xref: /netbsd-src/sys/ufs/lfs/lfs_segment.c (revision d9158b13b5dfe46201430699a3f7a235ecf28df3)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)lfs_segment.c	8.5 (Berkeley) 1/4/94
34  *	$Id: lfs_segment.c,v 1.1 1994/06/08 11:42:38 mycroft Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/namei.h>
40 #include <sys/kernel.h>
41 #include <sys/resourcevar.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/buf.h>
45 #include <sys/proc.h>
46 #include <sys/conf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 
51 #include <miscfs/specfs/specdev.h>
52 #include <miscfs/fifofs/fifo.h>
53 
54 #include <ufs/ufs/quota.h>
55 #include <ufs/ufs/inode.h>
56 #include <ufs/ufs/dir.h>
57 #include <ufs/ufs/ufsmount.h>
58 #include <ufs/ufs/ufs_extern.h>
59 
60 #include <ufs/lfs/lfs.h>
61 #include <ufs/lfs/lfs_extern.h>
62 
63 extern int count_lock_queue __P((void));
64 
65 #define MAX_ACTIVE	10
66 /*
67  * Determine if it's OK to start a partial in this segment, or if we need
68  * to go on to a new segment.
69  */
70 #define	LFS_PARTIAL_FITS(fs) \
71 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
72 	1 << (fs)->lfs_fsbtodb)
73 
74 void	 lfs_callback __P((struct buf *));
75 void	 lfs_gather __P((struct lfs *, struct segment *,
76 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
77 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
78 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
79 int	 lfs_match_data __P((struct lfs *, struct buf *));
80 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
81 int	 lfs_match_indir __P((struct lfs *, struct buf *));
82 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
83 void	 lfs_newseg __P((struct lfs *));
84 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
85 void	 lfs_supercallback __P((struct buf *));
86 void	 lfs_updatemeta __P((struct segment *));
87 int	 lfs_vref __P((struct vnode *));
88 void	 lfs_vunref __P((struct vnode *));
89 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
90 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
91 int	 lfs_writeseg __P((struct lfs *, struct segment *));
92 void	 lfs_writesuper __P((struct lfs *));
93 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
94 	    struct segment *sp, int dirops));
95 
96 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
97 
98 /* Statistics Counters */
99 #define DOSTATS
100 struct lfs_stats lfs_stats;
101 
102 /* op values to lfs_writevnodes */
103 #define	VN_REG	0
104 #define	VN_DIROP	1
105 #define	VN_EMPTY	2
106 
107 /*
108  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
109  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
110  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
111  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
112  */
113 
114 int
115 lfs_vflush(vp)
116 	struct vnode *vp;
117 {
118 	struct inode *ip;
119 	struct lfs *fs;
120 	struct segment *sp;
121 
122 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
123 	if (fs->lfs_nactive > MAX_ACTIVE)
124 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
125 	lfs_seglock(fs, SEGM_SYNC);
126 	sp = fs->lfs_sp;
127 
128 
129 	ip = VTOI(vp);
130 	if (vp->v_dirtyblkhd.lh_first == NULL)
131 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
132 
133 	do {
134 		do {
135 			if (vp->v_dirtyblkhd.lh_first != NULL)
136 				lfs_writefile(fs, sp, vp);
137 		} while (lfs_writeinode(fs, sp, ip));
138 
139 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
140 
141 #ifdef DOSTATS
142 	++lfs_stats.nwrites;
143 	if (sp->seg_flags & SEGM_SYNC)
144 		++lfs_stats.nsync_writes;
145 	if (sp->seg_flags & SEGM_CKP)
146 		++lfs_stats.ncheckpoints;
147 #endif
148 	lfs_segunlock(fs);
149 	return (0);
150 }
151 
152 void
153 lfs_writevnodes(fs, mp, sp, op)
154 	struct lfs *fs;
155 	struct mount *mp;
156 	struct segment *sp;
157 	int op;
158 {
159 	struct inode *ip;
160 	struct vnode *vp;
161 
162 loop:
163 	for (vp = mp->mnt_vnodelist.lh_first;
164 	     vp != NULL;
165 	     vp = vp->v_mntvnodes.le_next) {
166 		/*
167 		 * If the vnode that we are about to sync is no longer
168 		 * associated with this mount point, start over.
