 	}
268 #ifdef DEBUG
269 	for (i = 0; i < LFS_N_TOTAL; i++) {
270 		if (fs->lfs_resblk[i].p == p)
271 			panic("lfs_free: inconsistent reserved block");
272 	}
273 #endif
274 	splx(s);
275 	mutex_exit(&lfs_lock);
276 
277 	/*
278 	 * If we didn't find it, free it.
279 	 */
280 	free(p, M_SEGMENT);
281 }
282 
283 /*
284  * lfs_seglock --
285  *	Single thread the segment writer.
286  */
287 int
288 lfs_seglock(struct lfs *fs, unsigned long flags)
289 {
290 	struct segment *sp;
291 
292 	mutex_enter(&lfs_lock);
293 	if (fs->lfs_seglock) {
294 		if (fs->lfs_lockpid == curproc->p_pid &&
295 		    fs->lfs_locklwp == curlwp->l_lid) {
296 			mutex_exit(&lfs_lock);
297 			++fs->lfs_seglock;
298 			fs->lfs_sp->seg_flags |= flags;
299 			return 0;
300 		} else if (flags & SEGM_PAGEDAEMON) {
301 			mutex_exit(&lfs_lock);
302 			return EWOULDBLOCK;
303 		} else {
304 			while (fs->lfs_seglock) {
305 				(void)mtsleep(&fs->lfs_seglock, PRIBIO + 1,
306 					"lfs_seglock", 0, &lfs_lock);
307 			}
308 		}
309 	}
310 
311 	fs->lfs_seglock = 1;
312 	fs->lfs_lockpid = curproc->p_pid;
313 	fs->lfs_locklwp = curlwp->l_lid;
314 	mutex_exit(&lfs_lock);
315 	fs->lfs_cleanind = 0;
316 
317 #ifdef DEBUG
318 	LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
319 #endif
320 	/* Drain fragment size changes out */
321 	rw_enter(&fs->lfs_fraglock, RW_WRITER);
322 
323 	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
324 	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
325 	sp->seg_flags = flags;
326 	sp->vp = NULL;
327 	sp->seg_iocount = 0;
328 	(void) lfs_initseg(fs);
329 
330 	/*
331 	 * Keep a cumulative count of the outstanding I/O operations.  If the
332 	 * disk drive catches up with us it could go to zero before we finish,
333 	 * so we artificially increment it by one until we've scheduled all of
334 	 * the writes we intend to do.
335 	 */
336 	mutex_enter(&lfs_lock);
337 	++fs->lfs_iocount;
338 	mutex_exit(&lfs_lock);
339 	return 0;
340 }
341 
342 static void lfs_unmark_dirop(struct lfs *);
343 
344 static void
345 lfs_unmark_dirop(struct lfs *fs)
346 {
347 	struct inode *ip, *nip;
348 	struct vnode *vp;
349 	int doit;
350 
351 	ASSERT_NO_SEGLOCK(fs);
352 	mutex_enter(&lfs_lock);
353 	doit = !(fs->lfs_flags & LFS_UNDIROP);
354 	if (doit)
355 		fs->lfs_flags |= LFS_UNDIROP;
356 	if (!doit) {
357 		mutex_exit(&lfs_lock);
358 		return;
359 	}
360 
361 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
362 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
363 		vp = ITOV(ip);
364 		if (VOP_ISLOCKED(vp) == LK_EXCLOTHER)
365 			continue;
366 		if ((VTOI(vp)->i_flag & (IN_ADIROP | IN_ALLMOD)) == 0) {
367 			--lfs_dirvcount;
368 			--fs->lfs_dirvcount;
369 			vp->v_uflag &= ~VU_DIROP;
370 			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
371 			wakeup(&lfs_dirvcount);
372 			fs->lfs_unlockvp = vp;
373 			mutex_exit(&lfs_lock);
374 			vrele(vp);
375 			mutex_enter(&lfs_lock);
376 			fs->lfs_unlockvp = NULL;
377 		}
378 	}
379 
380 	fs->lfs_flags &= ~LFS_UNDIROP;
381 	wakeup(&fs->lfs_flags);
382 	mutex_exit(&lfs_lock);
383 }
384 
385 static void
386 lfs_auto_segclean(struct lfs *fs)
387 {
388 	int i, error, s, waited;
389 
390 	ASSERT_SEGLOCK(fs);
391 	/*
392 	 * Now that we've swapped lfs_activesb, but while we still
393 	 * hold the segment lock, run through the segment list marking
394 	 * the empty ones clean.
395 	 * XXX - do we really need to do them all at once?
