1 /* $NetBSD: lfs_segment.c,v 1.263 2015/10/19 04:21:48 dholland Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /* 32 * Copyright (c) 1991, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 60 */ 61 62 #include <sys/cdefs.h> 63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.263 2015/10/19 04:21:48 dholland Exp $"); 64 65 #ifdef DEBUG 66 # define vndebug(vp, str) do { \ 67 if (VTOI(vp)->i_flag & IN_CLEANING) \ 68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ 69 VTOI(vp)->i_number, (str), op)); \ 70 } while(0) 71 #else 72 # define vndebug(vp, str) 73 #endif 74 #define ivndebug(vp, str) \ 75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) 76 77 #if defined(_KERNEL_OPT) 78 #include "opt_ddb.h" 79 #endif 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/namei.h> 84 #include <sys/kernel.h> 85 #include <sys/resourcevar.h> 86 #include <sys/file.h> 87 #include <sys/stat.h> 88 #include <sys/buf.h> 89 #include <sys/proc.h> 90 #include <sys/vnode.h> 91 #include <sys/mount.h> 92 #include <sys/kauth.h> 93 #include <sys/syslog.h> 94 95 #include <miscfs/specfs/specdev.h> 96 #include <miscfs/fifofs/fifo.h> 97 98 #include <ufs/lfs/ulfs_inode.h> 99 #include <ufs/lfs/ulfsmount.h> 100 #include <ufs/lfs/ulfs_extern.h> 101 102 #include <ufs/lfs/lfs.h> 103 #include <ufs/lfs/lfs_accessors.h> 104 #include <ufs/lfs/lfs_kernel.h> 105 #include <ufs/lfs/lfs_extern.h> 106 107 #include <uvm/uvm.h> 108 #include <uvm/uvm_extern.h> 109 110 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 111 112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 113 static void lfs_free_aiodone(struct buf *); 114 static void lfs_super_aiodone(struct buf *); 115 static void lfs_cluster_aiodone(struct buf *); 116 static void lfs_cluster_callback(struct buf *); 117 118 /* 119 * Determine if it's OK to start a partial in this segment, or if we need 120 * to go on to a new segment. 121 */ 122 #define LFS_PARTIAL_FITS(fs) \ 123 (lfs_sb_getfsbpseg(fs) - \ 124 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \ 125 lfs_sb_getfrag(fs)) 126 127 /* 128 * Figure out whether we should do a checkpoint write or go ahead with 129 * an ordinary write. 130 */ 131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \ 132 ((flags & SEGM_CLEAN) == 0 && \ 133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \ 134 (flags & SEGM_CKP) || \ 135 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE))) 136 137 int lfs_match_fake(struct lfs *, struct buf *); 138 void lfs_newseg(struct lfs *); 139 void lfs_supercallback(struct buf *); 140 void lfs_updatemeta(struct segment *); 141 void lfs_writesuper(struct lfs *, daddr_t); 142 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 143 struct segment *sp, int dirops); 144 145 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *, 146 int, int); 147 148 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 149 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 150 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 151 int lfs_dirvcount = 0; /* # active dirops */ 152 153 /* Statistics Counters */ 154 int lfs_dostats = 1; 155 struct lfs_stats lfs_stats; 156 157 /* op values to lfs_writevnodes */ 158 #define VN_REG 0 159 #define VN_DIROP 1 160 #define VN_EMPTY 2 161 #define VN_CLEAN 3 162 163 /* 164 * XXX KS - Set modification time on the Ifile, so the cleaner can 165 * read the fs mod time off of it. We don't set IN_UPDATE here, 166 * since we don't really need this to be flushed to disk (and in any 167 * case that wouldn't happen to the Ifile until we checkpoint). 168 */ 169 void 170 lfs_imtime(struct lfs *fs) 171 { 172 struct timespec ts; 173 struct inode *ip; 174 175 ASSERT_MAYBE_SEGLOCK(fs); 176 vfs_timestamp(&ts); 177 ip = VTOI(fs->lfs_ivnode); 178 lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec); 179 lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec); 180 } 181 182 /* 183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 184 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 187 */ 188 189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 190 191 int 192 lfs_vflush(struct vnode *vp) 193 { 194 struct inode *ip; 195 struct lfs *fs; 196 struct segment *sp; 197 struct buf *bp, *nbp, *tbp, *tnbp; 198 int error; 199 int flushed; 200 int relock; 201 202 ip = VTOI(vp); 203 fs = VFSTOULFS(vp->v_mount)->um_lfs; 204 relock = 0; 205 206 top: 207 KASSERT(mutex_owned(vp->v_interlock) == false); 208 KASSERT(mutex_owned(&lfs_lock) == false); 209 KASSERT(mutex_owned(&bufcache_lock) == false); 210 ASSERT_NO_SEGLOCK(fs); 211 if (ip->i_flag & IN_CLEANING) { 212 ivndebug(vp,"vflush/in_cleaning"); 213 mutex_enter(&lfs_lock); 214 LFS_CLR_UINO(ip, IN_CLEANING); 215 LFS_SET_UINO(ip, IN_MODIFIED); 216 mutex_exit(&lfs_lock); 217 218 /* 219 * Toss any cleaning buffers that have real counterparts 220 * to avoid losing new data. 221 */ 222 mutex_enter(vp->v_interlock); 223 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 224 nbp = LIST_NEXT(bp, b_vnbufs); 225 if (!LFS_IS_MALLOC_BUF(bp)) 226 continue; 227 /* 228 * Look for pages matching the range covered 229 * by cleaning blocks. It's okay if more dirty 230 * pages appear, so long as none disappear out 231 * from under us. 232 */ 233 if (bp->b_lblkno > 0 && vp->v_type == VREG && 234 vp != fs->lfs_ivnode) { 235 struct vm_page *pg; 236 voff_t off; 237 238 for (off = lfs_lblktosize(fs, bp->b_lblkno); 239 off < lfs_lblktosize(fs, bp->b_lblkno + 1); 240 off += PAGE_SIZE) { 241 pg = uvm_pagelookup(&vp->v_uobj, off); 242 if (pg == NULL) 243 continue; 244 if ((pg->flags & PG_CLEAN) == 0 || 245 pmap_is_modified(pg)) { 246 lfs_sb_addavail(fs, 247 lfs_btofsb(fs, 248 bp->b_bcount)); 249 wakeup(&fs->lfs_availsleep); 250 mutex_exit(vp->v_interlock); 251 lfs_freebuf(fs, bp); 252 mutex_enter(vp->v_interlock); 253 bp = NULL; 254 break; 255 } 256 } 257 } 258 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 259 tbp = tnbp) 260 { 261 tnbp = LIST_NEXT(tbp, b_vnbufs); 262 if (tbp->b_vp == bp->b_vp 263 && tbp->b_lblkno == bp->b_lblkno 264 && tbp != bp) 265 { 266 lfs_sb_addavail(fs, lfs_btofsb(fs, 267 bp->b_bcount)); 268 wakeup(&fs->lfs_availsleep); 269 mutex_exit(vp->v_interlock); 270 lfs_freebuf(fs, bp); 271 mutex_enter(vp->v_interlock); 272 bp = NULL; 273 break; 274 } 275 } 276 } 277 } else { 278 mutex_enter(vp->v_interlock); 279 } 280 281 /* If the node is being written, wait until that is done */ 282 while (WRITEINPROG(vp)) { 283 ivndebug(vp,"vflush/writeinprog"); 284 cv_wait(&vp->v_cv, vp->v_interlock); 285 } 286 error = vdead_check(vp, VDEAD_NOWAIT); 287 mutex_exit(vp->v_interlock); 288 289 /* Protect against deadlock in vinvalbuf() */ 290 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0)); 291 if (error != 0) { 292 fs->lfs_reclino = ip->i_number; 293 } 294 295 /* If we're supposed to flush a freed inode, just toss it */ 296 if (ip->i_lfs_iflags & LFSI_DELETED) { 297 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", 298 ip->i_number)); 299 /* Drain v_numoutput */ 300 mutex_enter(vp->v_interlock); 301 while (vp->v_numoutput > 0) { 302 cv_wait(&vp->v_cv, vp->v_interlock); 303 } 304 KASSERT(vp->v_numoutput == 0); 305 mutex_exit(vp->v_interlock); 306 307 mutex_enter(&bufcache_lock); 308 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 309 nbp = LIST_NEXT(bp, b_vnbufs); 310 311 KASSERT((bp->b_flags & B_GATHERED) == 0); 312 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */ 313 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount)); 314 wakeup(&fs->lfs_availsleep); 315 } 316 /* Copied from lfs_writeseg */ 317 if (bp->b_iodone != NULL) { 318 mutex_exit(&bufcache_lock); 319 biodone(bp); 320 mutex_enter(&bufcache_lock); 321 } else { 322 bremfree(bp); 323 LFS_UNLOCK_BUF(bp); 324 mutex_enter(vp->v_interlock); 325 bp->b_flags &= ~(B_READ | B_GATHERED); 326 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE; 327 bp->b_error = 0; 328 reassignbuf(bp, vp); 329 mutex_exit(vp->v_interlock); 330 brelse(bp, 0); 331 } 332 } 333 mutex_exit(&bufcache_lock); 334 LFS_CLR_UINO(ip, IN_CLEANING); 335 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 336 ip->i_flag &= ~IN_ALLMOD; 337 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", 338 ip->i_number)); 339 lfs_segunlock(fs); 340 341 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 342 343 return 0; 344 } 345 346 fs->lfs_flushvp = vp; 347 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) { 348 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 349 fs->lfs_flushvp = NULL; 350 KASSERT(fs->lfs_flushvp_fakevref == 0); 351 lfs_segunlock(fs); 352 353 /* Make sure that any pending buffers get written */ 354 mutex_enter(vp->v_interlock); 355 while (vp->v_numoutput > 0) { 356 cv_wait(&vp->v_cv, vp->v_interlock); 357 } 358 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 359 KASSERT(vp->v_numoutput == 0); 360 mutex_exit(vp->v_interlock); 361 362 return error; 363 } 364 sp = fs->lfs_sp; 365 366 flushed = 0; 367 if (VPISEMPTY(vp)) { 368 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 369 ++flushed; 370 } else if ((ip->i_flag & IN_CLEANING) && 371 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 372 ivndebug(vp,"vflush/clean"); 373 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 374 ++flushed; 375 } else if (lfs_dostats) { 376 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 377 ++lfs_stats.vflush_invoked; 378 ivndebug(vp,"vflush"); 379 } 380 381 #ifdef DIAGNOSTIC 382 if (vp->v_uflag & VU_DIROP) { 383 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n")); 384 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */ 385 } 386 #endif 387 388 do { 389 #ifdef DEBUG 390 int loopcount = 0; 391 #endif 392 do { 393 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 394 relock = lfs_writefile(fs, sp, vp); 395 if (relock && vp != fs->lfs_ivnode) { 396 /* 397 * Might have to wait for the 398 * cleaner to run; but we're 399 * still not done with this vnode. 400 * XXX we can do better than this. 401 */ 402 KDASSERT(ip->i_number != LFS_IFILE_INUM); 403 lfs_writeinode(fs, sp, ip); 404 mutex_enter(&lfs_lock); 405 LFS_SET_UINO(ip, IN_MODIFIED); 406 mutex_exit(&lfs_lock); 407 lfs_writeseg(fs, sp); 408 lfs_segunlock(fs); 409 lfs_segunlock_relock(fs); 410 goto top; 411 } 412 } 413 /* 414 * If we begin a new segment in the middle of writing 415 * the Ifile, it creates an inconsistent checkpoint, 416 * since the Ifile information for the new segment 417 * is not up-to-date. Take care of this here by 418 * sending the Ifile through again in case there 419 * are newly dirtied blocks. But wait, there's more! 420 * This second Ifile write could *also* cross a segment 421 * boundary, if the first one was large. The second 422 * one is guaranteed to be no more than 8 blocks, 423 * though (two segment blocks and supporting indirects) 424 * so the third write *will not* cross the boundary. 