1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)lfs_segment.c 8.5 (Berkeley) 1/4/94 34 * $Id: lfs_segment.c,v 1.1 1994/06/08 11:42:38 mycroft Exp $ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/namei.h> 40 #include <sys/kernel.h> 41 #include <sys/resourcevar.h> 42 #include <sys/file.h> 43 #include <sys/stat.h> 44 #include <sys/buf.h> 45 #include <sys/proc.h> 46 #include <sys/conf.h> 47 #include <sys/vnode.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 51 #include <miscfs/specfs/specdev.h> 52 #include <miscfs/fifofs/fifo.h> 53 54 #include <ufs/ufs/quota.h> 55 #include <ufs/ufs/inode.h> 56 #include <ufs/ufs/dir.h> 57 #include <ufs/ufs/ufsmount.h> 58 #include <ufs/ufs/ufs_extern.h> 59 60 #include <ufs/lfs/lfs.h> 61 #include <ufs/lfs/lfs_extern.h> 62 63 extern int count_lock_queue __P((void)); 64 65 #define MAX_ACTIVE 10 66 /* 67 * Determine if it's OK to start a partial in this segment, or if we need 68 * to go on to a new segment. 69 */ 70 #define LFS_PARTIAL_FITS(fs) \ 71 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 72 1 << (fs)->lfs_fsbtodb) 73 74 void lfs_callback __P((struct buf *)); 75 void lfs_gather __P((struct lfs *, struct segment *, 76 struct vnode *, int (*) __P((struct lfs *, struct buf *)))); 77 int lfs_gatherblock __P((struct segment *, struct buf *, int *)); 78 void lfs_iset __P((struct inode *, daddr_t, time_t)); 79 int lfs_match_data __P((struct lfs *, struct buf *)); 80 int lfs_match_dindir __P((struct lfs *, struct buf *)); 81 int lfs_match_indir __P((struct lfs *, struct buf *)); 82 int lfs_match_tindir __P((struct lfs *, struct buf *)); 83 void lfs_newseg __P((struct lfs *)); 84 void lfs_shellsort __P((struct buf **, daddr_t *, register int)); 85 void lfs_supercallback __P((struct buf *)); 86 void lfs_updatemeta __P((struct segment *)); 87 int lfs_vref __P((struct vnode *)); 88 void lfs_vunref __P((struct vnode *)); 89 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *)); 90 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *)); 91 int lfs_writeseg __P((struct lfs *, struct segment *)); 92 void lfs_writesuper __P((struct lfs *)); 93 void lfs_writevnodes __P((struct lfs *fs, struct mount *mp, 94 struct segment *sp, int dirops)); 95 96 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 97 98 /* Statistics Counters */ 99 #define DOSTATS 100 struct lfs_stats lfs_stats; 101 102 /* op values to lfs_writevnodes */ 103 #define VN_REG 0 104 #define VN_DIROP 1 105 #define VN_EMPTY 2 106 107 /* 108 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 109 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 110 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 111 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 112 */ 113 114 int 115 lfs_vflush(vp) 116 struct vnode *vp; 117 { 118 struct inode *ip; 119 struct lfs *fs; 120 struct segment *sp; 121 122 fs = VFSTOUFS(vp->v_mount)->um_lfs; 123 if (fs->lfs_nactive > MAX_ACTIVE) 124 return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP)); 125 lfs_seglock(fs, SEGM_SYNC); 126 sp = fs->lfs_sp; 127 128 129 ip = VTOI(vp); 130 if (vp->v_dirtyblkhd.lh_first == NULL) 131 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 132 133 do { 134 do { 135 if (vp->v_dirtyblkhd.lh_first != NULL) 136 lfs_writefile(fs, sp, vp); 137 } while (lfs_writeinode(fs, sp, ip)); 138 139 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 140 141 #ifdef DOSTATS 142 ++lfs_stats.nwrites; 143 if (sp->seg_flags & SEGM_SYNC) 144 ++lfs_stats.nsync_writes; 145 if (sp->seg_flags & SEGM_CKP) 146 ++lfs_stats.ncheckpoints; 147 #endif 148 lfs_segunlock(fs); 149 return (0); 150 } 151 152 void 153 lfs_writevnodes(fs, mp, sp, op) 154 struct lfs *fs; 155 struct mount *mp; 156 struct segment *sp; 157 int op; 158 { 159 struct inode *ip; 160 struct vnode *vp; 161 162 loop: 163 for (vp = mp->mnt_vnodelist.lh_first; 164 vp != NULL; 165 vp = vp->v_mntvnodes.le_next) { 166 /* 167 * If the vnode that we are about to sync is no longer 168 * associated with this mount point, start over. 169 */ 170 if (vp->v_mount != mp) 171 goto loop; 172 173 /* XXX ignore dirops for now 174 if (op == VN_DIROP && !