396 	 */
397 	waited = 0;
398 	for (i = 0; i < fs->lfs_nseg; i++) {
399 		if ((fs->lfs_suflags[0][i] &
400 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
401 		    (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
402 		    (fs->lfs_suflags[1][i] &
403 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
404 		    (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
405 
406 			/* Make sure the sb is written before we clean */
407 			mutex_enter(&lfs_lock);
408 			s = splbio();
409 			while (waited == 0 && fs->lfs_sbactive)
410 				mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
411 					0, &lfs_lock);
412 			splx(s);
413 			mutex_exit(&lfs_lock);
414 			waited = 1;
415 
416 			if ((error = lfs_do_segclean(fs, i)) != 0) {
417 				DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
418 			}
419 		}
420 		fs->lfs_suflags[1 - fs->lfs_activesb][i] =
421 			fs->lfs_suflags[fs->lfs_activesb][i];
422 	}
423 }
424 
425 /*
426  * lfs_segunlock --
427  *	Single thread the segment writer.
428  */
429 void
430 lfs_segunlock(struct lfs *fs)
431 {
432 	struct segment *sp;
433 	unsigned long sync, ckp;
434 	struct buf *bp;
435 	int do_unmark_dirop = 0;
436 
437 	sp = fs->lfs_sp;
438 
439 	mutex_enter(&lfs_lock);
440 	KASSERT(LFS_SEGLOCK_HELD(fs));
441 	if (fs->lfs_seglock == 1) {
442 		if ((sp->seg_flags & (SEGM_PROT | SEGM_CLEAN)) == 0 &&
443 		    LFS_STARVED_FOR_SEGS(fs) == 0)
444 			do_unmark_dirop = 1;
445 		mutex_exit(&lfs_lock);
446 		sync = sp->seg_flags & SEGM_SYNC;
447 		ckp = sp->seg_flags & SEGM_CKP;
448 
449 		/* We should have a segment summary, and nothing else */
450 		KASSERT(sp->cbpp == sp->bpp + 1);
451 
452 		/* Free allocated segment summary */
453 		fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
454 		bp = *sp->bpp;
455 		lfs_freebuf(fs, bp);
456 
457 		pool_put(&fs->lfs_bpppool, sp->bpp);
458 		sp->bpp = NULL;
459 
460 		/*
461 		 * If we're not sync, we're done with sp, get rid of it.
462 		 * Otherwise, we keep a local copy around but free
463 		 * fs->lfs_sp so another process can use it (we have to
464 		 * wait but they don't have to wait for us).
465 		 */
466 		if (!sync)
467 			pool_put(&fs->lfs_segpool, sp);
468 		fs->lfs_sp = NULL;
469 
470 		/*
471 		 * If the I/O count is non-zero, sleep until it reaches zero.
472 		 * At the moment, the user's process hangs around so we can
473 		 * sleep.
474 		 */
475 		mutex_enter(&lfs_lock);
476 		if (--fs->lfs_iocount == 0) {
477 			LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
478 		}
479 		if (fs->lfs_iocount <= 1)
480 			wakeup(&fs->lfs_iocount);
481 		mutex_exit(&lfs_lock);
482 		/*
483 		 * If we're not checkpointing, we don't have to block
484 		 * other processes to wait for a synchronous write
485 		 * to complete.
486 		 */
487 		if (!ckp) {
488 #ifdef DEBUG
489 			LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
490 #endif
491 			mutex_enter(&lfs_lock);
492 			--fs->lfs_seglock;
493 			fs->lfs_lockpid = 0;
494 			fs->lfs_locklwp = 0;
495 			mutex_exit(&lfs_lock);
496 			wakeup(&fs->lfs_seglock);
497 		}
498 		/*
499 		 * We let checkpoints happen asynchronously.  That means
500 		 * that during recovery, we have to roll forward between
501 		 * the two segments described by the first and second
502 		 * superblocks to make sure that the checkpoint described
503 		 * by a superblock completed.
