1 /* $NetBSD: lfs_segment.c,v 1.131 2003/08/07 16:34:37 agc Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /* 39 * Copyright (c) 1991, 1993 40 * The Regents of the University of California. All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.131 2003/08/07 16:34:37 agc Exp $"); 71 72 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str)) 73 74 #if defined(_KERNEL_OPT) 75 #include "opt_ddb.h" 76 #endif 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/namei.h> 81 #include <sys/kernel.h> 82 #include <sys/resourcevar.h> 83 #include <sys/file.h> 84 #include <sys/stat.h> 85 #include <sys/buf.h> 86 #include <sys/proc.h> 87 #include <sys/vnode.h> 88 #include <sys/mount.h> 89 90 #include <miscfs/specfs/specdev.h> 91 #include <miscfs/fifofs/fifo.h> 92 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/dir.h> 95 #include <ufs/ufs/ufsmount.h> 96 #include <ufs/ufs/ufs_extern.h> 97 98 #include <ufs/lfs/lfs.h> 99 #include <ufs/lfs/lfs_extern.h> 100 101 #include <uvm/uvm.h> 102 #include <uvm/uvm_extern.h> 103 104 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 105 106 extern int count_lock_queue(void); 107 extern struct simplelock vnode_free_list_slock; /* XXX */ 108 109 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 110 static void lfs_super_aiodone(struct buf *); 111 static void lfs_cluster_aiodone(struct buf *); 112 static void lfs_cluster_callback(struct buf *); 113 114 /* 115 * Determine if it's OK to start a partial in this segment, or if we need 116 * to go on to a new segment. 117 */ 118 #define LFS_PARTIAL_FITS(fs) \ 119 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 120 fragstofsb((fs), (fs)->lfs_frag)) 121 122 void lfs_callback(struct buf *); 123 int lfs_gather(struct lfs *, struct segment *, 124 struct vnode *, int (*)(struct lfs *, struct buf *)); 125 int lfs_gatherblock(struct segment *, struct buf *, int *); 126 void lfs_iset(struct inode *, daddr_t, time_t); 127 int lfs_match_fake(struct lfs *, struct buf *); 128 int lfs_match_data(struct lfs *, struct buf *); 129 int lfs_match_dindir(struct lfs *, struct buf *); 130 int lfs_match_indir(struct lfs *, struct buf *); 131 int lfs_match_tindir(struct lfs *, struct buf *); 132 void lfs_newseg(struct lfs *); 133 /* XXX ondisk32 */ 134 void lfs_shellsort(struct buf **, int32_t *, int, int); 135 void lfs_supercallback(struct buf *); 136 void lfs_updatemeta(struct segment *); 137 int lfs_vref(struct vnode *); 138 void lfs_vunref(struct vnode *); 139 void lfs_writefile(struct lfs *, struct segment *, struct vnode *); 140 int lfs_writeinode(struct lfs *, struct segment *, struct inode *); 141 int lfs_writeseg(struct lfs *, struct segment *); 142 void lfs_writesuper(struct lfs *, daddr_t); 143 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 144 struct segment *sp, int dirops); 145 146 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 147 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 148 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 149 int lfs_dirvcount = 0; /* # active dirops */ 150 151 /* Statistics Counters */ 152 int lfs_dostats = 1; 153 struct lfs_stats lfs_stats; 154 155 /* op values to lfs_writevnodes */ 156 #define VN_REG 0 157 #define VN_DIROP 1 158 #define VN_EMPTY 2 159 #define VN_CLEAN 3 160 161 #define LFS_MAX_ACTIVE 10 162 163 /* 164 * XXX KS - Set modification time on the Ifile, so the cleaner can 165 * read the fs mod time off of it. We don't set IN_UPDATE here, 166 * since we don't really need this to be flushed to disk (and in any 167 * case that wouldn't happen to the Ifile until we checkpoint). 168 */ 169 void 170 lfs_imtime(struct lfs *fs) 171 { 172 struct timespec ts; 173 struct inode *ip; 174 175 TIMEVAL_TO_TIMESPEC(&time, &ts); 176 ip = VTOI(fs->lfs_ivnode); 177 ip->i_ffs1_mtime = ts.tv_sec; 178 ip->i_ffs1_mtimensec = ts.tv_nsec; 179 } 180 181 /* 182 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 183 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 184 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 185 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 186 */ 187 188 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp) 189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 190 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL 191 192 int 193 lfs_vflush(struct vnode *vp) 194 { 195 struct inode *ip; 196 struct lfs *fs; 197 struct segment *sp; 198 struct buf *bp, *nbp, *tbp, *tnbp; 199 int error, s; 200 int flushed; 201 #if 0 202 int redo; 203 #endif 204 205 ip = VTOI(vp); 206 fs = VFSTOUFS(vp->v_mount)->um_lfs; 207 208 if (ip->i_flag & IN_CLEANING) { 209 #ifdef DEBUG_LFS 210 ivndebug(vp,"vflush/in_cleaning"); 211 #endif 212 LFS_CLR_UINO(ip, IN_CLEANING); 213 LFS_SET_UINO(ip, IN_MODIFIED); 214 215 /* 216 * Toss any cleaning buffers that have real counterparts 217 * to avoid losing new data. 218 */ 219 s = splbio(); 220 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 221 nbp = LIST_NEXT(bp, b_vnbufs); 222 if (!LFS_IS_MALLOC_BUF(bp)) 223 continue; 224 /* 225 * Look for pages matching the range covered 226 * by cleaning blocks. It's okay if more dirty 227 * pages appear, so long as none disappear out 228 * from under us. 229 */ 230 if (bp->b_lblkno > 0 && vp->v_type == VREG && 231 vp != fs->lfs_ivnode) { 232 struct vm_page *pg; 233 voff_t off; 234 235 simple_lock(&vp->v_interlock); 236 for (off = lblktosize(fs, bp->b_lblkno); 237 off < lblktosize(fs, bp->b_lblkno + 1); 238 off += PAGE_SIZE) { 239 pg = uvm_pagelookup(&vp->v_uobj, off); 240 if (pg == NULL) 241 continue; 242 if ((pg->flags & PG_CLEAN) == 0 || 243 pmap_is_modified(pg)) { 244 fs->lfs_avail += btofsb(fs, 245 bp->b_bcount); 246 wakeup(&fs->lfs_avail); 247 lfs_freebuf(fs, bp); 248 bp = NULL; 249 goto nextbp; 250 } 251 } 252 simple_unlock(&vp->v_interlock); 253 } 254 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 255 tbp = tnbp) 256 { 257 tnbp = LIST_NEXT(tbp, b_vnbufs); 258 if (tbp->b_vp == bp->b_vp 259 && tbp->b_lblkno == bp->b_lblkno 260 && tbp != bp) 261 { 262 fs->lfs_avail += btofsb(fs, 263 bp->b_bcount); 264 wakeup(&fs->lfs_avail); 265 lfs_freebuf(fs, bp); 266 bp = NULL; 267 break; 268 } 269 } 270 nextbp: 271 ; 272 } 273 splx(s); 274 } 275 276 /* If the node is being written, wait until that is done */ 277 s = splbio(); 278 if (WRITEINPROG(vp)) { 279 #ifdef DEBUG_LFS 280 ivndebug(vp,"vflush/writeinprog"); 281 #endif 282 tsleep(vp, PRIBIO+1, "lfs_vw", 0); 283 } 284 splx(s); 285 286 /* Protect against VXLOCK deadlock in vinvalbuf() */ 287 lfs_seglock(fs, SEGM_SYNC); 288 289 /* If we're supposed to flush a freed inode, just toss it */ 290 /* XXX - seglock, so these buffers can't be gathered, right? */ 291 if (ip->i_mode == 0) { 292 printf("lfs_vflush: ino %d is freed, not flushing\n", 293 ip->i_number); 294 s = splbio(); 295 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 296 nbp = LIST_NEXT(bp, b_vnbufs); 297 if (bp->b_flags & B_DELWRI) { /* XXX always true? */ 298 fs->lfs_avail += btofsb(fs, bp->b_bcount); 299 wakeup(&fs->lfs_avail); 300 } 301 /* Copied from lfs_writeseg */ 302 if (bp->b_flags & B_CALL) { 303 biodone(bp); 304 } else { 305 bremfree(bp); 306 LFS_UNLOCK_BUF(bp); 307 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | 308 B_GATHERED); 309 bp->b_flags |= B_DONE; 310 reassignbuf(bp, vp); 311 brelse(bp); 312 } 313 } 314 splx(s); 315 LFS_CLR_UINO(ip, IN_CLEANING); 316 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 317 ip->i_flag &= ~IN_ALLMOD; 318 printf("lfs_vflush: done not flushing ino %d\n", 319 ip->i_number); 320 lfs_segunlock(fs); 321 return 0; 322 } 323 324 SET_FLUSHING(fs,vp); 325 if (fs->lfs_nactive > LFS_MAX_ACTIVE || 326 (fs->lfs_sp->seg_flags & SEGM_CKP)) { 327 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 328 CLR_FLUSHING(fs,vp); 329 lfs_segunlock(fs); 330 return error; 331 } 332 sp = fs->lfs_sp; 333 334 flushed = 0; 335 if (VPISEMPTY(vp)) { 336 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 337 ++flushed; 338 } else if ((ip->i_flag & IN_CLEANING) && 339 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 340 #ifdef DEBUG_LFS 341 ivndebug(vp,"vflush/clean"); 342 #endif 343 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 344 ++flushed; 345 } else if (lfs_dostats) { 346 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 347 ++lfs_stats.vflush_invoked; 348 #ifdef DEBUG_LFS 349 ivndebug(vp,"vflush"); 350 #endif 351 } 352 353 #ifdef DIAGNOSTIC 354 /* XXX KS This actually can happen right now, though it shouldn't(?) */ 355 if (vp->v_flag & VDIROP) { 356 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n"); 357 /* panic("VDIROP being flushed...this can\'t happen"); */ 358 } 359 if (vp->v_usecount < 0) { 360 printf("usecount=%ld\n", (long)vp->v_usecount); 361 panic("lfs_vflush: usecount<0"); 362 } 363 #endif 364 365 #if 1 366 do { 367 do { 368 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 369 lfs_writefile(fs, sp, vp); 370 } while (lfs_writeinode(fs, sp, ip)); 371 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 372 #else 373 if (flushed && vp != fs->lfs_ivnode) 374 lfs_writeseg(fs, sp); 375 else do { 376 fs->lfs_flags &= ~LFS_IFDIRTY; 377 lfs_writefile(fs, sp, vp); 378 redo = lfs_writeinode(fs, sp, ip); 379 redo += lfs_writeseg(fs, sp); 380 redo += (fs->lfs_flags & LFS_IFDIRTY); 381 } while (redo && vp == fs->lfs_ivnode); 382 #endif 383 if (lfs_dostats) { 384 ++lfs_stats.nwrites; 385 if (sp->seg_flags & SEGM_SYNC) 386 ++lfs_stats.nsync_writes; 387 if (sp->seg_flags & SEGM_CKP) 388 ++lfs_stats.ncheckpoints; 389 } 390 /* 391 * If we were called from somewhere that has already held the seglock 392 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 393 * the write to complete because we are still locked. 