425 */ 426 if (vp == fs->lfs_ivnode) { 427 lfs_writefile(fs, sp, vp); 428 lfs_writefile(fs, sp, vp); 429 } 430 #ifdef DEBUG 431 if (++loopcount > 2) 432 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount); 433 #endif 434 } while (lfs_writeinode(fs, sp, ip)); 435 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 436 437 if (lfs_dostats) { 438 ++lfs_stats.nwrites; 439 if (sp->seg_flags & SEGM_SYNC) 440 ++lfs_stats.nsync_writes; 441 if (sp->seg_flags & SEGM_CKP) 442 ++lfs_stats.ncheckpoints; 443 } 444 /* 445 * If we were called from somewhere that has already held the seglock 446 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 447 * the write to complete because we are still locked. 448 * Since lfs_vflush() must return the vnode with no dirty buffers, 449 * we must explicitly wait, if that is the case. 450 * 451 * We compare the iocount against 1, not 0, because it is 452 * artificially incremented by lfs_seglock(). 453 */ 454 mutex_enter(&lfs_lock); 455 if (fs->lfs_seglock > 1) { 456 while (fs->lfs_iocount > 1) 457 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, 458 "lfs_vflush", 0, &lfs_lock); 459 } 460 mutex_exit(&lfs_lock); 461 462 lfs_segunlock(fs); 463 464 /* Wait for these buffers to be recovered by aiodoned */ 465 mutex_enter(vp->v_interlock); 466 while (vp->v_numoutput > 0) { 467 cv_wait(&vp->v_cv, vp->v_interlock); 468 } 469 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 470 KASSERT(vp->v_numoutput == 0); 471 mutex_exit(vp->v_interlock); 472 473 fs->lfs_flushvp = NULL; 474 KASSERT(fs->lfs_flushvp_fakevref == 0); 475 476 return (0); 477 } 478 479 struct lfs_writevnodes_ctx { 480 int op; 481 struct lfs *fs; 482 }; 483 static bool 484 lfs_writevnodes_selector(void *cl, struct vnode *vp) 485 { 486 struct lfs_writevnodes_ctx *c = cl; 487 struct inode *ip = VTOI(vp); 488 int op = c->op; 489 490 if (ip == NULL || vp->v_type == VNON) 491 return false; 492 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) || 493 (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) { 494 vndebug(vp, "dirop"); 495 return false; 496 } 497 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 498 vndebug(vp,"empty"); 499 return false;; 500 } 501 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM && 502 vp != c->fs->lfs_flushvp && !(ip->i_flag & IN_CLEANING)) { 503 vndebug(vp,"cleaning"); 504 return false; 505 } 506 mutex_enter(&lfs_lock); 507 if (vp == c->fs->lfs_unlockvp) { 508 mutex_exit(&lfs_lock); 509 return false; 510 } 511 mutex_exit(&lfs_lock); 512 513 return true; 514 } 515 516 int 517 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 518 { 519 struct inode *ip; 520 struct vnode *vp; 521 struct vnode_iterator *marker; 522 struct lfs_writevnodes_ctx ctx; 523 int inodes_written = 0; 524 int error = 0; 525 526 /* 527 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist. 528 * XXX The rationale is unclear, the initial commit had no information. 529 * XXX If the order really matters we have to sort the vnodes first. 530 */ 531 532 ASSERT_SEGLOCK(fs); 533 vfs_vnode_iterator_init(mp, &marker); 534 ctx.op = op; 535 ctx.fs = fs; 536 while ((vp = vfs_vnode_iterator_next(marker, 537 lfs_writevnodes_selector, &ctx)) != NULL) { 538 ip = VTOI(vp); 539 540 /* 541 * Write the inode/file if dirty and it's not the IFILE. 542 */ 543 if (((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) && 544 ip->i_number != LFS_IFILE_INUM) { 545 error = lfs_writefile(fs, sp, vp); 546 if (error) { 547 vrele(vp); 548 if (error == EAGAIN) { 549 /* 550 * This error from lfs_putpages 551 * indicates we need to drop 552 * the segment lock and start 553 * over after the cleaner has 554 * had a chance to run. 555 */ 556 lfs_writeinode(fs, sp, ip); 557 lfs_writeseg(fs, sp); 558 if (!VPISEMPTY(vp) && 559 !WRITEINPROG(vp) && 560 !(ip->i_flag & IN_ALLMOD)) { 561 mutex_enter(&lfs_lock); 562 LFS_SET_UINO(ip, IN_MODIFIED); 563 mutex_exit(&lfs_lock); 564 } 565 break; 566 } 567 error = 0; /* XXX not quite right */ 568 continue; 569 } 570 571 if (!VPISEMPTY(vp)) { 572 if (WRITEINPROG(vp)) { 573 ivndebug(vp,"writevnodes/write2"); 574 } else if (!(ip->i_flag & IN_ALLMOD)) { 575 mutex_enter(&lfs_lock); 576 LFS_SET_UINO(ip, IN_MODIFIED); 577 mutex_exit(&lfs_lock); 578 } 579 } 580 (void) lfs_writeinode(fs, sp, ip); 581 inodes_written++; 582 } 583 vrele(vp); 584 } 585 vfs_vnode_iterator_destroy(marker); 586 return error; 587 } 588 589 /* 590 * Do a checkpoint. 591 */ 592 int 593 lfs_segwrite(struct mount *mp, int flags) 594 { 595 struct buf *bp; 596 struct inode *ip; 597 struct lfs *fs; 598 struct segment *sp; 599 struct vnode *vp; 600 SEGUSE *segusep; 601 int do_ckp, did_ckp, error; 602 unsigned n, segleft, maxseg, sn, i, curseg; 603 int writer_set = 0; 604 int dirty; 605 int redo; 606 SEGSUM *ssp; 607 int um_error; 608 609 fs = VFSTOULFS(mp)->um_lfs; 610 ASSERT_MAYBE_SEGLOCK(fs); 611 612 if (fs->lfs_ronly) 613 return EROFS; 614 615 lfs_imtime(fs); 616 617 /* 618 * Allocate a segment structure and enough space to hold pointers to 619 * the maximum possible number of buffers which can be described in a 620 * single summary block. 621 */ 622 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags); 623 624 /* We can't do a partial write and checkpoint at the same time. */ 625 if (do_ckp) 626 flags &= ~SEGM_SINGLE; 627 628 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 629 sp = fs->lfs_sp; 630 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP)) 631 do_ckp = 1; 632 633 /* 634 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 635 * in which case we have to flush *all* buffers off of this vnode. 636 * We don't care about other nodes, but write any non-dirop nodes 637 * anyway in anticipation of another getnewvnode(). 638 * 639 * If we're cleaning we only write cleaning and ifile blocks, and 640 * no dirops, since otherwise we'd risk corruption in a crash. 641 */ 642 if (sp->seg_flags & SEGM_CLEAN) 643 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 644 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 645 do { 646 um_error = lfs_writevnodes(fs, mp, sp, VN_REG); 647 if ((sp->seg_flags & SEGM_SINGLE) && 648 lfs_sb_getcurseg(fs) != fs->lfs_startseg) { 649 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs))); 650 break; 651 } 652 653 if (do_ckp || fs->lfs_dirops == 0) { 654 if (!writer_set) { 655 lfs_writer_enter(fs, "lfs writer"); 656 writer_set = 1; 657 } 658 error = lfs_writevnodes(fs, mp, sp, VN_DIROP); 659 if (um_error == 0) 660 um_error = error; 661 /* In case writevnodes errored out */ 662 lfs_flush_dirops(fs); 663 ssp = (SEGSUM *)(sp->segsum); 664 lfs_ss_setflags(fs, ssp, 665 lfs_ss_getflags(fs, ssp) & ~(SS_CONT)); 666 lfs_finalize_fs_seguse(fs); 667 } 668 if (do_ckp && um_error) { 669 lfs_segunlock_relock(fs); 670 sp = fs->lfs_sp; 671 } 672 } while (do_ckp && um_error != 0); 673 } 674 675 /* 676 * If we are doing a checkpoint, mark everything since the 677 * last checkpoint as no longer ACTIVE. 678 */ 679 if (do_ckp || fs->lfs_doifile) { 680 segleft = lfs_sb_getnseg(fs); 681 curseg = 0; 682 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) { 683 int bread_error; 684 685 dirty = 0; 686 bread_error = bread(fs->lfs_ivnode, 687 lfs_sb_getcleansz(fs) + n, 688 lfs_sb_getbsize(fs), B_MODIFY, &bp); 689 if (bread_error) 690 panic("lfs_segwrite: ifile read: " 691 "seguse %u: error %d\n", 692 n, bread_error); 693 segusep = (SEGUSE *)bp->b_data; 694 maxseg = min(segleft, lfs_sb_getsepb(fs)); 695 for (i = 0; i < maxseg; i++) { 696 sn = curseg + i; 697 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) && 698 segusep->su_flags & SEGUSE_ACTIVE) { 699 segusep->su_flags &= ~SEGUSE_ACTIVE; 700 --fs->lfs_nactive; 701 ++dirty; 702 } 703 fs->lfs_suflags[fs->lfs_activesb][sn] = 704 segusep->su_flags; 705 if (lfs_sb_getversion(fs) > 1) 706 ++segusep; 707 else 708 segusep = (SEGUSE *) 709 ((SEGUSE_V1 *)segusep + 1); 710 } 711 712 if (dirty) 713 error = LFS_BWRITE_LOG(bp); /* Ifile */ 714 else 715 brelse(bp, 0); 716 segleft -= lfs_sb_getsepb(fs); 717 curseg += lfs_sb_getsepb(fs); 718 } 719 } 720 721 KASSERT(LFS_SEGLOCK_HELD(fs)); 722 723 did_ckp = 0; 724 if (do_ckp || fs->lfs_doifile) { 725 vp = fs->lfs_ivnode; 726 #ifdef DEBUG 727 int loopcount = 0; 728 #endif 729 do { 730 #ifdef DEBUG 731 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); 732 #endif 733 mutex_enter(&lfs_lock); 734 fs->lfs_flags &= ~LFS_IFDIRTY; 735 mutex_exit(&lfs_lock); 736 737 ip = VTOI(vp); 738 739 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 740 /* 741 * Ifile has no pages, so we don't need 742 * to check error return here. 743 */ 744 lfs_writefile(fs, sp, vp); 745 /* 746 * Ensure the Ifile takes the current segment 747 * into account. See comment in lfs_vflush. 748 */ 749 lfs_writefile(fs, sp, vp); 750 lfs_writefile(fs, sp, vp); 751 } 752 753 if (ip->i_flag & IN_ALLMOD) 754 ++did_ckp; 755 #if 0 756 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0); 757 #else 758 redo = lfs_writeinode(fs, sp, ip); 759 #endif 760 redo += lfs_writeseg(fs, sp); 761 mutex_enter(&lfs_lock); 762 redo += (fs->lfs_flags & LFS_IFDIRTY); 763 mutex_exit(&lfs_lock); 764 #ifdef DEBUG 765 if (++loopcount > 2) 766 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n", 767 loopcount); 768 #endif 769 } while (redo && do_ckp); 770 771 /* 772 * Unless we are unmounting, the Ifile may continue to have 773 * dirty blocks even after a checkpoint, due to changes to 774 * inodes' atime. If we're checkpointing, it's "impossible" 775 * for other parts of the Ifile to be dirty after the loop 776 * above, since we hold the segment lock. 777 */ 778 mutex_enter(vp->v_interlock); 779 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 780 LFS_CLR_UINO(ip, IN_ALLMOD); 781 } 782 #ifdef DIAGNOSTIC 783 else if (do_ckp) { 784 int do_panic = 0; 785 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 786 if (bp->b_lblkno < lfs_sb_getcleansz(fs) + 787 lfs_sb_getsegtabsz(fs) && 788 !