169 		 */
170 		if (vp->v_mount != mp)
171 			goto loop;
172 
173 		/* XXX ignore dirops for now
174 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
175 		    op != VN_DIROP && (vp->v_flag & VDIROP))
176 			continue;
177 		*/
178 
179 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
180 			continue;
181 
182 		if (vp->v_type == VNON)
183 			continue;
184 
185 		if (lfs_vref(vp))
186 			continue;
187 
188 		/*
189 		 * Write the inode/file if dirty and it's not the
190 		 * the IFILE.
191 		 */
192 		ip = VTOI(vp);
193 		if ((ip->i_flag &
194 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
195 		    vp->v_dirtyblkhd.lh_first != NULL) &&
196 		    ip->i_number != LFS_IFILE_INUM) {
197 			if (vp->v_dirtyblkhd.lh_first != NULL)
198 				lfs_writefile(fs, sp, vp);
199 			(void) lfs_writeinode(fs, sp, ip);
200 		}
201 		vp->v_flag &= ~VDIROP;
202 		lfs_vunref(vp);
203 	}
204 }
205 
206 int
207 lfs_segwrite(mp, flags)
208 	struct mount *mp;
209 	int flags;			/* Do a checkpoint. */
210 {
211 	struct buf *bp;
212 	struct inode *ip;
213 	struct lfs *fs;
214 	struct segment *sp;
215 	struct vnode *vp;
216 	SEGUSE *segusep;
217 	daddr_t ibno;
218 	CLEANERINFO *cip;
219 	int clean, do_ckp, error, i;
220 
221 	fs = VFSTOUFS(mp)->um_lfs;
222 
223  	/*
224  	 * If we have fewer than 2 clean segments, wait until cleaner
225 	 * writes.
226  	 */
227 	do {
228 		LFS_CLEANERINFO(cip, fs, bp);
229 		clean = cip->clean;
230 		brelse(bp);
231 		if (clean <= 2) {
232 			printf ("segs clean: %d\n", clean);
233 			wakeup(&lfs_allclean_wakeup);
234 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
235 			    "lfs writer", 0))
236 				return (error);
237 		}
238 	} while (clean <= 2 );
239 
240 	/*
241 	 * Allocate a segment structure and enough space to hold pointers to
242 	 * the maximum possible number of buffers which can be described in a
243 	 * single summary block.
244 	 */
245 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
246 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
247 	sp = fs->lfs_sp;
248 
249 	lfs_writevnodes(fs, mp, sp, VN_REG);
250 
251 	/* XXX ignore ordering of dirops for now */
252 	/* XXX
253 	fs->lfs_writer = 1;
254 	if (fs->lfs_dirops && (error =
255 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
256 		free(sp->bpp, M_SEGMENT);
257 		free(sp, M_SEGMENT);
258 		fs->lfs_writer = 0;
259 		return (error);
260 	}
261 
262 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
263 	*/
264 
265 	/*
266 	 * If we are doing a checkpoint, mark everything since the
267 	 * last checkpoint as no longer ACTIVE.
268 	 */
269 	if (do_ckp)
270 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
271 		     --ibno >= fs->lfs_cleansz; ) {
272 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
273 			    NOCRED, &bp))
274 
275 				panic("lfs: ifile read");
276 			segusep = (SEGUSE *)bp->b_data;
277 			for (i = fs->lfs_sepb; i--; segusep++)
278 				segusep->su_flags &= ~SEGUSE_ACTIVE;
279 
280 			error = VOP_BWRITE(bp);
281 		}
282 
283 	if (do_ckp || fs->lfs_doifile) {
284 redo:
285 		vp = fs->lfs_ivnode;
286 		while (vget(vp, 1));
287 		ip = VTOI(vp);
288 		if (vp->v_dirtyblkhd.lh_first != NULL)
289 			lfs_writefile(fs, sp, vp);
290 		(void)lfs_writeinode(fs, sp, ip);
291 		vput(vp);
292 		if (lfs_writeseg(fs, sp) && do_ckp)
293 			goto redo;
294 	} else
295 		(void) lfs_writeseg(fs, sp);
296 
297 	/*
298 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
299 	 * moment, the user's process hangs around so we can sleep.
300 	 */
301 	/* XXX ignore dirops for now
302 	fs->lfs_writer = 0;
303 	fs->lfs_doifile = 0;
304 	wakeup(&fs->lfs_dirops);
305 	*/
306 
307 #ifdef DOSTATS
308 	++lfs_stats.nwrites;
309 	if (sp->seg_flags & SEGM_SYNC)
310 		++lfs_stats.nsync_writes;
311 	if (sp->seg_flags & SEGM_CKP)
312 		++lfs_stats.ncheckpoints;
313 #endif
314 	lfs_segunlock(fs);
315 	return (0);
316 }
317 
318 /*
319  * Write the dirty blocks associated with a vnode.