394 * Since lfs_vflush() must return the vnode with no dirty buffers, 395 * we must explicitly wait, if that is the case. 396 * 397 * We compare the iocount against 1, not 0, because it is 398 * artificially incremented by lfs_seglock(). 399 */ 400 simple_lock(&fs->lfs_interlock); 401 if (fs->lfs_seglock > 1) { 402 simple_unlock(&fs->lfs_interlock); 403 while (fs->lfs_iocount > 1) 404 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1, 405 "lfs_vflush", 0); 406 } else 407 simple_unlock(&fs->lfs_interlock); 408 409 lfs_segunlock(fs); 410 411 /* Wait for these buffers to be recovered by aiodoned */ 412 s = splbio(); 413 simple_lock(&global_v_numoutput_slock); 414 while (vp->v_numoutput > 0) { 415 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0, 416 &global_v_numoutput_slock); 417 } 418 simple_unlock(&global_v_numoutput_slock); 419 splx(s); 420 421 CLR_FLUSHING(fs,vp); 422 return (0); 423 } 424 425 #ifdef DEBUG_LFS_VERBOSE 426 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op) 427 #else 428 # define vndebug(vp,str) 429 #endif 430 431 int 432 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 433 { 434 struct inode *ip; 435 struct vnode *vp, *nvp; 436 int inodes_written = 0, only_cleaning; 437 438 #ifndef LFS_NO_BACKVP_HACK 439 /* BEGIN HACK */ 440 #define VN_OFFSET \ 441 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp) 442 #define BACK_VP(VP) \ 443 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET)) 444 #define BEG_OF_VLIST \ 445 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \ 446 - VN_OFFSET)) 447 448 /* Find last vnode. */ 449 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); 450 vp && LIST_NEXT(vp, v_mntvnodes) != NULL; 451 vp = LIST_NEXT(vp, v_mntvnodes)); 452 for (; vp && vp != BEG_OF_VLIST; vp = nvp) { 453 nvp = BACK_VP(vp); 454 #else 455 loop: 456 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { 457 nvp = LIST_NEXT(vp, v_mntvnodes); 458 #endif 459 /* 460 * If the vnode that we are about to sync is no longer 461 * associated with this mount point, start over. 462 */ 463 if (vp->v_mount != mp) { 464 printf("lfs_writevnodes: starting over\n"); 465 /* 466 * After this, pages might be busy 467 * due to our own previous putpages. 468 * Start actual segment write here to avoid deadlock. 469 */ 470 (void)lfs_writeseg(fs, sp); 471 goto loop; 472 } 473 474 if (vp->v_type == VNON) { 475 continue; 476 } 477 478 ip = VTOI(vp); 479 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) || 480 (op != VN_DIROP && op != VN_CLEAN && 481 (vp->v_flag & VDIROP))) { 482 vndebug(vp,"dirop"); 483 continue; 484 } 485 486 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 487 vndebug(vp,"empty"); 488 continue; 489 } 490 491 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 492 && vp != fs->lfs_flushvp 493 && !(ip->i_flag & IN_CLEANING)) { 494 vndebug(vp,"cleaning"); 495 continue; 496 } 497 498 if (lfs_vref(vp)) { 499 vndebug(vp,"vref"); 500 continue; 501 } 502 503 only_cleaning = 0; 504 /* 505 * Write the inode/file if dirty and it's not the IFILE. 506 */ 507 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 508 only_cleaning = 509 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 510 511 if (ip->i_number != LFS_IFILE_INUM) 512 lfs_writefile(fs, sp, vp); 513 if (!VPISEMPTY(vp)) { 514 if (WRITEINPROG(vp)) { 515 #ifdef DEBUG_LFS 516 ivndebug(vp,"writevnodes/write2"); 517 #endif 518 } else if (!(ip->i_flag & IN_ALLMOD)) { 519 #ifdef DEBUG_LFS 520 printf("<%d>",ip->i_number); 521 #endif 522 LFS_SET_UINO(ip, IN_MODIFIED); 523 } 524 } 525 (void) lfs_writeinode(fs, sp, ip); 526 inodes_written++; 527 } 528 529 if (lfs_clean_vnhead && only_cleaning) 530 lfs_vunref_head(vp); 531 else 532 lfs_vunref(vp); 533 } 534 return inodes_written; 535 } 536 537 /* 538 * Do a checkpoint. 539 */ 540 int 541 lfs_segwrite(struct mount *mp, int flags) 542 { 543 struct buf *bp; 544 struct inode *ip; 545 struct lfs *fs; 546 struct segment *sp; 547 struct vnode *vp; 548 SEGUSE *segusep; 549 int do_ckp, did_ckp, error, s; 550 unsigned n, segleft, maxseg, sn, i, curseg; 551 int writer_set = 0; 552 int dirty; 553 int redo; 554 555 fs = VFSTOUFS(mp)->um_lfs; 556 557 if (fs->lfs_ronly) 558 return EROFS; 559 560 lfs_imtime(fs); 561 562 /* 563 * Allocate a segment structure and enough space to hold pointers to 564 * the maximum possible number of buffers which can be described in a 565 * single summary block. 566 */ 567 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE; 568 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 569 sp = fs->lfs_sp; 570 571 /* 572 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 573 * in which case we have to flush *all* buffers off of this vnode. 574 * We don't care about other nodes, but write any non-dirop nodes 575 * anyway in anticipation of another getnewvnode(). 576 * 577 * If we're cleaning we only write cleaning and ifile blocks, and 578 * no dirops, since otherwise we'd risk corruption in a crash. 579 */ 580 if (sp->seg_flags & SEGM_CLEAN) 581 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 582 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 583 lfs_writevnodes(fs, mp, sp, VN_REG); 584 if (!fs->lfs_dirops || !fs->lfs_flushvp) { 585 error = lfs_writer_enter(fs, "lfs writer"); 586 if (error) { 587 printf("segwrite mysterious error\n"); 588 /* XXX why not segunlock? */ 589 pool_put(&fs->lfs_bpppool, sp->bpp); 590 sp->bpp = NULL; 591 pool_put(&fs->lfs_segpool, sp); 592 sp = fs->lfs_sp = NULL; 593 return (error); 594 } 595 writer_set = 1; 596 lfs_writevnodes(fs, mp, sp, VN_DIROP); 597 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 598 } 599 } 600 601 /* 602 * If we are doing a checkpoint, mark everything since the 603 * last checkpoint as no longer ACTIVE. 604 */ 605 if (do_ckp) { 606 segleft = fs->lfs_nseg; 607 curseg = 0; 608 for (n = 0; n < fs->lfs_segtabsz; n++) { 609 dirty = 0; 610 if (bread(fs->lfs_ivnode, 611 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp)) 612 panic("lfs_segwrite: ifile read"); 613 segusep = (SEGUSE *)bp->b_data; 614 maxseg = min(segleft, fs->lfs_sepb); 615 for (i = 0; i < maxseg; i++) { 616 sn = curseg + i; 617 if (sn != fs->lfs_curseg && 618 segusep->su_flags & SEGUSE_ACTIVE) { 619 segusep->su_flags &= ~SEGUSE_ACTIVE; 620 --fs->lfs_nactive; 621 ++dirty; 622 } 623 fs->lfs_suflags[fs->lfs_activesb][sn] = 624 segusep->su_flags; 625 if (fs->lfs_version > 1) 626 ++segusep; 627 else 628 segusep = (SEGUSE *) 629 ((SEGUSE_V1 *)segusep + 1); 630 } 631 632 if (dirty) 633 error = LFS_BWRITE_LOG(bp); /* Ifile */ 634 else 635 brelse(bp); 636 segleft -= fs->lfs_sepb; 637 curseg += fs->lfs_sepb; 638 } 639 } 640 641 did_ckp = 0; 642 if (do_ckp || fs->lfs_doifile) { 643 do { 644 vp = fs->lfs_ivnode; 645 646 #ifdef DEBUG 647 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0); 648 #endif 649 fs->lfs_flags &= ~LFS_IFDIRTY; 650 651 ip = VTOI(vp); 652 653 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 654 lfs_writefile(fs, sp, vp); 655 656 if (ip->i_flag & IN_ALLMOD) 657 ++did_ckp; 658 redo = lfs_writeinode(fs, sp, ip); 659 redo += lfs_writeseg(fs, sp); 660 redo += (fs->lfs_flags & LFS_IFDIRTY); 661 } while (redo && do_ckp); 662 663 /* 664 * Unless we are unmounting, the Ifile may continue to have 665 * dirty blocks even after a checkpoint, due to changes to 666 * inodes' atime. If we're checkpointing, it's "impossible" 667 * for other parts of the Ifile to be dirty after the loop 668 * above, since we hold the segment lock. 669 */ 670 s = splbio(); 671 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 672 LFS_CLR_UINO(ip, IN_ALLMOD); 673 } 674 #ifdef DIAGNOSTIC 675 else if (do_ckp) { 676 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 677 if (bp->b_lblkno < fs->lfs_cleansz + 678 fs->lfs_segtabsz && 679 !(bp->b_flags & B_GATHERED)) { 680 panic("dirty blocks"); 681 } 682 } 683 } 684 #endif 685 splx(s); 686 } else { 687 (void) lfs_writeseg(fs, sp); 688 } 689 690 /* Note Ifile no longer needs to be written */ 691 fs->lfs_doifile = 0; 692 if (writer_set) 693 lfs_writer_leave(fs); 694 695 /* 696 * If we didn't write the Ifile, we didn't really do anything. 