(bp->b_flags & B_GATHERED)) { 789 printf("ifile lbn %ld still dirty (flags %lx)\n", 790 (long)bp->b_lblkno, 791 (long)bp->b_flags); 792 ++do_panic; 793 } 794 } 795 if (do_panic) 796 panic("dirty blocks"); 797 } 798 #endif 799 mutex_exit(vp->v_interlock); 800 } else { 801 (void) lfs_writeseg(fs, sp); 802 } 803 804 /* Note Ifile no longer needs to be written */ 805 fs->lfs_doifile = 0; 806 if (writer_set) 807 lfs_writer_leave(fs); 808 809 /* 810 * If we didn't write the Ifile, we didn't really do anything. 811 * That means that (1) there is a checkpoint on disk and (2) 812 * nothing has changed since it was written. 813 * 814 * Take the flags off of the segment so that lfs_segunlock 815 * doesn't have to write the superblock either. 816 */ 817 if (do_ckp && !did_ckp) { 818 sp->seg_flags &= ~SEGM_CKP; 819 } 820 821 if (lfs_dostats) { 822 ++lfs_stats.nwrites; 823 if (sp->seg_flags & SEGM_SYNC) 824 ++lfs_stats.nsync_writes; 825 if (sp->seg_flags & SEGM_CKP) 826 ++lfs_stats.ncheckpoints; 827 } 828 lfs_segunlock(fs); 829 return (0); 830 } 831 832 /* 833 * Write the dirty blocks associated with a vnode. 834 */ 835 int 836 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 837 { 838 struct inode *ip; 839 int i, frag; 840 SEGSUM *ssp; 841 int error; 842 843 ASSERT_SEGLOCK(fs); 844 error = 0; 845 ip = VTOI(vp); 846 847 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 848 849 if (vp->v_uflag & VU_DIROP) { 850 ssp = (SEGSUM *)sp->segsum; 851 lfs_ss_setflags(fs, ssp, 852 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT)); 853 } 854 855 if (sp->seg_flags & SEGM_CLEAN) { 856 lfs_gather(fs, sp, vp, lfs_match_fake); 857 /* 858 * For a file being flushed, we need to write *all* blocks. 859 * This means writing the cleaning blocks first, and then 860 * immediately following with any non-cleaning blocks. 861 * The same is true of the Ifile since checkpoints assume 862 * that all valid Ifile blocks are written. 863 */ 864 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) { 865 lfs_gather(fs, sp, vp, lfs_match_data); 866 /* 867 * Don't call VOP_PUTPAGES: if we're flushing, 868 * we've already done it, and the Ifile doesn't 869 * use the page cache. 870 */ 871 } 872 } else { 873 lfs_gather(fs, sp, vp, lfs_match_data); 874 /* 875 * If we're flushing, we've already called VOP_PUTPAGES 876 * so don't do it again. Otherwise, we want to write 877 * everything we've got. 878 */ 879 if (!IS_FLUSHING(fs, vp)) { 880 mutex_enter(vp->v_interlock); 881 error = VOP_PUTPAGES(vp, 0, 0, 882 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 883 } 884 } 885 886 /* 887 * It may not be necessary to write the meta-data blocks at this point, 888 * as the roll-forward recovery code should be able to reconstruct the 889 * list. 890 * 891 * We have to write them anyway, though, under two conditions: (1) the 892 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 893 * checkpointing. 894 * 895 * BUT if we are cleaning, we might have indirect blocks that refer to 896 * new blocks not being written yet, in addition to fragments being 897 * moved out of a cleaned segment. If that is the case, don't 898 * write the indirect blocks, or the finfo will have a small block 899 * in the middle of it! 900 * XXX in this case isn't the inode size wrong too? 901 */ 902 frag = 0; 903 if (sp->seg_flags & SEGM_CLEAN) { 904 for (i = 0; i < ULFS_NDADDR; i++) 905 if (ip->i_lfs_fragsize[i] > 0 && 906 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs)) 907 ++frag; 908 } 909 #ifdef DIAGNOSTIC 910 if (frag > 1) 911 panic("lfs_writefile: more than one fragment!"); 912 #endif 913 if (IS_FLUSHING(fs, vp) || 914 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 915 lfs_gather(fs, sp, vp, lfs_match_indir); 916 lfs_gather(fs, sp, vp, lfs_match_dindir); 917 lfs_gather(fs, sp, vp, lfs_match_tindir); 918 } 919 lfs_release_finfo(fs); 920 921 return error; 922 } 923 924 /* 925 * Update segment accounting to reflect this inode's change of address. 926 */ 927 static int 928 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr) 929 { 930 struct buf *bp; 931 daddr_t daddr; 932 IFILE *ifp; 933 SEGUSE *sup; 934 ino_t ino; 935 int redo_ifile; 936 u_int32_t sn; 937 938 redo_ifile = 0; 939 940 /* 941 * If updating the ifile, update the super-block. Update the disk 942 * address and access times for this inode in the ifile. 943 */ 944 ino = ip->i_number; 945 if (ino == LFS_IFILE_INUM) { 946 daddr = lfs_sb_getidaddr(fs); 947 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr)); 948 } else { 949 LFS_IENTRY(ifp, fs, ino, bp); 950 daddr = lfs_if_getdaddr(fs, ifp); 951 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr)); 952 (void)LFS_BWRITE_LOG(bp); /* Ifile */ 953 } 954 955 /* 956 * If this is the Ifile and lfs_offset is set to the first block 957 * in the segment, dirty the new segment's accounting block 958 * (XXX should already be dirty?) and tell the caller to do it again. 959 */ 960 if (ip->i_number == LFS_IFILE_INUM) { 961 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs)); 962 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) == 963 lfs_sb_getoffset(fs)) { 964 LFS_SEGENTRY(sup, fs, sn, bp); 965 KASSERT(bp->b_oflags & BO_DELWRI); 966 LFS_WRITESEGENTRY(sup, fs, sn, bp); 967 /* fs->lfs_flags |= LFS_IFDIRTY; */ 968 redo_ifile |= 1; 969 } 970 } 971 972 /* 973 * The inode's last address should not be in the current partial 974 * segment, except under exceptional circumstances (lfs_writevnodes 975 * had to start over, and in the meantime more blocks were written 976 * to a vnode). Both inodes will be accounted to this segment 977 * in lfs_writeseg so we need to subtract the earlier version 978 * here anyway. The segment count can temporarily dip below 979 * zero here; keep track of how many duplicates we have in 980 * "dupino" so we don't panic below. 981 */ 982 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) { 983 ++sp->ndupino; 984 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " 985 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 986 (long long)daddr, sp->ndupino)); 987 } 988 /* 989 * Account the inode: it no longer belongs to its former segment, 990 * though it will not belong to the new segment until that segment 991 * is actually written. 992 */ 993 if (daddr != LFS_UNUSED_DADDR) { 994 u_int32_t oldsn = lfs_dtosn(fs, daddr); 995 #ifdef DIAGNOSTIC 996 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 997 #endif 998 LFS_SEGENTRY(sup, fs, oldsn, bp); 999 #ifdef DIAGNOSTIC 1000 if (sup->su_nbytes + DINOSIZE(fs) * ndupino < DINOSIZE(fs)) { 1001 printf("lfs_writeinode: negative bytes " 1002 "(segment %" PRIu32 " short by %d, " 1003 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1004 ", daddr=%" PRId64 ", su_nbytes=%u, " 1005 "ndupino=%d)\n", 1006 lfs_dtosn(fs, daddr), 1007 (int)DINOSIZE(fs) * 1008 (1 - sp->ndupino) - sup->su_nbytes, 1009 oldsn, sp->seg_number, daddr, 1010 (unsigned int)sup->su_nbytes, 1011 sp->ndupino); 1012 panic("lfs_writeinode: negative bytes"); 1013 sup->su_nbytes = DINOSIZE(fs); 1014 } 1015 #endif 1016 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", 1017 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino)); 1018 sup->su_nbytes -= DINOSIZE(fs); 1019 redo_ifile |= 1020 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1021 if (redo_ifile) { 1022 mutex_enter(&lfs_lock); 1023 fs->lfs_flags |= LFS_IFDIRTY; 1024 mutex_exit(&lfs_lock); 1025 /* Don't double-account */ 1026 lfs_sb_setidaddr(fs, 0x0); 1027 } 1028 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1029 } 1030 1031 return redo_ifile; 1032 } 1033 1034 int 1035 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 1036 { 1037 struct buf *bp; 1038 union lfs_dinode *cdp; 1039 struct vnode *vp = ITOV(ip); 1040 daddr_t daddr; 1041 IINFO *iip; 1042 int i; 1043 int redo_ifile = 0; 1044 int gotblk = 0; 1045 int count; 1046 SEGSUM *ssp; 1047 1048 ASSERT_SEGLOCK(fs); 1049 if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP)) 1050 return (0); 1051 1052 /* Can't write ifile when writer is not set */ 1053 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 || 1054 (sp->seg_flags & SEGM_CLEAN)); 1055 1056 /* 1057 * If this is the Ifile, see if writing it here will generate a 1058 * temporary misaccounting. If it will, do the accounting and write 1059 * the blocks, postponing the inode write until the accounting is 1060 * solid. 1061 */ 1062 count = 0; 1063 while (vp == fs->lfs_ivnode) { 1064 int redo = 0; 1065 1066 if (sp->idp == NULL && sp->ibp == NULL && 1067 (sp->seg_bytes_left < lfs_sb_getibsize(fs) || 1068 sp->sum_bytes_left < sizeof(int32_t))) { 1069 (void) lfs_writeseg(fs, sp); 1070 continue; 1071 } 1072 1073 /* Look for dirty Ifile blocks */ 1074 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) { 1075 if (!(bp->b_flags & B_GATHERED)) { 1076 redo = 1; 1077 break; 1078 } 1079 } 1080 1081 if (redo == 0) 1082 redo = lfs_update_iaddr(fs, sp, ip, 0x0); 1083 if (redo == 0) 1084 break; 1085 1086 if (sp->idp) { 1087 lfs_dino_setinumber(fs, sp->idp, 0); 1088 sp->idp = NULL; 1089 } 1090 ++count; 1091 if (count > 2) 1092 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count); 1093 lfs_writefile(fs, sp, fs->lfs_ivnode); 1094 } 1095 1096 /* Allocate a new inode block if necessary. */ 1097 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 1098 sp->ibp == NULL) { 1099 /* Allocate a new segment if necessary. */ 1100 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) || 1101 sp->sum_bytes_left < sizeof(int32_t)) 1102 (void) lfs_writeseg(fs, sp); 1103 1104 /* Get next inode block. */ 1105 daddr = lfs_sb_getoffset(fs); 1106 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs))); 1107 sp->ibp = *sp->cbpp++ = 1108 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 1109 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0); 1110 gotblk++; 1111 1112 /* Zero out inode numbers */ 1113 for (i = 0; i < LFS_INOPB(fs); ++i) { 1114 union lfs_dinode *tmpdi; 1115 1116 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data + 1117 DINOSIZE(fs) * i); 1118 lfs_dino_setinumber(fs, tmpdi, 0); 1119 } 1120 1121 ++sp->start_bpp; 1122 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs))); 1123 /* Set remaining space counters. */ 1124 sp->seg_bytes_left -= lfs_sb_getibsize(fs); 1125 sp->sum_bytes_left -= sizeof(int32_t); 1126 1127 /* Store the address in the segment summary. */ 1128 iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs)); 1129 lfs_ii_setblock(fs, iip, daddr); 1130 } 1131 1132 /* Check VU_DIROP in case there is a new file with no data blocks */ 1133 if (vp->v_uflag & VU_DIROP) { 1134 ssp = (SEGSUM *)sp->segsum; 1135 lfs_ss_setflags(fs, ssp, 1136 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT)); 1137 } 1138 1139 /* Update the inode times and copy the inode onto the inode page. */ 1140 /* XXX kludge --- don't redirty the ifile just to put times on it */ 1141 if (ip->i_number != LFS_IFILE_INUM) 1142 LFS_ITIMES(ip, NULL, NULL, NULL); 1143 1144 /* 1145 * If this is the Ifile, and we've already written the Ifile in this 1146 * partial segment, just overwrite it (it's not on disk yet) and 1147 * continue. 