(vp->v_flag & VDIROP) || 175 op != VN_DIROP && (vp->v_flag & VDIROP)) 176 continue; 177 */ 178 179 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) 180 continue; 181 182 if (vp->v_type == VNON) 183 continue; 184 185 if (lfs_vref(vp)) 186 continue; 187 188 /* 189 * Write the inode/file if dirty and it's not the 190 * the IFILE. 191 */ 192 ip = VTOI(vp); 193 if ((ip->i_flag & 194 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) || 195 vp->v_dirtyblkhd.lh_first != NULL) && 196 ip->i_number != LFS_IFILE_INUM) { 197 if (vp->v_dirtyblkhd.lh_first != NULL) 198 lfs_writefile(fs, sp, vp); 199 (void) lfs_writeinode(fs, sp, ip); 200 } 201 vp->v_flag &= ~VDIROP; 202 lfs_vunref(vp); 203 } 204 } 205 206 int 207 lfs_segwrite(mp, flags) 208 struct mount *mp; 209 int flags; /* Do a checkpoint. */ 210 { 211 struct buf *bp; 212 struct inode *ip; 213 struct lfs *fs; 214 struct segment *sp; 215 struct vnode *vp; 216 SEGUSE *segusep; 217 daddr_t ibno; 218 CLEANERINFO *cip; 219 int clean, do_ckp, error, i; 220 221 fs = VFSTOUFS(mp)->um_lfs; 222 223 /* 224 * If we have fewer than 2 clean segments, wait until cleaner 225 * writes. 226 */ 227 do { 228 LFS_CLEANERINFO(cip, fs, bp); 229 clean = cip->clean; 230 brelse(bp); 231 if (clean <= 2) { 232 printf ("segs clean: %d\n", clean); 233 wakeup(&lfs_allclean_wakeup); 234 if (error = tsleep(&fs->lfs_avail, PRIBIO + 1, 235 "lfs writer", 0)) 236 return (error); 237 } 238 } while (clean <= 2 ); 239 240 /* 241 * Allocate a segment structure and enough space to hold pointers to 242 * the maximum possible number of buffers which can be described in a 243 * single summary block. 244 */ 245 do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE; 246 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 247 sp = fs->lfs_sp; 248 249 lfs_writevnodes(fs, mp, sp, VN_REG); 250 251 /* XXX ignore ordering of dirops for now */ 252 /* XXX 253 fs->lfs_writer = 1; 254 if (fs->lfs_dirops && (error = 255 tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) { 256 free(sp->bpp, M_SEGMENT); 257 free(sp, M_SEGMENT); 258 fs->lfs_writer = 0; 259 return (error); 260 } 261 262 lfs_writevnodes(fs, mp, sp, VN_DIROP); 263 */ 264 265 /* 266 * If we are doing a checkpoint, mark everything since the 267 * last checkpoint as no longer ACTIVE. 268 */ 269 if (do_ckp) 270 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz; 271 --ibno >= fs->lfs_cleansz; ) { 272 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, 273 NOCRED, &bp)) 274 275 panic("lfs: ifile read"); 276 segusep = (SEGUSE *)bp->b_data; 277 for (i = fs->lfs_sepb; i--; segusep++) 278 segusep->su_flags &= ~SEGUSE_ACTIVE; 279 280 error = VOP_BWRITE(bp); 281 } 282 283 if (do_ckp || fs->lfs_doifile) { 284 redo: 285 vp = fs->lfs_ivnode; 286 while (vget(vp, 1)); 287 ip = VTOI(vp); 288 if (vp->v_dirtyblkhd.lh_first != NULL) 289 lfs_writefile(fs, sp, vp); 290 (void)lfs_writeinode(fs, sp, ip); 291 vput(vp); 292 if (lfs_writeseg(fs, sp) && do_ckp) 293 goto redo; 294 } else 295 (void) lfs_writeseg(fs, sp); 296 297 /* 298 * If the I/O count is non-zero, sleep until it reaches zero. At the 299 * moment, the user's process hangs around so we can sleep. 300 */ 301 /* XXX ignore dirops for now 302 fs->lfs_writer = 0; 303 fs->lfs_doifile = 0; 304 wakeup(&fs->lfs_dirops); 305 */ 306 307 #ifdef DOSTATS 308 ++lfs_stats.nwrites; 309 if (sp->seg_flags & SEGM_SYNC) 310 ++lfs_stats.nsync_writes; 311 if (sp->seg_flags & SEGM_CKP) 312 ++lfs_stats.ncheckpoints; 313 #endif 314 lfs_segunlock(fs); 315 return (0); 316 } 317 318 /* 319 * Write the dirty blocks associated with a vnode. 