320  */
321 void
322 lfs_writefile(fs, sp, vp)
323 	struct lfs *fs;
324 	struct segment *sp;
325 	struct vnode *vp;
326 {
327 	struct buf *bp;
328 	struct finfo *fip;
329 	IFILE *ifp;
330 
331 	if (sp->seg_bytes_left < fs->lfs_bsize ||
332 	    sp->sum_bytes_left < sizeof(struct finfo))
333 		(void) lfs_writeseg(fs, sp);
334 
335 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
336 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
337 
338 	fip = sp->fip;
339 	fip->fi_nblocks = 0;
340 	fip->fi_ino = VTOI(vp)->i_number;
341 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
342 	fip->fi_version = ifp->if_version;
343 	brelse(bp);
344 
345 	/*
346 	 * It may not be necessary to write the meta-data blocks at this point,
347 	 * as the roll-forward recovery code should be able to reconstruct the
348 	 * list.
349 	 */
350 	lfs_gather(fs, sp, vp, lfs_match_data);
351 	lfs_gather(fs, sp, vp, lfs_match_indir);
352 	lfs_gather(fs, sp, vp, lfs_match_dindir);
353 #ifdef TRIPLE
354 	lfs_gather(fs, sp, vp, lfs_match_tindir);
355 #endif
356 
357 	fip = sp->fip;
358 	if (fip->fi_nblocks != 0) {
359 		sp->fip =
360 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
361 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
362 		sp->start_lbp = &sp->fip->fi_blocks[0];
363 	} else {
364 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
365 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
366 	}
367 }
368 
369 int
370 lfs_writeinode(fs, sp, ip)
371 	struct lfs *fs;
372 	struct segment *sp;
373 	struct inode *ip;
374 {
375 	struct buf *bp, *ibp;
376 	IFILE *ifp;
377 	SEGUSE *sup;
378 	daddr_t daddr;
379 	ino_t ino;
380 	int error, i, ndx;
381 	int redo_ifile = 0;
382 
383 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
384 		return(0);
385 
386 	/* Allocate a new inode block if necessary. */
387 	if (sp->ibp == NULL) {
388 		/* Allocate a new segment if necessary. */
389 		if (sp->seg_bytes_left < fs->lfs_bsize ||
390 		    sp->sum_bytes_left < sizeof(daddr_t))
391 			(void) lfs_writeseg(fs, sp);
392 
393 		/* Get next inode block. */
394 		daddr = fs->lfs_offset;
395 		fs->lfs_offset += fsbtodb(fs, 1);
396 		sp->ibp = *sp->cbpp++ =
397 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
398 		    fs->lfs_bsize);
399 		/* Zero out inode numbers */
400 		for (i = 0; i < INOPB(fs); ++i)
401 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
402 		++sp->start_bpp;
403 		fs->lfs_avail -= fsbtodb(fs, 1);
404 		/* Set remaining space counters. */
405 		sp->seg_bytes_left -= fs->lfs_bsize;
406 		sp->sum_bytes_left -= sizeof(daddr_t);
407 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
408 		    sp->ninodes / INOPB(fs) - 1;
409 		((daddr_t *)(sp->segsum))[ndx] = daddr;
410 	}
411 
412 	/* Update the inode times and copy the inode onto the inode page. */
413 	if (ip->i_flag & IN_MODIFIED)
414 		--fs->lfs_uinodes;
415 	ITIMES(ip, &time, &time);
416 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
417 	bp = sp->ibp;
418 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
419 	/* Increment inode count in segment summary block. */
420 	++((SEGSUM *)(sp->segsum))->ss_ninos;
421 
422 	/* If this page is full, set flag to allocate a new page. */
423 	if (++sp->ninodes % INOPB(fs) == 0)
424 		sp->ibp = NULL;
425 
426 	/*
427 	 * If updating the ifile, update the super-block.  Update the disk
428 	 * address and access times for this inode in the ifile.
