1 /* $NetBSD: lfs_segment.c,v 1.185 2006/06/29 19:28:21 perseant Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /* 39 * Copyright (c) 1991, 1993 40 * The Regents of the University of California. All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.185 2006/06/29 19:28:21 perseant Exp $"); 71 72 #ifdef DEBUG 73 # define vndebug(vp, str) do { \ 74 if (VTOI(vp)->i_flag & IN_CLEANING) \ 75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ 76 VTOI(vp)->i_number, (str), op)); \ 77 } while(0) 78 #else 79 # define vndebug(vp, str) 80 #endif 81 #define ivndebug(vp, str) \ 82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) 83 84 #if defined(_KERNEL_OPT) 85 #include "opt_ddb.h" 86 #endif 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/namei.h> 91 #include <sys/kernel.h> 92 #include <sys/resourcevar.h> 93 #include <sys/file.h> 94 #include <sys/stat.h> 95 #include <sys/buf.h> 96 #include <sys/proc.h> 97 #include <sys/vnode.h> 98 #include <sys/mount.h> 99 #include <sys/kauth.h> 100 #include <sys/syslog.h> 101 102 #include <miscfs/specfs/specdev.h> 103 #include <miscfs/fifofs/fifo.h> 104 105 #include <ufs/ufs/inode.h> 106 #include <ufs/ufs/dir.h> 107 #include <ufs/ufs/ufsmount.h> 108 #include <ufs/ufs/ufs_extern.h> 109 110 #include <ufs/lfs/lfs.h> 111 #include <ufs/lfs/lfs_extern.h> 112 113 #include <uvm/uvm.h> 114 #include <uvm/uvm_extern.h> 115 116 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 117 118 extern int count_lock_queue(void); 119 extern struct simplelock vnode_free_list_slock; /* XXX */ 120 extern struct simplelock bqueue_slock; /* XXX */ 121 122 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 123 static void lfs_super_aiodone(struct buf *); 124 static void lfs_cluster_aiodone(struct buf *); 125 static void lfs_cluster_callback(struct buf *); 126 127 /* 128 * Determine if it's OK to start a partial in this segment, or if we need 129 * to go on to a new segment. 130 */ 131 #define LFS_PARTIAL_FITS(fs) \ 132 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 133 fragstofsb((fs), (fs)->lfs_frag)) 134 135 /* 136 * Figure out whether we should do a checkpoint write or go ahead with 137 * an ordinary write. 138 */ 139 #define LFS_SHOULD_CHECKPOINT(fs, flags) \ 140 (fs->lfs_nactive > LFS_MAX_ACTIVE || \ 141 (flags & SEGM_CKP) || \ 142 fs->lfs_nclean < LFS_MAX_ACTIVE) 143 144 int lfs_match_fake(struct lfs *, struct buf *); 145 void lfs_newseg(struct lfs *); 146 /* XXX ondisk32 */ 147 void lfs_shellsort(struct buf **, int32_t *, int, int); 148 void lfs_supercallback(struct buf *); 149 void lfs_updatemeta(struct segment *); 150 void lfs_writesuper(struct lfs *, daddr_t); 151 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 152 struct segment *sp, int dirops); 153 154 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 155 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 156 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 157 int lfs_dirvcount = 0; /* # active dirops */ 158 159 /* Statistics Counters */ 160 int lfs_dostats = 1; 161 struct lfs_stats lfs_stats; 162 163 /* op values to lfs_writevnodes */ 164 #define VN_REG 0 165 #define VN_DIROP 1 166 #define VN_EMPTY 2 167 #define VN_CLEAN 3 168 169 /* 170 * XXX KS - Set modification time on the Ifile, so the cleaner can 171 * read the fs mod time off of it. We don't set IN_UPDATE here, 172 * since we don't really need this to be flushed to disk (and in any 173 * case that wouldn't happen to the Ifile until we checkpoint). 174 */ 175 void 176 lfs_imtime(struct lfs *fs) 177 { 178 struct timespec ts; 179 struct inode *ip; 180 181 ASSERT_MAYBE_SEGLOCK(fs); 182 vfs_timestamp(&ts); 183 ip = VTOI(fs->lfs_ivnode); 184 ip->i_ffs1_mtime = ts.tv_sec; 185 ip->i_ffs1_mtimensec = ts.tv_nsec; 186 } 187 188 /* 189 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 190 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 191 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 192 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 193 */ 194 195 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 196 197 int 198 lfs_vflush(struct vnode *vp) 199 { 200 struct inode *ip; 201 struct lfs *fs; 202 struct segment *sp; 203 struct buf *bp, *nbp, *tbp, *tnbp; 204 int error, s; 205 int flushed; 206 int relock; 207 208 ip = VTOI(vp); 209 fs = VFSTOUFS(vp->v_mount)->um_lfs; 210 relock = 0; 211 212 top: 213 ASSERT_NO_SEGLOCK(fs); 214 if (ip->i_flag & IN_CLEANING) { 215 ivndebug(vp,"vflush/in_cleaning"); 216 LFS_CLR_UINO(ip, IN_CLEANING); 217 LFS_SET_UINO(ip, IN_MODIFIED); 218 219 /* 220 * Toss any cleaning buffers that have real counterparts 221 * to avoid losing new data. 222 */ 223 s = splbio(); 224 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 225 nbp = LIST_NEXT(bp, b_vnbufs); 226 if (!LFS_IS_MALLOC_BUF(bp)) 227 continue; 228 /* 229 * Look for pages matching the range covered 230 * by cleaning blocks. It's okay if more dirty 231 * pages appear, so long as none disappear out 232 * from under us. 233 */ 234 if (bp->b_lblkno > 0 && vp->v_type == VREG && 235 vp != fs->lfs_ivnode) { 236 struct vm_page *pg; 237 voff_t off; 238 239 simple_lock(&vp->v_interlock); 240 for (off = lblktosize(fs, bp->b_lblkno); 241 off < lblktosize(fs, bp->b_lblkno + 1); 242 off += PAGE_SIZE) { 243 pg = uvm_pagelookup(&vp->v_uobj, off); 244 if (pg == NULL) 245 continue; 246 if ((pg->flags & PG_CLEAN) == 0 || 247 pmap_is_modified(pg)) { 248 fs->lfs_avail += btofsb(fs, 249 bp->b_bcount); 250 wakeup(&fs->lfs_avail); 251 lfs_freebuf(fs, bp); 252 bp = NULL; 253 simple_unlock(&vp->v_interlock); 254 goto nextbp; 255 } 256 } 257 simple_unlock(&vp->v_interlock); 258 } 259 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 260 tbp = tnbp) 261 { 262 tnbp = LIST_NEXT(tbp, b_vnbufs); 263 if (tbp->b_vp == bp->b_vp 264 && tbp->b_lblkno == bp->b_lblkno 265 && tbp != bp) 266 { 267 fs->lfs_avail += btofsb(fs, 268 bp->b_bcount); 269 wakeup(&fs->lfs_avail); 270 lfs_freebuf(fs, bp); 271 bp = NULL; 272 break; 273 } 274 } 275 nextbp: 276 ; 277 } 278 splx(s); 279 } 280 281 /* If the node is being written, wait until that is done */ 282 simple_lock(&vp->v_interlock); 283 s = splbio(); 284 if (WRITEINPROG(vp)) { 285 ivndebug(vp,"vflush/writeinprog"); 286 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock); 287 } 288 splx(s); 289 simple_unlock(&vp->v_interlock); 290 291 /* Protect against VXLOCK deadlock in vinvalbuf() */ 292 lfs_seglock(fs, SEGM_SYNC); 293 294 /* If we're supposed to flush a freed inode, just toss it */ 295 if (ip->i_lfs_iflags & LFSI_DELETED) { 296 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", 297 ip->i_number)); 298 s = splbio(); 299 /* Drain v_numoutput */ 300 simple_lock(&global_v_numoutput_slock); 301 while (vp->v_numoutput > 0) { 302 vp->v_flag |= VBWAIT; 303 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0, 304 &global_v_numoutput_slock); 305 } 306 simple_unlock(&global_v_numoutput_slock); 307 KASSERT(vp->v_numoutput == 0); 308 309 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 310 nbp = LIST_NEXT(bp, b_vnbufs); 311 312 KASSERT((bp->b_flags & B_GATHERED) == 0); 313 if (bp->b_flags & B_DELWRI) { /* XXX always true? */ 314 fs->lfs_avail += btofsb(fs, bp->b_bcount); 315 wakeup(&fs->lfs_avail); 316 } 317 /* Copied from lfs_writeseg */ 318 if (bp->b_flags & B_CALL) { 319 biodone(bp); 320 } else { 321 bremfree(bp); 322 LFS_UNLOCK_BUF(bp); 323 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | 324 B_GATHERED); 325 bp->b_flags |= B_DONE; 326 reassignbuf(bp, vp); 327 brelse(bp); 328 } 329 } 330 splx(s); 331 LFS_CLR_UINO(ip, IN_CLEANING); 332 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 333 ip->i_flag &= ~IN_ALLMOD; 334 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", 335 ip->i_number)); 336 lfs_segunlock(fs); 337 338 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 339 340 return 0; 341 } 342 343 fs->lfs_flushvp = vp; 344 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) { 345 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 346 fs->lfs_flushvp = NULL; 347 KASSERT(fs->lfs_flushvp_fakevref == 0); 348 lfs_segunlock(fs); 349 350 /* Make sure that any pending buffers get written */ 351 s = splbio(); 352 simple_lock(&global_v_numoutput_slock); 353 while (vp->v_numoutput > 0) { 354 vp->v_flag |= VBWAIT; 355 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0, 356 &global_v_numoutput_slock); 357 } 358 simple_unlock(&global_v_numoutput_slock); 359 splx(s); 360 361 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 362 KASSERT(vp->v_numoutput == 0); 363 364 return error; 365 } 366 sp = fs->lfs_sp; 367 368 flushed = 0; 369 if (VPISEMPTY(vp)) { 370 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 371 ++flushed; 372 } else if ((ip->i_flag & IN_CLEANING) && 373 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 374 ivndebug(vp,"vflush/clean"); 375 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 376 ++flushed; 377 } else if (lfs_dostats) { 378 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 379 ++lfs_stats.vflush_invoked; 380 ivndebug(vp,"vflush"); 381 } 382 383 #ifdef DIAGNOSTIC 384 if (vp->v_flag & VDIROP) { 385 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n")); 386 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */ 387 } 388 if (vp->v_usecount < 0) { 389 printf("usecount=%ld\n", (long)vp->v_usecount); 390 panic("lfs_vflush: usecount<0"); 391 } 392 #endif 393 394 do { 395 do { 396 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 397 relock = lfs_writefile(fs, sp, vp); 398 if (relock) { 399 /* 400 * Might have to wait for the 401 * cleaner to run; but we're 402 * still not done with this vnode. 