320 */ 321 void 322 lfs_writefile(fs, sp, vp) 323 struct lfs *fs; 324 struct segment *sp; 325 struct vnode *vp; 326 { 327 struct buf *bp; 328 struct finfo *fip; 329 IFILE *ifp; 330 331 if (sp->seg_bytes_left < fs->lfs_bsize || 332 sp->sum_bytes_left < sizeof(struct finfo)) 333 (void) lfs_writeseg(fs, sp); 334 335 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t); 336 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 337 338 fip = sp->fip; 339 fip->fi_nblocks = 0; 340 fip->fi_ino = VTOI(vp)->i_number; 341 LFS_IENTRY(ifp, fs, fip->fi_ino, bp); 342 fip->fi_version = ifp->if_version; 343 brelse(bp); 344 345 /* 346 * It may not be necessary to write the meta-data blocks at this point, 347 * as the roll-forward recovery code should be able to reconstruct the 348 * list. 349 */ 350 lfs_gather(fs, sp, vp, lfs_match_data); 351 lfs_gather(fs, sp, vp, lfs_match_indir); 352 lfs_gather(fs, sp, vp, lfs_match_dindir); 353 #ifdef TRIPLE 354 lfs_gather(fs, sp, vp, lfs_match_tindir); 355 #endif 356 357 fip = sp->fip; 358 if (fip->fi_nblocks != 0) { 359 sp->fip = 360 (struct finfo *)((caddr_t)fip + sizeof(struct finfo) + 361 sizeof(daddr_t) * (fip->fi_nblocks - 1)); 362 sp->start_lbp = &sp->fip->fi_blocks[0]; 363 } else { 364 sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t); 365 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 366 } 367 } 368 369 int 370 lfs_writeinode(fs, sp, ip) 371 struct lfs *fs; 372 struct segment *sp; 373 struct inode *ip; 374 { 375 struct buf *bp, *ibp; 376 IFILE *ifp; 377 SEGUSE *sup; 378 daddr_t daddr; 379 ino_t ino; 380 int error, i, ndx; 381 int redo_ifile = 0; 382 383 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE))) 384 return(0); 385 386 /* Allocate a new inode block if necessary. */ 387 if (sp->ibp == NULL) { 388 /* Allocate a new segment if necessary. */ 389 if (sp->seg_bytes_left < fs->lfs_bsize || 390 sp->sum_bytes_left < sizeof(daddr_t)) 391 (void) lfs_writeseg(fs, sp); 392 393 /* Get next inode block. */ 394 daddr = fs->lfs_offset; 395 fs->lfs_offset += fsbtodb(fs, 1); 396 sp->ibp = *sp->cbpp++ = 397 lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, 398 fs->lfs_bsize); 399 /* Zero out inode numbers */ 400 for (i = 0; i < INOPB(fs); ++i) 401 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0; 402 ++sp->start_bpp; 403 fs->lfs_avail -= fsbtodb(fs, 1); 404 /* Set remaining space counters. */ 405 sp->seg_bytes_left -= fs->lfs_bsize; 406 sp->sum_bytes_left -= sizeof(daddr_t); 407 ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) - 408 sp->ninodes / INOPB(fs) - 1; 409 ((daddr_t *)(sp->segsum))[ndx] = daddr; 410 } 411 412 /* Update the inode times and copy the inode onto the inode page. */ 413 if (ip->i_flag & IN_MODIFIED) 414 --fs->lfs_uinodes; 415 ITIMES(ip, &time, &time); 416 ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE); 417 bp = sp->ibp; 418 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din; 419 /* Increment inode count in segment summary block. */ 420 ++((SEGSUM *)(sp->segsum))->ss_ninos; 421 422 /* If this page is full, set flag to allocate a new page. */ 423 if (++sp->ninodes % INOPB(fs) == 0) 424 sp->ibp = NULL; 425 426 /* 427 * If updating the ifile, update the super-block. Update the disk 428 * address and access times for this inode in the ifile. 429 */ 430 ino = ip->i_number; 431 if (ino == LFS_IFILE_INUM) { 432 daddr = fs->lfs_idaddr; 433 fs->lfs_idaddr = bp->b_blkno; 434 } else { 435 LFS_IENTRY(ifp, fs, ino, ibp); 436 daddr = ifp->if_daddr; 437 ifp->if_daddr = bp->b_blkno; 438 error = VOP_BWRITE(ibp); 439 } 440 441 /* 442 * No need to update segment usage if there was no former inode address 443 * or if the last inode address is in the current partial segment. 