429 	 */
430 	ino = ip->i_number;
431 	if (ino == LFS_IFILE_INUM) {
432 		daddr = fs->lfs_idaddr;
433 		fs->lfs_idaddr = bp->b_blkno;
434 	} else {
435 		LFS_IENTRY(ifp, fs, ino, ibp);
436 		daddr = ifp->if_daddr;
437 		ifp->if_daddr = bp->b_blkno;
438 		error = VOP_BWRITE(ibp);
439 	}
440 
441 	/*
442 	 * No need to update segment usage if there was no former inode address
443 	 * or if the last inode address is in the current partial segment.
444 	 */
445 	if (daddr != LFS_UNUSED_DADDR &&
446 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
447 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
448 #ifdef DIAGNOSTIC
449 		if (sup->su_nbytes < sizeof(struct dinode)) {
450 			/* XXX -- Change to a panic. */
451 			printf("lfs: negative bytes (segment %d)\n",
452 			    datosn(fs, daddr));
453 			panic("negative bytes");
454 		}
455 #endif
456 		sup->su_nbytes -= sizeof(struct dinode);
457 		redo_ifile =
458 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
459 		error = VOP_BWRITE(bp);
460 	}
461 	return (redo_ifile);
462 }
463 
464 int
465 lfs_gatherblock(sp, bp, sptr)
466 	struct segment *sp;
467 	struct buf *bp;
468 	int *sptr;
469 {
470 	struct lfs *fs;
471 	int version;
472 
473 	/*
474 	 * If full, finish this segment.  We may be doing I/O, so
475 	 * release and reacquire the splbio().
476 	 */
477 #ifdef DIAGNOSTIC
478 	if (sp->vp == NULL)
479 		panic ("lfs_gatherblock: Null vp in segment");
480 #endif
481 	fs = sp->fs;
482 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
483 	    sp->seg_bytes_left < fs->lfs_bsize) {
484 		if (sptr)
485 			splx(*sptr);
486 		lfs_updatemeta(sp);
487 
488 		version = sp->fip->fi_version;
489 		(void) lfs_writeseg(fs, sp);
490 
491 		sp->fip->fi_version = version;
492 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
493 		/* Add the current file to the segment summary. */
494 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
495 		sp->sum_bytes_left -=
496 		    sizeof(struct finfo) - sizeof(daddr_t);
497 
498 		if (sptr)
499 			*sptr = splbio();
500 		return(1);
501 	}
502 
503 	/* Insert into the buffer list, update the FINFO block. */
504 	bp->b_flags |= B_GATHERED;
505 	*sp->cbpp++ = bp;
506 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
507 
508 	sp->sum_bytes_left -= sizeof(daddr_t);
509 	sp->seg_bytes_left -= fs->lfs_bsize;
510 	return(0);
511 }
512 
513 void
514 lfs_gather(fs, sp, vp, match)
515 	struct lfs *fs;
516 	struct segment *sp;
517 	struct vnode *vp;
518 	int (*match) __P((struct lfs *, struct buf *));
519 {
520 	struct buf *bp;
521 	int s;
522 
523 	sp->vp = vp;
524 	s = splbio();
525 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
526 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
527 		    bp->b_flags & B_GATHERED)
528 			continue;
529 #ifdef DIAGNOSTIC
530 		if (!(bp->b_flags & B_DELWRI))
531 			panic("lfs_gather: bp not B_DELWRI");
532 		if (!(bp->b_flags & B_LOCKED))
533 			panic("lfs_gather: bp not B_LOCKED");
534 #endif
535 		if (lfs_gatherblock(sp, bp, &s))
536 			goto loop;
537 	}
538 	splx(s);
539 	lfs_updatemeta(sp);
540 	sp->vp = NULL;
541 }
542 
543 
544 /*
545  * Update the metadata that points to the blocks listed in the FINFO
546  * array.
547  */
548 void
549 lfs_updatemeta(sp)
550 	struct segment *sp;
551 {
552 	SEGUSE *sup;
553 	struct buf *bp;
554 	struct lfs *fs;
555 	struct vnode *vp;
556 	struct indir a[NIADDR + 2], *ap;
557 	struct inode *ip;
558 	daddr_t daddr, lbn, off;
559 	int db_per_fsb, error, i, nblocks, num;
560 
561 	vp = sp->vp;
562 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
563 	if (vp == NULL || nblocks == 0)
564 		return;
565 
566 	/* Sort the blocks. */
567 	if (!(sp->seg_flags & SEGM_CLEAN))
568 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
569 
570 	/*
571 	 * Assign disk addresses, and update references to the logical
572 	 * block and the segment usage information.