403 */ 404 lfs_writeinode(fs, sp, ip); 405 LFS_SET_UINO(ip, IN_MODIFIED); 406 lfs_writeseg(fs, sp); 407 lfs_segunlock(fs); 408 lfs_segunlock_relock(fs); 409 goto top; 410 } 411 } 412 /* 413 * If we begin a new segment in the middle of writing 414 * the Ifile, it creates an inconsistent checkpoint, 415 * since the Ifile information for the new segment 416 * is not up-to-date. Take care of this here by 417 * sending the Ifile through again in case there 418 * are newly dirtied blocks. But wait, there's more! 419 * This second Ifile write could *also* cross a segment 420 * boundary, if the first one was large. The second 421 * one is guaranteed to be no more than 8 blocks, 422 * though (two segment blocks and supporting indirects) 423 * so the third write *will not* cross the boundary. 424 */ 425 if (vp == fs->lfs_ivnode) { 426 lfs_writefile(fs, sp, vp); 427 lfs_writefile(fs, sp, vp); 428 } 429 } while (lfs_writeinode(fs, sp, ip)); 430 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 431 432 if (lfs_dostats) { 433 ++lfs_stats.nwrites; 434 if (sp->seg_flags & SEGM_SYNC) 435 ++lfs_stats.nsync_writes; 436 if (sp->seg_flags & SEGM_CKP) 437 ++lfs_stats.ncheckpoints; 438 } 439 /* 440 * If we were called from somewhere that has already held the seglock 441 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 442 * the write to complete because we are still locked. 443 * Since lfs_vflush() must return the vnode with no dirty buffers, 444 * we must explicitly wait, if that is the case. 445 * 446 * We compare the iocount against 1, not 0, because it is 447 * artificially incremented by lfs_seglock(). 448 */ 449 simple_lock(&fs->lfs_interlock); 450 if (fs->lfs_seglock > 1) { 451 while (fs->lfs_iocount > 1) 452 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1, 453 "lfs_vflush", 0, &fs->lfs_interlock); 454 } 455 simple_unlock(&fs->lfs_interlock); 456 457 lfs_segunlock(fs); 458 459 /* Wait for these buffers to be recovered by aiodoned */ 460 s = splbio(); 461 simple_lock(&global_v_numoutput_slock); 462 while (vp->v_numoutput > 0) { 463 vp->v_flag |= VBWAIT; 464 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0, 465 &global_v_numoutput_slock); 466 } 467 simple_unlock(&global_v_numoutput_slock); 468 splx(s); 469 470 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 471 KASSERT(vp->v_numoutput == 0); 472 473 fs->lfs_flushvp = NULL; 474 KASSERT(fs->lfs_flushvp_fakevref == 0); 475 476 return (0); 477 } 478 479 int 480 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 481 { 482 struct inode *ip; 483 struct vnode *vp, *nvp; 484 int inodes_written = 0, only_cleaning; 485 int error = 0; 486 487 ASSERT_SEGLOCK(fs); 488 #ifndef LFS_NO_BACKVP_HACK 489 /* BEGIN HACK */ 490 #define VN_OFFSET \ 491 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp) 492 #define BACK_VP(VP) \ 493 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET)) 494 #define BEG_OF_VLIST \ 495 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \ 496 - VN_OFFSET)) 497 498 /* Find last vnode. */ 499 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); 500 vp && LIST_NEXT(vp, v_mntvnodes) != NULL; 501 vp = LIST_NEXT(vp, v_mntvnodes)); 502 for (; vp && vp != BEG_OF_VLIST; vp = nvp) { 503 nvp = BACK_VP(vp); 504 #else 505 loop: 506 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { 507 nvp = LIST_NEXT(vp, v_mntvnodes); 508 #endif 509 /* 510 * If the vnode that we are about to sync is no longer 511 * associated with this mount point, start over. 512 */ 513 if (vp->v_mount != mp) { 514 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n")); 515 /* 516 * After this, pages might be busy 517 * due to our own previous putpages. 518 * Start actual segment write here to avoid deadlock. 519 */ 520 (void)lfs_writeseg(fs, sp); 521 goto loop; 522 } 523 524 if (vp->v_type == VNON) { 525 continue; 526 } 527 528 ip = VTOI(vp); 529 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) || 530 (op != VN_DIROP && op != VN_CLEAN && 531 (vp->v_flag & VDIROP))) { 532 vndebug(vp,"dirop"); 533 continue; 534 } 535 536 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 537 vndebug(vp,"empty"); 538 continue; 539 } 540 541 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 542 && vp != fs->lfs_flushvp 543 && !(ip->i_flag & IN_CLEANING)) { 544 vndebug(vp,"cleaning"); 545 continue; 546 } 547 548 if (lfs_vref(vp)) { 549 vndebug(vp,"vref"); 550 continue; 551 } 552 553 only_cleaning = 0; 554 /* 555 * Write the inode/file if dirty and it's not the IFILE. 556 */ 557 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 558 only_cleaning = 559 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 560 561 if (ip->i_number != LFS_IFILE_INUM) { 562 error = lfs_writefile(fs, sp, vp); 563 if (error) { 564 lfs_vunref(vp); 565 if (error == EAGAIN) { 566 /* 567 * This error from lfs_putpages 568 * indicates we need to drop 569 * the segment lock and start 570 * over after the cleaner has 571 * had a chance to run. 572 */ 573 lfs_writeinode(fs, sp, ip); 574 lfs_writeseg(fs, sp); 575 if (!VPISEMPTY(vp) && 576 !WRITEINPROG(vp) && 577 !(ip->i_flag & IN_ALLMOD)) 578 LFS_SET_UINO(ip, IN_MODIFIED); 579 break; 580 } 581 error = 0; /* XXX not quite right */ 582 continue; 583 } 584 585 if (!VPISEMPTY(vp)) { 586 if (WRITEINPROG(vp)) { 587 ivndebug(vp,"writevnodes/write2"); 588 } else if (!(ip->i_flag & IN_ALLMOD)) { 589 LFS_SET_UINO(ip, IN_MODIFIED); 590 } 591 } 592 (void) lfs_writeinode(fs, sp, ip); 593 inodes_written++; 594 } 595 } 596 597 if (lfs_clean_vnhead && only_cleaning) 598 lfs_vunref_head(vp); 599 else 600 lfs_vunref(vp); 601 } 602 return error; 603 } 604 605 /* 606 * Do a checkpoint. 607 */ 608 int 609 lfs_segwrite(struct mount *mp, int flags) 610 { 611 struct buf *bp; 612 struct inode *ip; 613 struct lfs *fs; 614 struct segment *sp; 615 struct vnode *vp; 616 SEGUSE *segusep; 617 int do_ckp, did_ckp, error, s; 618 unsigned n, segleft, maxseg, sn, i, curseg; 619 int writer_set = 0; 620 int dirty; 621 int redo; 622 int um_error; 623 624 fs = VFSTOUFS(mp)->um_lfs; 625 ASSERT_MAYBE_SEGLOCK(fs); 626 627 if (fs->lfs_ronly) 628 return EROFS; 629 630 lfs_imtime(fs); 631 632 /* 633 * Allocate a segment structure and enough space to hold pointers to 634 * the maximum possible number of buffers which can be described in a 635 * single summary block. 636 */ 637 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags); 638 639 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 640 sp = fs->lfs_sp; 641 642 /* 643 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 644 * in which case we have to flush *all* buffers off of this vnode. 645 * We don't care about other nodes, but write any non-dirop nodes 646 * anyway in anticipation of another getnewvnode(). 647 * 648 * If we're cleaning we only write cleaning and ifile blocks, and 649 * no dirops, since otherwise we'd risk corruption in a crash. 650 */ 651 if (sp->seg_flags & SEGM_CLEAN) 652 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 653 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 654 do { 655 um_error = lfs_writevnodes(fs, mp, sp, VN_REG); 656 if (!fs->lfs_dirops || !fs->lfs_flushvp) { 657 if (!writer_set) { 658 lfs_writer_enter(fs, "lfs writer"); 659 writer_set = 1; 660 } 661 error = lfs_writevnodes(fs, mp, sp, VN_DIROP); 662 if (um_error == 0) 663 um_error = error; 664 /* In case writevnodes errored out */ 665 lfs_flush_dirops(fs); 666 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 667 lfs_finalize_fs_seguse(fs); 668 } 669 if (do_ckp && um_error) { 670 lfs_segunlock_relock(fs); 671 sp = fs->lfs_sp; 672 } 673 } while (do_ckp && um_error != 0); 674 } 675 676 /* 677 * If we are doing a checkpoint, mark everything since the 678 * last checkpoint as no longer ACTIVE. 679 */ 680 if (do_ckp) { 681 segleft = fs->lfs_nseg; 682 curseg = 0; 683 for (n = 0; n < fs->lfs_segtabsz; n++) { 684 dirty = 0; 685 if (bread(fs->lfs_ivnode, 686 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp)) 687 panic("lfs_segwrite: ifile read"); 688 segusep = (SEGUSE *)bp->b_data; 689 maxseg = min(segleft, fs->lfs_sepb); 690 for (i = 0; i < maxseg; i++) { 691 sn = curseg + i; 692 if (sn != dtosn(fs, fs->lfs_curseg) && 693 segusep->su_flags & SEGUSE_ACTIVE) { 694 segusep->su_flags &= ~SEGUSE_ACTIVE; 695 --fs->lfs_nactive; 696 ++dirty; 697 } 698 fs->lfs_suflags[fs->lfs_activesb][sn] = 699 segusep->su_flags; 700 if (fs->lfs_version > 1) 701 ++segusep; 702 else 703 segusep = (SEGUSE *) 704 ((SEGUSE_V1 *)segusep + 1); 705 } 706 707 if (dirty) 708 error = LFS_BWRITE_LOG(bp); /* Ifile */ 709 else 710 brelse(bp); 711 segleft -= fs->lfs_sepb; 712 curseg += fs->lfs_sepb; 713 } 714 } 715 716 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs)); 717 718 did_ckp = 0; 719 if (do_ckp || fs->lfs_doifile) { 720 vp = fs->lfs_ivnode; 721 vn_lock(vp, LK_EXCLUSIVE); 722 do { 723 #ifdef DEBUG 724 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); 725 #endif 726 simple_lock(&fs->lfs_interlock); 727 fs->lfs_flags &= ~LFS_IFDIRTY; 728 simple_unlock(&fs->lfs_interlock); 729 730 ip = VTOI(vp); 731 732 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 733 /* 734 * Ifile has no pages, so we don't need 735 * to check error return here. 736 */ 737 lfs_writefile(fs, sp, vp); 738 /* 739 * Ensure the Ifile takes the current segment 740 * into account. See comment in lfs_vflush. 