444 */ 445 if (daddr != LFS_UNUSED_DADDR && 446 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) { 447 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp); 448 #ifdef DIAGNOSTIC 449 if (sup->su_nbytes < sizeof(struct dinode)) { 450 /* XXX -- Change to a panic. */ 451 printf("lfs: negative bytes (segment %d)\n", 452 datosn(fs, daddr)); 453 panic("negative bytes"); 454 } 455 #endif 456 sup->su_nbytes -= sizeof(struct dinode); 457 redo_ifile = 458 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 459 error = VOP_BWRITE(bp); 460 } 461 return (redo_ifile); 462 } 463 464 int 465 lfs_gatherblock(sp, bp, sptr) 466 struct segment *sp; 467 struct buf *bp; 468 int *sptr; 469 { 470 struct lfs *fs; 471 int version; 472 473 /* 474 * If full, finish this segment. We may be doing I/O, so 475 * release and reacquire the splbio(). 476 */ 477 #ifdef DIAGNOSTIC 478 if (sp->vp == NULL) 479 panic ("lfs_gatherblock: Null vp in segment"); 480 #endif 481 fs = sp->fs; 482 if (sp->sum_bytes_left < sizeof(daddr_t) || 483 sp->seg_bytes_left < fs->lfs_bsize) { 484 if (sptr) 485 splx(*sptr); 486 lfs_updatemeta(sp); 487 488 version = sp->fip->fi_version; 489 (void) lfs_writeseg(fs, sp); 490 491 sp->fip->fi_version = version; 492 sp->fip->fi_ino = VTOI(sp->vp)->i_number; 493 /* Add the current file to the segment summary. */ 494 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 495 sp->sum_bytes_left -= 496 sizeof(struct finfo) - sizeof(daddr_t); 497 498 if (sptr) 499 *sptr = splbio(); 500 return(1); 501 } 502 503 /* Insert into the buffer list, update the FINFO block. */ 504 bp->b_flags |= B_GATHERED; 505 *sp->cbpp++ = bp; 506 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno; 507 508 sp->sum_bytes_left -= sizeof(daddr_t); 509 sp->seg_bytes_left -= fs->lfs_bsize; 510 return(0); 511 } 512 513 void 514 lfs_gather(fs, sp, vp, match) 515 struct lfs *fs; 516 struct segment *sp; 517 struct vnode *vp; 518 int (*match) __P((struct lfs *, struct buf *)); 519 { 520 struct buf *bp; 521 int s; 522 523 sp->vp = vp; 524 s = splbio(); 525 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) { 526 if (bp->b_flags & B_BUSY || !match(fs, bp) || 527 bp->b_flags & B_GATHERED) 528 continue; 529 #ifdef DIAGNOSTIC 530 if (!(bp->b_flags & B_DELWRI)) 531 panic("lfs_gather: bp not B_DELWRI"); 532 if (!(bp->b_flags & B_LOCKED)) 533 panic("lfs_gather: bp not B_LOCKED"); 534 #endif 535 if (lfs_gatherblock(sp, bp, &s)) 536 goto loop; 537 } 538 splx(s); 539 lfs_updatemeta(sp); 540 sp->vp = NULL; 541 } 542 543 544 /* 545 * Update the metadata that points to the blocks listed in the FINFO 546 * array. 547 */ 548 void 549 lfs_updatemeta(sp) 550 struct segment *sp; 551 { 552 SEGUSE *sup; 553 struct buf *bp; 554 struct lfs *fs; 555 struct vnode *vp; 556 struct indir a[NIADDR + 2], *ap; 557 struct inode *ip; 558 daddr_t daddr, lbn, off; 559 int db_per_fsb, error, i, nblocks, num; 560 561 vp = sp->vp; 562 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 563 if (vp == NULL || nblocks == 0) 564 return; 565 566 /* Sort the blocks. */ 567 if (!(sp->seg_flags & SEGM_CLEAN)) 568 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks); 569 570 /* 571 * Assign disk addresses, and update references to the logical 572 * block and the segment usage information. 573 */ 574 fs = sp->fs; 575 db_per_fsb = fsbtodb(fs, 1); 576 for (i = nblocks; i--; ++sp->start_bpp) { 577 lbn = *sp->start_lbp++; 578 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset; 579 fs->lfs_offset += db_per_fsb; 580 581 if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL)) 582 panic("lfs_updatemeta: ufs_bmaparray %d", error); 583 ip = VTOI(vp); 584 switch (num) { 585 case 0: 586 ip->i_db[lbn] = off; 587 break; 588 case 1: 589 ip->i_ib[a[0].in_off] = off; 590 break; 591 default: 592 ap = &a[num - 1]; 593 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 594 panic("lfs_updatemeta: bread bno %d", 595 ap->in_lbn); 596 /* 597 * Bread may create a new indirect block which needs 598 * to get counted for the inode. 