1148 * 1149 * XXX we know that the bp that we get the second time around has 1150 * already been gathered. 1151 */ 1152 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 1153 lfs_copy_dinode(fs, sp->idp, ip->i_din); 1154 ip->i_lfs_osize = ip->i_size; 1155 return 0; 1156 } 1157 1158 bp = sp->ibp; 1159 cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs)); 1160 lfs_copy_dinode(fs, cdp, ip->i_din); 1161 1162 /* 1163 * This inode is on its way to disk; clear its VU_DIROP status when 1164 * the write is complete. 1165 */ 1166 if (vp->v_uflag & VU_DIROP) { 1167 if (!(sp->seg_flags & SEGM_CLEAN)) 1168 ip->i_flag |= IN_CDIROP; 1169 else { 1170 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number)); 1171 } 1172 } 1173 1174 /* 1175 * If cleaning, link counts and directory file sizes cannot change, 1176 * since those would be directory operations---even if the file 1177 * we are writing is marked VU_DIROP we should write the old values. 1178 * If we're not cleaning, of course, update the values so we get 1179 * current values the next time we clean. 1180 */ 1181 if (sp->seg_flags & SEGM_CLEAN) { 1182 if (vp->v_uflag & VU_DIROP) { 1183 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink); 1184 /* if (vp->v_type == VDIR) */ 1185 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize); 1186 } 1187 } else { 1188 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp); 1189 ip->i_lfs_osize = ip->i_size; 1190 } 1191 1192 1193 /* We can finish the segment accounting for truncations now */ 1194 lfs_finalize_ino_seguse(fs, ip); 1195 1196 /* 1197 * If we are cleaning, ensure that we don't write UNWRITTEN disk 1198 * addresses to disk; possibly change the on-disk record of 1199 * the inode size, either by reverting to the previous size 1200 * (in the case of cleaning) or by verifying the inode's block 1201 * holdings (in the case of files being allocated as they are being 1202 * written). 1203 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail 1204 * XXX count on disk wrong by the same amount. We should be 1205 * XXX able to "borrow" from lfs_avail and return it after the 1206 * XXX Ifile is written. See also in lfs_writeseg. 1207 */ 1208 1209 /* Check file size based on highest allocated block */ 1210 if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG || 1211 (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) && 1212 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) { 1213 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs)); 1214 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %" 1215 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp))); 1216 } 1217 if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) { 1218 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)" 1219 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks, 1220 lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs))); 1221 for (i=0; i<ULFS_NDADDR; i++) { 1222 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) { 1223 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1224 lfs_dino_setdb(fs, cdp, i, 0); 1225 } 1226 } 1227 for (i=0; i<ULFS_NIADDR; i++) { 1228 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) { 1229 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1230 lfs_dino_setib(fs, cdp, i, 0); 1231 } 1232 } 1233 } 1234 1235 #ifdef DIAGNOSTIC 1236 /* 1237 * Check dinode held blocks against dinode size. 1238 * This should be identical to the check in lfs_vget(). 1239 */ 1240 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs); 1241 i < ULFS_NDADDR; i++) { 1242 KASSERT(i >= 0); 1243 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK) 1244 continue; 1245 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK || 1246 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0) 1247 continue; 1248 if (lfs_dino_getdb(fs, cdp, i) != 0) { 1249 # ifdef DEBUG 1250 lfs_dump_dinode(fs, cdp); 1251 # endif 1252 panic("writing inconsistent inode"); 1253 } 1254 } 1255 #endif /* DIAGNOSTIC */ 1256 1257 if (ip->i_flag & IN_CLEANING) 1258 LFS_CLR_UINO(ip, IN_CLEANING); 1259 else { 1260 /* XXX IN_ALLMOD */ 1261 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 1262 IN_UPDATE | IN_MODIFY); 1263 if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din)) 1264 LFS_CLR_UINO(ip, IN_MODIFIED); 1265 else { 1266 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real " 1267 "blks=%d, eff=%jd\n", ip->i_number, 1268 lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks)); 1269 } 1270 } 1271 1272 if (ip->i_number == LFS_IFILE_INUM) { 1273 /* We know sp->idp == NULL */ 1274 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs)); 1275 1276 /* Not dirty any more */ 1277 mutex_enter(&lfs_lock); 1278 fs->lfs_flags &= ~LFS_IFDIRTY; 1279 mutex_exit(&lfs_lock); 1280 } 1281 1282 if (gotblk) { 1283 mutex_enter(&bufcache_lock); 1284 LFS_LOCK_BUF(bp); 1285 brelsel(bp, 0); 1286 mutex_exit(&bufcache_lock); 1287 } 1288 1289 /* Increment inode count in segment summary block. */ 1290 1291 ssp = (SEGSUM *)sp->segsum; 1292 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1); 1293 1294 /* If this page is full, set flag to allocate a new page. */ 1295 if (++sp->ninodes % LFS_INOPB(fs) == 0) 1296 sp->ibp = NULL; 1297 1298 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno); 1299 1300 KASSERT(redo_ifile == 0); 1301 return (redo_ifile); 1302 } 1303 1304 int 1305 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr) 1306 { 1307 struct lfs *fs; 1308 int vers; 1309 int j, blksinblk; 1310 1311 ASSERT_SEGLOCK(sp->fs); 1312 /* 1313 * If full, finish this segment. We may be doing I/O, so 1314 * release and reacquire the splbio(). 1315 */ 1316 #ifdef DIAGNOSTIC 1317 if (sp->vp == NULL) 1318 panic ("lfs_gatherblock: Null vp in segment"); 1319 #endif 1320 fs = sp->fs; 1321 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs)); 1322 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1323 sp->seg_bytes_left < bp->b_bcount) { 1324 if (mptr) 1325 mutex_exit(mptr); 1326 lfs_updatemeta(sp); 1327 1328 vers = lfs_fi_getversion(fs, sp->fip); 1329 (void) lfs_writeseg(fs, sp); 1330 1331 /* Add the current file to the segment summary. */ 1332 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers); 1333 1334 if (mptr) 1335 mutex_enter(mptr); 1336 return (1); 1337 } 1338 1339 if (bp->b_flags & B_GATHERED) { 1340 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju," 1341 " lbn %" PRId64 "\n", 1342 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno)); 1343 return (0); 1344 } 1345 1346 /* Insert into the buffer list, update the FINFO block. */ 1347 bp->b_flags |= B_GATHERED; 1348 1349 *sp->cbpp++ = bp; 1350 for (j = 0; j < blksinblk; j++) { 1351 unsigned bn; 1352 1353 bn = lfs_fi_getnblocks(fs, sp->fip); 1354 lfs_fi_setnblocks(fs, sp->fip, bn+1); 1355 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j); 1356 /* This block's accounting moves from lfs_favail to lfs_avail */ 1357 lfs_deregister_block(sp->vp, bp->b_lblkno + j); 1358 } 1359 1360 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1361 sp->seg_bytes_left -= bp->b_bcount; 1362 return (0); 1363 } 1364 1365 int 1366 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1367 int (*match)(struct lfs *, struct buf *)) 1368 { 1369 struct buf *bp, *nbp; 1370 int count = 0; 1371 1372 ASSERT_SEGLOCK(fs); 1373 if (vp->v_type == VBLK) 1374 return 0; 1375 KASSERT(sp->vp == NULL); 1376 sp->vp = vp; 1377 mutex_enter(&bufcache_lock); 1378 1379 #ifndef LFS_NO_BACKBUF_HACK 1380 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1381 # define BUF_OFFSET \ 1382 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp) 1383 # define BACK_BUF(BP) \ 1384 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1385 # define BEG_OF_LIST \ 1386 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1387 1388 loop: 1389 /* Find last buffer. */ 1390 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1391 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1392 bp = LIST_NEXT(bp, b_vnbufs)) 1393 /* nothing */; 1394 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1395 nbp = BACK_BUF(bp); 1396 #else /* LFS_NO_BACKBUF_HACK */ 1397 loop: 1398 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1399 nbp = LIST_NEXT(bp, b_vnbufs); 1400 #endif /* LFS_NO_BACKBUF_HACK */ 1401 if ((bp->b_cflags & BC_BUSY) != 0 || 1402 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) { 1403 #ifdef DEBUG 1404 if (vp == fs->lfs_ivnode && 1405 (bp->b_cflags & BC_BUSY) != 0 && 1406 (bp->b_flags & B_GATHERED) == 0) 1407 log(LOG_NOTICE, "lfs_gather: ifile lbn %" 1408 PRId64 " busy (%x) at 0x%jx", 1409 bp->b_lblkno, bp->b_flags, 1410 (uintmax_t)lfs_sb_getoffset(fs)); 1411 #endif 1412 continue; 1413 } 1414 #ifdef DIAGNOSTIC 1415 # ifdef LFS_USE_B_INVAL 1416 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) { 1417 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1418 " is BC_INVAL\n", bp->b_lblkno)); 1419 VOP_PRINT(bp->b_vp); 1420 } 1421 # endif /* LFS_USE_B_INVAL */ 1422 if (!(bp->b_oflags & BO_DELWRI)) 1423 panic("lfs_gather: bp not BO_DELWRI"); 1424 if (!(bp->b_flags & B_LOCKED)) { 1425 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1426 " blk %" PRId64 " not B_LOCKED\n", 1427 bp->b_lblkno, 1428 LFS_DBTOFSB(fs, bp->b_blkno))); 1429 VOP_PRINT(bp->b_vp); 1430 panic("lfs_gather: bp not B_LOCKED"); 1431 } 1432 #endif 1433 if (lfs_gatherblock(sp, bp, &bufcache_lock)) { 1434 goto loop; 1435 } 1436 count++; 1437 } 1438 mutex_exit(&bufcache_lock); 1439 lfs_updatemeta(sp); 1440 KASSERT(sp->vp == vp); 1441 sp->vp = NULL; 1442 return count; 1443 } 1444 1445 #if DEBUG 1446 # define DEBUG_OOFF(n) do { \ 1447 if (ooff == 0) { \ 1448 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ 1449 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1450 ", was 0x0 (or %" PRId64 ")\n", \ 1451 (n), ip->i_number, lbn, ndaddr, daddr)); \ 1452 } \ 1453 } while (0) 1454 #else 1455 # define DEBUG_OOFF(n) 1456 #endif 1457 1458 /* 1459 * Change the given block's address to ndaddr, finding its previous 1460 * location using ulfs_bmaparray(). 1461 * 1462 * Account for this change in the segment table. 