741 */ 742 lfs_writefile(fs, sp, vp); 743 lfs_writefile(fs, sp, vp); 744 } 745 746 if (ip->i_flag & IN_ALLMOD) 747 ++did_ckp; 748 redo = lfs_writeinode(fs, sp, ip); 749 redo += lfs_writeseg(fs, sp); 750 simple_lock(&fs->lfs_interlock); 751 redo += (fs->lfs_flags & LFS_IFDIRTY); 752 simple_unlock(&fs->lfs_interlock); 753 } while (redo && do_ckp); 754 755 /* 756 * Unless we are unmounting, the Ifile may continue to have 757 * dirty blocks even after a checkpoint, due to changes to 758 * inodes' atime. If we're checkpointing, it's "impossible" 759 * for other parts of the Ifile to be dirty after the loop 760 * above, since we hold the segment lock. 761 */ 762 s = splbio(); 763 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 764 LFS_CLR_UINO(ip, IN_ALLMOD); 765 } 766 #ifdef DIAGNOSTIC 767 else if (do_ckp) { 768 int do_panic = 0; 769 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 770 if (bp->b_lblkno < fs->lfs_cleansz + 771 fs->lfs_segtabsz && 772 !(bp->b_flags & B_GATHERED)) { 773 printf("ifile lbn %ld still dirty (flags %lx)\n", 774 (long)bp->b_lblkno, 775 (long)bp->b_flags); 776 ++do_panic; 777 } 778 } 779 if (do_panic) 780 panic("dirty blocks"); 781 } 782 #endif 783 splx(s); 784 VOP_UNLOCK(vp, 0); 785 } else { 786 (void) lfs_writeseg(fs, sp); 787 } 788 789 /* Note Ifile no longer needs to be written */ 790 fs->lfs_doifile = 0; 791 if (writer_set) 792 lfs_writer_leave(fs); 793 794 /* 795 * If we didn't write the Ifile, we didn't really do anything. 796 * That means that (1) there is a checkpoint on disk and (2) 797 * nothing has changed since it was written. 798 * 799 * Take the flags off of the segment so that lfs_segunlock 800 * doesn't have to write the superblock either. 801 */ 802 if (do_ckp && !did_ckp) { 803 sp->seg_flags &= ~SEGM_CKP; 804 } 805 806 if (lfs_dostats) { 807 ++lfs_stats.nwrites; 808 if (sp->seg_flags & SEGM_SYNC) 809 ++lfs_stats.nsync_writes; 810 if (sp->seg_flags & SEGM_CKP) 811 ++lfs_stats.ncheckpoints; 812 } 813 lfs_segunlock(fs); 814 return (0); 815 } 816 817 /* 818 * Write the dirty blocks associated with a vnode. 819 */ 820 int 821 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 822 { 823 struct finfo *fip; 824 struct inode *ip; 825 int i, frag; 826 int error; 827 828 ASSERT_SEGLOCK(fs); 829 error = 0; 830 ip = VTOI(vp); 831 832 fip = sp->fip; 833 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 834 835 if (vp->v_flag & VDIROP) 836 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 837 838 if (sp->seg_flags & SEGM_CLEAN) { 839 lfs_gather(fs, sp, vp, lfs_match_fake); 840 /* 841 * For a file being flushed, we need to write *all* blocks. 842 * This means writing the cleaning blocks first, and then 843 * immediately following with any non-cleaning blocks. 844 * The same is true of the Ifile since checkpoints assume 845 * that all valid Ifile blocks are written. 846 */ 847 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) { 848 lfs_gather(fs, sp, vp, lfs_match_data); 849 /* 850 * Don't call VOP_PUTPAGES: if we're flushing, 851 * we've already done it, and the Ifile doesn't 852 * use the page cache. 853 */ 854 } 855 } else { 856 lfs_gather(fs, sp, vp, lfs_match_data); 857 /* 858 * If we're flushing, we've already called VOP_PUTPAGES 859 * so don't do it again. Otherwise, we want to write 860 * everything we've got. 861 */ 862 if (!IS_FLUSHING(fs, vp)) { 863 simple_lock(&vp->v_interlock); 864 error = VOP_PUTPAGES(vp, 0, 0, 865 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 866 } 867 } 868 869 /* 870 * It may not be necessary to write the meta-data blocks at this point, 871 * as the roll-forward recovery code should be able to reconstruct the 872 * list. 873 * 874 * We have to write them anyway, though, under two conditions: (1) the 875 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 876 * checkpointing. 877 * 878 * BUT if we are cleaning, we might have indirect blocks that refer to 879 * new blocks not being written yet, in addition to fragments being 880 * moved out of a cleaned segment. If that is the case, don't 881 * write the indirect blocks, or the finfo will have a small block 882 * in the middle of it! 883 * XXX in this case isn't the inode size wrong too? 884 */ 885 frag = 0; 886 if (sp->seg_flags & SEGM_CLEAN) { 887 for (i = 0; i < NDADDR; i++) 888 if (ip->i_lfs_fragsize[i] > 0 && 889 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 890 ++frag; 891 } 892 #ifdef DIAGNOSTIC 893 if (frag > 1) 894 panic("lfs_writefile: more than one fragment!"); 895 #endif 896 if (IS_FLUSHING(fs, vp) || 897 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 898 lfs_gather(fs, sp, vp, lfs_match_indir); 899 lfs_gather(fs, sp, vp, lfs_match_dindir); 900 lfs_gather(fs, sp, vp, lfs_match_tindir); 901 } 902 fip = sp->fip; 903 lfs_release_finfo(fs); 904 905 return error; 906 } 907 908 int 909 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 910 { 911 struct buf *bp, *ibp; 912 struct ufs1_dinode *cdp; 913 IFILE *ifp; 914 SEGUSE *sup; 915 daddr_t daddr; 916 int32_t *daddrp; /* XXX ondisk32 */ 917 ino_t ino; 918 int error, i, ndx, fsb = 0; 919 int redo_ifile = 0; 920 int gotblk = 0; 921 922 ASSERT_SEGLOCK(fs); 923 if (!(ip->i_flag & IN_ALLMOD)) 924 return (0); 925 926 /* Allocate a new inode block if necessary. */ 927 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 928 sp->ibp == NULL) { 929 /* Allocate a new segment if necessary. */ 930 if (sp->seg_bytes_left < fs->lfs_ibsize || 931 sp->sum_bytes_left < sizeof(int32_t)) 932 (void) lfs_writeseg(fs, sp); 933 934 /* Get next inode block. */ 935 daddr = fs->lfs_offset; 936 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 937 sp->ibp = *sp->cbpp++ = 938 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 939 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); 940 gotblk++; 941 942 /* Zero out inode numbers */ 943 for (i = 0; i < INOPB(fs); ++i) 944 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 945 0; 946 947 ++sp->start_bpp; 948 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 949 /* Set remaining space counters. */ 950 sp->seg_bytes_left -= fs->lfs_ibsize; 951 sp->sum_bytes_left -= sizeof(int32_t); 952 ndx = fs->lfs_sumsize / sizeof(int32_t) - 953 sp->ninodes / INOPB(fs) - 1; 954 ((int32_t *)(sp->segsum))[ndx] = daddr; 955 } 956 957 /* Update the inode times and copy the inode onto the inode page. */ 958 /* XXX kludge --- don't redirty the ifile just to put times on it */ 959 if (ip->i_number != LFS_IFILE_INUM) 960 LFS_ITIMES(ip, NULL, NULL, NULL); 961 962 /* 963 * If this is the Ifile, and we've already written the Ifile in this 964 * partial segment, just overwrite it (it's not on disk yet) and 965 * continue. 966 * 967 * XXX we know that the bp that we get the second time around has 968 * already been gathered. 969 */ 970 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 971 *(sp->idp) = *ip->i_din.ffs1_din; 972 ip->i_lfs_osize = ip->i_size; 973 return 0; 974 } 975 976 bp = sp->ibp; 977 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 978 *cdp = *ip->i_din.ffs1_din; 979 980 /* We can finish the segment accounting for truncations now */ 981 lfs_finalize_ino_seguse(fs, ip); 982 983 /* 984 * If we are cleaning, ensure that we don't write UNWRITTEN disk 985 * addresses to disk; possibly change the on-disk record of 986 * the inode size, either by reverting to the previous size 987 * (in the case of cleaning) or by verifying the inode's block 988 * holdings (in the case of files being allocated as they are being 989 * written). 990 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail 991 * XXX count on disk wrong by the same amount. We should be 992 * XXX able to "borrow" from lfs_avail and return it after the 993 * XXX Ifile is written. See also in lfs_writeseg. 994 */ 995 996 /* Check file size based on highest allocated block */ 997 if (((ip->i_ffs1_mode & IFMT) == IFREG || 998 (ip->i_ffs1_mode & IFMT) == IFDIR) && 999 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) { 1000 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift; 1001 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %" 1002 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size)); 1003 } 1004 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 1005 if (ip->i_flags & IN_CLEANING) 1006 cdp->di_size = ip->i_lfs_osize; 1007 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)" 1008 " at %x\n", ip->i_number, ip->i_lfs_effnblks, 1009 ip->i_ffs1_blocks, fs->lfs_offset)); 1010 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 1011 daddrp++) { 1012 if (*daddrp == UNWRITTEN) { 1013 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1014 *daddrp = 0; 1015 } 1016 } 1017 } else { 1018 /* If all blocks are going to disk, update "size on disk" */ 1019 ip->i_lfs_osize = ip->i_size; 1020 } 1021 1022 #ifdef DIAGNOSTIC 1023 /* 1024 * Check dinode held blocks against dinode size. 1025 * This should be identical to the check in lfs_vget(). 1026 */ 1027 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; 1028 i < NDADDR; i++) { 1029 KASSERT(i >= 0); 1030 if ((cdp->di_mode & IFMT) == IFLNK) 1031 continue; 1032 if (((cdp->di_mode & IFMT) == IFBLK || 1033 (cdp->di_mode & IFMT) == IFCHR) && i == 0) 1034 continue; 1035 if (cdp->di_db[i] != 0) { 1036 # ifdef DEBUG 1037 lfs_dump_dinode(cdp); 1038 # endif 1039 panic("writing inconsistent inode"); 1040 } 1041 } 1042 #endif /* DIAGNOSTIC */ 1043 1044 if (ip->i_flag & IN_CLEANING) 1045 LFS_CLR_UINO(ip, IN_CLEANING); 1046 else { 1047 /* XXX IN_ALLMOD */ 1048 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 1049 IN_UPDATE | IN_MODIFY); 1050 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 1051 LFS_CLR_UINO(ip, IN_MODIFIED); 1052 else 1053 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, " 1054 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks, 1055 ip->i_lfs_effnblks)); 1056 } 1057 1058 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */ 1059 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 1060 (sp->ninodes % INOPB(fs)); 1061 if (gotblk) { 1062 LFS_LOCK_BUF(bp); 1063 brelse(bp); 1064 } 1065 1066 /* Increment inode count in segment summary block. */ 1067 ++((SEGSUM *)(sp->segsum))->ss_ninos; 1068 1069 /* If this page is full, set flag to allocate a new page. */ 1070 if (++sp->ninodes % INOPB(fs) == 0) 1071 sp->ibp = NULL; 1072 1073 /* 1074 * If updating the ifile, update the super-block. Update the disk 1075 * address and access times for this inode in the ifile. 