697 * That means that (1) there is a checkpoint on disk and (2) 698 * nothing has changed since it was written. 699 * 700 * Take the flags off of the segment so that lfs_segunlock 701 * doesn't have to write the superblock either. 702 */ 703 if (do_ckp && !did_ckp) { 704 sp->seg_flags &= ~SEGM_CKP; 705 } 706 707 if (lfs_dostats) { 708 ++lfs_stats.nwrites; 709 if (sp->seg_flags & SEGM_SYNC) 710 ++lfs_stats.nsync_writes; 711 if (sp->seg_flags & SEGM_CKP) 712 ++lfs_stats.ncheckpoints; 713 } 714 lfs_segunlock(fs); 715 return (0); 716 } 717 718 /* 719 * Write the dirty blocks associated with a vnode. 720 */ 721 void 722 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 723 { 724 struct buf *bp; 725 struct finfo *fip; 726 struct inode *ip; 727 IFILE *ifp; 728 int i, frag; 729 730 ip = VTOI(vp); 731 732 if (sp->seg_bytes_left < fs->lfs_bsize || 733 sp->sum_bytes_left < sizeof(struct finfo)) 734 (void) lfs_writeseg(fs, sp); 735 736 sp->sum_bytes_left -= FINFOSIZE; 737 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 738 739 if (vp->v_flag & VDIROP) 740 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 741 742 fip = sp->fip; 743 fip->fi_nblocks = 0; 744 fip->fi_ino = ip->i_number; 745 LFS_IENTRY(ifp, fs, fip->fi_ino, bp); 746 fip->fi_version = ifp->if_version; 747 brelse(bp); 748 749 if (sp->seg_flags & SEGM_CLEAN) { 750 lfs_gather(fs, sp, vp, lfs_match_fake); 751 /* 752 * For a file being flushed, we need to write *all* blocks. 753 * This means writing the cleaning blocks first, and then 754 * immediately following with any non-cleaning blocks. 755 * The same is true of the Ifile since checkpoints assume 756 * that all valid Ifile blocks are written. 757 */ 758 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) { 759 lfs_gather(fs, sp, vp, lfs_match_data); 760 /* 761 * Don't call VOP_PUTPAGES: if we're flushing, 762 * we've already done it, and the Ifile doesn't 763 * use the page cache. 764 */ 765 } 766 } else { 767 lfs_gather(fs, sp, vp, lfs_match_data); 768 /* 769 * If we're flushing, we've already called VOP_PUTPAGES 770 * so don't do it again. Otherwise, we want to write 771 * everything we've got. 772 */ 773 if (!IS_FLUSHING(fs, vp)) { 774 simple_lock(&vp->v_interlock); 775 VOP_PUTPAGES(vp, 0, 0, 776 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 777 } 778 } 779 780 /* 781 * It may not be necessary to write the meta-data blocks at this point, 782 * as the roll-forward recovery code should be able to reconstruct the 783 * list. 784 * 785 * We have to write them anyway, though, under two conditions: (1) the 786 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 787 * checkpointing. 788 * 789 * BUT if we are cleaning, we might have indirect blocks that refer to 790 * new blocks not being written yet, in addition to fragments being 791 * moved out of a cleaned segment. If that is the case, don't 792 * write the indirect blocks, or the finfo will have a small block 793 * in the middle of it! 794 * XXX in this case isn't the inode size wrong too? 795 */ 796 frag = 0; 797 if (sp->seg_flags & SEGM_CLEAN) { 798 for (i = 0; i < NDADDR; i++) 799 if (ip->i_lfs_fragsize[i] > 0 && 800 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 801 ++frag; 802 } 803 #ifdef DIAGNOSTIC 804 if (frag > 1) 805 panic("lfs_writefile: more than one fragment!"); 806 #endif 807 if (IS_FLUSHING(fs, vp) || 808 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 809 lfs_gather(fs, sp, vp, lfs_match_indir); 810 lfs_gather(fs, sp, vp, lfs_match_dindir); 811 lfs_gather(fs, sp, vp, lfs_match_tindir); 812 } 813 fip = sp->fip; 814 if (fip->fi_nblocks != 0) { 815 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE + 816 sizeof(int32_t) * (fip->fi_nblocks)); 817 sp->start_lbp = &sp->fip->fi_blocks[0]; 818 } else { 819 sp->sum_bytes_left += FINFOSIZE; 820 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 821 } 822 } 823 824 int 825 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 826 { 827 struct buf *bp, *ibp; 828 struct ufs1_dinode *cdp; 829 IFILE *ifp; 830 SEGUSE *sup; 831 daddr_t daddr; 832 int32_t *daddrp; /* XXX ondisk32 */ 833 ino_t ino; 834 int error, i, ndx, fsb = 0; 835 int redo_ifile = 0; 836 struct timespec ts; 837 int gotblk = 0; 838 839 if (!(ip->i_flag & IN_ALLMOD)) 840 return (0); 841 842 /* Allocate a new inode block if necessary. */ 843 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 844 sp->ibp == NULL) { 845 /* Allocate a new segment if necessary. */ 846 if (sp->seg_bytes_left < fs->lfs_ibsize || 847 sp->sum_bytes_left < sizeof(int32_t)) 848 (void) lfs_writeseg(fs, sp); 849 850 /* Get next inode block. */ 851 daddr = fs->lfs_offset; 852 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 853 sp->ibp = *sp->cbpp++ = 854 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 855 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); 856 gotblk++; 857 858 /* Zero out inode numbers */ 859 for (i = 0; i < INOPB(fs); ++i) 860 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 861 0; 862 863 ++sp->start_bpp; 864 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 865 /* Set remaining space counters. */ 866 sp->seg_bytes_left -= fs->lfs_ibsize; 867 sp->sum_bytes_left -= sizeof(int32_t); 868 ndx = fs->lfs_sumsize / sizeof(int32_t) - 869 sp->ninodes / INOPB(fs) - 1; 870 ((int32_t *)(sp->segsum))[ndx] = daddr; 871 } 872 873 /* Update the inode times and copy the inode onto the inode page. */ 874 TIMEVAL_TO_TIMESPEC(&time, &ts); 875 /* XXX kludge --- don't redirty the ifile just to put times on it */ 876 if (ip->i_number != LFS_IFILE_INUM) 877 LFS_ITIMES(ip, &ts, &ts, &ts); 878 879 /* 880 * If this is the Ifile, and we've already written the Ifile in this 881 * partial segment, just overwrite it (it's not on disk yet) and 882 * continue. 883 * 884 * XXX we know that the bp that we get the second time around has 885 * already been gathered. 886 */ 887 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 888 *(sp->idp) = *ip->i_din.ffs1_din; 889 ip->i_lfs_osize = ip->i_size; 890 return 0; 891 } 892 893 bp = sp->ibp; 894 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 895 *cdp = *ip->i_din.ffs1_din; 896 #ifdef LFS_IFILE_FRAG_ADDRESSING 897 if (fs->lfs_version > 1) 898 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs); 899 #endif 900 901 /* 902 * If we are cleaning, ensure that we don't write UNWRITTEN disk 903 * addresses to disk; possibly revert the inode size. 904 * XXX By not writing these blocks, we are making the lfs_avail 905 * XXX count on disk wrong by the same amount. We should be 906 * XXX able to "borrow" from lfs_avail and return it after the 907 * XXX Ifile is written. See also in lfs_writeseg. 908 */ 909 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 910 cdp->di_size = ip->i_lfs_osize; 911 #ifdef DEBUG_LFS 912 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n", 913 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks); 914 #endif 915 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 916 daddrp++) { 917 if (*daddrp == UNWRITTEN) { 918 #ifdef DEBUG_LFS 919 printf("lfs_writeinode: wiping UNWRITTEN\n"); 920 #endif 921 *daddrp = 0; 922 } 923 } 924 } else { 925 /* If all blocks are goig to disk, update the "size on disk" */ 926 ip->i_lfs_osize = ip->i_size; 927 } 928 929 if (ip->i_flag & IN_CLEANING) 930 LFS_CLR_UINO(ip, IN_CLEANING); 931 else { 932 /* XXX IN_ALLMOD */ 933 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 934 IN_UPDATE); 935 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 936 LFS_CLR_UINO(ip, IN_MODIFIED); 937 #ifdef DEBUG_LFS 938 else 939 printf("lfs_writeinode: ino %d: real blks=%d, " 940 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks, 941 ip->i_lfs_effnblks); 942 #endif 943 } 944 945 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */ 946 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 947 (sp->ninodes % INOPB(fs)); 948 if (gotblk) { 949 LFS_LOCK_BUF(bp); 950 brelse(bp); 951 } 952 953 /* Increment inode count in segment summary block. */ 954 ++((SEGSUM *)(sp->segsum))->ss_ninos; 955 956 /* If this page is full, set flag to allocate a new page. */ 957 if (++sp->ninodes % INOPB(fs) == 0) 958 sp->ibp = NULL; 959 960 /* 961 * If updating the ifile, update the super-block. Update the disk 962 * address and access times for this inode in the ifile. 