573 	 */
574 	fs = sp->fs;
575 	db_per_fsb = fsbtodb(fs, 1);
576 	for (i = nblocks; i--; ++sp->start_bpp) {
577 		lbn = *sp->start_lbp++;
578 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
579 		fs->lfs_offset += db_per_fsb;
580 
581 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
582 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
583 		ip = VTOI(vp);
584 		switch (num) {
585 		case 0:
586 			ip->i_db[lbn] = off;
587 			break;
588 		case 1:
589 			ip->i_ib[a[0].in_off] = off;
590 			break;
591 		default:
592 			ap = &a[num - 1];
593 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
594 				panic("lfs_updatemeta: bread bno %d",
595 				    ap->in_lbn);
596 			/*
597 			 * Bread may create a new indirect block which needs
598 			 * to get counted for the inode.
599 			 */
600 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
601 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
602 				ip->i_blocks += btodb(fs->lfs_bsize);
603 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
604 			}
605 			((daddr_t *)bp->b_data)[ap->in_off] = off;
606 			VOP_BWRITE(bp);
607 		}
608 
609 		/* Update segment usage information. */
610 		if (daddr != UNASSIGNED &&
611 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
612 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
613 #ifdef DIAGNOSTIC
614 			if (sup->su_nbytes < fs->lfs_bsize) {
615 				/* XXX -- Change to a panic. */
616 				printf("lfs: negative bytes (segment %d)\n",
617 				    datosn(fs, daddr));
618 				panic ("Negative Bytes");
619 			}
620 #endif
621 			sup->su_nbytes -= fs->lfs_bsize;
622 			error = VOP_BWRITE(bp);
623 		}
624 	}
625 }
626 
627 /*
628  * Start a new segment.
629  */
630 int
631 lfs_initseg(fs)
632 	struct lfs *fs;
633 {
634 	struct segment *sp;
635 	SEGUSE *sup;
636 	SEGSUM *ssp;
637 	struct buf *bp;
638 	int repeat;
639 
640 	sp = fs->lfs_sp;
641 
642 	repeat = 0;
643 	/* Advance to the next segment. */
644 	if (!LFS_PARTIAL_FITS(fs)) {
645 		/* Wake up any cleaning procs waiting on this file system. */
646 		wakeup(&lfs_allclean_wakeup);
647 
648 		lfs_newseg(fs);
649 		repeat = 1;
650 		fs->lfs_offset = fs->lfs_curseg;
651 		sp->seg_number = datosn(fs, fs->lfs_curseg);
652 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
653 
654 		/*
655 		 * If the segment contains a superblock, update the offset
656 		 * and summary address to skip over it.
657 		 */
658 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
659 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
660 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
661 			sp->seg_bytes_left -= LFS_SBPAD;
662 		}
663 		brelse(bp);
664 	} else {
665 		sp->seg_number = datosn(fs, fs->lfs_curseg);
666 		sp->seg_bytes_left = (fs->lfs_dbpseg -
667 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
668 	}
669 	fs->lfs_lastpseg = fs->lfs_offset;
670 
671 	sp->fs = fs;
672 	sp->ibp = NULL;
673 	sp->ninodes = 0;
674 
675 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
676 	sp->cbpp = sp->bpp;
677 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
678 	     LFS_SUMMARY_SIZE);
679 	sp->segsum = (*sp->cbpp)->b_data;
680 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
681 	sp->start_bpp = ++sp->cbpp;
682 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
683 
684 	/* Set point to SEGSUM, initialize it. */
685 	ssp = sp->segsum;
686 	ssp->ss_next = fs->lfs_nextseg;
687 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
688 
689 	/* Set pointer to first FINFO, initialize it. */
690 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
691 	sp->fip->fi_nblocks = 0;
692 	sp->start_lbp = &sp->fip->fi_blocks[0];
693 
694 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
695 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
696 
697 	return(repeat);
698 }
699 
700 /*
701  * Return the next segment to write.