1076 */ 1077 ino = ip->i_number; 1078 if (ino == LFS_IFILE_INUM) { 1079 daddr = fs->lfs_idaddr; 1080 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno); 1081 } else { 1082 LFS_IENTRY(ifp, fs, ino, ibp); 1083 daddr = ifp->if_daddr; 1084 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb; 1085 error = LFS_BWRITE_LOG(ibp); /* Ifile */ 1086 } 1087 1088 /* 1089 * The inode's last address should not be in the current partial 1090 * segment, except under exceptional circumstances (lfs_writevnodes 1091 * had to start over, and in the meantime more blocks were written 1092 * to a vnode). Both inodes will be accounted to this segment 1093 * in lfs_writeseg so we need to subtract the earlier version 1094 * here anyway. The segment count can temporarily dip below 1095 * zero here; keep track of how many duplicates we have in 1096 * "dupino" so we don't panic below. 1097 */ 1098 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) { 1099 ++sp->ndupino; 1100 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " 1101 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 1102 (long long)daddr, sp->ndupino)); 1103 } 1104 /* 1105 * Account the inode: it no longer belongs to its former segment, 1106 * though it will not belong to the new segment until that segment 1107 * is actually written. 1108 */ 1109 if (daddr != LFS_UNUSED_DADDR) { 1110 u_int32_t oldsn = dtosn(fs, daddr); 1111 #ifdef DIAGNOSTIC 1112 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 1113 #endif 1114 LFS_SEGENTRY(sup, fs, oldsn, bp); 1115 #ifdef DIAGNOSTIC 1116 if (sup->su_nbytes + 1117 sizeof (struct ufs1_dinode) * ndupino 1118 < sizeof (struct ufs1_dinode)) { 1119 printf("lfs_writeinode: negative bytes " 1120 "(segment %" PRIu32 " short by %d, " 1121 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1122 ", daddr=%" PRId64 ", su_nbytes=%u, " 1123 "ndupino=%d)\n", 1124 dtosn(fs, daddr), 1125 (int)sizeof (struct ufs1_dinode) * 1126 (1 - sp->ndupino) - sup->su_nbytes, 1127 oldsn, sp->seg_number, daddr, 1128 (unsigned int)sup->su_nbytes, 1129 sp->ndupino); 1130 panic("lfs_writeinode: negative bytes"); 1131 sup->su_nbytes = sizeof (struct ufs1_dinode); 1132 } 1133 #endif 1134 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", 1135 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino)); 1136 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1137 redo_ifile = 1138 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1139 if (redo_ifile) { 1140 simple_lock(&fs->lfs_interlock); 1141 fs->lfs_flags |= LFS_IFDIRTY; 1142 simple_unlock(&fs->lfs_interlock); 1143 } 1144 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1145 } 1146 return (redo_ifile); 1147 } 1148 1149 int 1150 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr) 1151 { 1152 struct lfs *fs; 1153 int vers; 1154 int j, blksinblk; 1155 1156 ASSERT_SEGLOCK(sp->fs); 1157 /* 1158 * If full, finish this segment. We may be doing I/O, so 1159 * release and reacquire the splbio(). 1160 */ 1161 #ifdef DIAGNOSTIC 1162 if (sp->vp == NULL) 1163 panic ("lfs_gatherblock: Null vp in segment"); 1164 #endif 1165 fs = sp->fs; 1166 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1167 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1168 sp->seg_bytes_left < bp->b_bcount) { 1169 if (sptr) 1170 splx(*sptr); 1171 lfs_updatemeta(sp); 1172 1173 vers = sp->fip->fi_version; 1174 (void) lfs_writeseg(fs, sp); 1175 1176 /* Add the current file to the segment summary. */ 1177 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers); 1178 1179 if (sptr) 1180 *sptr = splbio(); 1181 return (1); 1182 } 1183 1184 if (bp->b_flags & B_GATHERED) { 1185 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d," 1186 " lbn %" PRId64 "\n", 1187 sp->fip->fi_ino, bp->b_lblkno)); 1188 return (0); 1189 } 1190 1191 /* Insert into the buffer list, update the FINFO block. */ 1192 bp->b_flags |= B_GATHERED; 1193 1194 *sp->cbpp++ = bp; 1195 for (j = 0; j < blksinblk; j++) { 1196 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1197 /* This block's accounting moves from lfs_favail to lfs_avail */ 1198 lfs_deregister_block(sp->vp, bp->b_lblkno + j); 1199 } 1200 1201 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1202 sp->seg_bytes_left -= bp->b_bcount; 1203 return (0); 1204 } 1205 1206 int 1207 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1208 int (*match)(struct lfs *, struct buf *)) 1209 { 1210 struct buf *bp, *nbp; 1211 int s, count = 0; 1212 1213 ASSERT_SEGLOCK(fs); 1214 if (vp->v_type == VBLK) 1215 return 0; 1216 KASSERT(sp->vp == NULL); 1217 sp->vp = vp; 1218 s = splbio(); 1219 1220 #ifndef LFS_NO_BACKBUF_HACK 1221 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1222 # define BUF_OFFSET \ 1223 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp) 1224 # define BACK_BUF(BP) \ 1225 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1226 # define BEG_OF_LIST \ 1227 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1228 1229 loop: 1230 /* Find last buffer. */ 1231 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1232 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1233 bp = LIST_NEXT(bp, b_vnbufs)) 1234 /* nothing */; 1235 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1236 nbp = BACK_BUF(bp); 1237 #else /* LFS_NO_BACKBUF_HACK */ 1238 loop: 1239 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1240 nbp = LIST_NEXT(bp, b_vnbufs); 1241 #endif /* LFS_NO_BACKBUF_HACK */ 1242 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) { 1243 #ifdef DEBUG 1244 if (vp == fs->lfs_ivnode && 1245 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY) 1246 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %" 1247 PRId64 " busy (%x)", 1248 bp->b_lblkno, bp->b_flags)); 1249 #endif 1250 continue; 1251 } 1252 #ifdef DIAGNOSTIC 1253 # ifdef LFS_USE_B_INVAL 1254 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) { 1255 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1256 " is B_INVAL\n", bp->b_lblkno)); 1257 VOP_PRINT(bp->b_vp); 1258 } 1259 # endif /* LFS_USE_B_INVAL */ 1260 if (!(bp->b_flags & B_DELWRI)) 1261 panic("lfs_gather: bp not B_DELWRI"); 1262 if (!(bp->b_flags & B_LOCKED)) { 1263 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1264 " blk %" PRId64 " not B_LOCKED\n", 1265 bp->b_lblkno, 1266 dbtofsb(fs, bp->b_blkno))); 1267 VOP_PRINT(bp->b_vp); 1268 panic("lfs_gather: bp not B_LOCKED"); 1269 } 1270 #endif 1271 if (lfs_gatherblock(sp, bp, &s)) { 1272 goto loop; 1273 } 1274 count++; 1275 } 1276 splx(s); 1277 lfs_updatemeta(sp); 1278 KASSERT(sp->vp == vp); 1279 sp->vp = NULL; 1280 return count; 1281 } 1282 1283 #if DEBUG 1284 # define DEBUG_OOFF(n) do { \ 1285 if (ooff == 0) { \ 1286 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ 1287 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1288 ", was 0x0 (or %" PRId64 ")\n", \ 1289 (n), ip->i_number, lbn, ndaddr, daddr)); \ 1290 } \ 1291 } while (0) 1292 #else 1293 # define DEBUG_OOFF(n) 1294 #endif 1295 1296 /* 1297 * Change the given block's address to ndaddr, finding its previous 1298 * location using ufs_bmaparray(). 1299 * 1300 * Account for this change in the segment table. 1301 * 1302 * called with sp == NULL by roll-forwarding code. 1303 */ 1304 void 1305 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp, 1306 daddr_t lbn, int32_t ndaddr, int size) 1307 { 1308 SEGUSE *sup; 1309 struct buf *bp; 1310 struct indir a[NIADDR + 2], *ap; 1311 struct inode *ip; 1312 daddr_t daddr, ooff; 1313 int num, error; 1314 int bb, osize, obb; 1315 1316 ASSERT_SEGLOCK(fs); 1317 KASSERT(sp == NULL || sp->vp == vp); 1318 ip = VTOI(vp); 1319 1320 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1321 if (error) 1322 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1323 1324 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */ 1325 KASSERT(daddr <= LFS_MAX_DADDR); 1326 if (daddr > 0) 1327 daddr = dbtofsb(fs, daddr); 1328 1329 bb = fragstofsb(fs, numfrags(fs, size)); 1330 switch (num) { 1331 case 0: 1332 ooff = ip->i_ffs1_db[lbn]; 1333 DEBUG_OOFF(0); 1334 if (ooff == UNWRITTEN) 1335 ip->i_ffs1_blocks += bb; 1336 else { 1337 /* possible fragment truncation or extension */ 1338 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1339 ip->i_ffs1_blocks += (bb - obb); 1340 } 1341 ip->i_ffs1_db[lbn] = ndaddr; 1342 break; 1343 case 1: 1344 ooff = ip->i_ffs1_ib[a[0].in_off]; 1345 DEBUG_OOFF(1); 1346 if (ooff == UNWRITTEN) 1347 ip->i_ffs1_blocks += bb; 1348 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1349 break; 1350 default: 1351 ap = &a[num - 1]; 1352 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 1353 panic("lfs_updatemeta: bread bno %" PRId64, 1354 ap->in_lbn); 1355 1356 /* XXX ondisk32 */ 1357 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1358 DEBUG_OOFF(num); 1359 if (ooff == UNWRITTEN) 1360 ip->i_ffs1_blocks += bb; 1361 /* XXX ondisk32 */ 1362 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1363 (void) VOP_BWRITE(bp); 1364 } 1365 1366 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1367 1368 /* Update hiblk when extending the file */ 1369 if (lbn > ip->i_lfs_hiblk) 1370 ip->i_lfs_hiblk = lbn; 1371 1372 /* 1373 * Though we'd rather it couldn't, this *can* happen right now 1374 * if cleaning blocks and regular blocks coexist. 