963 */ 964 ino = ip->i_number; 965 if (ino == LFS_IFILE_INUM) { 966 daddr = fs->lfs_idaddr; 967 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno); 968 } else { 969 LFS_IENTRY(ifp, fs, ino, ibp); 970 daddr = ifp->if_daddr; 971 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb; 972 #ifdef LFS_DEBUG_NEXTFREE 973 if (ino > 3 && ifp->if_nextfree) { 974 vprint("lfs_writeinode",ITOV(ip)); 975 printf("lfs_writeinode: updating free ino %d\n", 976 ip->i_number); 977 } 978 #endif 979 error = LFS_BWRITE_LOG(ibp); /* Ifile */ 980 } 981 982 /* 983 * The inode's last address should not be in the current partial 984 * segment, except under exceptional circumstances (lfs_writevnodes 985 * had to start over, and in the meantime more blocks were written 986 * to a vnode). Both inodes will be accounted to this segment 987 * in lfs_writeseg so we need to subtract the earlier version 988 * here anyway. The segment count can temporarily dip below 989 * zero here; keep track of how many duplicates we have in 990 * "dupino" so we don't panic below. 991 */ 992 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) { 993 ++sp->ndupino; 994 printf("lfs_writeinode: last inode addr in current pseg " 995 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 996 (long long)daddr, sp->ndupino); 997 } 998 /* 999 * Account the inode: it no longer belongs to its former segment, 1000 * though it will not belong to the new segment until that segment 1001 * is actually written. 1002 */ 1003 if (daddr != LFS_UNUSED_DADDR) { 1004 u_int32_t oldsn = dtosn(fs, daddr); 1005 #ifdef DIAGNOSTIC 1006 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 1007 #endif 1008 LFS_SEGENTRY(sup, fs, oldsn, bp); 1009 #ifdef DIAGNOSTIC 1010 if (sup->su_nbytes + 1011 sizeof (struct ufs1_dinode) * ndupino 1012 < sizeof (struct ufs1_dinode)) { 1013 printf("lfs_writeinode: negative bytes " 1014 "(segment %" PRIu32 " short by %d, " 1015 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1016 ", daddr=%" PRId64 ", su_nbytes=%u, " 1017 "ndupino=%d)\n", 1018 dtosn(fs, daddr), 1019 (int)sizeof (struct ufs1_dinode) * 1020 (1 - sp->ndupino) - sup->su_nbytes, 1021 oldsn, sp->seg_number, daddr, 1022 (unsigned int)sup->su_nbytes, 1023 sp->ndupino); 1024 panic("lfs_writeinode: negative bytes"); 1025 sup->su_nbytes = sizeof (struct ufs1_dinode); 1026 } 1027 #endif 1028 #ifdef DEBUG_SU_NBYTES 1029 printf("seg %d -= %d for ino %d inode\n", 1030 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino); 1031 #endif 1032 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1033 redo_ifile = 1034 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1035 if (redo_ifile) 1036 fs->lfs_flags |= LFS_IFDIRTY; 1037 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1038 } 1039 return (redo_ifile); 1040 } 1041 1042 int 1043 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr) 1044 { 1045 struct lfs *fs; 1046 int version; 1047 int j, blksinblk; 1048 1049 /* 1050 * If full, finish this segment. We may be doing I/O, so 1051 * release and reacquire the splbio(). 1052 */ 1053 #ifdef DIAGNOSTIC 1054 if (sp->vp == NULL) 1055 panic ("lfs_gatherblock: Null vp in segment"); 1056 #endif 1057 fs = sp->fs; 1058 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1059 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1060 sp->seg_bytes_left < bp->b_bcount) { 1061 if (sptr) 1062 splx(*sptr); 1063 lfs_updatemeta(sp); 1064 1065 version = sp->fip->fi_version; 1066 (void) lfs_writeseg(fs, sp); 1067 1068 sp->fip->fi_version = version; 1069 sp->fip->fi_ino = VTOI(sp->vp)->i_number; 1070 /* Add the current file to the segment summary. */ 1071 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 1072 sp->sum_bytes_left -= FINFOSIZE; 1073 1074 if (sptr) 1075 *sptr = splbio(); 1076 return (1); 1077 } 1078 1079 #ifdef DEBUG 1080 if (bp->b_flags & B_GATHERED) { 1081 printf("lfs_gatherblock: already gathered! Ino %d," 1082 " lbn %" PRId64 "\n", 1083 sp->fip->fi_ino, bp->b_lblkno); 1084 return (0); 1085 } 1086 #endif 1087 /* Insert into the buffer list, update the FINFO block. */ 1088 bp->b_flags |= B_GATHERED; 1089 1090 *sp->cbpp++ = bp; 1091 for (j = 0; j < blksinblk; j++) 1092 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1093 1094 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1095 sp->seg_bytes_left -= bp->b_bcount; 1096 return (0); 1097 } 1098 1099 int 1100 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1101 int (*match)(struct lfs *, struct buf *)) 1102 { 1103 struct buf *bp, *nbp; 1104 int s, count = 0; 1105 1106 sp->vp = vp; 1107 s = splbio(); 1108 1109 #ifndef LFS_NO_BACKBUF_HACK 1110 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1111 # define BUF_OFFSET \ 1112 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp) 1113 # define BACK_BUF(BP) \ 1114 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1115 # define BEG_OF_LIST \ 1116 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1117 1118 loop: 1119 /* Find last buffer. */ 1120 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1121 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1122 bp = LIST_NEXT(bp, b_vnbufs)) 1123 /* nothing */; 1124 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1125 nbp = BACK_BUF(bp); 1126 #else /* LFS_NO_BACKBUF_HACK */ 1127 loop: 1128 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1129 nbp = LIST_NEXT(bp, b_vnbufs); 1130 #endif /* LFS_NO_BACKBUF_HACK */ 1131 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) { 1132 #ifdef DEBUG_LFS 1133 if (vp == fs->lfs_ivnode && 1134 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY) 1135 printf("(%" PRId64 ":%lx)", 1136 bp->b_lblkno, bp->b_flags); 1137 #endif 1138 continue; 1139 } 1140 if (vp->v_type == VBLK) { 1141 /* For block devices, just write the blocks. */ 1142 /* XXX Do we really need to even do this? */ 1143 #ifdef DEBUG_LFS 1144 if (count == 0) 1145 printf("BLK("); 1146 printf("."); 1147 #endif 1148 /* 1149 * Get the block before bwrite, 1150 * so we don't corrupt the free list 1151 */ 1152 bp->b_flags |= B_BUSY; 1153 bremfree(bp); 1154 bwrite(bp); 1155 } else { 1156 #ifdef DIAGNOSTIC 1157 # ifdef LFS_USE_B_INVAL 1158 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) { 1159 printf("lfs_gather: lbn %" PRId64 " is " 1160 "B_INVAL\n", bp->b_lblkno); 1161 VOP_PRINT(bp->b_vp); 1162 } 1163 # endif /* LFS_USE_B_INVAL */ 1164 if (!(bp->b_flags & B_DELWRI)) 1165 panic("lfs_gather: bp not B_DELWRI"); 1166 if (!(bp->b_flags & B_LOCKED)) { 1167 printf("lfs_gather: lbn %" PRId64 " blk " 1168 "%" PRId64 " not B_LOCKED\n", 1169 bp->b_lblkno, 1170 dbtofsb(fs, bp->b_blkno)); 1171 VOP_PRINT(bp->b_vp); 1172 panic("lfs_gather: bp not B_LOCKED"); 1173 } 1174 #endif 1175 if (lfs_gatherblock(sp, bp, &s)) { 1176 goto loop; 1177 } 1178 } 1179 count++; 1180 } 1181 splx(s); 1182 #ifdef DEBUG_LFS 1183 if (vp->v_type == VBLK && count) 1184 printf(")\n"); 1185 #endif 1186 lfs_updatemeta(sp); 1187 sp->vp = NULL; 1188 return count; 1189 } 1190 1191 #if DEBUG 1192 # define DEBUG_OOFF(n) do { \ 1193 if (ooff == 0) { \ 1194 printf("lfs_updatemeta[%d]: warning: writing " \ 1195 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1196 ", was 0x0 (or %" PRId64 ")\n", \ 1197 (n), ip->i_number, lbn, ndaddr, daddr); \ 1198 } \ 1199 } while (0) 1200 #else 1201 # define DEBUG_OOFF(n) 1202 #endif 1203 1204 /* 1205 * Change the given block's address to ndaddr, finding its previous 1206 * location using ufs_bmaparray(). 1207 * 1208 * Account for this change in the segment table. 1209 */ 1210 void 1211 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn, 1212 int32_t ndaddr, int size) 1213 { 1214 SEGUSE *sup; 1215 struct buf *bp; 1216 struct indir a[NIADDR + 2], *ap; 1217 struct inode *ip; 1218 struct vnode *vp; 1219 daddr_t daddr, ooff; 1220 int num, error; 1221 int bb, osize, obb; 1222 1223 vp = sp->vp; 1224 ip = VTOI(vp); 1225 1226 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1227 if (error) 1228 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1229 1230 KASSERT(daddr <= LFS_MAX_DADDR); 1231 if (daddr > 0) 1232 daddr = dbtofsb(fs, daddr); 1233 1234 bb = fragstofsb(fs, numfrags(fs, size)); 1235 switch (num) { 1236 case 0: 1237 ooff = ip->i_ffs1_db[lbn]; 1238 DEBUG_OOFF(0); 1239 if (ooff == UNWRITTEN) 1240 ip->i_ffs1_blocks += bb; 1241 else { 1242 /* possible fragment truncation or extension */ 1243 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1244 ip->i_ffs1_blocks += (bb - obb); 1245 } 1246 ip->i_ffs1_db[lbn] = ndaddr; 1247 break; 1248 case 1: 1249 ooff = ip->i_ffs1_ib[a[0].in_off]; 1250 DEBUG_OOFF(1); 1251 if (ooff == UNWRITTEN) 1252 ip->i_ffs1_blocks += bb; 1253 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1254 break; 1255 default: 1256 ap = &a[num - 1]; 1257 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 1258 panic("lfs_updatemeta: bread bno %" PRId64, 1259 ap->in_lbn); 1260 1261 /* XXX ondisk32 */ 1262 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1263 DEBUG_OOFF(num); 1264 if (ooff == UNWRITTEN) 1265 ip->i_ffs1_blocks += bb; 1266 /* XXX ondisk32 */ 1267 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1268 (void) VOP_BWRITE(bp); 1269 } 1270 1271 /* 1272 * Though we'd rather it couldn't, this *can* happen right now 1273 * if cleaning blocks and regular blocks coexist. 1274 */ 1275 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1276 1277 /* 1278 * Update segment usage information, based on old size 1279 * and location. 