599 */ 600 if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) { 601 printf ("Updatemeta allocating indirect block: shouldn't happen\n"); 602 ip->i_blocks += btodb(fs->lfs_bsize); 603 fs->lfs_bfree -= btodb(fs->lfs_bsize); 604 } 605 ((daddr_t *)bp->b_data)[ap->in_off] = off; 606 VOP_BWRITE(bp); 607 } 608 609 /* Update segment usage information. */ 610 if (daddr != UNASSIGNED && 611 !(daddr >= fs->lfs_lastpseg && daddr <= off)) { 612 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp); 613 #ifdef DIAGNOSTIC 614 if (sup->su_nbytes < fs->lfs_bsize) { 615 /* XXX -- Change to a panic. */ 616 printf("lfs: negative bytes (segment %d)\n", 617 datosn(fs, daddr)); 618 panic ("Negative Bytes"); 619 } 620 #endif 621 sup->su_nbytes -= fs->lfs_bsize; 622 error = VOP_BWRITE(bp); 623 } 624 } 625 } 626 627 /* 628 * Start a new segment. 629 */ 630 int 631 lfs_initseg(fs) 632 struct lfs *fs; 633 { 634 struct segment *sp; 635 SEGUSE *sup; 636 SEGSUM *ssp; 637 struct buf *bp; 638 int repeat; 639 640 sp = fs->lfs_sp; 641 642 repeat = 0; 643 /* Advance to the next segment. */ 644 if (!LFS_PARTIAL_FITS(fs)) { 645 /* Wake up any cleaning procs waiting on this file system. */ 646 wakeup(&lfs_allclean_wakeup); 647 648 lfs_newseg(fs); 649 repeat = 1; 650 fs->lfs_offset = fs->lfs_curseg; 651 sp->seg_number = datosn(fs, fs->lfs_curseg); 652 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE; 653 654 /* 655 * If the segment contains a superblock, update the offset 656 * and summary address to skip over it. 657 */ 658 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 659 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 660 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE; 661 sp->seg_bytes_left -= LFS_SBPAD; 662 } 663 brelse(bp); 664 } else { 665 sp->seg_number = datosn(fs, fs->lfs_curseg); 666 sp->seg_bytes_left = (fs->lfs_dbpseg - 667 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE; 668 } 669 fs->lfs_lastpseg = fs->lfs_offset; 670 671 sp->fs = fs; 672 sp->ibp = NULL; 673 sp->ninodes = 0; 674 675 /* Get a new buffer for SEGSUM and enter it into the buffer list. */ 676 sp->cbpp = sp->bpp; 677 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset, 678 LFS_SUMMARY_SIZE); 679 sp->segsum = (*sp->cbpp)->b_data; 680 bzero(sp->segsum, LFS_SUMMARY_SIZE); 681 sp->start_bpp = ++sp->cbpp; 682 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE; 683 684 /* Set point to SEGSUM, initialize it. */ 685 ssp = sp->segsum; 686 ssp->ss_next = fs->lfs_nextseg; 687 ssp->ss_nfinfo = ssp->ss_ninos = 0; 688 689 /* Set pointer to first FINFO, initialize it. */ 690 sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM)); 691 sp->fip->fi_nblocks = 0; 692 sp->start_lbp = &sp->fip->fi_blocks[0]; 693 694 sp->seg_bytes_left -= LFS_SUMMARY_SIZE; 695 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM); 696 697 return(repeat); 698 } 699 700 /* 701 * Return the next segment to write. 