1375 */ 1376 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1377 1378 /* 1379 * Update segment usage information, based on old size 1380 * and location. 1381 */ 1382 if (daddr > 0) { 1383 u_int32_t oldsn = dtosn(fs, daddr); 1384 #ifdef DIAGNOSTIC 1385 int ndupino; 1386 1387 if (sp && sp->seg_number == oldsn) { 1388 ndupino = sp->ndupino; 1389 } else { 1390 ndupino = 0; 1391 } 1392 #endif 1393 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg); 1394 if (lbn >= 0 && lbn < NDADDR) 1395 osize = ip->i_lfs_fragsize[lbn]; 1396 else 1397 osize = fs->lfs_bsize; 1398 LFS_SEGENTRY(sup, fs, oldsn, bp); 1399 #ifdef DIAGNOSTIC 1400 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1401 < osize) { 1402 printf("lfs_updatemeta: negative bytes " 1403 "(segment %" PRIu32 " short by %" PRId64 1404 ")\n", dtosn(fs, daddr), 1405 (int64_t)osize - 1406 (sizeof (struct ufs1_dinode) * ndupino + 1407 sup->su_nbytes)); 1408 printf("lfs_updatemeta: ino %llu, lbn %" PRId64 1409 ", addr = 0x%" PRIx64 "\n", 1410 (unsigned long long)ip->i_number, lbn, daddr); 1411 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1412 panic("lfs_updatemeta: negative bytes"); 1413 sup->su_nbytes = osize - 1414 sizeof (struct ufs1_dinode) * ndupino; 1415 } 1416 #endif 1417 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1418 " db 0x%" PRIx64 "\n", 1419 dtosn(fs, daddr), osize, 1420 ip->i_number, lbn, daddr)); 1421 sup->su_nbytes -= osize; 1422 if (!(bp->b_flags & B_GATHERED)) { 1423 simple_lock(&fs->lfs_interlock); 1424 fs->lfs_flags |= LFS_IFDIRTY; 1425 simple_unlock(&fs->lfs_interlock); 1426 } 1427 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1428 } 1429 /* 1430 * Now that this block has a new address, and its old 1431 * segment no longer owns it, we can forget about its 1432 * old size. 1433 */ 1434 if (lbn >= 0 && lbn < NDADDR) 1435 ip->i_lfs_fragsize[lbn] = size; 1436 } 1437 1438 /* 1439 * Update the metadata that points to the blocks listed in the FINFO 1440 * array. 1441 */ 1442 void 1443 lfs_updatemeta(struct segment *sp) 1444 { 1445 struct buf *sbp; 1446 struct lfs *fs; 1447 struct vnode *vp; 1448 daddr_t lbn; 1449 int i, nblocks, num; 1450 int bb; 1451 int bytesleft, size; 1452 1453 ASSERT_SEGLOCK(sp->fs); 1454 vp = sp->vp; 1455 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1456 KASSERT(nblocks >= 0); 1457 KASSERT(vp != NULL); 1458 if (nblocks == 0) 1459 return; 1460 1461 /* 1462 * This count may be high due to oversize blocks from lfs_gop_write. 1463 * Correct for this. (XXX we should be able to keep track of these.) 1464 */ 1465 fs = sp->fs; 1466 for (i = 0; i < nblocks; i++) { 1467 if (sp->start_bpp[i] == NULL) { 1468 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); 1469 nblocks = i; 1470 break; 1471 } 1472 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1473 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1474 nblocks -= num - 1; 1475 } 1476 1477 KASSERT(vp->v_type == VREG || 1478 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1479 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1480 1481 /* 1482 * Sort the blocks. 1483 * 1484 * We have to sort even if the blocks come from the 1485 * cleaner, because there might be other pending blocks on the 1486 * same inode...and if we don't sort, and there are fragments 1487 * present, blocks may be written in the wrong place. 1488 */ 1489 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1490 1491 /* 1492 * Record the length of the last block in case it's a fragment. 1493 * If there are indirect blocks present, they sort last. An 1494 * indirect block will be lfs_bsize and its presence indicates 1495 * that you cannot have fragments. 1496 * 1497 * XXX This last is a lie. A cleaned fragment can coexist with 1498 * XXX a later indirect block. This will continue to be 1499 * XXX true until lfs_markv is fixed to do everything with 1500 * XXX fake blocks (including fake inodes and fake indirect blocks). 1501 */ 1502 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1503 fs->lfs_bmask) + 1; 1504 1505 /* 1506 * Assign disk addresses, and update references to the logical 1507 * block and the segment usage information. 1508 */ 1509 for (i = nblocks; i--; ++sp->start_bpp) { 1510 sbp = *sp->start_bpp; 1511 lbn = *sp->start_lbp; 1512 KASSERT(sbp->b_lblkno == lbn); 1513 1514 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1515 1516 /* 1517 * If we write a frag in the wrong place, the cleaner won't 1518 * be able to correctly identify its size later, and the 1519 * segment will be uncleanable. (Even worse, it will assume 1520 * that the indirect block that actually ends the list 1521 * is of a smaller size!) 1522 */ 1523 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1524 panic("lfs_updatemeta: fragment is not last block"); 1525 1526 /* 1527 * For each subblock in this possibly oversized block, 1528 * update its address on disk. 1529 */ 1530 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1531 KASSERT(vp == sbp->b_vp); 1532 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1533 bytesleft -= fs->lfs_bsize) { 1534 size = MIN(bytesleft, fs->lfs_bsize); 1535 bb = fragstofsb(fs, numfrags(fs, size)); 1536 lbn = *sp->start_lbp++; 1537 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset, 1538 size); 1539 fs->lfs_offset += bb; 1540 } 1541 1542 } 1543 } 1544 1545 /* 1546 * Move lfs_offset to a segment earlier than sn. 1547 */ 1548 int 1549 lfs_rewind(struct lfs *fs, int newsn) 1550 { 1551 int sn, osn, isdirty; 1552 struct buf *bp; 1553 SEGUSE *sup; 1554 1555 ASSERT_SEGLOCK(fs); 1556 1557 osn = dtosn(fs, fs->lfs_offset); 1558 if (osn < newsn) 1559 return 0; 1560 1561 /* lfs_avail eats the remaining space in this segment */ 1562 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg); 1563 1564 /* Find a low-numbered segment */ 1565 for (sn = 0; sn < fs->lfs_nseg; ++sn) { 1566 LFS_SEGENTRY(sup, fs, sn, bp); 1567 isdirty = sup->su_flags & SEGUSE_DIRTY; 1568 brelse(bp); 1569 1570 if (!isdirty) 1571 break; 1572 } 1573 if (sn == fs->lfs_nseg) 1574 panic("lfs_rewind: no clean segments"); 1575 if (newsn >= 0 && sn >= newsn) 1576 return ENOENT; 1577 fs->lfs_nextseg = sn; 1578 lfs_newseg(fs); 1579 fs->lfs_offset = fs->lfs_curseg; 1580 1581 return 0; 1582 } 1583 1584 /* 1585 * Start a new partial segment. 1586 * 1587 * Return 1 when we entered to a new segment. 1588 * Otherwise, return 0. 1589 */ 1590 int 1591 lfs_initseg(struct lfs *fs) 1592 { 1593 struct segment *sp = fs->lfs_sp; 1594 SEGSUM *ssp; 1595 struct buf *sbp; /* buffer for SEGSUM */ 1596 int repeat = 0; /* return value */ 1597 1598 ASSERT_SEGLOCK(fs); 1599 /* Advance to the next segment. */ 1600 if (!LFS_PARTIAL_FITS(fs)) { 1601 SEGUSE *sup; 1602 struct buf *bp; 1603 1604 /* lfs_avail eats the remaining space */ 1605 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1606 fs->lfs_curseg); 1607 /* Wake up any cleaning procs waiting on this file system. */ 1608 lfs_wakeup_cleaner(fs); 1609 lfs_newseg(fs); 1610 repeat = 1; 1611 fs->lfs_offset = fs->lfs_curseg; 1612 1613 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1614 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1615 1616 /* 1617 * If the segment contains a superblock, update the offset 1618 * and summary address to skip over it. 1619 */ 1620 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1621 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1622 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1623 sp->seg_bytes_left -= LFS_SBPAD; 1624 } 1625 brelse(bp); 1626 /* Segment zero could also contain the labelpad */ 1627 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1628 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1629 fs->lfs_offset += 1630 btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1631 sp->seg_bytes_left -= 1632 LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1633 } 1634 } else { 1635 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1636 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1637 (fs->lfs_offset - fs->lfs_curseg)); 1638 } 1639 fs->lfs_lastpseg = fs->lfs_offset; 1640 1641 /* Record first address of this partial segment */ 1642 if (sp->seg_flags & SEGM_CLEAN) { 1643 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1644 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1645 /* "1" is the artificial inc in lfs_seglock */ 1646 simple_lock(&fs->lfs_interlock); 1647 while (fs->lfs_iocount > 1) { 1648 ltsleep(&fs->lfs_iocount, PRIBIO + 1, 1649 "lfs_initseg", 0, &fs->lfs_interlock); 1650 } 1651 simple_unlock(&fs->lfs_interlock); 1652 fs->lfs_cleanind = 0; 1653 } 1654 } 1655 1656 sp->fs = fs; 1657 sp->ibp = NULL; 1658 sp->idp = NULL; 1659 sp->ninodes = 0; 1660 sp->ndupino = 0; 1661 1662 sp->cbpp = sp->bpp; 1663 1664 /* Get a new buffer for SEGSUM */ 1665 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1666 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1667 1668 /* ... and enter it into the buffer list. */ 1669 *sp->cbpp = sbp; 1670 sp->cbpp++; 1671 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1672 1673 sp->start_bpp = sp->cbpp; 1674 1675 /* Set point to SEGSUM, initialize it. */ 1676 ssp = sp->segsum = sbp->b_data; 1677 memset(ssp, 0, fs->lfs_sumsize); 1678 ssp->ss_next = fs->lfs_nextseg; 1679 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1680 ssp->ss_magic = SS_MAGIC; 1681 1682 /* Set pointer to first FINFO, initialize it. */ 1683 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs)); 1684 sp->fip->fi_nblocks = 0; 1685 sp->start_lbp = &sp->fip->fi_blocks[0]; 1686 sp->fip->fi_lastlength = 0; 1687 1688 sp->seg_bytes_left -= fs->lfs_sumsize; 1689 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1690 1691 return (repeat); 1692 } 1693 1694 /* 1695 * Remove SEGUSE_INVAL from all segments. 