1463 * 1464 * called with sp == NULL by roll-forwarding code. 1465 */ 1466 void 1467 lfs_update_single(struct lfs *fs, struct segment *sp, 1468 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size) 1469 { 1470 SEGUSE *sup; 1471 struct buf *bp; 1472 struct indir a[ULFS_NIADDR + 2], *ap; 1473 struct inode *ip; 1474 daddr_t daddr, ooff; 1475 int num, error; 1476 int bb, osize, obb; 1477 1478 ASSERT_SEGLOCK(fs); 1479 KASSERT(sp == NULL || sp->vp == vp); 1480 ip = VTOI(vp); 1481 1482 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1483 if (error) 1484 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error); 1485 1486 KASSERT(daddr <= LFS_MAX_DADDR(fs)); 1487 if (daddr > 0) 1488 daddr = LFS_DBTOFSB(fs, daddr); 1489 1490 bb = lfs_numfrags(fs, size); 1491 switch (num) { 1492 case 0: 1493 ooff = lfs_dino_getdb(fs, ip->i_din, lbn); 1494 DEBUG_OOFF(0); 1495 if (ooff == UNWRITTEN) 1496 lfs_dino_setblocks(fs, ip->i_din, 1497 lfs_dino_getblocks(fs, ip->i_din) + bb); 1498 else { 1499 /* possible fragment truncation or extension */ 1500 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]); 1501 lfs_dino_setblocks(fs, ip->i_din, 1502 lfs_dino_getblocks(fs, ip->i_din) + (bb-obb)); 1503 } 1504 lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr); 1505 break; 1506 case 1: 1507 ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off); 1508 DEBUG_OOFF(1); 1509 if (ooff == UNWRITTEN) 1510 lfs_dino_setblocks(fs, ip->i_din, 1511 lfs_dino_getblocks(fs, ip->i_din) + bb); 1512 lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr); 1513 break; 1514 default: 1515 ap = &a[num - 1]; 1516 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), 1517 B_MODIFY, &bp)) 1518 panic("lfs_updatemeta: bread bno %" PRId64, 1519 ap->in_lbn); 1520 1521 ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off); 1522 DEBUG_OOFF(num); 1523 if (ooff == UNWRITTEN) 1524 lfs_dino_setblocks(fs, ip->i_din, 1525 lfs_dino_getblocks(fs, ip->i_din) + bb); 1526 lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr); 1527 (void) VOP_BWRITE(bp->b_vp, bp); 1528 } 1529 1530 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1531 1532 /* Update hiblk when extending the file */ 1533 if (lbn > ip->i_lfs_hiblk) 1534 ip->i_lfs_hiblk = lbn; 1535 1536 /* 1537 * Though we'd rather it couldn't, this *can* happen right now 1538 * if cleaning blocks and regular blocks coexist. 1539 */ 1540 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1541 1542 /* 1543 * Update segment usage information, based on old size 1544 * and location. 1545 */ 1546 if (daddr > 0) { 1547 u_int32_t oldsn = lfs_dtosn(fs, daddr); 1548 #ifdef DIAGNOSTIC 1549 int ndupino; 1550 1551 if (sp && sp->seg_number == oldsn) { 1552 ndupino = sp->ndupino; 1553 } else { 1554 ndupino = 0; 1555 } 1556 #endif 1557 KASSERT(oldsn < lfs_sb_getnseg(fs)); 1558 if (lbn >= 0 && lbn < ULFS_NDADDR) 1559 osize = ip->i_lfs_fragsize[lbn]; 1560 else 1561 osize = lfs_sb_getbsize(fs); 1562 LFS_SEGENTRY(sup, fs, oldsn, bp); 1563 #ifdef DIAGNOSTIC 1564 if (sup->su_nbytes + DINOSIZE(fs) * ndupino < osize) { 1565 printf("lfs_updatemeta: negative bytes " 1566 "(segment %" PRIu32 " short by %" PRId64 1567 ")\n", lfs_dtosn(fs, daddr), 1568 (int64_t)osize - 1569 (DINOSIZE(fs) * ndupino + sup->su_nbytes)); 1570 printf("lfs_updatemeta: ino %llu, lbn %" PRId64 1571 ", addr = 0x%" PRIx64 "\n", 1572 (unsigned long long)ip->i_number, lbn, daddr); 1573 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1574 panic("lfs_updatemeta: negative bytes"); 1575 sup->su_nbytes = osize - 1576 DINOSIZE(fs) * ndupino; 1577 } 1578 #endif 1579 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1580 " db 0x%" PRIx64 "\n", 1581 lfs_dtosn(fs, daddr), osize, 1582 ip->i_number, lbn, daddr)); 1583 sup->su_nbytes -= osize; 1584 if (!(bp->b_flags & B_GATHERED)) { 1585 mutex_enter(&lfs_lock); 1586 fs->lfs_flags |= LFS_IFDIRTY; 1587 mutex_exit(&lfs_lock); 1588 } 1589 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1590 } 1591 /* 1592 * Now that this block has a new address, and its old 1593 * segment no longer owns it, we can forget about its 1594 * old size. 1595 */ 1596 if (lbn >= 0 && lbn < ULFS_NDADDR) 1597 ip->i_lfs_fragsize[lbn] = size; 1598 } 1599 1600 /* 1601 * Update the metadata that points to the blocks listed in the FINFO 1602 * array. 1603 */ 1604 void 1605 lfs_updatemeta(struct segment *sp) 1606 { 1607 struct buf *sbp; 1608 struct lfs *fs; 1609 struct vnode *vp; 1610 daddr_t lbn; 1611 int i, nblocks, num; 1612 int __diagused nblocks_orig; 1613 int bb; 1614 int bytesleft, size; 1615 unsigned lastlength; 1616 union lfs_blocks tmpptr; 1617 1618 fs = sp->fs; 1619 vp = sp->vp; 1620 ASSERT_SEGLOCK(fs); 1621 1622 /* 1623 * This used to be: 1624 * 1625 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1626 * 1627 * that is, it allowed for the possibility that start_lbp did 1628 * not point to the beginning of the finfo block pointer area. 1629 * This particular formulation is six kinds of painful in the 1630 * lfs64 world where we have two sizes of block pointer, so 1631 * unless/until everything can be cleaned up to not move 1632 * start_lbp around but instead use an offset, we do the 1633 * following: 1634 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as 1635 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong 1636 * type. (Ugh.) 1637 * 2. Cast it to void *, then assign it to a temporary 1638 * union lfs_blocks. 1639 * 3. Subtract start_lbp from that. 1640 * 4. Save the value of nblocks in blocks_orig so we can 1641 * assert below that it hasn't changed without repeating this 1642 * rubbish. 1643 * 1644 * XXX. 1645 */ 1646 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip)); 1647 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp); 1648 nblocks_orig = nblocks; 1649 1650 KASSERT(nblocks >= 0); 1651 KASSERT(vp != NULL); 1652 if (nblocks == 0) 1653 return; 1654 1655 /* 1656 * This count may be high due to oversize blocks from lfs_gop_write. 1657 * Correct for this. (XXX we should be able to keep track of these.) 1658 */ 1659 for (i = 0; i < nblocks; i++) { 1660 if (sp->start_bpp[i] == NULL) { 1661 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); 1662 nblocks = i; 1663 break; 1664 } 1665 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs)); 1666 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1667 nblocks -= num - 1; 1668 } 1669 1670 #if 0 1671 /* pre-lfs64 assertion */ 1672 KASSERT(vp->v_type == VREG || 1673 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1674 #else 1675 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig); 1676 #endif 1677 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1678 1679 /* 1680 * Sort the blocks. 1681 * 1682 * We have to sort even if the blocks come from the 1683 * cleaner, because there might be other pending blocks on the 1684 * same inode...and if we don't sort, and there are fragments 1685 * present, blocks may be written in the wrong place. 1686 */ 1687 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs)); 1688 1689 /* 1690 * Record the length of the last block in case it's a fragment. 1691 * If there are indirect blocks present, they sort last. An 1692 * indirect block will be lfs_bsize and its presence indicates 1693 * that you cannot have fragments. 1694 * 1695 * XXX This last is a lie. A cleaned fragment can coexist with 1696 * XXX a later indirect block. This will continue to be 1697 * XXX true until lfs_markv is fixed to do everything with 1698 * XXX fake blocks (including fake inodes and fake indirect blocks). 1699 */ 1700 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1701 lfs_sb_getbmask(fs)) + 1; 1702 lfs_fi_setlastlength(fs, sp->fip, lastlength); 1703 1704 /* 1705 * Assign disk addresses, and update references to the logical 1706 * block and the segment usage information. 1707 */ 1708 for (i = nblocks; i--; ++sp->start_bpp) { 1709 sbp = *sp->start_bpp; 1710 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0); 1711 KASSERT(sbp->b_lblkno == lbn); 1712 1713 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs)); 1714 1715 /* 1716 * If we write a frag in the wrong place, the cleaner won't 1717 * be able to correctly identify its size later, and the 1718 * segment will be uncleanable. (Even worse, it will assume 1719 * that the indirect block that actually ends the list 1720 * is of a smaller size!) 1721 */ 1722 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0) 1723 panic("lfs_updatemeta: fragment is not last block"); 1724 1725 /* 1726 * For each subblock in this possibly oversized block, 1727 * update its address on disk. 1728 */ 1729 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs)); 1730 KASSERT(vp == sbp->b_vp); 1731 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1732 bytesleft -= lfs_sb_getbsize(fs)) { 1733 size = MIN(bytesleft, lfs_sb_getbsize(fs)); 1734 bb = lfs_numfrags(fs, size); 1735 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0); 1736 lfs_blocks_inc(fs, &sp->start_lbp); 1737 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs), 1738 size); 1739 lfs_sb_addoffset(fs, bb); 1740 } 1741 1742 } 1743 1744 /* This inode has been modified */ 1745 LFS_SET_UINO(VTOI(vp), IN_MODIFIED); 1746 } 1747 1748 /* 1749 * Move lfs_offset to a segment earlier than newsn. 1750 */ 1751 int 1752 lfs_rewind(struct lfs *fs, int newsn) 1753 { 1754 int sn, osn, isdirty; 1755 struct buf *bp; 1756 SEGUSE *sup; 1757 1758 ASSERT_SEGLOCK(fs); 1759 1760 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs)); 1761 if (osn < newsn) 1762 return 0; 1763 1764 /* lfs_avail eats the remaining space in this segment */ 1765 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs))); 1766 1767 /* Find a low-numbered segment */ 1768 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) { 1769 LFS_SEGENTRY(sup, fs, sn, bp); 1770 isdirty = sup->su_flags & SEGUSE_DIRTY; 1771 brelse(bp, 0); 1772 1773 if (!isdirty) 1774 break; 1775 } 1776 if (sn == lfs_sb_getnseg(fs)) 1777 panic("lfs_rewind: no clean segments"); 1778 if (newsn >= 0 && sn >= newsn) 1779 return ENOENT; 1780 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn)); 1781 lfs_newseg(fs); 1782 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs)); 1783 1784 return 0; 1785 } 1786 1787 /* 1788 * Start a new partial segment. 1789 * 1790 * Return 1 when we entered to a new segment. 1791 * Otherwise, return 0. 