504 		 */
505 		mutex_enter(&lfs_lock);
506 		while (ckp && sync && fs->lfs_iocount)
507 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
508 				      "lfs_iocount", 0, &lfs_lock);
509 		while (sync && sp->seg_iocount) {
510 			(void)mtsleep(&sp->seg_iocount, PRIBIO + 1,
511 				     "seg_iocount", 0, &lfs_lock);
512 			DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
513 		}
514 		mutex_exit(&lfs_lock);
515 		if (sync)
516 			pool_put(&fs->lfs_segpool, sp);
517 
518 		if (ckp) {
519 			fs->lfs_nactive = 0;
520 			/* If we *know* everything's on disk, write both sbs */
521 			/* XXX should wait for this one	 */
522 			if (sync)
523 				lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
524 			lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
525 			if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
526 				lfs_auto_segclean(fs);
527 				/* If sync, we can clean the remainder too */
528 				if (sync)
529 					lfs_auto_segclean(fs);
530 			}
531 			fs->lfs_activesb = 1 - fs->lfs_activesb;
532 #ifdef DEBUG
533 			LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
534 #endif
535 			mutex_enter(&lfs_lock);
536 			--fs->lfs_seglock;
537 			fs->lfs_lockpid = 0;
538 			fs->lfs_locklwp = 0;
539 			mutex_exit(&lfs_lock);
540 			wakeup(&fs->lfs_seglock);
541 		}
542 		/* Reenable fragment size changes */
543 		rw_exit(&fs->lfs_fraglock);
544 		if (do_unmark_dirop)
545 			lfs_unmark_dirop(fs);
546 	} else if (fs->lfs_seglock == 0) {
547 		mutex_exit(&lfs_lock);
548 		panic ("Seglock not held");
549 	} else {
550 		--fs->lfs_seglock;
551 		mutex_exit(&lfs_lock);
552 	}
553 }
554 
555 /*
556  * Drain dirops and start writer.
557  *
558  * No simple_locks are held when we enter and none are held when we return.
559  */
560 int
561 lfs_writer_enter(struct lfs *fs, const char *wmesg)
562 {
563 	int error = 0;
564 
565 	ASSERT_MAYBE_SEGLOCK(fs);
566 	mutex_enter(&lfs_lock);
567 
568 	/* disallow dirops during flush */
569 	fs->lfs_writer++;
570 
571 	while (fs->lfs_dirops > 0) {
572 		++fs->lfs_diropwait;
573 		error = mtsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
574 				&lfs_lock);
575 		--fs->lfs_diropwait;
576 	}
577 
578 	if (error)
579 		fs->lfs_writer--;
580 
581 	mutex_exit(&lfs_lock);
582 
583 	return error;
584 }
585 
586 void
587 lfs_writer_leave(struct lfs *fs)
588 {
589 	bool dowakeup;
590 
591 	ASSERT_MAYBE_SEGLOCK(fs);
592 	mutex_enter(&lfs_lock);
593 	dowakeup = !(--fs->lfs_writer);
594 	mutex_exit(&lfs_lock);
595 	if (dowakeup)
596 		wakeup(&fs->lfs_dirops);
597 }
598 
599 /*
600  * Unlock, wait for the cleaner, then relock to where we were before.
601  * To be used only at a fairly high level, to address a paucity of free
602  * segments propagated back from lfs_gop_write().
603  */
604 void
605 lfs_segunlock_relock(struct lfs *fs)
606 {
607 	int n = fs->lfs_seglock;
608 	u_int16_t seg_flags;
609 	CLEANERINFO *cip;
610 	struct buf *bp;
611 
612 	if (n == 0)
613 		return;
614 
615 	/* Write anything we've already gathered to disk */
616 	lfs_writeseg(fs, fs->lfs_sp);
617 
618 	/* Tell cleaner */
619 	LFS_CLEANERINFO(cip, fs, bp);
620 	cip->flags |= LFS_CLEANER_MUST_CLEAN;
621 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
622 
623 	/* Save segment flags for later */
624 	seg_flags = fs->lfs_sp->seg_flags;
625 
626 	fs->lfs_sp->seg_flags |= SEGM_PROT; /* Don't unmark dirop nodes */
627 	while(fs->lfs_seglock)
628 		lfs_segunlock(fs);
629 
630 	/* Wait for the cleaner */
631 	lfs_wakeup_cleaner(fs);
632 	mutex_enter(&lfs_lock);
633 	while (LFS_STARVED_FOR_SEGS(fs))
634 		mtsleep(&fs->lfs_avail, PRIBIO, "relock", 0,
635 			&lfs_lock);
636 	mutex_exit(&lfs_lock);
637 
638 	/* Put the segment lock back the way it was. */
639 	while(n--)
640 		lfs_seglock(fs, seg_flags);
641 
642 	/* Cleaner can relax now */
643 	LFS_CLEANERINFO(cip, fs, bp);
644 	cip->flags &= ~LFS_CLEANER_MUST_CLEAN;
645 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
646 
647 	return;
648 }
649 
650 /*
651  * Wake up the cleaner, provided that nowrap is not set.
652  */
653 void
654 lfs_wakeup_cleaner(struct lfs *fs)
655 {
656 	if (fs->lfs_nowrap > 0)
657 		return;
658 
659 	wakeup(&fs->lfs_nextseg);
660 	wakeup(&lfs_allclean_wakeup);
661 }
662