1280 */ 1281 if (daddr > 0) { 1282 u_int32_t oldsn = dtosn(fs, daddr); 1283 #ifdef DIAGNOSTIC 1284 int ndupino = (sp->seg_number == oldsn) ? 1285 sp->ndupino : 0; 1286 #endif 1287 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg); 1288 if (lbn >= 0 && lbn < NDADDR) 1289 osize = ip->i_lfs_fragsize[lbn]; 1290 else 1291 osize = fs->lfs_bsize; 1292 LFS_SEGENTRY(sup, fs, oldsn, bp); 1293 #ifdef DIAGNOSTIC 1294 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1295 < osize) { 1296 printf("lfs_updatemeta: negative bytes " 1297 "(segment %" PRIu32 " short by %" PRId64 1298 ")\n", dtosn(fs, daddr), 1299 (int64_t)osize - 1300 (sizeof (struct ufs1_dinode) * sp->ndupino + 1301 sup->su_nbytes)); 1302 printf("lfs_updatemeta: ino %d, lbn %" PRId64 1303 ", addr = 0x%" PRIx64 "\n", 1304 VTOI(sp->vp)->i_number, lbn, daddr); 1305 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1306 panic("lfs_updatemeta: negative bytes"); 1307 sup->su_nbytes = osize - 1308 sizeof (struct ufs1_dinode) * sp->ndupino; 1309 } 1310 #endif 1311 #ifdef DEBUG_SU_NBYTES 1312 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1313 " db 0x%" PRIx64 "\n", 1314 dtosn(fs, daddr), osize, 1315 VTOI(sp->vp)->i_number, lbn, daddr); 1316 #endif 1317 sup->su_nbytes -= osize; 1318 if (!(bp->b_flags & B_GATHERED)) 1319 fs->lfs_flags |= LFS_IFDIRTY; 1320 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1321 } 1322 /* 1323 * Now that this block has a new address, and its old 1324 * segment no longer owns it, we can forget about its 1325 * old size. 1326 */ 1327 if (lbn >= 0 && lbn < NDADDR) 1328 ip->i_lfs_fragsize[lbn] = size; 1329 } 1330 1331 /* 1332 * Update the metadata that points to the blocks listed in the FINFO 1333 * array. 1334 */ 1335 void 1336 lfs_updatemeta(struct segment *sp) 1337 { 1338 struct buf *sbp; 1339 struct lfs *fs; 1340 struct vnode *vp; 1341 daddr_t lbn; 1342 int i, nblocks, num; 1343 int bb; 1344 int bytesleft, size; 1345 1346 vp = sp->vp; 1347 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1348 KASSERT(nblocks >= 0); 1349 if (vp == NULL || nblocks == 0) 1350 return; 1351 1352 /* 1353 * This count may be high due to oversize blocks from lfs_gop_write. 1354 * Correct for this. (XXX we should be able to keep track of these.) 1355 */ 1356 fs = sp->fs; 1357 for (i = 0; i < nblocks; i++) { 1358 if (sp->start_bpp[i] == NULL) { 1359 printf("nblocks = %d, not %d\n", i, nblocks); 1360 nblocks = i; 1361 break; 1362 } 1363 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1364 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1365 nblocks -= num - 1; 1366 } 1367 1368 KASSERT(vp->v_type == VREG || 1369 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1370 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1371 1372 /* 1373 * Sort the blocks. 1374 * 1375 * We have to sort even if the blocks come from the 1376 * cleaner, because there might be other pending blocks on the 1377 * same inode...and if we don't sort, and there are fragments 1378 * present, blocks may be written in the wrong place. 1379 */ 1380 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1381 1382 /* 1383 * Record the length of the last block in case it's a fragment. 1384 * If there are indirect blocks present, they sort last. An 1385 * indirect block will be lfs_bsize and its presence indicates 1386 * that you cannot have fragments. 1387 * 1388 * XXX This last is a lie. A cleaned fragment can coexist with 1389 * XXX a later indirect block. This will continue to be 1390 * XXX true until lfs_markv is fixed to do everything with 1391 * XXX fake blocks (including fake inodes and fake indirect blocks). 1392 */ 1393 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1394 fs->lfs_bmask) + 1; 1395 1396 /* 1397 * Assign disk addresses, and update references to the logical 1398 * block and the segment usage information. 1399 */ 1400 for (i = nblocks; i--; ++sp->start_bpp) { 1401 sbp = *sp->start_bpp; 1402 lbn = *sp->start_lbp; 1403 KASSERT(sbp->b_lblkno == lbn); 1404 1405 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1406 1407 /* 1408 * If we write a frag in the wrong place, the cleaner won't 1409 * be able to correctly identify its size later, and the 1410 * segment will be uncleanable. (Even worse, it will assume 1411 * that the indirect block that actually ends the list 1412 * is of a smaller size!) 1413 */ 1414 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1415 panic("lfs_updatemeta: fragment is not last block"); 1416 1417 /* 1418 * For each subblock in this possibly oversized block, 1419 * update its address on disk. 1420 */ 1421 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1422 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1423 bytesleft -= fs->lfs_bsize) { 1424 size = MIN(bytesleft, fs->lfs_bsize); 1425 bb = fragstofsb(fs, numfrags(fs, size)); 1426 lbn = *sp->start_lbp++; 1427 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size); 1428 fs->lfs_offset += bb; 1429 } 1430 1431 } 1432 } 1433 1434 /* 1435 * Start a new segment. 1436 */ 1437 int 1438 lfs_initseg(struct lfs *fs) 1439 { 1440 struct segment *sp; 1441 SEGUSE *sup; 1442 SEGSUM *ssp; 1443 struct buf *bp, *sbp; 1444 int repeat; 1445 1446 sp = fs->lfs_sp; 1447 1448 repeat = 0; 1449 1450 /* Advance to the next segment. */ 1451 if (!LFS_PARTIAL_FITS(fs)) { 1452 /* lfs_avail eats the remaining space */ 1453 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1454 fs->lfs_curseg); 1455 /* Wake up any cleaning procs waiting on this file system. */ 1456 wakeup(&lfs_allclean_wakeup); 1457 wakeup(&fs->lfs_nextseg); 1458 lfs_newseg(fs); 1459 repeat = 1; 1460 fs->lfs_offset = fs->lfs_curseg; 1461 1462 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1463 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1464 1465 /* 1466 * If the segment contains a superblock, update the offset 1467 * and summary address to skip over it. 1468 */ 1469 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1470 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1471 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1472 sp->seg_bytes_left -= LFS_SBPAD; 1473 } 1474 brelse(bp); 1475 /* Segment zero could also contain the labelpad */ 1476 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1477 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1478 fs->lfs_offset += 1479 btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1480 sp->seg_bytes_left -= 1481 LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1482 } 1483 } else { 1484 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1485 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1486 (fs->lfs_offset - fs->lfs_curseg)); 1487 } 1488 fs->lfs_lastpseg = fs->lfs_offset; 1489 1490 /* Record first address of this partial segment */ 1491 if (sp->seg_flags & SEGM_CLEAN) { 1492 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1493 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1494 /* "1" is the artificial inc in lfs_seglock */ 1495 while (fs->lfs_iocount > 1) { 1496 tsleep(&fs->lfs_iocount, PRIBIO + 1, 1497 "lfs_initseg", 0); 1498 } 1499 fs->lfs_cleanind = 0; 1500 } 1501 } 1502 1503 sp->fs = fs; 1504 sp->ibp = NULL; 1505 sp->idp = NULL; 1506 sp->ninodes = 0; 1507 sp->ndupino = 0; 1508 1509 /* Get a new buffer for SEGSUM and enter it into the buffer list. */ 1510 sp->cbpp = sp->bpp; 1511 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1512 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1513 sp->segsum = (*sp->cbpp)->b_data; 1514 memset(sp->segsum, 0, fs->lfs_sumsize); 1515 sp->start_bpp = ++sp->cbpp; 1516 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1517 1518 /* Set point to SEGSUM, initialize it. */ 1519 ssp = sp->segsum; 1520 ssp->ss_next = fs->lfs_nextseg; 1521 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1522 ssp->ss_magic = SS_MAGIC; 1523 1524 /* Set pointer to first FINFO, initialize it. */ 1525 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs)); 1526 sp->fip->fi_nblocks = 0; 1527 sp->start_lbp = &sp->fip->fi_blocks[0]; 1528 sp->fip->fi_lastlength = 0; 1529 1530 sp->seg_bytes_left -= fs->lfs_sumsize; 1531 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1532 1533 return (repeat); 1534 } 1535 1536 /* 1537 * Return the next segment to write. 1538 */ 1539 void 1540 lfs_newseg(struct lfs *fs) 1541 { 1542 CLEANERINFO *cip; 1543 SEGUSE *sup; 1544 struct buf *bp; 1545 int curseg, isdirty, sn; 1546 1547 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1548 #ifdef DEBUG_SU_NBYTES 1549 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */ 1550 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */ 1551 #endif 1552 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1553 sup->su_nbytes = 0; 1554 sup->su_nsums = 0; 1555 sup->su_ninos = 0; 1556 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1557 1558 LFS_CLEANERINFO(cip, fs, bp); 1559 --cip->clean; 1560 ++cip->dirty; 1561 fs->lfs_nclean = cip->clean; 1562 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1563 1564 fs->lfs_lastseg = fs->lfs_curseg; 1565 fs->lfs_curseg = fs->lfs_nextseg; 1566 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1567 sn = (sn + 1) % fs->lfs_nseg; 1568 if (sn == curseg) 1569 panic("lfs_nextseg: no clean segments"); 1570 LFS_SEGENTRY(sup, fs, sn, bp); 1571 isdirty = sup->su_flags & SEGUSE_DIRTY; 1572 /* Check SEGUSE_EMPTY as we go along */ 1573 if (isdirty && sup->su_nbytes == 0 && 1574 !