1792 */ 1793 int 1794 lfs_initseg(struct lfs *fs) 1795 { 1796 struct segment *sp = fs->lfs_sp; 1797 SEGSUM *ssp; 1798 struct buf *sbp; /* buffer for SEGSUM */ 1799 int repeat = 0; /* return value */ 1800 1801 ASSERT_SEGLOCK(fs); 1802 /* Advance to the next segment. */ 1803 if (!LFS_PARTIAL_FITS(fs)) { 1804 SEGUSE *sup; 1805 struct buf *bp; 1806 1807 /* lfs_avail eats the remaining space */ 1808 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - 1809 lfs_sb_getcurseg(fs))); 1810 /* Wake up any cleaning procs waiting on this file system. */ 1811 lfs_wakeup_cleaner(fs); 1812 lfs_newseg(fs); 1813 repeat = 1; 1814 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs)); 1815 1816 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs)); 1817 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs)); 1818 1819 /* 1820 * If the segment contains a superblock, update the offset 1821 * and summary address to skip over it. 1822 */ 1823 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1824 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1825 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD)); 1826 sp->seg_bytes_left -= LFS_SBPAD; 1827 } 1828 brelse(bp, 0); 1829 /* Segment zero could also contain the labelpad */ 1830 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 && 1831 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) { 1832 lfs_sb_addoffset(fs, 1833 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs)); 1834 sp->seg_bytes_left -= 1835 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs)); 1836 } 1837 } else { 1838 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs)); 1839 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) - 1840 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs))); 1841 } 1842 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs)); 1843 1844 /* Record first address of this partial segment */ 1845 if (sp->seg_flags & SEGM_CLEAN) { 1846 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs); 1847 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1848 /* "1" is the artificial inc in lfs_seglock */ 1849 mutex_enter(&lfs_lock); 1850 while (fs->lfs_iocount > 1) { 1851 mtsleep(&fs->lfs_iocount, PRIBIO + 1, 1852 "lfs_initseg", 0, &lfs_lock); 1853 } 1854 mutex_exit(&lfs_lock); 1855 fs->lfs_cleanind = 0; 1856 } 1857 } 1858 1859 sp->fs = fs; 1860 sp->ibp = NULL; 1861 sp->idp = NULL; 1862 sp->ninodes = 0; 1863 sp->ndupino = 0; 1864 1865 sp->cbpp = sp->bpp; 1866 1867 /* Get a new buffer for SEGSUM */ 1868 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1869 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY); 1870 1871 /* ... and enter it into the buffer list. */ 1872 *sp->cbpp = sbp; 1873 sp->cbpp++; 1874 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs))); 1875 1876 sp->start_bpp = sp->cbpp; 1877 1878 /* Set point to SEGSUM, initialize it. */ 1879 ssp = sp->segsum = sbp->b_data; 1880 memset(ssp, 0, lfs_sb_getsumsize(fs)); 1881 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs)); 1882 lfs_ss_setnfinfo(fs, ssp, 0); 1883 lfs_ss_setninos(fs, ssp, 0); 1884 lfs_ss_setmagic(fs, ssp, SS_MAGIC); 1885 1886 /* Set pointer to first FINFO, initialize it. */ 1887 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum); 1888 lfs_fi_setnblocks(fs, sp->fip, 0); 1889 lfs_fi_setlastlength(fs, sp->fip, 0); 1890 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip); 1891 1892 sp->seg_bytes_left -= lfs_sb_getsumsize(fs); 1893 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs); 1894 1895 return (repeat); 1896 } 1897 1898 /* 1899 * Remove SEGUSE_INVAL from all segments. 1900 */ 1901 void 1902 lfs_unset_inval_all(struct lfs *fs) 1903 { 1904 SEGUSE *sup; 1905 struct buf *bp; 1906 int i; 1907 1908 for (i = 0; i < lfs_sb_getnseg(fs); i++) { 1909 LFS_SEGENTRY(sup, fs, i, bp); 1910 if (sup->su_flags & SEGUSE_INVAL) { 1911 sup->su_flags &= ~SEGUSE_INVAL; 1912 LFS_WRITESEGENTRY(sup, fs, i, bp); 1913 } else 1914 brelse(bp, 0); 1915 } 1916 } 1917 1918 /* 1919 * Return the next segment to write. 1920 */ 1921 void 1922 lfs_newseg(struct lfs *fs) 1923 { 1924 CLEANERINFO *cip; 1925 SEGUSE *sup; 1926 struct buf *bp; 1927 int curseg, isdirty, sn, skip_inval; 1928 1929 ASSERT_SEGLOCK(fs); 1930 1931 /* Honor LFCNWRAPSTOP */ 1932 mutex_enter(&lfs_lock); 1933 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) { 1934 if (fs->lfs_wrappass) { 1935 log(LOG_NOTICE, "%s: wrappass=%d\n", 1936 lfs_sb_getfsmnt(fs), fs->lfs_wrappass); 1937 fs->lfs_wrappass = 0; 1938 break; 1939 } 1940 fs->lfs_wrapstatus = LFS_WRAP_WAITING; 1941 wakeup(&fs->lfs_nowrap); 1942 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs)); 1943 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz, 1944 &lfs_lock); 1945 } 1946 fs->lfs_wrapstatus = LFS_WRAP_GOING; 1947 mutex_exit(&lfs_lock); 1948 1949 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp); 1950 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", 1951 lfs_dtosn(fs, lfs_sb_getnextseg(fs)))); 1952 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1953 sup->su_nbytes = 0; 1954 sup->su_nsums = 0; 1955 sup->su_ninos = 0; 1956 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp); 1957 1958 LFS_CLEANERINFO(cip, fs, bp); 1959 lfs_ci_shiftcleantodirty(fs, cip, 1); 1960 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip)); 1961 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1962 1963 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs)); 1964 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs)); 1965 skip_inval = 1; 1966 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) { 1967 sn = (sn + 1) % lfs_sb_getnseg(fs); 1968 1969 if (sn == curseg) { 1970 if (skip_inval) 1971 skip_inval = 0; 1972 else 1973 panic("lfs_nextseg: no clean segments"); 1974 } 1975 LFS_SEGENTRY(sup, fs, sn, bp); 1976 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0)); 1977 /* Check SEGUSE_EMPTY as we go along */ 1978 if (isdirty && sup->su_nbytes == 0 && 1979 !(sup->su_flags & SEGUSE_EMPTY)) 1980 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1981 else 1982 brelse(bp, 0); 1983 1984 if (!isdirty) 1985 break; 1986 } 1987 if (skip_inval == 0) 1988 lfs_unset_inval_all(fs); 1989 1990 ++fs->lfs_nactive; 1991 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn)); 1992 if (lfs_dostats) { 1993 ++lfs_stats.segsused; 1994 } 1995 } 1996 1997 static struct buf * 1998 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, 1999 int n) 2000 { 2001 struct lfs_cluster *cl; 2002 struct buf **bpp, *bp; 2003 2004 ASSERT_SEGLOCK(fs); 2005 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 2006 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 2007 memset(cl, 0, sizeof(*cl)); 2008 cl->fs = fs; 2009 cl->bpp = bpp; 2010 cl->bufcount = 0; 2011 cl->bufsize = 0; 2012 2013 /* If this segment is being written synchronously, note that */ 2014 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 2015 cl->flags |= LFS_CL_SYNC; 2016 cl->seg = fs->lfs_sp; 2017 ++cl->seg->seg_iocount; 2018 } 2019 2020 /* Get an empty buffer header, or maybe one with something on it */ 2021 bp = getiobuf(vp, true); 2022 bp->b_dev = NODEV; 2023 bp->b_blkno = bp->b_lblkno = addr; 2024 bp->b_iodone = lfs_cluster_callback; 2025 bp->b_private = cl; 2026 2027 return bp; 2028 } 2029 2030 int 2031 lfs_writeseg(struct lfs *fs, struct segment *sp) 2032 { 2033 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp; 2034 SEGUSE *sup; 2035 SEGSUM *ssp; 2036 int i; 2037 int do_again, nblocks, byteoffset; 2038 size_t el_size; 2039 struct lfs_cluster *cl; 2040 u_short ninos; 2041 struct vnode *devvp; 2042 char *p = NULL; 2043 struct vnode *vp; 2044 unsigned ibindex, iblimit; 2045 int changed; 2046 u_int32_t sum; 2047 size_t sumstart; 2048 #ifdef DEBUG 2049 FINFO *fip; 2050 int findex; 2051 #endif 2052 2053 ASSERT_SEGLOCK(fs); 2054 2055 ssp = (SEGSUM *)sp->segsum; 2056 2057 /* 2058 * If there are no buffers other than the segment summary to write, 2059 * don't do anything. If we are the end of a dirop sequence, however, 2060 * write the empty segment summary anyway, to help out the 2061 * roll-forward agent. 2062 */ 2063 if ((nblocks = sp->cbpp - sp->bpp) == 1) { 2064 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP) 2065 return 0; 2066 } 2067 2068 /* Note if partial segment is being written by the cleaner */ 2069 if (sp->seg_flags & SEGM_CLEAN) 2070 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN); 2071 2072 /* Note if we are writing to reclaim */ 2073 if (sp->seg_flags & SEGM_RECLAIM) { 2074 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM); 2075 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino); 2076 } 2077 2078 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2079 2080 /* Update the segment usage information. */ 2081 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 2082 2083 /* Loop through all blocks, except the segment summary. */ 2084 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 2085 if ((*bpp)->b_vp != devvp) { 2086 sup->su_nbytes += (*bpp)->b_bcount; 2087 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" 2088 " lbn %" PRId64 " db 0x%" PRIx64 "\n", 2089 sp->seg_number, (*bpp)->b_bcount, 2090 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 2091 (*bpp)->b_blkno)); 2092 } 2093 } 2094 2095 #ifdef DEBUG 2096 /* Check for zero-length and zero-version FINFO entries. */ 2097 fip = SEGSUM_FINFOBASE(fs, ssp); 2098 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) { 2099 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0); 2100 KDASSERT(lfs_fi_getversion(fs, fip) > 0); 2101 fip = NEXT_FINFO(fs, fip); 2102 } 2103 #endif /* DEBUG */ 2104 2105 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs); 2106 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", 2107 sp->seg_number, 2108 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs), 2109 lfs_ss_getninos(fs, ssp))); 2110 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs); 2111 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */ 2112 if (lfs_sb_getversion(fs) == 1) 2113 sup->su_olastmod = time_second; 2114 else 2115 sup->su_lastmod = time_second; 2116 sup->su_ninos += ninos; 2117 ++sup->su_nsums; 2118 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs))); 2119 2120 do_again = !(bp->b_flags & B_GATHERED); 2121 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 2122 2123 /* 2124 * Mark blocks B_BUSY, to prevent then from being changed between 2125 * the checksum computation and the actual write. 2126 * 2127 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 2128 * there are any, replace them with copies that have UNASSIGNED 2129 * instead. 