702 */ 703 void 704 lfs_newseg(fs) 705 struct lfs *fs; 706 { 707 CLEANERINFO *cip; 708 SEGUSE *sup; 709 struct buf *bp; 710 int curseg, isdirty, sn; 711 712 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp); 713 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 714 sup->su_nbytes = 0; 715 sup->su_nsums = 0; 716 sup->su_ninos = 0; 717 (void) VOP_BWRITE(bp); 718 719 LFS_CLEANERINFO(cip, fs, bp); 720 --cip->clean; 721 ++cip->dirty; 722 (void) VOP_BWRITE(bp); 723 724 fs->lfs_lastseg = fs->lfs_curseg; 725 fs->lfs_curseg = fs->lfs_nextseg; 726 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) { 727 sn = (sn + 1) % fs->lfs_nseg; 728 if (sn == curseg) 729 panic("lfs_nextseg: no clean segments"); 730 LFS_SEGENTRY(sup, fs, sn, bp); 731 isdirty = sup->su_flags & SEGUSE_DIRTY; 732 brelse(bp); 733 if (!isdirty) 734 break; 735 } 736 737 ++fs->lfs_nactive; 738 fs->lfs_nextseg = sntoda(fs, sn); 739 #ifdef DOSTATS 740 ++lfs_stats.segsused; 741 #endif 742 } 743 744 int 745 lfs_writeseg(fs, sp) 746 struct lfs *fs; 747 struct segment *sp; 748 { 749 extern int locked_queue_count; 750 struct buf **bpp, *bp, *cbp; 751 SEGUSE *sup; 752 SEGSUM *ssp; 753 dev_t i_dev; 754 size_t size; 755 u_long *datap, *dp; 756 int ch_per_blk, do_again, i, nblocks, num, s; 757 int (*strategy)__P((struct vop_strategy_args *)); 758 struct vop_strategy_args vop_strategy_a; 759 u_short ninos; 760 char *p; 761 762 /* 763 * If there are no buffers other than the segment summary to write 764 * and it is not a checkpoint, don't do anything. On a checkpoint, 765 * even if there aren't any buffers, you need to write the superblock. 766 */ 767 if ((nblocks = sp->cbpp - sp->bpp) == 1) 768 return (0); 769 770 ssp = (SEGSUM *)sp->segsum; 771 772 /* Update the segment usage information. */ 773 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 774 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 775 sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift; 776 sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode); 777 sup->su_nbytes += LFS_SUMMARY_SIZE; 778 sup->su_lastmod = time.tv_sec; 779 sup->su_ninos += ninos; 780 ++sup->su_nsums; 781 do_again = !(bp->b_flags & B_GATHERED); 782 (void)VOP_BWRITE(bp); 783 /* 784 * Compute checksum across data and then across summary; the first 785 * block (the summary block) is skipped. Set the create time here 786 * so that it's guaranteed to be later than the inode mod times. 787 * 788 * XXX 789 * Fix this to do it inline, instead of malloc/copy. 790 */ 791 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK); 792 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 793 if ((*++bpp)->b_flags & B_INVAL) { 794 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long))) 795 panic("lfs_writeseg: copyin failed"); 796 } else 797 *dp++ = ((u_long *)(*bpp)->b_data)[0]; 798 } 799 ssp->ss_create = time.tv_sec; 800 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long)); 801 ssp->ss_sumsum = 802 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum)); 803 free(datap, M_SEGMENT); 804 #ifdef DIAGNOSTIC 805 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE) 806 panic("lfs_writeseg: No diskspace for summary"); 807 #endif 808 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE); 809 810 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 811 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; 812 813 /* 814 * When we simply write the blocks we lose a rotation for every block 815 * written. To avoid this problem, we allocate memory in chunks, copy 816 * the buffers into the chunk and write the chunk. MAXPHYS is the 817 * largest size I/O devices can handle. 818 * When the data is copied to the chunk, turn off the the B_LOCKED bit 819 * and brelse the buffer (which will move them to the LRU list). Add 820 * the B_CALL flag to the buffer header so we can count I/O's for the 821 * checkpoints and so we can release the allocated memory. 822 * 823 * XXX 824 * This should be removed if the new virtual memory system allows us to 825 * easily make the buffers contiguous in kernel memory and if that's 826 * fast enough. 