(sup->su_flags & SEGUSE_EMPTY)) 1575 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1576 else 1577 brelse(bp); 1578 1579 if (!isdirty) 1580 break; 1581 } 1582 1583 ++fs->lfs_nactive; 1584 fs->lfs_nextseg = sntod(fs, sn); 1585 if (lfs_dostats) { 1586 ++lfs_stats.segsused; 1587 } 1588 } 1589 1590 static struct buf * 1591 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n) 1592 { 1593 struct lfs_cluster *cl; 1594 struct buf **bpp, *bp; 1595 int s; 1596 1597 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1598 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1599 memset(cl, 0, sizeof(*cl)); 1600 cl->fs = fs; 1601 cl->bpp = bpp; 1602 cl->bufcount = 0; 1603 cl->bufsize = 0; 1604 1605 /* If this segment is being written synchronously, note that */ 1606 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1607 cl->flags |= LFS_CL_SYNC; 1608 cl->seg = fs->lfs_sp; 1609 ++cl->seg->seg_iocount; 1610 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */ 1611 } 1612 1613 /* Get an empty buffer header, or maybe one with something on it */ 1614 s = splbio(); 1615 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */ 1616 splx(s); 1617 memset(bp, 0, sizeof(*bp)); 1618 BUF_INIT(bp); 1619 1620 bp->b_flags = B_BUSY | B_CALL; 1621 bp->b_dev = NODEV; 1622 bp->b_blkno = bp->b_lblkno = addr; 1623 bp->b_iodone = lfs_cluster_callback; 1624 bp->b_saveaddr = (caddr_t)cl; 1625 bp->b_vp = vp; 1626 1627 return bp; 1628 } 1629 1630 int 1631 lfs_writeseg(struct lfs *fs, struct segment *sp) 1632 { 1633 struct buf **bpp, *bp, *cbp, *newbp; 1634 SEGUSE *sup; 1635 SEGSUM *ssp; 1636 dev_t i_dev; 1637 char *datap, *dp; 1638 int i, s; 1639 int do_again, nblocks, byteoffset; 1640 size_t el_size; 1641 struct lfs_cluster *cl; 1642 int (*strategy)(void *); 1643 struct vop_strategy_args vop_strategy_a; 1644 u_short ninos; 1645 struct vnode *devvp; 1646 char *p; 1647 struct vnode *vp; 1648 int32_t *daddrp; /* XXX ondisk32 */ 1649 int changed; 1650 #if defined(DEBUG) && defined(LFS_PROPELLER) 1651 static int propeller; 1652 char propstring[4] = "-\\|/"; 1653 1654 printf("%c\b",propstring[propeller++]); 1655 if (propeller == 4) 1656 propeller = 0; 1657 #endif 1658 1659 /* 1660 * If there are no buffers other than the segment summary to write 1661 * and it is not a checkpoint, don't do anything. On a checkpoint, 1662 * even if there aren't any buffers, you need to write the superblock. 1663 */ 1664 if ((nblocks = sp->cbpp - sp->bpp) == 1) 1665 return (0); 1666 1667 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 1668 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1669 1670 /* Update the segment usage information. */ 1671 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1672 1673 /* Loop through all blocks, except the segment summary. */ 1674 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 1675 if ((*bpp)->b_vp != devvp) { 1676 sup->su_nbytes += (*bpp)->b_bcount; 1677 #ifdef DEBUG_SU_NBYTES 1678 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64 1679 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount, 1680 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 1681 (*bpp)->b_blkno); 1682 #endif 1683 } 1684 } 1685 1686 ssp = (SEGSUM *)sp->segsum; 1687 1688 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 1689 #ifdef DEBUG_SU_NBYTES 1690 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */ 1691 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 1692 ssp->ss_ninos); 1693 #endif 1694 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 1695 /* sup->su_nbytes += fs->lfs_sumsize; */ 1696 if (fs->lfs_version == 1) 1697 sup->su_olastmod = time.tv_sec; 1698 else 1699 sup->su_lastmod = time.tv_sec; 1700 sup->su_ninos += ninos; 1701 ++sup->su_nsums; 1702 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos * 1703 fs->lfs_ibsize)); 1704 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 1705 1706 do_again = !(bp->b_flags & B_GATHERED); 1707 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 1708 1709 /* 1710 * Mark blocks B_BUSY, to prevent then from being changed between 1711 * the checksum computation and the actual write. 1712 * 1713 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 1714 * there are any, replace them with copies that have UNASSIGNED 1715 * instead. 1716 */ 1717 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 1718 ++bpp; 1719 bp = *bpp; 1720 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */ 1721 bp->b_flags |= B_BUSY; 1722 continue; 1723 } 1724 again: 1725 s = splbio(); 1726 if (bp->b_flags & B_BUSY) { 1727 #ifdef DEBUG 1728 printf("lfs_writeseg: avoiding potential data summary " 1729 "corruption for ino %d, lbn %" PRId64 "\n", 1730 VTOI(bp->b_vp)->i_number, bp->b_lblkno); 1731 #endif 1732 bp->b_flags |= B_WANTED; 1733 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0); 1734 splx(s); 1735 goto again; 1736 } 1737 bp->b_flags |= B_BUSY; 1738 splx(s); 1739 /* 1740 * Check and replace indirect block UNWRITTEN bogosity. 1741 * XXX See comment in lfs_writefile. 1742 */ 1743 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 1744 VTOI(bp->b_vp)->i_ffs1_blocks != 1745 VTOI(bp->b_vp)->i_lfs_effnblks) { 1746 #ifdef DEBUG_LFS 1747 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n", 1748 VTOI(bp->b_vp)->i_number, 1749 VTOI(bp->b_vp)->i_lfs_effnblks, 1750 VTOI(bp->b_vp)->i_ffs1_blocks); 1751 #endif 1752 /* Make a copy we'll make changes to */ 1753 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 1754 bp->b_bcount, LFS_NB_IBLOCK); 1755 newbp->b_blkno = bp->b_blkno; 1756 memcpy(newbp->b_data, bp->b_data, 1757 newbp->b_bcount); 1758 1759 changed = 0; 1760 /* XXX ondisk32 */ 1761 for (daddrp = (int32_t *)(newbp->b_data); 1762 daddrp < (int32_t *)(newbp->b_data + 1763 newbp->b_bcount); daddrp++) { 1764 if (*daddrp == UNWRITTEN) { 1765 #ifdef DEBUG_LFS 1766 off_t doff; 1767 int32_t ioff; 1768 1769 ioff = 1770 daddrp - (int32_t *)(newbp->b_data); 1771 doff = 1772 (-bp->b_lblkno + ioff) * fs->lfs_bsize; 1773 printf("ino %d lbn %" PRId64 1774 " entry %d off %" PRIx64 "\n", 1775 VTOI(bp->b_vp)->i_number, 1776 bp->b_lblkno, ioff, doff); 1777 if (bp->b_vp->v_type == VREG) { 1778 /* 1779 * What is up with this page? 1780 */ 1781 struct vm_page *pg; 1782 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); 1783 doff += PAGE_SIZE) { 1784 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff); 1785 if (pg == NULL) 1786 printf(" page at %" PRIx64 " is NULL\n", doff); 1787 else 1788 printf(" page at %" PRIx64 1789 " flags 0x%x pqflags 0x%x\n", 1790 doff, pg->flags, pg->pqflags); 1791 } 1792 } 1793 #endif /* DEBUG_LFS */ 1794 ++changed; 1795 *daddrp = 0; 1796 } 1797 } 1798 /* 1799 * Get rid of the old buffer. Don't mark it clean, 1800 * though, if it still has dirty data on it. 1801 */ 1802 if (changed) { 1803 #ifdef DEBUG_LFS 1804 printf("lfs_writeseg: replacing UNWRITTEN(%d):" 1805 " bp = %p newbp = %p\n", changed, bp, 1806 newbp); 1807 #endif 1808 *bpp = newbp; 1809 bp->b_flags &= ~(B_ERROR | B_GATHERED); 1810 if (bp->b_flags & B_CALL) { 1811 printf("lfs_writeseg: " 1812 "indir bp should not be B_CALL\n"); 1813 s = splbio(); 1814 biodone(bp); 1815 splx(s); 1816 bp = NULL; 1817 } else { 1818 /* Still on free list, leave it there */ 1819 s = splbio(); 1820 bp->b_flags &= ~B_BUSY; 1821 if (bp->b_flags & B_WANTED) 1822 wakeup(bp); 1823 splx(s); 1824 /* 1825 * We have to re-decrement lfs_avail 1826 * since this block is going to come 1827 * back around to us in the next 1828 * segment. 1829 */ 1830 fs->lfs_avail -= 1831 btofsb(fs, bp->b_bcount); 1832 } 1833 } else { 1834 lfs_freebuf(fs, newbp); 1835 } 1836 } 1837 } 1838 /* 1839 * Compute checksum across data and then across summary; the first 1840 * block (the summary block) is skipped. Set the create time here 1841 * so that it's guaranteed to be later than the inode mod times. 