1696 */ 1697 void 1698 lfs_unset_inval_all(struct lfs *fs) 1699 { 1700 SEGUSE *sup; 1701 struct buf *bp; 1702 int i; 1703 1704 for (i = 0; i < fs->lfs_nseg; i++) { 1705 LFS_SEGENTRY(sup, fs, i, bp); 1706 if (sup->su_flags & SEGUSE_INVAL) { 1707 sup->su_flags &= ~SEGUSE_INVAL; 1708 VOP_BWRITE(bp); 1709 } else 1710 brelse(bp); 1711 } 1712 } 1713 1714 /* 1715 * Return the next segment to write. 1716 */ 1717 void 1718 lfs_newseg(struct lfs *fs) 1719 { 1720 CLEANERINFO *cip; 1721 SEGUSE *sup; 1722 struct buf *bp; 1723 int curseg, isdirty, sn, skip_inval; 1724 1725 ASSERT_SEGLOCK(fs); 1726 1727 /* Honor LFCNWRAPSTOP */ 1728 simple_lock(&fs->lfs_interlock); 1729 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) { 1730 log(LOG_NOTICE, "%s: waiting on log wrap\n", fs->lfs_fsmnt); 1731 wakeup(&fs->lfs_nowrap); 1732 ltsleep(&fs->lfs_nowrap, PVFS, "newseg", 0, 1733 &fs->lfs_interlock); 1734 } 1735 simple_unlock(&fs->lfs_interlock); 1736 1737 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1738 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", 1739 dtosn(fs, fs->lfs_nextseg))); 1740 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1741 sup->su_nbytes = 0; 1742 sup->su_nsums = 0; 1743 sup->su_ninos = 0; 1744 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1745 1746 LFS_CLEANERINFO(cip, fs, bp); 1747 --cip->clean; 1748 ++cip->dirty; 1749 fs->lfs_nclean = cip->clean; 1750 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1751 1752 fs->lfs_lastseg = fs->lfs_curseg; 1753 fs->lfs_curseg = fs->lfs_nextseg; 1754 skip_inval = 1; 1755 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1756 sn = (sn + 1) % fs->lfs_nseg; 1757 1758 if (sn == curseg) { 1759 if (skip_inval) 1760 skip_inval = 0; 1761 else 1762 panic("lfs_nextseg: no clean segments"); 1763 } 1764 LFS_SEGENTRY(sup, fs, sn, bp); 1765 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0)); 1766 /* Check SEGUSE_EMPTY as we go along */ 1767 if (isdirty && sup->su_nbytes == 0 && 1768 !(sup->su_flags & SEGUSE_EMPTY)) 1769 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1770 else 1771 brelse(bp); 1772 1773 if (!isdirty) 1774 break; 1775 } 1776 if (skip_inval == 0) 1777 lfs_unset_inval_all(fs); 1778 1779 ++fs->lfs_nactive; 1780 fs->lfs_nextseg = sntod(fs, sn); 1781 if (lfs_dostats) { 1782 ++lfs_stats.segsused; 1783 } 1784 } 1785 1786 static struct buf * 1787 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n) 1788 { 1789 struct lfs_cluster *cl; 1790 struct buf **bpp, *bp; 1791 1792 ASSERT_SEGLOCK(fs); 1793 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1794 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1795 memset(cl, 0, sizeof(*cl)); 1796 cl->fs = fs; 1797 cl->bpp = bpp; 1798 cl->bufcount = 0; 1799 cl->bufsize = 0; 1800 1801 /* If this segment is being written synchronously, note that */ 1802 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1803 cl->flags |= LFS_CL_SYNC; 1804 cl->seg = fs->lfs_sp; 1805 ++cl->seg->seg_iocount; 1806 } 1807 1808 /* Get an empty buffer header, or maybe one with something on it */ 1809 bp = getiobuf(); 1810 bp->b_flags = B_BUSY | B_CALL; 1811 bp->b_dev = NODEV; 1812 bp->b_blkno = bp->b_lblkno = addr; 1813 bp->b_iodone = lfs_cluster_callback; 1814 bp->b_private = cl; 1815 bp->b_vp = vp; 1816 1817 return bp; 1818 } 1819 1820 int 1821 lfs_writeseg(struct lfs *fs, struct segment *sp) 1822 { 1823 struct buf **bpp, *bp, *cbp, *newbp; 1824 SEGUSE *sup; 1825 SEGSUM *ssp; 1826 int i, s; 1827 int do_again, nblocks, byteoffset; 1828 size_t el_size; 1829 struct lfs_cluster *cl; 1830 u_short ninos; 1831 struct vnode *devvp; 1832 char *p = NULL; 1833 struct vnode *vp; 1834 int32_t *daddrp; /* XXX ondisk32 */ 1835 int changed; 1836 u_int32_t sum; 1837 #ifdef DEBUG 1838 FINFO *fip; 1839 int findex; 1840 #endif 1841 1842 ASSERT_SEGLOCK(fs); 1843 /* 1844 * If there are no buffers other than the segment summary to write 1845 * and it is not a checkpoint, don't do anything. On a checkpoint, 1846 * even if there aren't any buffers, you need to write the superblock. 1847 */ 1848 if ((nblocks = sp->cbpp - sp->bpp) == 1) 1849 return (0); 1850 1851 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1852 1853 /* Update the segment usage information. */ 1854 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1855 1856 /* Loop through all blocks, except the segment summary. */ 1857 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 1858 if ((*bpp)->b_vp != devvp) { 1859 sup->su_nbytes += (*bpp)->b_bcount; 1860 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" 1861 " lbn %" PRId64 " db 0x%" PRIx64 "\n", 1862 sp->seg_number, (*bpp)->b_bcount, 1863 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 1864 (*bpp)->b_blkno)); 1865 } 1866 } 1867 1868 ssp = (SEGSUM *)sp->segsum; 1869 1870 #ifdef DEBUG 1871 /* Check for zero-length and zero-version FINFO entries. */ 1872 fip = (struct finfo *)((caddr_t)ssp + SEGSUM_SIZE(fs)); 1873 for (findex = 0; findex < ssp->ss_nfinfo; findex++) { 1874 KDASSERT(fip->fi_nblocks > 0); 1875 KDASSERT(fip->fi_version > 0); 1876 fip = (FINFO *)((caddr_t)fip + FINFOSIZE + 1877 sizeof(int32_t) * fip->fi_nblocks); 1878 } 1879 #endif /* DEBUG */ 1880 1881 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 1882 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", 1883 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 1884 ssp->ss_ninos)); 1885 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 1886 /* sup->su_nbytes += fs->lfs_sumsize; */ 1887 if (fs->lfs_version == 1) 1888 sup->su_olastmod = time_second; 1889 else 1890 sup->su_lastmod = time_second; 1891 sup->su_ninos += ninos; 1892 ++sup->su_nsums; 1893 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 1894 1895 do_again = !(bp->b_flags & B_GATHERED); 1896 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 1897 1898 /* 1899 * Mark blocks B_BUSY, to prevent then from being changed between 1900 * the checksum computation and the actual write. 1901 * 1902 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 1903 * there are any, replace them with copies that have UNASSIGNED 1904 * instead. 1905 */ 1906 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 1907 ++bpp; 1908 bp = *bpp; 1909 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */ 1910 bp->b_flags |= B_BUSY; 1911 continue; 1912 } 1913 1914 simple_lock(&bp->b_interlock); 1915 s = splbio(); 1916 while (bp->b_flags & B_BUSY) { 1917 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" 1918 " data summary corruption for ino %d, lbn %" 1919 PRId64 "\n", 1920 VTOI(bp->b_vp)->i_number, bp->b_lblkno)); 1921 bp->b_flags |= B_WANTED; 1922 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0, 1923 &bp->b_interlock); 1924 splx(s); 1925 s = splbio(); 1926 } 1927 bp->b_flags |= B_BUSY; 1928 splx(s); 1929 simple_unlock(&bp->b_interlock); 1930 1931 /* 1932 * Check and replace indirect block UNWRITTEN bogosity. 1933 * XXX See comment in lfs_writefile. 1934 */ 1935 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 1936 VTOI(bp->b_vp)->i_ffs1_blocks != 1937 VTOI(bp->b_vp)->i_lfs_effnblks) { 1938 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n", 1939 VTOI(bp->b_vp)->i_number, 1940 VTOI(bp->b_vp)->i_lfs_effnblks, 1941 VTOI(bp->b_vp)->i_ffs1_blocks)); 1942 /* Make a copy we'll make changes to */ 1943 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 1944 bp->b_bcount, LFS_NB_IBLOCK); 1945 newbp->b_blkno = bp->b_blkno; 1946 memcpy(newbp->b_data, bp->b_data, 1947 newbp->b_bcount); 1948 1949 changed = 0; 1950 /* XXX ondisk32 */ 1951 for (daddrp = (int32_t *)(newbp->b_data); 1952 daddrp < (int32_t *)(newbp->b_data + 1953 newbp->b_bcount); daddrp++) { 1954 if (*daddrp == UNWRITTEN) { 1955 ++changed; 1956 *daddrp = 0; 1957 } 1958 } 1959 /* 1960 * Get rid of the old buffer. Don't mark it clean, 1961 * though, if it still has dirty data on it. 1962 */ 1963 if (changed) { 1964 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" 1965 " bp = %p newbp = %p\n", changed, bp, 1966 newbp)); 1967 *bpp = newbp; 1968 bp->b_flags &= ~(B_ERROR | B_GATHERED); 1969 if (bp->b_flags & B_CALL) { 1970 DLOG((DLOG_SEG, "lfs_writeseg: " 1971 "indir bp should not be B_CALL\n")); 1972 s = splbio(); 1973 biodone(bp); 1974 splx(s); 1975 bp = NULL; 1976 } else { 1977 /* Still on free list, leave it there */ 1978 s = splbio(); 1979 bp->b_flags &= ~B_BUSY; 1980 if (bp->b_flags & B_WANTED) 1981 wakeup(bp); 1982 splx(s); 1983 /* 1984 * We have to re-decrement lfs_avail 1985 * since this block is going to come 1986 * back around to us in the next 1987 * segment. 1988 */ 1989 fs->lfs_avail -= 1990 btofsb(fs, bp->b_bcount); 1991 } 1992 } else { 1993 lfs_freebuf(fs, newbp); 1994 } 1995 } 1996 } 1997 /* 1998 * Compute checksum across data and then across summary; the first 1999 * block (the summary block) is skipped. Set the create time here 2000 * so that it's guaranteed to be later than the inode mod times. 