2130 */ 2131 mutex_enter(&bufcache_lock); 2132 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 2133 ++bpp; 2134 bp = *bpp; 2135 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */ 2136 bp->b_cflags |= BC_BUSY; 2137 continue; 2138 } 2139 2140 while (bp->b_cflags & BC_BUSY) { 2141 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" 2142 " data summary corruption for ino %d, lbn %" 2143 PRId64 "\n", 2144 VTOI(bp->b_vp)->i_number, bp->b_lblkno)); 2145 bp->b_cflags |= BC_WANTED; 2146 cv_wait(&bp->b_busy, &bufcache_lock); 2147 } 2148 bp->b_cflags |= BC_BUSY; 2149 mutex_exit(&bufcache_lock); 2150 unbusybp = NULL; 2151 2152 /* 2153 * Check and replace indirect block UNWRITTEN bogosity. 2154 * XXX See comment in lfs_writefile. 2155 */ 2156 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 2157 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) != 2158 VTOI(bp->b_vp)->i_lfs_effnblks) { 2159 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n", 2160 VTOI(bp->b_vp)->i_number, 2161 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks, 2162 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din))); 2163 /* Make a copy we'll make changes to */ 2164 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 2165 bp->b_bcount, LFS_NB_IBLOCK); 2166 newbp->b_blkno = bp->b_blkno; 2167 memcpy(newbp->b_data, bp->b_data, 2168 newbp->b_bcount); 2169 2170 changed = 0; 2171 iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs); 2172 for (ibindex = 0; ibindex < iblimit; ibindex++) { 2173 if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) { 2174 ++changed; 2175 lfs_iblock_set(fs, newbp->b_data, 2176 ibindex, 0); 2177 } 2178 } 2179 /* 2180 * Get rid of the old buffer. Don't mark it clean, 2181 * though, if it still has dirty data on it. 2182 */ 2183 if (changed) { 2184 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" 2185 " bp = %p newbp = %p\n", changed, bp, 2186 newbp)); 2187 *bpp = newbp; 2188 bp->b_flags &= ~B_GATHERED; 2189 bp->b_error = 0; 2190 if (bp->b_iodone != NULL) { 2191 DLOG((DLOG_SEG, "lfs_writeseg: " 2192 "indir bp should not be B_CALL\n")); 2193 biodone(bp); 2194 bp = NULL; 2195 } else { 2196 /* Still on free list, leave it there */ 2197 unbusybp = bp; 2198 /* 2199 * We have to re-decrement lfs_avail 2200 * since this block is going to come 2201 * back around to us in the next 2202 * segment. 2203 */ 2204 lfs_sb_subavail(fs, 2205 lfs_btofsb(fs, bp->b_bcount)); 2206 } 2207 } else { 2208 lfs_freebuf(fs, newbp); 2209 } 2210 } 2211 mutex_enter(&bufcache_lock); 2212 if (unbusybp != NULL) { 2213 unbusybp->b_cflags &= ~BC_BUSY; 2214 if (unbusybp->b_cflags & BC_WANTED) 2215 cv_broadcast(&bp->b_busy); 2216 } 2217 } 2218 mutex_exit(&bufcache_lock); 2219 2220 /* 2221 * Compute checksum across data and then across summary; the first 2222 * block (the summary block) is skipped. Set the create time here 2223 * so that it's guaranteed to be later than the inode mod times. 2224 */ 2225 sum = 0; 2226 if (lfs_sb_getversion(fs) == 1) 2227 el_size = sizeof(u_long); 2228 else 2229 el_size = sizeof(u_int32_t); 2230 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 2231 ++bpp; 2232 /* Loop through gop_write cluster blocks */ 2233 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 2234 byteoffset += lfs_sb_getbsize(fs)) { 2235 #ifdef LFS_USE_B_INVAL 2236 if (((*bpp)->b_cflags & BC_INVAL) != 0 && 2237 (*bpp)->b_iodone != NULL) { 2238 if (copyin((void *)(*bpp)->b_saveaddr + 2239 byteoffset, dp, el_size)) { 2240 panic("lfs_writeseg: copyin failed [1]:" 2241 " ino %" PRIu64 " blk %" PRId64, 2242 VTOI((*bpp)->b_vp)->i_number, 2243 (*bpp)->b_lblkno); 2244 } 2245 } else 2246 #endif /* LFS_USE_B_INVAL */ 2247 { 2248 sum = lfs_cksum_part((char *) 2249 (*bpp)->b_data + byteoffset, el_size, sum); 2250 } 2251 } 2252 } 2253 if (lfs_sb_getversion(fs) == 1) 2254 lfs_ss_setocreate(fs, ssp, time_second); 2255 else { 2256 lfs_ss_setcreate(fs, ssp, time_second); 2257 lfs_sb_addserial(fs, 1); 2258 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs)); 2259 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs)); 2260 } 2261 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum)); 2262 sumstart = lfs_ss_getsumstart(fs); 2263 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart, 2264 lfs_sb_getsumsize(fs) - sumstart)); 2265 2266 mutex_enter(&lfs_lock); 2267 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) + 2268 lfs_btofsb(fs, lfs_sb_getsumsize(fs)))); 2269 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) + 2270 lfs_btofsb(fs, lfs_sb_getsumsize(fs)))); 2271 mutex_exit(&lfs_lock); 2272 2273 /* 2274 * When we simply write the blocks we lose a rotation for every block 2275 * written. To avoid this problem, we cluster the buffers into a 2276 * chunk and write the chunk. MAXPHYS is the largest size I/O 2277 * devices can handle, use that for the size of the chunks. 2278 * 2279 * Blocks that are already clusters (from GOP_WRITE), however, we 2280 * don't bother to copy into other clusters. 2281 */ 2282 2283 #define CHUNKSIZE MAXPHYS 2284 2285 if (devvp == NULL) 2286 panic("devvp is NULL"); 2287 for (bpp = sp->bpp, i = nblocks; i;) { 2288 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 2289 cl = cbp->b_private; 2290 2291 cbp->b_flags |= B_ASYNC; 2292 cbp->b_cflags |= BC_BUSY; 2293 cbp->b_bcount = 0; 2294 2295 #if defined(DEBUG) && defined(DIAGNOSTIC) 2296 if (bpp - sp->bpp > (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs)) 2297 / sizeof(int32_t)) { 2298 panic("lfs_writeseg: real bpp overwrite"); 2299 } 2300 if (bpp - sp->bpp > lfs_segsize(fs) / lfs_sb_getfsize(fs)) { 2301 panic("lfs_writeseg: theoretical bpp overwrite"); 2302 } 2303 #endif 2304 2305 /* 2306 * Construct the cluster. 2307 */ 2308 mutex_enter(&lfs_lock); 2309 ++fs->lfs_iocount; 2310 mutex_exit(&lfs_lock); 2311 while (i && cbp->b_bcount < CHUNKSIZE) { 2312 bp = *bpp; 2313 2314 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 2315 break; 2316 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 2317 break; 2318 2319 /* Clusters from GOP_WRITE are expedited */ 2320 if (bp->b_bcount > lfs_sb_getbsize(fs)) { 2321 if (cbp->b_bcount > 0) 2322 /* Put in its own buffer */ 2323 break; 2324 else { 2325 cbp->b_data = bp->b_data; 2326 } 2327 } else if (cbp->b_bcount == 0) { 2328 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 2329 LFS_NB_CLUSTER); 2330 cl->flags |= LFS_CL_MALLOC; 2331 } 2332 #ifdef DIAGNOSTIC 2333 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno + 2334 btodb(bp->b_bcount - 1))) != 2335 sp->seg_number) { 2336 printf("blk size %d daddr %" PRIx64 2337 " not in seg %d\n", 2338 bp->b_bcount, bp->b_blkno, 2339 sp->seg_number); 2340 panic("segment overwrite"); 2341 } 2342 #endif 2343 2344 #ifdef LFS_USE_B_INVAL 2345 /* 2346 * Fake buffers from the cleaner are marked as B_INVAL. 2347 * We need to copy the data from user space rather than 2348 * from the buffer indicated. 2349 * XXX == what do I do on an error? 2350 */ 2351 if ((bp->b_cflags & BC_INVAL) != 0 && 2352 bp->b_iodone != NULL) { 2353 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 2354 panic("lfs_writeseg: " 2355 "copyin failed [2]"); 2356 } else 2357 #endif /* LFS_USE_B_INVAL */ 2358 if (cl->flags & LFS_CL_MALLOC) { 2359 /* copy data into our cluster. */ 2360 memcpy(p, bp->b_data, bp->b_bcount); 2361 p += bp->b_bcount; 2362 } 2363 2364 cbp->b_bcount += bp->b_bcount; 2365 cl->bufsize += bp->b_bcount; 2366 2367 bp->b_flags &= ~B_READ; 2368 bp->b_error = 0; 2369 cl->bpp[cl->bufcount++] = bp; 2370 2371 vp = bp->b_vp; 2372 mutex_enter(&bufcache_lock); 2373 mutex_enter(vp->v_interlock); 2374 bp->b_oflags &= ~(BO_DELWRI | BO_DONE); 2375 reassignbuf(bp, vp); 2376 vp->v_numoutput++; 2377 mutex_exit(vp->v_interlock); 2378 mutex_exit(&bufcache_lock); 2379 2380 bpp++; 2381 i--; 2382 } 2383 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2384 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 2385 else 2386 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 2387 mutex_enter(devvp->v_interlock); 2388 devvp->v_numoutput++; 2389 mutex_exit(devvp->v_interlock); 2390 VOP_STRATEGY(devvp, cbp); 2391 curlwp->l_ru.ru_oublock++; 2392 } 2393 2394 if (lfs_dostats) { 2395 ++lfs_stats.psegwrites; 2396 lfs_stats.blocktot += nblocks - 1; 2397 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2398 ++lfs_stats.psyncwrites; 2399 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2400 ++lfs_stats.pcleanwrites; 2401 lfs_stats.cleanblocks += nblocks - 1; 2402 } 2403 } 2404 2405 return (lfs_initseg(fs) || do_again); 2406 } 2407 2408 void 2409 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2410 { 2411 struct buf *bp; 2412 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2413 int s; 2414 2415 ASSERT_MAYBE_SEGLOCK(fs); 2416 #ifdef DIAGNOSTIC 2417 if (fs->lfs_is64) { 2418 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC); 2419 } else { 2420 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC); 2421 } 2422 #endif 2423 /* 2424 * If we can write one superblock while another is in 2425 * progress, we risk not having a complete checkpoint if we crash. 2426 * So, block here if a superblock write is in progress. 2427 */ 2428 mutex_enter(&lfs_lock); 2429 s = splbio(); 2430 while (fs->lfs_sbactive) { 2431 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, 2432 &lfs_lock); 2433 } 2434 fs->lfs_sbactive = daddr; 2435 splx(s); 2436 mutex_exit(&lfs_lock); 2437 2438 /* Set timestamp of this version of the superblock */ 2439 if (lfs_sb_getversion(fs) == 1) 2440 lfs_sb_setotstamp(fs, time_second); 2441 lfs_sb_settstamp(fs, time_second); 2442 2443 /* The next chunk of code relies on this assumption */ 2444 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64)); 2445 2446 /* Checksum the superblock and copy it into a buffer. */ 2447 lfs_sb_setcksum(fs, lfs_sb_cksum(fs)); 2448 bp = lfs_newbuf(fs, devvp, 2449 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2450 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs)); 2451 memset((char *)bp->b_data + sizeof(struct dlfs), 0, 2452 LFS_SBPAD - sizeof(struct dlfs)); 2453 2454 bp->b_cflags |= BC_BUSY; 2455 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC; 2456 bp->b_oflags &= ~(BO_DONE | BO_DELWRI); 2457 bp->b_error = 0; 2458 bp->b_iodone = lfs_supercallback; 2459 2460 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2461 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2462 else 2463 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2464 curlwp->l_ru.ru_oublock++; 2465 2466 mutex_enter(devvp->v_interlock); 2467 devvp->v_numoutput++; 2468 mutex_exit(devvp->v_interlock); 2469 2470 mutex_enter(&lfs_lock); 2471 ++fs->lfs_iocount; 2472 mutex_exit(&lfs_lock); 2473 VOP_STRATEGY(devvp, bp); 2474 } 2475 2476 /* 2477 * Logical block number match routines used when traversing the dirty block 2478 * chain. 