702  */
703 void
704 lfs_newseg(fs)
705 	struct lfs *fs;
706 {
707 	CLEANERINFO *cip;
708 	SEGUSE *sup;
709 	struct buf *bp;
710 	int curseg, isdirty, sn;
711 
712         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
713         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
714 	sup->su_nbytes = 0;
715 	sup->su_nsums = 0;
716 	sup->su_ninos = 0;
717         (void) VOP_BWRITE(bp);
718 
719 	LFS_CLEANERINFO(cip, fs, bp);
720 	--cip->clean;
721 	++cip->dirty;
722 	(void) VOP_BWRITE(bp);
723 
724 	fs->lfs_lastseg = fs->lfs_curseg;
725 	fs->lfs_curseg = fs->lfs_nextseg;
726 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
727 		sn = (sn + 1) % fs->lfs_nseg;
728 		if (sn == curseg)
729 			panic("lfs_nextseg: no clean segments");
730 		LFS_SEGENTRY(sup, fs, sn, bp);
731 		isdirty = sup->su_flags & SEGUSE_DIRTY;
732 		brelse(bp);
733 		if (!isdirty)
734 			break;
735 	}
736 
737 	++fs->lfs_nactive;
738 	fs->lfs_nextseg = sntoda(fs, sn);
739 #ifdef DOSTATS
740 	++lfs_stats.segsused;
741 #endif
742 }
743 
744 int
745 lfs_writeseg(fs, sp)
746 	struct lfs *fs;
747 	struct segment *sp;
748 {
749 	extern int locked_queue_count;
750 	struct buf **bpp, *bp, *cbp;
751 	SEGUSE *sup;
752 	SEGSUM *ssp;
753 	dev_t i_dev;
754 	size_t size;
755 	u_long *datap, *dp;
756 	int ch_per_blk, do_again, i, nblocks, num, s;
757 	int (*strategy)__P((struct vop_strategy_args *));
758 	struct vop_strategy_args vop_strategy_a;
759 	u_short ninos;
760 	char *p;
761 
762 	/*
763 	 * If there are no buffers other than the segment summary to write
764 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
765 	 * even if there aren't any buffers, you need to write the superblock.
766 	 */
767 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
768 		return (0);
769 
770 	ssp = (SEGSUM *)sp->segsum;
771 
772 	/* Update the segment usage information. */
773 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
774 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
775 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
776 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
777 	sup->su_nbytes += LFS_SUMMARY_SIZE;
778 	sup->su_lastmod = time.tv_sec;
779 	sup->su_ninos += ninos;
780 	++sup->su_nsums;
781 	do_again = !(bp->b_flags & B_GATHERED);
782 	(void)VOP_BWRITE(bp);
783 	/*
784 	 * Compute checksum across data and then across summary; the first
785 	 * block (the summary block) is skipped.  Set the create time here
786 	 * so that it's guaranteed to be later than the inode mod times.
787 	 *
788 	 * XXX
789 	 * Fix this to do it inline, instead of malloc/copy.
790 	 */
791 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
792 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
793 		if ((*++bpp)->b_flags & B_INVAL) {
794 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
795 				panic("lfs_writeseg: copyin failed");
796 		} else
797 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
798 	}
799 	ssp->ss_create = time.tv_sec;
800 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
801 	ssp->ss_sumsum =
802 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
803 	free(datap, M_SEGMENT);
804 #ifdef DIAGNOSTIC
805 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
806 		panic("lfs_writeseg: No diskspace for summary");
807 #endif
808 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
809 
810 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
811 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
812 
813 	/*
814 	 * When we simply write the blocks we lose a rotation for every block
815 	 * written.  To avoid this problem, we allocate memory in chunks, copy
816 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
817 	 * largest size I/O devices can handle.
818 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
819 	 * and brelse the buffer (which will move them to the LRU list).  Add
820 	 * the B_CALL flag to the buffer header so we can count I/O's for the
821 	 * checkpoints and so we can release the allocated memory.
822 	 *
823 	 * XXX
824 	 * This should be removed if the new virtual memory system allows us to
825 	 * easily make the buffers contiguous in kernel memory and if that's
826 	 * fast enough.
827 	 */
828 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
829 	for (bpp = sp->bpp, i = nblocks; i;) {
830 		num = ch_per_blk;
831 		if (num > i)
832 			num = i;
833 		i -= num;
834 		size = num * fs->lfs_bsize;
835 
836 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
837 		    (*bpp)->b_blkno, size);
838 		cbp->b_dev = i_dev;
839 		cbp->b_flags |= B_ASYNC | B_BUSY;
840 
841 		s = splbio();
842 		++fs->lfs_iocount;
843 		for (p = cbp->b_data; num--;) {
844 			bp = *bpp++;
845 			/*
846 			 * Fake buffers from the cleaner are marked as B_INVAL.
847 			 * We need to copy the data from user space rather than
848 			 * from the buffer indicated.
849 			 * XXX == what do I do on an error?