2001 */ 2002 sum = 0; 2003 if (fs->lfs_version == 1) 2004 el_size = sizeof(u_long); 2005 else 2006 el_size = sizeof(u_int32_t); 2007 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 2008 ++bpp; 2009 /* Loop through gop_write cluster blocks */ 2010 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 2011 byteoffset += fs->lfs_bsize) { 2012 #ifdef LFS_USE_B_INVAL 2013 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) == 2014 (B_CALL | B_INVAL)) { 2015 if (copyin((caddr_t)(*bpp)->b_saveaddr + 2016 byteoffset, dp, el_size)) { 2017 panic("lfs_writeseg: copyin failed [1]:" 2018 " ino %d blk %" PRId64, 2019 VTOI((*bpp)->b_vp)->i_number, 2020 (*bpp)->b_lblkno); 2021 } 2022 } else 2023 #endif /* LFS_USE_B_INVAL */ 2024 { 2025 sum = lfs_cksum_part( 2026 (*bpp)->b_data + byteoffset, el_size, sum); 2027 } 2028 } 2029 } 2030 if (fs->lfs_version == 1) 2031 ssp->ss_ocreate = time_second; 2032 else { 2033 ssp->ss_create = time_second; 2034 ssp->ss_serial = ++fs->lfs_serial; 2035 ssp->ss_ident = fs->lfs_ident; 2036 } 2037 ssp->ss_datasum = lfs_cksum_fold(sum); 2038 ssp->ss_sumsum = cksum(&ssp->ss_datasum, 2039 fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 2040 2041 simple_lock(&fs->lfs_interlock); 2042 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 2043 btofsb(fs, fs->lfs_sumsize)); 2044 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) + 2045 btofsb(fs, fs->lfs_sumsize)); 2046 simple_unlock(&fs->lfs_interlock); 2047 2048 /* 2049 * When we simply write the blocks we lose a rotation for every block 2050 * written. To avoid this problem, we cluster the buffers into a 2051 * chunk and write the chunk. MAXPHYS is the largest size I/O 2052 * devices can handle, use that for the size of the chunks. 2053 * 2054 * Blocks that are already clusters (from GOP_WRITE), however, we 2055 * don't bother to copy into other clusters. 2056 */ 2057 2058 #define CHUNKSIZE MAXPHYS 2059 2060 if (devvp == NULL) 2061 panic("devvp is NULL"); 2062 for (bpp = sp->bpp, i = nblocks; i;) { 2063 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 2064 cl = cbp->b_private; 2065 2066 cbp->b_flags |= B_ASYNC | B_BUSY; 2067 cbp->b_bcount = 0; 2068 2069 #if defined(DEBUG) && defined(DIAGNOSTIC) 2070 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 2071 / sizeof(int32_t)) { 2072 panic("lfs_writeseg: real bpp overwrite"); 2073 } 2074 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) { 2075 panic("lfs_writeseg: theoretical bpp overwrite"); 2076 } 2077 #endif 2078 2079 /* 2080 * Construct the cluster. 2081 */ 2082 simple_lock(&fs->lfs_interlock); 2083 ++fs->lfs_iocount; 2084 simple_unlock(&fs->lfs_interlock); 2085 while (i && cbp->b_bcount < CHUNKSIZE) { 2086 bp = *bpp; 2087 2088 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 2089 break; 2090 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 2091 break; 2092 2093 /* Clusters from GOP_WRITE are expedited */ 2094 if (bp->b_bcount > fs->lfs_bsize) { 2095 if (cbp->b_bcount > 0) 2096 /* Put in its own buffer */ 2097 break; 2098 else { 2099 cbp->b_data = bp->b_data; 2100 } 2101 } else if (cbp->b_bcount == 0) { 2102 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 2103 LFS_NB_CLUSTER); 2104 cl->flags |= LFS_CL_MALLOC; 2105 } 2106 #ifdef DIAGNOSTIC 2107 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 2108 btodb(bp->b_bcount - 1))) != 2109 sp->seg_number) { 2110 printf("blk size %d daddr %" PRIx64 2111 " not in seg %d\n", 2112 bp->b_bcount, bp->b_blkno, 2113 sp->seg_number); 2114 panic("segment overwrite"); 2115 } 2116 #endif 2117 2118 #ifdef LFS_USE_B_INVAL 2119 /* 2120 * Fake buffers from the cleaner are marked as B_INVAL. 2121 * We need to copy the data from user space rather than 2122 * from the buffer indicated. 2123 * XXX == what do I do on an error? 2124 */ 2125 if ((bp->b_flags & (B_CALL|B_INVAL)) == 2126 (B_CALL|B_INVAL)) { 2127 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 2128 panic("lfs_writeseg: " 2129 "copyin failed [2]"); 2130 } else 2131 #endif /* LFS_USE_B_INVAL */ 2132 if (cl->flags & LFS_CL_MALLOC) { 2133 /* copy data into our cluster. */ 2134 memcpy(p, bp->b_data, bp->b_bcount); 2135 p += bp->b_bcount; 2136 } 2137 2138 cbp->b_bcount += bp->b_bcount; 2139 cl->bufsize += bp->b_bcount; 2140 2141 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE); 2142 cl->bpp[cl->bufcount++] = bp; 2143 vp = bp->b_vp; 2144 s = splbio(); 2145 reassignbuf(bp, vp); 2146 V_INCR_NUMOUTPUT(vp); 2147 splx(s); 2148 2149 bpp++; 2150 i--; 2151 } 2152 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2153 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 2154 else 2155 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 2156 s = splbio(); 2157 V_INCR_NUMOUTPUT(devvp); 2158 splx(s); 2159 VOP_STRATEGY(devvp, cbp); 2160 curproc->p_stats->p_ru.ru_oublock++; 2161 } 2162 2163 if (lfs_dostats) { 2164 ++lfs_stats.psegwrites; 2165 lfs_stats.blocktot += nblocks - 1; 2166 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2167 ++lfs_stats.psyncwrites; 2168 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2169 ++lfs_stats.pcleanwrites; 2170 lfs_stats.cleanblocks += nblocks - 1; 2171 } 2172 } 2173 return (lfs_initseg(fs) || do_again); 2174 } 2175 2176 void 2177 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2178 { 2179 struct buf *bp; 2180 int s; 2181 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2182 2183 ASSERT_MAYBE_SEGLOCK(fs); 2184 #ifdef DIAGNOSTIC 2185 KASSERT(fs->lfs_magic == LFS_MAGIC); 2186 #endif 2187 /* 2188 * If we can write one superblock while another is in 2189 * progress, we risk not having a complete checkpoint if we crash. 2190 * So, block here if a superblock write is in progress. 2191 */ 2192 simple_lock(&fs->lfs_interlock); 2193 s = splbio(); 2194 while (fs->lfs_sbactive) { 2195 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, 2196 &fs->lfs_interlock); 2197 } 2198 fs->lfs_sbactive = daddr; 2199 splx(s); 2200 simple_unlock(&fs->lfs_interlock); 2201 2202 /* Set timestamp of this version of the superblock */ 2203 if (fs->lfs_version == 1) 2204 fs->lfs_otstamp = time_second; 2205 fs->lfs_tstamp = time_second; 2206 2207 /* Checksum the superblock and copy it into a buffer. */ 2208 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2209 bp = lfs_newbuf(fs, devvp, 2210 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2211 memset(bp->b_data + sizeof(struct dlfs), 0, 2212 LFS_SBPAD - sizeof(struct dlfs)); 2213 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2214 2215 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; 2216 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); 2217 bp->b_iodone = lfs_supercallback; 2218 2219 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2220 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2221 else 2222 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2223 curproc->p_stats->p_ru.ru_oublock++; 2224 s = splbio(); 2225 V_INCR_NUMOUTPUT(bp->b_vp); 2226 splx(s); 2227 simple_lock(&fs->lfs_interlock); 2228 ++fs->lfs_iocount; 2229 simple_unlock(&fs->lfs_interlock); 2230 VOP_STRATEGY(devvp, bp); 2231 } 2232 2233 /* 2234 * Logical block number match routines used when traversing the dirty block 2235 * chain. 2236 */ 2237 int 2238 lfs_match_fake(struct lfs *fs, struct buf *bp) 2239 { 2240 2241 ASSERT_SEGLOCK(fs); 2242 return LFS_IS_MALLOC_BUF(bp); 2243 } 2244 2245 #if 0 2246 int 2247 lfs_match_real(struct lfs *fs, struct buf *bp) 2248 { 2249 2250 ASSERT_SEGLOCK(fs); 2251 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2252 } 2253 #endif 2254 2255 int 2256 lfs_match_data(struct lfs *fs, struct buf *bp) 2257 { 2258 2259 ASSERT_SEGLOCK(fs); 2260 return (bp->b_lblkno >= 0); 2261 } 2262 2263 int 2264 lfs_match_indir(struct lfs *fs, struct buf *bp) 2265 { 2266 daddr_t lbn; 2267 2268 ASSERT_SEGLOCK(fs); 2269 lbn = bp->b_lblkno; 2270 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2271 } 2272 2273 int 2274 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2275 { 2276 daddr_t lbn; 2277 2278 ASSERT_SEGLOCK(fs); 2279 lbn = bp->b_lblkno; 2280 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2281 } 2282 2283 int 2284 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2285 { 2286 daddr_t lbn; 2287 2288 ASSERT_SEGLOCK(fs); 2289 lbn = bp->b_lblkno; 2290 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2291 } 2292 2293 /* 2294 * XXX - The only buffers that are going to hit these functions are the 2295 * segment write blocks, or the segment summaries, or the superblocks. 2296 * 2297 * All of the above are created by lfs_newbuf, and so do not need to be 2298 * released via brelse. 2299 */ 2300 void 2301 lfs_callback(struct buf *bp) 2302 { 2303 struct lfs *fs; 2304 2305 fs = bp->b_private; 2306 ASSERT_NO_SEGLOCK(fs); 2307 lfs_freebuf(fs, bp); 2308 } 2309 2310 static void 2311 lfs_super_aiodone(struct buf *bp) 2312 { 2313 struct lfs *fs; 2314 2315 fs = bp->b_private; 2316 ASSERT_NO_SEGLOCK(fs); 2317 simple_lock(&fs->lfs_interlock); 2318 fs->lfs_sbactive = 0; 2319 if (--fs->lfs_iocount <= 1) 2320 wakeup(&fs->lfs_iocount); 2321 simple_unlock(&fs->lfs_interlock); 2322 wakeup(&fs->lfs_sbactive); 2323 lfs_freebuf(fs, bp); 2324 } 2325 2326 static void 2327 lfs_cluster_aiodone(struct buf *bp) 2328 { 2329 struct lfs_cluster *cl; 2330 struct lfs *fs; 2331 struct buf *tbp, *fbp; 2332 struct vnode *vp, *devvp; 2333 struct inode *ip; 2334 int s, error=0; 2335 2336 if (bp->b_flags & B_ERROR) 2337 error = bp->b_error; 2338 2339 cl = bp->b_private; 2340 fs = cl->fs; 2341 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2342 ASSERT_NO_SEGLOCK(fs); 2343 2344 /* Put the pages back, and release the buffer */ 2345 while (cl->bufcount--) { 2346 tbp = cl->bpp[cl->bufcount]; 2347 KASSERT(tbp->b_flags & B_BUSY); 2348 if (error) { 2349 tbp->b_flags |= B_ERROR; 2350 tbp->b_error = error; 2351 } 2352 2353 /* 2354 * We're done with tbp. If it has not been re-dirtied since 2355 * the cluster was written, free it. Otherwise, keep it on 2356 * the locked list to be written again. 2357 */ 2358 vp = tbp->b_vp; 2359 2360 tbp->b_flags &= ~B_GATHERED; 2361 2362 LFS_BCLEAN_LOG(fs, tbp); 2363 2364 if (!