1842 * 1843 * XXX 1844 * Fix this to do it inline, instead of malloc/copy. 1845 */ 1846 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK); 1847 if (fs->lfs_version == 1) 1848 el_size = sizeof(u_long); 1849 else 1850 el_size = sizeof(u_int32_t); 1851 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 1852 ++bpp; 1853 /* Loop through gop_write cluster blocks */ 1854 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 1855 byteoffset += fs->lfs_bsize) { 1856 #ifdef LFS_USE_B_INVAL 1857 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) == 1858 (B_CALL | B_INVAL)) { 1859 if (copyin((caddr_t)(*bpp)->b_saveaddr + 1860 byteoffset, dp, el_size)) { 1861 panic("lfs_writeseg: copyin failed [1]:" 1862 " ino %d blk %" PRId64, 1863 VTOI((*bpp)->b_vp)->i_number, 1864 (*bpp)->b_lblkno); 1865 } 1866 } else 1867 #endif /* LFS_USE_B_INVAL */ 1868 { 1869 memcpy(dp, (*bpp)->b_data + byteoffset, 1870 el_size); 1871 } 1872 dp += el_size; 1873 } 1874 } 1875 if (fs->lfs_version == 1) 1876 ssp->ss_ocreate = time.tv_sec; 1877 else { 1878 ssp->ss_create = time.tv_sec; 1879 ssp->ss_serial = ++fs->lfs_serial; 1880 ssp->ss_ident = fs->lfs_ident; 1881 } 1882 ssp->ss_datasum = cksum(datap, dp - datap); 1883 ssp->ss_sumsum = 1884 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 1885 pool_put(&fs->lfs_bpppool, datap); 1886 datap = dp = NULL; 1887 #ifdef DIAGNOSTIC 1888 if (fs->lfs_bfree < 1889 btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize)) 1890 panic("lfs_writeseg: No diskspace for summary"); 1891 #endif 1892 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 1893 btofsb(fs, fs->lfs_sumsize)); 1894 1895 strategy = devvp->v_op[VOFFSET(vop_strategy)]; 1896 1897 /* 1898 * When we simply write the blocks we lose a rotation for every block 1899 * written. To avoid this problem, we cluster the buffers into a 1900 * chunk and write the chunk. MAXPHYS is the largest size I/O 1901 * devices can handle, use that for the size of the chunks. 1902 * 1903 * Blocks that are already clusters (from GOP_WRITE), however, we 1904 * don't bother to copy into other clusters. 1905 */ 1906 1907 #define CHUNKSIZE MAXPHYS 1908 1909 if (devvp == NULL) 1910 panic("devvp is NULL"); 1911 for (bpp = sp->bpp, i = nblocks; i;) { 1912 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 1913 cl = (struct lfs_cluster *)cbp->b_saveaddr; 1914 1915 cbp->b_dev = i_dev; 1916 cbp->b_flags |= B_ASYNC | B_BUSY; 1917 cbp->b_bcount = 0; 1918 1919 #if defined(DEBUG) && defined(DIAGNOSTIC) 1920 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 1921 / sizeof(int32_t)) { 1922 panic("lfs_writeseg: real bpp overwrite"); 1923 } 1924 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) { 1925 panic("lfs_writeseg: theoretical bpp overwrite"); 1926 } 1927 #endif 1928 1929 /* 1930 * Construct the cluster. 1931 */ 1932 ++fs->lfs_iocount; 1933 while (i && cbp->b_bcount < CHUNKSIZE) { 1934 bp = *bpp; 1935 1936 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 1937 break; 1938 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 1939 break; 1940 1941 /* Clusters from GOP_WRITE are expedited */ 1942 if (bp->b_bcount > fs->lfs_bsize) { 1943 if (cbp->b_bcount > 0) 1944 /* Put in its own buffer */ 1945 break; 1946 else { 1947 cbp->b_data = bp->b_data; 1948 } 1949 } else if (cbp->b_bcount == 0) { 1950 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 1951 LFS_NB_CLUSTER); 1952 cl->flags |= LFS_CL_MALLOC; 1953 } 1954 #ifdef DIAGNOSTIC 1955 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 1956 btodb(bp->b_bcount - 1))) != 1957 sp->seg_number) { 1958 printf("blk size %ld daddr %" PRIx64 1959 " not in seg %d\n", 1960 bp->b_bcount, bp->b_blkno, 1961 sp->seg_number); 1962 panic("segment overwrite"); 1963 } 1964 #endif 1965 1966 #ifdef LFS_USE_B_INVAL 1967 /* 1968 * Fake buffers from the cleaner are marked as B_INVAL. 1969 * We need to copy the data from user space rather than 1970 * from the buffer indicated. 1971 * XXX == what do I do on an error? 1972 */ 1973 if ((bp->b_flags & (B_CALL|B_INVAL)) == 1974 (B_CALL|B_INVAL)) { 1975 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 1976 panic("lfs_writeseg: " 1977 "copyin failed [2]"); 1978 } else 1979 #endif /* LFS_USE_B_INVAL */ 1980 if (cl->flags & LFS_CL_MALLOC) { 1981 bcopy(bp->b_data, p, bp->b_bcount); 1982 } 1983 1984 p += bp->b_bcount; 1985 cbp->b_bcount += bp->b_bcount; 1986 cl->bufsize += bp->b_bcount; 1987 1988 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE); 1989 cl->bpp[cl->bufcount++] = bp; 1990 vp = bp->b_vp; 1991 s = splbio(); 1992 V_INCR_NUMOUTPUT(vp); 1993 splx(s); 1994 1995 bpp++; 1996 i--; 1997 } 1998 s = splbio(); 1999 V_INCR_NUMOUTPUT(devvp); 2000 splx(s); 2001 vop_strategy_a.a_desc = VDESC(vop_strategy); 2002 vop_strategy_a.a_bp = cbp; 2003 (strategy)(&vop_strategy_a); 2004 curproc->p_stats->p_ru.ru_oublock++; 2005 } 2006 2007 if (lfs_dostats) { 2008 ++lfs_stats.psegwrites; 2009 lfs_stats.blocktot += nblocks - 1; 2010 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2011 ++lfs_stats.psyncwrites; 2012 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2013 ++lfs_stats.pcleanwrites; 2014 lfs_stats.cleanblocks += nblocks - 1; 2015 } 2016 } 2017 return (lfs_initseg(fs) || do_again); 2018 } 2019 2020 void 2021 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2022 { 2023 struct buf *bp; 2024 dev_t i_dev; 2025 int (*strategy)(void *); 2026 int s; 2027 struct vop_strategy_args vop_strategy_a; 2028 2029 /* 2030 * If we can write one superblock while another is in 2031 * progress, we risk not having a complete checkpoint if we crash. 2032 * So, block here if a superblock write is in progress. 2033 */ 2034 s = splbio(); 2035 while (fs->lfs_sbactive) { 2036 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0); 2037 } 2038 fs->lfs_sbactive = daddr; 2039 splx(s); 2040 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 2041 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; 2042 2043 /* Set timestamp of this version of the superblock */ 2044 if (fs->lfs_version == 1) 2045 fs->lfs_otstamp = time.tv_sec; 2046 fs->lfs_tstamp = time.tv_sec; 2047 2048 /* Checksum the superblock and copy it into a buffer. */ 2049 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2050 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 2051 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2052 memset(bp->b_data + sizeof(struct dlfs), 0, 2053 LFS_SBPAD - sizeof(struct dlfs)); 2054 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2055 2056 bp->b_dev = i_dev; 2057 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; 2058 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); 2059 bp->b_iodone = lfs_supercallback; 2060 /* XXX KS - same nasty hack as above */ 2061 bp->b_saveaddr = (caddr_t)fs; 2062 2063 vop_strategy_a.a_desc = VDESC(vop_strategy); 2064 vop_strategy_a.a_bp = bp; 2065 curproc->p_stats->p_ru.ru_oublock++; 2066 s = splbio(); 2067 V_INCR_NUMOUTPUT(bp->b_vp); 2068 splx(s); 2069 ++fs->lfs_iocount; 2070 (strategy)(&vop_strategy_a); 2071 } 2072 2073 /* 2074 * Logical block number match routines used when traversing the dirty block 2075 * chain. 2076 */ 2077 int 2078 lfs_match_fake(struct lfs *fs, struct buf *bp) 2079 { 2080 2081 return LFS_IS_MALLOC_BUF(bp); 2082 } 2083 2084 #if 0 2085 int 2086 lfs_match_real(struct lfs *fs, struct buf *bp) 2087 { 2088 2089 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2090 } 2091 #endif 2092 2093 int 2094 lfs_match_data(struct lfs *fs, struct buf *bp) 2095 { 2096 2097 return (bp->b_lblkno >= 0); 2098 } 2099 2100 int 2101 lfs_match_indir(struct lfs *fs, struct buf *bp) 2102 { 2103 daddr_t lbn; 2104 2105 lbn = bp->b_lblkno; 2106 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2107 } 2108 2109 int 2110 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2111 { 2112 daddr_t lbn; 2113 2114 lbn = bp->b_lblkno; 2115 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2116 } 2117 2118 int 2119 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2120 { 2121 daddr_t lbn; 2122 2123 lbn = bp->b_lblkno; 2124 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2125 } 2126 2127 /* 2128 * XXX - The only buffers that are going to hit these functions are the 2129 * segment write blocks, or the segment summaries, or the superblocks. 2130 * 2131 * All of the above are created by lfs_newbuf, and so do not need to be 2132 * released via brelse. 2133 */ 2134 void 2135 lfs_callback(struct buf *bp) 2136 { 2137 struct lfs *fs; 2138 2139 fs = (struct lfs *)bp->b_saveaddr; 2140 lfs_freebuf(fs, bp); 2141 } 2142 2143 static void 2144 lfs_super_aiodone(struct buf *bp) 2145 { 2146 struct lfs *fs; 2147 2148 fs = (struct lfs *)bp->b_saveaddr; 2149 fs->lfs_sbactive = 0; 2150 wakeup(&fs->lfs_sbactive); 2151 if (--fs->lfs_iocount <= 1) 2152 wakeup(&fs->lfs_iocount); 2153 lfs_freebuf(fs, bp); 2154 } 2155 2156 static void 2157 lfs_cluster_aiodone(struct buf *bp) 2158 { 2159 struct lfs_cluster *cl; 2160 struct lfs *fs; 2161 struct buf *tbp, *fbp; 2162 struct vnode *vp, *devvp; 2163 struct inode *ip; 2164 int s, error=0; 2165 char *cp; 2166 2167 if (bp->b_flags & B_ERROR) 2168 error = bp->b_error; 2169 2170 cl = (struct lfs_cluster *)bp->b_saveaddr; 2171 fs = cl->fs; 2172 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2173 2174 cp = (char *)bp->b_data + cl->bufsize; 2175 /* Put the pages back, and release the buffer */ 2176 while (cl->bufcount--) { 2177 tbp = cl->bpp[cl->bufcount]; 2178 if (error) { 2179 tbp->b_flags |= B_ERROR; 2180 tbp->b_error = error; 2181 } 2182 2183 /* 2184 * We're done with tbp. If it has not been re-dirtied since 2185 * the cluster was written, free it. Otherwise, keep it on 2186 * the locked list to be written again. 