2479 */ 2480 int 2481 lfs_match_fake(struct lfs *fs, struct buf *bp) 2482 { 2483 2484 ASSERT_SEGLOCK(fs); 2485 return LFS_IS_MALLOC_BUF(bp); 2486 } 2487 2488 #if 0 2489 int 2490 lfs_match_real(struct lfs *fs, struct buf *bp) 2491 { 2492 2493 ASSERT_SEGLOCK(fs); 2494 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2495 } 2496 #endif 2497 2498 int 2499 lfs_match_data(struct lfs *fs, struct buf *bp) 2500 { 2501 2502 ASSERT_SEGLOCK(fs); 2503 return (bp->b_lblkno >= 0); 2504 } 2505 2506 int 2507 lfs_match_indir(struct lfs *fs, struct buf *bp) 2508 { 2509 daddr_t lbn; 2510 2511 ASSERT_SEGLOCK(fs); 2512 lbn = bp->b_lblkno; 2513 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0); 2514 } 2515 2516 int 2517 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2518 { 2519 daddr_t lbn; 2520 2521 ASSERT_SEGLOCK(fs); 2522 lbn = bp->b_lblkno; 2523 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1); 2524 } 2525 2526 int 2527 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2528 { 2529 daddr_t lbn; 2530 2531 ASSERT_SEGLOCK(fs); 2532 lbn = bp->b_lblkno; 2533 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2); 2534 } 2535 2536 static void 2537 lfs_free_aiodone(struct buf *bp) 2538 { 2539 struct lfs *fs; 2540 2541 KERNEL_LOCK(1, curlwp); 2542 fs = bp->b_private; 2543 ASSERT_NO_SEGLOCK(fs); 2544 lfs_freebuf(fs, bp); 2545 KERNEL_UNLOCK_LAST(curlwp); 2546 } 2547 2548 static void 2549 lfs_super_aiodone(struct buf *bp) 2550 { 2551 struct lfs *fs; 2552 2553 KERNEL_LOCK(1, curlwp); 2554 fs = bp->b_private; 2555 ASSERT_NO_SEGLOCK(fs); 2556 mutex_enter(&lfs_lock); 2557 fs->lfs_sbactive = 0; 2558 if (--fs->lfs_iocount <= 1) 2559 wakeup(&fs->lfs_iocount); 2560 wakeup(&fs->lfs_sbactive); 2561 mutex_exit(&lfs_lock); 2562 lfs_freebuf(fs, bp); 2563 KERNEL_UNLOCK_LAST(curlwp); 2564 } 2565 2566 static void 2567 lfs_cluster_aiodone(struct buf *bp) 2568 { 2569 struct lfs_cluster *cl; 2570 struct lfs *fs; 2571 struct buf *tbp, *fbp; 2572 struct vnode *vp, *devvp, *ovp; 2573 struct inode *ip; 2574 int error; 2575 2576 KERNEL_LOCK(1, curlwp); 2577 2578 error = bp->b_error; 2579 cl = bp->b_private; 2580 fs = cl->fs; 2581 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2582 ASSERT_NO_SEGLOCK(fs); 2583 2584 /* Put the pages back, and release the buffer */ 2585 while (cl->bufcount--) { 2586 tbp = cl->bpp[cl->bufcount]; 2587 KASSERT(tbp->b_cflags & BC_BUSY); 2588 if (error) { 2589 tbp->b_error = error; 2590 } 2591 2592 /* 2593 * We're done with tbp. If it has not been re-dirtied since 2594 * the cluster was written, free it. Otherwise, keep it on 2595 * the locked list to be written again. 2596 */ 2597 vp = tbp->b_vp; 2598 2599 tbp->b_flags &= ~B_GATHERED; 2600 2601 LFS_BCLEAN_LOG(fs, tbp); 2602 2603 mutex_enter(&bufcache_lock); 2604 if (tbp->b_iodone == NULL) { 2605 KASSERT(tbp->b_flags & B_LOCKED); 2606 bremfree(tbp); 2607 if (vp) { 2608 mutex_enter(vp->v_interlock); 2609 reassignbuf(tbp, vp); 2610 mutex_exit(vp->v_interlock); 2611 } 2612 tbp->b_flags |= B_ASYNC; /* for biodone */ 2613 } 2614 2615 if (((tbp->b_flags | tbp->b_oflags) & 2616 (B_LOCKED | BO_DELWRI)) == B_LOCKED) 2617 LFS_UNLOCK_BUF(tbp); 2618 2619 if (tbp->b_oflags & BO_DONE) { 2620 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", 2621 cl->bufcount, (long)tbp->b_flags)); 2622 } 2623 2624 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) { 2625 /* 2626 * A buffer from the page daemon. 2627 * We use the same iodone as it does, 2628 * so we must manually disassociate its 2629 * buffers from the vp. 2630 */ 2631 if ((ovp = tbp->b_vp) != NULL) { 2632 /* This is just silly */ 2633 mutex_enter(ovp->v_interlock); 2634 brelvp(tbp); 2635 mutex_exit(ovp->v_interlock); 2636 tbp->b_vp = vp; 2637 tbp->b_objlock = vp->v_interlock; 2638 } 2639 /* Put it back the way it was */ 2640 tbp->b_flags |= B_ASYNC; 2641 /* Master buffers have BC_AGE */ 2642 if (tbp->b_private == tbp) 2643 tbp->b_cflags |= BC_AGE; 2644 } 2645 mutex_exit(&bufcache_lock); 2646 2647 biodone(tbp); 2648 2649 /* 2650 * If this is the last block for this vnode, but 2651 * there are other blocks on its dirty list, 2652 * set IN_MODIFIED/IN_CLEANING depending on what 2653 * sort of block. Only do this for our mount point, 2654 * not for, e.g., inode blocks that are attached to 2655 * the devvp. 2656 * XXX KS - Shouldn't we set *both* if both types 2657 * of blocks are present (traverse the dirty list?) 2658 */ 2659 mutex_enter(vp->v_interlock); 2660 mutex_enter(&lfs_lock); 2661 if (vp != devvp && vp->v_numoutput == 0 && 2662 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2663 ip = VTOI(vp); 2664 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", 2665 ip->i_number)); 2666 if (LFS_IS_MALLOC_BUF(fbp)) 2667 LFS_SET_UINO(ip, IN_CLEANING); 2668 else 2669 LFS_SET_UINO(ip, IN_MODIFIED); 2670 } 2671 cv_broadcast(&vp->v_cv); 2672 mutex_exit(&lfs_lock); 2673 mutex_exit(vp->v_interlock); 2674 } 2675 2676 /* Fix up the cluster buffer, and release it */ 2677 if (cl->flags & LFS_CL_MALLOC) 2678 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2679 putiobuf(bp); 2680 2681 /* Note i/o done */ 2682 if (cl->flags & LFS_CL_SYNC) { 2683 if (--cl->seg->seg_iocount == 0) 2684 wakeup(&cl->seg->seg_iocount); 2685 } 2686 mutex_enter(&lfs_lock); 2687 #ifdef DIAGNOSTIC 2688 if (fs->lfs_iocount == 0) 2689 panic("lfs_cluster_aiodone: zero iocount"); 2690 #endif 2691 if (--fs->lfs_iocount <= 1) 2692 wakeup(&fs->lfs_iocount); 2693 mutex_exit(&lfs_lock); 2694 2695 KERNEL_UNLOCK_LAST(curlwp); 2696 2697 pool_put(&fs->lfs_bpppool, cl->bpp); 2698 cl->bpp = NULL; 2699 pool_put(&fs->lfs_clpool, cl); 2700 } 2701 2702 static void 2703 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2704 { 2705 /* reset b_iodone for when this is a single-buf i/o. */ 2706 bp->b_iodone = aiodone; 2707 2708 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL); 2709 } 2710 2711 static void 2712 lfs_cluster_callback(struct buf *bp) 2713 { 2714 2715 lfs_generic_callback(bp, lfs_cluster_aiodone); 2716 } 2717 2718 void 2719 lfs_supercallback(struct buf *bp) 2720 { 2721 2722 lfs_generic_callback(bp, lfs_super_aiodone); 2723 } 2724 2725 /* 2726 * The only buffers that are going to hit these functions are the 2727 * segment write blocks, or the segment summaries, or the superblocks. 2728 * 2729 * All of the above are created by lfs_newbuf, and so do not need to be 2730 * released via brelse. 2731 */ 2732 void 2733 lfs_callback(struct buf *bp) 2734 { 2735 2736 lfs_generic_callback(bp, lfs_free_aiodone); 2737 } 2738 2739 /* 2740 * Shellsort (diminishing increment sort) from Data Structures and 2741 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2742 * see also Knuth Vol. 3, page 84. The increments are selected from 2743 * formula (8), page 95. Roughly O(N^3/2). 2744 */ 2745 /* 2746 * This is our own private copy of shellsort because we want to sort 2747 * two parallel arrays (the array of buffer pointers and the array of 2748 * logical block numbers) simultaneously. Note that we cast the array 2749 * of logical block numbers to a unsigned in this routine so that the 2750 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2751 */ 2752 2753 static void 2754 lfs_shellsort(struct lfs *fs, 2755 struct buf **bp_array, union lfs_blocks *lb_array, 2756 int nmemb, int size) 2757 { 2758 static int __rsshell_increments[] = { 4, 1, 0 }; 2759 int incr, *incrp, t1, t2; 2760 struct buf *bp_temp; 2761 2762 #ifdef DEBUG 2763 incr = 0; 2764 for (t1 = 0; t1 < nmemb; t1++) { 2765 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2766 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) { 2767 /* dump before panic */ 2768 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2769 nmemb, size); 2770 incr = 0; 2771 for (t1 = 0; t1 < nmemb; t1++) { 2772 const struct buf *bp = bp_array[t1]; 2773 2774 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2775 PRIu64 "\n", t1, 2776 (uint64_t)bp->b_bcount, 2777 (uint64_t)bp->b_lblkno); 2778 printf("lbns:"); 2779 for (t2 = 0; t2 * size < bp->b_bcount; 2780 t2++) { 2781 printf(" %jd", 2782 (intmax_t)lfs_blocks_get(fs, lb_array, incr++)); 2783 } 2784 printf("\n"); 2785 } 2786 panic("lfs_shellsort: inconsistent input"); 2787 } 2788 } 2789 } 2790 #endif 2791 2792 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2793 for (t1 = incr; t1 < nmemb; ++t1) 2794 for (t2 = t1 - incr; t2 >= 0;) 2795 if ((u_int64_t)bp_array[t2]->b_lblkno > 2796 (u_int64_t)bp_array[t2 + incr]->b_lblkno) { 2797 bp_temp = bp_array[t2]; 2798 bp_array[t2] = bp_array[t2 + incr]; 2799 bp_array[t2 + incr] = bp_temp; 2800 t2 -= incr; 2801 } else 2802 break; 2803 2804 /* Reform the list of logical blocks */ 2805 incr = 0; 2806 for (t1 = 0; t1 < nmemb; t1++) { 2807 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2808 lfs_blocks_set(fs, lb_array, incr++, 2809 bp_array[t1]->b_lblkno + t2); 2810 } 2811 } 2812 } 2813 2814 /* 2815 * Set up an FINFO entry for a new file. The fip pointer is assumed to 2816 * point at uninitialized space. 2817 */ 2818 void 2819 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers) 2820 { 2821 struct segment *sp = fs->lfs_sp; 2822 SEGSUM *ssp; 2823 2824 KASSERT(vers > 0); 2825 2826 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) || 2827 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs)) 2828 (void) lfs_writeseg(fs, fs->lfs_sp); 2829 2830 sp->sum_bytes_left -= FINFOSIZE(fs); 2831 ssp = (SEGSUM *)sp->segsum; 2832 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1); 2833 lfs_fi_setnblocks(fs, sp->fip, 0); 2834 lfs_fi_setino(fs, sp->fip, ino); 2835 lfs_fi_setversion(fs, sp->fip, vers); 2836 } 2837 2838 /* 2839 * Release the FINFO entry, either clearing out an unused entry or 2840 * advancing us to the next available entry. 2841 */ 2842 void 2843 lfs_release_finfo(struct lfs *fs) 2844 { 2845 struct segment *sp = fs->lfs_sp; 2846 SEGSUM *ssp; 2847 2848 if (lfs_fi_getnblocks(fs, sp->fip) != 0) { 2849 sp->fip = NEXT_FINFO(fs, sp->fip); 2850 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip); 2851 } else { 2852 /* XXX shouldn't this update sp->fip? */ 2853 sp->sum_bytes_left += FINFOSIZE(fs); 2854 ssp = (SEGSUM *)sp->segsum; 2855 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1); 2856 } 2857 } 2858