850 			 */
851 			if (bp->b_flags & B_INVAL) {
852 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
853 					panic("lfs_writeseg: copyin failed");
854 			} else
855 				bcopy(bp->b_data, p, bp->b_bcount);
856 			p += bp->b_bcount;
857 			if (bp->b_flags & B_LOCKED)
858 				--locked_queue_count;
859 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
860 			     B_LOCKED | B_GATHERED);
861 			if (bp->b_flags & B_CALL) {
862 				/* if B_CALL, it was created with newbuf */
863 				brelvp(bp);
864 				if (!(bp->b_flags & B_INVAL))
865 					free(bp->b_data, M_SEGMENT);
866 				free(bp, M_SEGMENT);
867 			} else {
868 				bremfree(bp);
869 				bp->b_flags |= B_DONE;
870 				reassignbuf(bp, bp->b_vp);
871 				brelse(bp);
872 			}
873 		}
874 		++cbp->b_vp->v_numoutput;
875 		splx(s);
876 		cbp->b_bcount = p - (char *)cbp->b_data;
877 		/*
878 		 * XXXX This is a gross and disgusting hack.  Since these
879 		 * buffers are physically addressed, they hang off the
880 		 * device vnode (devvp).  As a result, they have no way
881 		 * of getting to the LFS superblock or lfs structure to
882 		 * keep track of the number of I/O's pending.  So, I am
883 		 * going to stuff the fs into the saveaddr field of
884 		 * the buffer (yuk).
885 		 */
886 		cbp->b_saveaddr = (caddr_t)fs;
887 		vop_strategy_a.a_desc = VDESC(vop_strategy);
888 		vop_strategy_a.a_bp = cbp;
889 		(strategy)(&vop_strategy_a);
890 	}
891 	/*
892 	 * XXX
893 	 * Vinvalbuf can move locked buffers off the locked queue
894 	 * and we have no way of knowing about this.  So, after
895 	 * doing a big write, we recalculate how many bufers are
896 	 * really still left on the locked queue.
897 	 */
898 	locked_queue_count = count_lock_queue();
899 	wakeup(&locked_queue_count);
900 #ifdef DOSTATS
901 	++lfs_stats.psegwrites;
902 	lfs_stats.blocktot += nblocks - 1;
903 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
904 		++lfs_stats.psyncwrites;
905 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
906 		++lfs_stats.pcleanwrites;
907 		lfs_stats.cleanblocks += nblocks - 1;
908 	}
909 #endif
910 	return (lfs_initseg(fs) || do_again);
911 }
912 
913 void
914 lfs_writesuper(fs)
915 	struct lfs *fs;
916 {
917 	struct buf *bp;
918 	dev_t i_dev;
919 	int (*strategy) __P((struct vop_strategy_args *));
920 	int s;
921 	struct vop_strategy_args vop_strategy_a;
922 
923 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
924 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
925 
926 	/* Checksum the superblock and copy it into a buffer. */
927 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
928 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
929 	    LFS_SBPAD);
930 	*(struct lfs *)bp->b_data = *fs;
931 
932 	/* XXX Toggle between first two superblocks; for now just write first */
933 	bp->b_dev = i_dev;
934 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
935 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
936 	bp->b_iodone = lfs_supercallback;
937 	vop_strategy_a.a_desc = VDESC(vop_strategy);
938 	vop_strategy_a.a_bp = bp;
939 	s = splbio();
940 	++bp->b_vp->v_numoutput;
941 	splx(s);
942 	(strategy)(&vop_strategy_a);
943 }
944 
945 /*
946  * Logical block number match routines used when traversing the dirty block
947  * chain.
948  */
949 int
950 lfs_match_data(fs, bp)
951 	struct lfs *fs;
952 	struct buf *bp;
953 {
954 	return (bp->b_lblkno >= 0);
955 }
956 
957 int
958 lfs_match_indir(fs, bp)
959 	struct lfs *fs;
960 	struct buf *bp;
961 {
962 	int lbn;
963 
964 	lbn = bp->b_lblkno;
965 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
966 }
967 
968 int
969 lfs_match_dindir(fs, bp)
970 	struct lfs *fs;
971 	struct buf *bp;
972 {
973 	int lbn;
974 
975 	lbn = bp->b_lblkno;
976 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
977 }
978 
979 int
980 lfs_match_tindir(fs, bp)
981 	struct lfs *fs;
982 	struct buf *bp;
983 {
984 	int lbn;
985 
986 	lbn = bp->b_lblkno;
987 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
988 }
989 
990 /*
991  * Allocate a new buffer header.