2187 */ 2188 vp = tbp->b_vp; 2189 2190 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED) 2191 LFS_UNLOCK_BUF(tbp); 2192 2193 tbp->b_flags &= ~B_GATHERED; 2194 2195 LFS_BCLEAN_LOG(fs, tbp); 2196 2197 if (!(tbp->b_flags & B_CALL)) { 2198 bremfree(tbp); 2199 s = splbio(); 2200 if (vp) 2201 reassignbuf(tbp, vp); 2202 splx(s); 2203 tbp->b_flags |= B_ASYNC; /* for biodone */ 2204 } 2205 #ifdef DIAGNOSTIC 2206 if (tbp->b_flags & B_DONE) { 2207 printf("blk %d biodone already (flags %lx)\n", 2208 cl->bufcount, (long)tbp->b_flags); 2209 } 2210 #endif 2211 if (tbp->b_flags & (B_BUSY | B_CALL)) { 2212 if ((tbp->b_flags & B_CALL) && 2213 !LFS_IS_MALLOC_BUF(tbp)) { 2214 /* printf("flags 0x%lx\n", tbp->b_flags); */ 2215 /* 2216 * A buffer from the page daemon. 2217 * We use the same iodone as it does, 2218 * so we must manually disassociate its 2219 * buffers from the vp. 2220 */ 2221 if (tbp->b_vp) { 2222 /* This is just silly */ 2223 s = splbio(); 2224 brelvp(tbp); 2225 tbp->b_vp = vp; 2226 splx(s); 2227 } 2228 /* Put it back the way it was */ 2229 tbp->b_flags |= B_ASYNC; 2230 /* Master buffers have B_AGE */ 2231 if (tbp->b_private == tbp) 2232 tbp->b_flags |= B_AGE; 2233 } 2234 s = splbio(); 2235 biodone(tbp); 2236 2237 /* 2238 * If this is the last block for this vnode, but 2239 * there are other blocks on its dirty list, 2240 * set IN_MODIFIED/IN_CLEANING depending on what 2241 * sort of block. Only do this for our mount point, 2242 * not for, e.g., inode blocks that are attached to 2243 * the devvp. 2244 * XXX KS - Shouldn't we set *both* if both types 2245 * of blocks are present (traverse the dirty list?) 2246 */ 2247 simple_lock(&global_v_numoutput_slock); 2248 if (vp != devvp && vp->v_numoutput == 0 && 2249 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2250 ip = VTOI(vp); 2251 #ifdef DEBUG_LFS 2252 printf("lfs_cluster_aiodone: marking ino %d\n", 2253 ip->i_number); 2254 #endif 2255 if (LFS_IS_MALLOC_BUF(fbp)) 2256 LFS_SET_UINO(ip, IN_CLEANING); 2257 else 2258 LFS_SET_UINO(ip, IN_MODIFIED); 2259 } 2260 simple_unlock(&global_v_numoutput_slock); 2261 splx(s); 2262 wakeup(vp); 2263 } 2264 } 2265 2266 /* Fix up the cluster buffer, and release it */ 2267 if (cl->flags & LFS_CL_MALLOC) 2268 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2269 s = splbio(); 2270 pool_put(&bufpool, bp); /* XXX should use lfs_free? */ 2271 splx(s); 2272 2273 /* Note i/o done */ 2274 if (cl->flags & LFS_CL_SYNC) { 2275 if (--cl->seg->seg_iocount == 0) 2276 wakeup(&cl->seg->seg_iocount); 2277 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */ 2278 } 2279 #ifdef DIAGNOSTIC 2280 if (fs->lfs_iocount == 0) 2281 panic("lfs_cluster_aiodone: zero iocount"); 2282 #endif 2283 if (--fs->lfs_iocount <= 1) 2284 wakeup(&fs->lfs_iocount); 2285 2286 pool_put(&fs->lfs_bpppool, cl->bpp); 2287 cl->bpp = NULL; 2288 pool_put(&fs->lfs_clpool, cl); 2289 } 2290 2291 static void 2292 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2293 { 2294 /* reset b_iodone for when this is a single-buf i/o. */ 2295 bp->b_iodone = aiodone; 2296 2297 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */ 2298 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist); 2299 wakeup(&uvm.aiodoned); 2300 simple_unlock(&uvm.aiodoned_lock); 2301 } 2302 2303 static void 2304 lfs_cluster_callback(struct buf *bp) 2305 { 2306 2307 lfs_generic_callback(bp, lfs_cluster_aiodone); 2308 } 2309 2310 void 2311 lfs_supercallback(struct buf *bp) 2312 { 2313 2314 lfs_generic_callback(bp, lfs_super_aiodone); 2315 } 2316 2317 /* 2318 * Shellsort (diminishing increment sort) from Data Structures and 2319 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2320 * see also Knuth Vol. 3, page 84. The increments are selected from 2321 * formula (8), page 95. Roughly O(N^3/2). 2322 */ 2323 /* 2324 * This is our own private copy of shellsort because we want to sort 2325 * two parallel arrays (the array of buffer pointers and the array of 2326 * logical block numbers) simultaneously. Note that we cast the array 2327 * of logical block numbers to a unsigned in this routine so that the 2328 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2329 */ 2330 2331 void 2332 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2333 { 2334 static int __rsshell_increments[] = { 4, 1, 0 }; 2335 int incr, *incrp, t1, t2; 2336 struct buf *bp_temp; 2337 2338 #ifdef DEBUG 2339 incr = 0; 2340 for (t1 = 0; t1 < nmemb; t1++) { 2341 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2342 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2343 /* dump before panic */ 2344 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2345 nmemb, size); 2346 incr = 0; 2347 for (t1 = 0; t1 < nmemb; t1++) { 2348 const struct buf *bp = bp_array[t1]; 2349 2350 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2351 PRIu64 "\n", t1, 2352 (uint64_t)bp->b_bcount, 2353 (uint64_t)bp->b_lblkno); 2354 printf("lbns:"); 2355 for (t2 = 0; t2 * size < bp->b_bcount; 2356 t2++) { 2357 printf(" %" PRId32, 2358 lb_array[incr++]); 2359 } 2360 printf("\n"); 2361 } 2362 panic("lfs_shellsort: inconsistent input"); 2363 } 2364 } 2365 } 2366 #endif 2367 2368 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2369 for (t1 = incr; t1 < nmemb; ++t1) 2370 for (t2 = t1 - incr; t2 >= 0;) 2371 if ((u_int32_t)bp_array[t2]->b_lblkno > 2372 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2373 bp_temp = bp_array[t2]; 2374 bp_array[t2] = bp_array[t2 + incr]; 2375 bp_array[t2 + incr] = bp_temp; 2376 t2 -= incr; 2377 } else 2378 break; 2379 2380 /* Reform the list of logical blocks */ 2381 incr = 0; 2382 for (t1 = 0; t1 < nmemb; t1++) { 2383 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2384 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2385 } 2386 } 2387 } 2388 2389 /* 2390 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. 2391 */ 2392 int 2393 lfs_vref(struct vnode *vp) 2394 { 2395 /* 2396 * If we return 1 here during a flush, we risk vinvalbuf() not 2397 * being able to flush all of the pages from this vnode, which 2398 * will cause it to panic. So, return 0 if a flush is in progress. 2399 */ 2400 if (vp->v_flag & VXLOCK) { 2401 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) { 2402 return 0; 2403 } 2404 return (1); 2405 } 2406 return (vget(vp, 0)); 2407 } 2408 2409 /* 2410 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2411 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2412 */ 2413 void 2414 lfs_vunref(struct vnode *vp) 2415 { 2416 /* 2417 * Analogous to lfs_vref, if the node is flushing, fake it. 2418 */ 2419 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) { 2420 return; 2421 } 2422 2423 simple_lock(&vp->v_interlock); 2424 #ifdef DIAGNOSTIC 2425 if (vp->v_usecount <= 0) { 2426 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number); 2427 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag); 2428 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount); 2429 panic("lfs_vunref: v_usecount<0"); 2430 } 2431 #endif 2432 vp->v_usecount--; 2433 if (vp->v_usecount > 0) { 2434 simple_unlock(&vp->v_interlock); 2435 return; 2436 } 2437 /* 2438 * insert at tail of LRU list 2439 */ 2440 simple_lock(&vnode_free_list_slock); 2441 if (vp->v_holdcnt > 0) 2442 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2443 else 2444 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 2445 simple_unlock(&vnode_free_list_slock); 2446 simple_unlock(&vp->v_interlock); 2447 } 2448 2449 /* 2450 * We use this when we have vnodes that were loaded in solely for cleaning. 2451 * There is no reason to believe that these vnodes will be referenced again 2452 * soon, since the cleaning process is unrelated to normal filesystem 2453 * activity. Putting cleaned vnodes at the tail of the list has the effect 2454 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2455 * cleaning at the head of the list, instead. 2456 */ 2457 void 2458 lfs_vunref_head(struct vnode *vp) 2459 { 2460 2461 simple_lock(&vp->v_interlock); 2462 #ifdef DIAGNOSTIC 2463 if (vp->v_usecount == 0) { 2464 panic("lfs_vunref: v_usecount<0"); 2465 } 2466 #endif 2467 vp->v_usecount--; 2468 if (vp->v_usecount > 0) { 2469 simple_unlock(&vp->v_interlock); 2470 return; 2471 } 2472 /* 2473 * insert at head of LRU list 2474 */ 2475 simple_lock(&vnode_free_list_slock); 2476 if (vp->v_holdcnt > 0) 2477 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2478 else 2479 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2480 simple_unlock(&vnode_free_list_slock); 2481 simple_unlock(&vp->v_interlock); 2482 } 2483 2484