827 */ 828 ch_per_blk = MAXPHYS / fs->lfs_bsize; 829 for (bpp = sp->bpp, i = nblocks; i;) { 830 num = ch_per_blk; 831 if (num > i) 832 num = i; 833 i -= num; 834 size = num * fs->lfs_bsize; 835 836 cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, 837 (*bpp)->b_blkno, size); 838 cbp->b_dev = i_dev; 839 cbp->b_flags |= B_ASYNC | B_BUSY; 840 841 s = splbio(); 842 ++fs->lfs_iocount; 843 for (p = cbp->b_data; num--;) { 844 bp = *bpp++; 845 /* 846 * Fake buffers from the cleaner are marked as B_INVAL. 847 * We need to copy the data from user space rather than 848 * from the buffer indicated. 849 * XXX == what do I do on an error? 850 */ 851 if (bp->b_flags & B_INVAL) { 852 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 853 panic("lfs_writeseg: copyin failed"); 854 } else 855 bcopy(bp->b_data, p, bp->b_bcount); 856 p += bp->b_bcount; 857 if (bp->b_flags & B_LOCKED) 858 --locked_queue_count; 859 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | 860 B_LOCKED | B_GATHERED); 861 if (bp->b_flags & B_CALL) { 862 /* if B_CALL, it was created with newbuf */ 863 brelvp(bp); 864 if (!(bp->b_flags & B_INVAL)) 865 free(bp->b_data, M_SEGMENT); 866 free(bp, M_SEGMENT); 867 } else { 868 bremfree(bp); 869 bp->b_flags |= B_DONE; 870 reassignbuf(bp, bp->b_vp); 871 brelse(bp); 872 } 873 } 874 ++cbp->b_vp->v_numoutput; 875 splx(s); 876 cbp->b_bcount = p - (char *)cbp->b_data; 877 /* 878 * XXXX This is a gross and disgusting hack. Since these 879 * buffers are physically addressed, they hang off the 880 * device vnode (devvp). As a result, they have no way 881 * of getting to the LFS superblock or lfs structure to 882 * keep track of the number of I/O's pending. So, I am 883 * going to stuff the fs into the saveaddr field of 884 * the buffer (yuk). 885 */ 886 cbp->b_saveaddr = (caddr_t)fs; 887 vop_strategy_a.a_desc = VDESC(vop_strategy); 888 vop_strategy_a.a_bp = cbp; 889 (strategy)(&vop_strategy_a); 890 } 891 /* 892 * XXX 893 * Vinvalbuf can move locked buffers off the locked queue 894 * and we have no way of knowing about this. So, after 895 * doing a big write, we recalculate how many bufers are 896 * really still left on the locked queue. 897 */ 898 locked_queue_count = count_lock_queue(); 899 wakeup(&locked_queue_count); 900 #ifdef DOSTATS 901 ++lfs_stats.psegwrites; 902 lfs_stats.blocktot += nblocks - 1; 903 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 904 ++lfs_stats.psyncwrites; 905 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 906 ++lfs_stats.pcleanwrites; 907 lfs_stats.cleanblocks += nblocks - 1; 908 } 909 #endif 910 return (lfs_initseg(fs) || do_again); 911 } 912 913 void 914 lfs_writesuper(fs) 915 struct lfs *fs; 916 { 917 struct buf *bp; 918 dev_t i_dev; 919 int (*strategy) __P((struct vop_strategy_args *)); 920 int s; 921 struct vop_strategy_args vop_strategy_a; 922 923 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 924 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; 925 926 /* Checksum the superblock and copy it into a buffer. */ 927 fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum)); 928 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0], 929 LFS_SBPAD); 930 *(struct lfs *)bp->b_data = *fs; 931 932 /* XXX Toggle between first two superblocks; for now just write first */ 933 bp->b_dev = i_dev; 934 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; 935 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); 936 bp->b_iodone = lfs_supercallback; 937 vop_strategy_a.a_desc = VDESC(vop_strategy); 938 vop_strategy_a.a_bp = bp; 939 s = splbio(); 940 ++bp->b_vp->v_numoutput; 941 splx(s); 942 (strategy)(&vop_strategy_a); 943 } 944 945 /* 946 * Logical block number match routines used when traversing the dirty block 947 * chain. 