992  */
993 struct buf *
994 lfs_newbuf(vp, daddr, size)
995 	struct vnode *vp;
996 	daddr_t daddr;
997 	size_t size;
998 {
999 	struct buf *bp;
1000 	size_t nbytes;
1001 
1002 	nbytes = roundup(size, DEV_BSIZE);
1003 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
1004 	bzero(bp, sizeof(struct buf));
1005 	if (nbytes)
1006 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
1007 	bgetvp(vp, bp);
1008 	bp->b_bufsize = size;
1009 	bp->b_bcount = size;
1010 	bp->b_lblkno = daddr;
1011 	bp->b_blkno = daddr;
1012 	bp->b_error = 0;
1013 	bp->b_resid = 0;
1014 	bp->b_iodone = lfs_callback;
1015 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
1016 	return (bp);
1017 }
1018 
1019 void
1020 lfs_callback(bp)
1021 	struct buf *bp;
1022 {
1023 	struct lfs *fs;
1024 
1025 	fs = (struct lfs *)bp->b_saveaddr;
1026 #ifdef DIAGNOSTIC
1027 	if (fs->lfs_iocount == 0)
1028 		panic("lfs_callback: zero iocount\n");
1029 #endif
1030 	if (--fs->lfs_iocount == 0)
1031 		wakeup(&fs->lfs_iocount);
1032 
1033 	brelvp(bp);
1034 	free(bp->b_data, M_SEGMENT);
1035 	free(bp, M_SEGMENT);
1036 }
1037 
1038 void
1039 lfs_supercallback(bp)
1040 	struct buf *bp;
1041 {
1042 	brelvp(bp);
1043 	free(bp->b_data, M_SEGMENT);
1044 	free(bp, M_SEGMENT);
1045 }
1046 
1047 /*
1048  * Shellsort (diminishing increment sort) from Data Structures and
1049  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1050  * see also Knuth Vol. 3, page 84.  The increments are selected from
1051  * formula (8), page 95.  Roughly O(N^3/2).
1052  */
1053 /*
1054  * This is our own private copy of shellsort because we want to sort
1055  * two parallel arrays (the array of buffer pointers and the array of
1056  * logical block numbers) simultaneously.  Note that we cast the array
1057  * of logical block numbers to a unsigned in this routine so that the
1058  * negative block numbers (meta data blocks) sort AFTER the data blocks.
1059  */
1060 void
1061 lfs_shellsort(bp_array, lb_array, nmemb)
1062 	struct buf **bp_array;
1063 	daddr_t *lb_array;
1064 	register int nmemb;
1065 {
1066 	static int __rsshell_increments[] = { 4, 1, 0 };
1067 	register int incr, *incrp, t1, t2;
1068 	struct buf *bp_temp;
1069 	u_long lb_temp;
1070 
1071 	for (incrp = __rsshell_increments; incr = *incrp++;)
1072 		for (t1 = incr; t1 < nmemb; ++t1)
1073 			for (t2 = t1 - incr; t2 >= 0;)
1074 				if (lb_array[t2] > lb_array[t2 + incr]) {
1075 					lb_temp = lb_array[t2];
1076 					lb_array[t2] = lb_array[t2 + incr];
1077 					lb_array[t2 + incr] = lb_temp;
1078 					bp_temp = bp_array[t2];
1079 					bp_array[t2] = bp_array[t2 + incr];
1080 					bp_array[t2 + incr] = bp_temp;
1081 					t2 -= incr;
1082 				} else
1083 					break;
1084 }
1085 
1086 /*
1087  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
1088  */
1089 lfs_vref(vp)
1090 	register struct vnode *vp;
1091 {
1092 
1093 	if (vp->v_flag & VXLOCK)
1094 		return(1);
1095 	return (vget(vp, 0));
1096 }
1097 
1098 void
1099 lfs_vunref(vp)
1100 	register struct vnode *vp;
1101 {
1102 	extern int lfs_no_inactive;
1103 
1104 	/*
1105 	 * This is vrele except that we do not want to VOP_INACTIVE
1106 	 * this vnode. Rather than inline vrele here, we use a global
1107 	 * flag to tell lfs_inactive not to run. Yes, its gross.
1108 	 */
1109 	lfs_no_inactive = 1;
1110 	vrele(vp);
1111 	lfs_no_inactive = 0;
1112 }
1113