(tbp->b_flags & B_CALL)) { 2365 KASSERT(tbp->b_flags & B_LOCKED); 2366 s = splbio(); 2367 simple_lock(&bqueue_slock); 2368 bremfree(tbp); 2369 simple_unlock(&bqueue_slock); 2370 if (vp) 2371 reassignbuf(tbp, vp); 2372 splx(s); 2373 tbp->b_flags |= B_ASYNC; /* for biodone */ 2374 } 2375 2376 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED) 2377 LFS_UNLOCK_BUF(tbp); 2378 2379 if (tbp->b_flags & B_DONE) { 2380 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", 2381 cl->bufcount, (long)tbp->b_flags)); 2382 } 2383 2384 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) { 2385 /* 2386 * A buffer from the page daemon. 2387 * We use the same iodone as it does, 2388 * so we must manually disassociate its 2389 * buffers from the vp. 2390 */ 2391 if (tbp->b_vp) { 2392 /* This is just silly */ 2393 s = splbio(); 2394 brelvp(tbp); 2395 tbp->b_vp = vp; 2396 splx(s); 2397 } 2398 /* Put it back the way it was */ 2399 tbp->b_flags |= B_ASYNC; 2400 /* Master buffers have B_AGE */ 2401 if (tbp->b_private == tbp) 2402 tbp->b_flags |= B_AGE; 2403 } 2404 s = splbio(); 2405 biodone(tbp); 2406 2407 /* 2408 * If this is the last block for this vnode, but 2409 * there are other blocks on its dirty list, 2410 * set IN_MODIFIED/IN_CLEANING depending on what 2411 * sort of block. Only do this for our mount point, 2412 * not for, e.g., inode blocks that are attached to 2413 * the devvp. 2414 * XXX KS - Shouldn't we set *both* if both types 2415 * of blocks are present (traverse the dirty list?) 2416 */ 2417 simple_lock(&global_v_numoutput_slock); 2418 if (vp != devvp && vp->v_numoutput == 0 && 2419 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2420 ip = VTOI(vp); 2421 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", 2422 ip->i_number)); 2423 if (LFS_IS_MALLOC_BUF(fbp)) 2424 LFS_SET_UINO(ip, IN_CLEANING); 2425 else 2426 LFS_SET_UINO(ip, IN_MODIFIED); 2427 } 2428 simple_unlock(&global_v_numoutput_slock); 2429 splx(s); 2430 wakeup(vp); 2431 } 2432 2433 /* Fix up the cluster buffer, and release it */ 2434 if (cl->flags & LFS_CL_MALLOC) 2435 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2436 putiobuf(bp); 2437 2438 /* Note i/o done */ 2439 if (cl->flags & LFS_CL_SYNC) { 2440 if (--cl->seg->seg_iocount == 0) 2441 wakeup(&cl->seg->seg_iocount); 2442 } 2443 simple_lock(&fs->lfs_interlock); 2444 #ifdef DIAGNOSTIC 2445 if (fs->lfs_iocount == 0) 2446 panic("lfs_cluster_aiodone: zero iocount"); 2447 #endif 2448 if (--fs->lfs_iocount <= 1) 2449 wakeup(&fs->lfs_iocount); 2450 simple_unlock(&fs->lfs_interlock); 2451 2452 pool_put(&fs->lfs_bpppool, cl->bpp); 2453 cl->bpp = NULL; 2454 pool_put(&fs->lfs_clpool, cl); 2455 } 2456 2457 static void 2458 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2459 { 2460 /* reset b_iodone for when this is a single-buf i/o. */ 2461 bp->b_iodone = aiodone; 2462 2463 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */ 2464 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist); 2465 wakeup(&uvm.aiodoned); 2466 simple_unlock(&uvm.aiodoned_lock); 2467 } 2468 2469 static void 2470 lfs_cluster_callback(struct buf *bp) 2471 { 2472 2473 lfs_generic_callback(bp, lfs_cluster_aiodone); 2474 } 2475 2476 void 2477 lfs_supercallback(struct buf *bp) 2478 { 2479 2480 lfs_generic_callback(bp, lfs_super_aiodone); 2481 } 2482 2483 /* 2484 * Shellsort (diminishing increment sort) from Data Structures and 2485 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2486 * see also Knuth Vol. 3, page 84. The increments are selected from 2487 * formula (8), page 95. Roughly O(N^3/2). 2488 */ 2489 /* 2490 * This is our own private copy of shellsort because we want to sort 2491 * two parallel arrays (the array of buffer pointers and the array of 2492 * logical block numbers) simultaneously. Note that we cast the array 2493 * of logical block numbers to a unsigned in this routine so that the 2494 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2495 */ 2496 2497 void 2498 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2499 { 2500 static int __rsshell_increments[] = { 4, 1, 0 }; 2501 int incr, *incrp, t1, t2; 2502 struct buf *bp_temp; 2503 2504 #ifdef DEBUG 2505 incr = 0; 2506 for (t1 = 0; t1 < nmemb; t1++) { 2507 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2508 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2509 /* dump before panic */ 2510 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2511 nmemb, size); 2512 incr = 0; 2513 for (t1 = 0; t1 < nmemb; t1++) { 2514 const struct buf *bp = bp_array[t1]; 2515 2516 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2517 PRIu64 "\n", t1, 2518 (uint64_t)bp->b_bcount, 2519 (uint64_t)bp->b_lblkno); 2520 printf("lbns:"); 2521 for (t2 = 0; t2 * size < bp->b_bcount; 2522 t2++) { 2523 printf(" %" PRId32, 2524 lb_array[incr++]); 2525 } 2526 printf("\n"); 2527 } 2528 panic("lfs_shellsort: inconsistent input"); 2529 } 2530 } 2531 } 2532 #endif 2533 2534 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2535 for (t1 = incr; t1 < nmemb; ++t1) 2536 for (t2 = t1 - incr; t2 >= 0;) 2537 if ((u_int32_t)bp_array[t2]->b_lblkno > 2538 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2539 bp_temp = bp_array[t2]; 2540 bp_array[t2] = bp_array[t2 + incr]; 2541 bp_array[t2 + incr] = bp_temp; 2542 t2 -= incr; 2543 } else 2544 break; 2545 2546 /* Reform the list of logical blocks */ 2547 incr = 0; 2548 for (t1 = 0; t1 < nmemb; t1++) { 2549 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2550 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2551 } 2552 } 2553 } 2554 2555 /* 2556 * Call vget with LK_NOWAIT. If we are the one who holds VXLOCK/VFREEING, 2557 * however, we must press on. Just fake success in that case. 2558 */ 2559 int 2560 lfs_vref(struct vnode *vp) 2561 { 2562 int error; 2563 struct lfs *fs; 2564 2565 fs = VTOI(vp)->i_lfs; 2566 2567 ASSERT_MAYBE_SEGLOCK(fs); 2568 2569 /* 2570 * If we return 1 here during a flush, we risk vinvalbuf() not 2571 * being able to flush all of the pages from this vnode, which 2572 * will cause it to panic. So, return 0 if a flush is in progress. 2573 */ 2574 error = vget(vp, LK_NOWAIT); 2575 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { 2576 ++fs->lfs_flushvp_fakevref; 2577 return 0; 2578 } 2579 return error; 2580 } 2581 2582 /* 2583 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2584 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2585 */ 2586 void 2587 lfs_vunref(struct vnode *vp) 2588 { 2589 struct lfs *fs; 2590 2591 fs = VTOI(vp)->i_lfs; 2592 ASSERT_MAYBE_SEGLOCK(fs); 2593 2594 /* 2595 * Analogous to lfs_vref, if the node is flushing, fake it. 2596 */ 2597 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) { 2598 --fs->lfs_flushvp_fakevref; 2599 return; 2600 } 2601 2602 simple_lock(&vp->v_interlock); 2603 #ifdef DIAGNOSTIC 2604 if (vp->v_usecount <= 0) { 2605 printf("lfs_vunref: inum is %llu\n", (unsigned long long) 2606 VTOI(vp)->i_number); 2607 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag); 2608 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount); 2609 panic("lfs_vunref: v_usecount < 0"); 2610 } 2611 #endif 2612 vp->v_usecount--; 2613 if (vp->v_usecount > 0) { 2614 simple_unlock(&vp->v_interlock); 2615 return; 2616 } 2617 /* 2618 * insert at tail of LRU list 2619 */ 2620 simple_lock(&vnode_free_list_slock); 2621 if (vp->v_holdcnt > 0) 2622 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2623 else 2624 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 2625 simple_unlock(&vnode_free_list_slock); 2626 simple_unlock(&vp->v_interlock); 2627 } 2628 2629 /* 2630 * We use this when we have vnodes that were loaded in solely for cleaning. 2631 * There is no reason to believe that these vnodes will be referenced again 2632 * soon, since the cleaning process is unrelated to normal filesystem 2633 * activity. Putting cleaned vnodes at the tail of the list has the effect 2634 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2635 * cleaning at the head of the list, instead. 2636 */ 2637 void 2638 lfs_vunref_head(struct vnode *vp) 2639 { 2640 2641 ASSERT_SEGLOCK(VTOI(vp)->i_lfs); 2642 simple_lock(&vp->v_interlock); 2643 #ifdef DIAGNOSTIC 2644 if (vp->v_usecount == 0) { 2645 panic("lfs_vunref: v_usecount<0"); 2646 } 2647 #endif 2648 vp->v_usecount--; 2649 if (vp->v_usecount > 0) { 2650 simple_unlock(&vp->v_interlock); 2651 return; 2652 } 2653 /* 2654 * insert at head of LRU list 2655 */ 2656 simple_lock(&vnode_free_list_slock); 2657 if (vp->v_holdcnt > 0) 2658 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2659 else 2660 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2661 simple_unlock(&vnode_free_list_slock); 2662 simple_unlock(&vp->v_interlock); 2663 } 2664 2665 2666 /* 2667 * Set up an FINFO entry for a new file. The fip pointer is assumed to 2668 * point at uninitialized space. 2669 */ 2670 void 2671 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers) 2672 { 2673 struct segment *sp = fs->lfs_sp; 2674 2675 KASSERT(vers > 0); 2676 2677 if (sp->seg_bytes_left < fs->lfs_bsize || 2678 sp->sum_bytes_left < sizeof(struct finfo)) 2679 (void) lfs_writeseg(fs, fs->lfs_sp); 2680 2681 sp->sum_bytes_left -= FINFOSIZE; 2682 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 2683 sp->fip->fi_nblocks = 0; 2684 sp->fip->fi_ino = ino; 2685 sp->fip->fi_version = vers; 2686 } 2687 2688 /* 2689 * Release the FINFO entry, either clearing out an unused entry or 2690 * advancing us to the next available entry. 2691 */ 2692 void 2693 lfs_release_finfo(struct lfs *fs) 2694 { 2695 struct segment *sp = fs->lfs_sp; 2696 2697 if (sp->fip->fi_nblocks != 0) { 2698 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE + 2699 sizeof(int32_t) * sp->fip->fi_nblocks); 2700 sp->start_lbp = &sp->fip->fi_blocks[0]; 2701 } else { 2702 sp->sum_bytes_left += FINFOSIZE; 2703 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 2704 } 2705 } 2706