948 */ 949 int 950 lfs_match_data(fs, bp) 951 struct lfs *fs; 952 struct buf *bp; 953 { 954 return (bp->b_lblkno >= 0); 955 } 956 957 int 958 lfs_match_indir(fs, bp) 959 struct lfs *fs; 960 struct buf *bp; 961 { 962 int lbn; 963 964 lbn = bp->b_lblkno; 965 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 966 } 967 968 int 969 lfs_match_dindir(fs, bp) 970 struct lfs *fs; 971 struct buf *bp; 972 { 973 int lbn; 974 975 lbn = bp->b_lblkno; 976 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 977 } 978 979 int 980 lfs_match_tindir(fs, bp) 981 struct lfs *fs; 982 struct buf *bp; 983 { 984 int lbn; 985 986 lbn = bp->b_lblkno; 987 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 988 } 989 990 /* 991 * Allocate a new buffer header. 992 */ 993 struct buf * 994 lfs_newbuf(vp, daddr, size) 995 struct vnode *vp; 996 daddr_t daddr; 997 size_t size; 998 { 999 struct buf *bp; 1000 size_t nbytes; 1001 1002 nbytes = roundup(size, DEV_BSIZE); 1003 bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK); 1004 bzero(bp, sizeof(struct buf)); 1005 if (nbytes) 1006 bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK); 1007 bgetvp(vp, bp); 1008 bp->b_bufsize = size; 1009 bp->b_bcount = size; 1010 bp->b_lblkno = daddr; 1011 bp->b_blkno = daddr; 1012 bp->b_error = 0; 1013 bp->b_resid = 0; 1014 bp->b_iodone = lfs_callback; 1015 bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE; 1016 return (bp); 1017 } 1018 1019 void 1020 lfs_callback(bp) 1021 struct buf *bp; 1022 { 1023 struct lfs *fs; 1024 1025 fs = (struct lfs *)bp->b_saveaddr; 1026 #ifdef DIAGNOSTIC 1027 if (fs->lfs_iocount == 0) 1028 panic("lfs_callback: zero iocount\n"); 1029 #endif 1030 if (--fs->lfs_iocount == 0) 1031 wakeup(&fs->lfs_iocount); 1032 1033 brelvp(bp); 1034 free(bp->b_data, M_SEGMENT); 1035 free(bp, M_SEGMENT); 1036 } 1037 1038 void 1039 lfs_supercallback(bp) 1040 struct buf *bp; 1041 { 1042 brelvp(bp); 1043 free(bp->b_data, M_SEGMENT); 1044 free(bp, M_SEGMENT); 1045 } 1046 1047 /* 1048 * Shellsort (diminishing increment sort) from Data Structures and 1049 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 1050 * see also Knuth Vol. 3, page 84. The increments are selected from 1051 * formula (8), page 95. Roughly O(N^3/2). 1052 */ 1053 /* 1054 * This is our own private copy of shellsort because we want to sort 1055 * two parallel arrays (the array of buffer pointers and the array of 1056 * logical block numbers) simultaneously. Note that we cast the array 1057 * of logical block numbers to a unsigned in this routine so that the 1058 * negative block numbers (meta data blocks) sort AFTER the data blocks. 1059 */ 1060 void 1061 lfs_shellsort(bp_array, lb_array, nmemb) 1062 struct buf **bp_array; 1063 daddr_t *lb_array; 1064 register int nmemb; 1065 { 1066 static int __rsshell_increments[] = { 4, 1, 0 }; 1067 register int incr, *incrp, t1, t2; 1068 struct buf *bp_temp; 1069 u_long lb_temp; 1070 1071 for (incrp = __rsshell_increments; incr = *incrp++;) 1072 for (t1 = incr; t1 < nmemb; ++t1) 1073 for (t2 = t1 - incr; t2 >= 0;) 1074 if (lb_array[t2] > lb_array[t2 + incr]) { 1075 lb_temp = lb_array[t2]; 1076 lb_array[t2] = lb_array[t2 + incr]; 1077 lb_array[t2 + incr] = lb_temp; 1078 bp_temp = bp_array[t2]; 1079 bp_array[t2] = bp_array[t2 + incr]; 1080 bp_array[t2 + incr] = bp_temp; 1081 t2 -= incr; 1082 } else 1083 break; 1084 } 1085 1086 /* 1087 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. 1088 */ 1089 lfs_vref(vp) 1090 register struct vnode *vp; 1091 { 1092 1093 if (vp->v_flag & VXLOCK) 1094 return(1); 1095 return (vget(vp, 0)); 1096 } 1097 1098 void 1099 lfs_vunref(vp) 1100 register struct vnode *vp; 1101 { 1102 extern int lfs_no_inactive; 1103 1104 /* 1105 * This is vrele except that we do not want to VOP_INACTIVE 1106 * this vnode. Rather than inline vrele here, we use a global 1107 * flag to tell lfs_inactive not to run. Yes, its gross. 1108 */ 1109 lfs_no_inactive = 1; 1110 vrele(vp); 1111 lfs_no_inactive = 0; 1112 } 1113