1 /* $NetBSD: lfs_segment.c,v 1.211 2008/04/28 20:24:11 martin Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /* 32 * Copyright (c) 1991, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 60 */ 61 62 #include <sys/cdefs.h> 63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.211 2008/04/28 20:24:11 martin Exp $"); 64 65 #ifdef DEBUG 66 # define vndebug(vp, str) do { \ 67 if (VTOI(vp)->i_flag & IN_CLEANING) \ 68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ 69 VTOI(vp)->i_number, (str), op)); \ 70 } while(0) 71 #else 72 # define vndebug(vp, str) 73 #endif 74 #define ivndebug(vp, str) \ 75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) 76 77 #if defined(_KERNEL_OPT) 78 #include "opt_ddb.h" 79 #endif 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/namei.h> 84 #include <sys/kernel.h> 85 #include <sys/resourcevar.h> 86 #include <sys/file.h> 87 #include <sys/stat.h> 88 #include <sys/buf.h> 89 #include <sys/proc.h> 90 #include <sys/vnode.h> 91 #include <sys/mount.h> 92 #include <sys/kauth.h> 93 #include <sys/syslog.h> 94 95 #include <miscfs/specfs/specdev.h> 96 #include <miscfs/fifofs/fifo.h> 97 98 #include <ufs/ufs/inode.h> 99 #include <ufs/ufs/dir.h> 100 #include <ufs/ufs/ufsmount.h> 101 #include <ufs/ufs/ufs_extern.h> 102 103 #include <ufs/lfs/lfs.h> 104 #include <ufs/lfs/lfs_extern.h> 105 106 #include <uvm/uvm.h> 107 #include <uvm/uvm_extern.h> 108 109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 110 111 extern int count_lock_queue(void); 112 extern kmutex_t vnode_free_list_lock; /* XXX */ 113 114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 115 static void lfs_free_aiodone(struct buf *); 116 static void lfs_super_aiodone(struct buf *); 117 static void lfs_cluster_aiodone(struct buf *); 118 static void lfs_cluster_callback(struct buf *); 119 120 /* 121 * Determine if it's OK to start a partial in this segment, or if we need 122 * to go on to a new segment. 123 */ 124 #define LFS_PARTIAL_FITS(fs) \ 125 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 126 fragstofsb((fs), (fs)->lfs_frag)) 127 128 /* 129 * Figure out whether we should do a checkpoint write or go ahead with 130 * an ordinary write. 131 */ 132 #define LFS_SHOULD_CHECKPOINT(fs, flags) \ 133 ((flags & SEGM_CLEAN) == 0 && \ 134 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \ 135 (flags & SEGM_CKP) || \ 136 fs->lfs_nclean < LFS_MAX_ACTIVE))) 137 138 int lfs_match_fake(struct lfs *, struct buf *); 139 void lfs_newseg(struct lfs *); 140 /* XXX ondisk32 */ 141 void lfs_shellsort(struct buf **, int32_t *, int, int); 142 void lfs_supercallback(struct buf *); 143 void lfs_updatemeta(struct segment *); 144 void lfs_writesuper(struct lfs *, daddr_t); 145 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 146 struct segment *sp, int dirops); 147 148 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 149 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 150 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 151 int lfs_dirvcount = 0; /* # active dirops */ 152 153 /* Statistics Counters */ 154 int lfs_dostats = 1; 155 struct lfs_stats lfs_stats; 156 157 /* op values to lfs_writevnodes */ 158 #define VN_REG 0 159 #define VN_DIROP 1 160 #define VN_EMPTY 2 161 #define VN_CLEAN 3 162 163 /* 164 * XXX KS - Set modification time on the Ifile, so the cleaner can 165 * read the fs mod time off of it. We don't set IN_UPDATE here, 166 * since we don't really need this to be flushed to disk (and in any 167 * case that wouldn't happen to the Ifile until we checkpoint). 168 */ 169 void 170 lfs_imtime(struct lfs *fs) 171 { 172 struct timespec ts; 173 struct inode *ip; 174 175 ASSERT_MAYBE_SEGLOCK(fs); 176 vfs_timestamp(&ts); 177 ip = VTOI(fs->lfs_ivnode); 178 ip->i_ffs1_mtime = ts.tv_sec; 179 ip->i_ffs1_mtimensec = ts.tv_nsec; 180 } 181 182 /* 183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 184 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 187 */ 188 189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 190 191 int 192 lfs_vflush(struct vnode *vp) 193 { 194 struct inode *ip; 195 struct lfs *fs; 196 struct segment *sp; 197 struct buf *bp, *nbp, *tbp, *tnbp; 198 int error; 199 int flushed; 200 int relock; 201 int loopcount; 202 203 ip = VTOI(vp); 204 fs = VFSTOUFS(vp->v_mount)->um_lfs; 205 relock = 0; 206 207 top: 208 ASSERT_NO_SEGLOCK(fs); 209 if (ip->i_flag & IN_CLEANING) { 210 ivndebug(vp,"vflush/in_cleaning"); 211 mutex_enter(&lfs_lock); 212 LFS_CLR_UINO(ip, IN_CLEANING); 213 LFS_SET_UINO(ip, IN_MODIFIED); 214 mutex_exit(&lfs_lock); 215 216 /* 217 * Toss any cleaning buffers that have real counterparts 218 * to avoid losing new data. 219 */ 220 mutex_enter(&vp->v_interlock); 221 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 222 nbp = LIST_NEXT(bp, b_vnbufs); 223 if (!LFS_IS_MALLOC_BUF(bp)) 224 continue; 225 /* 226 * Look for pages matching the range covered 227 * by cleaning blocks. It's okay if more dirty 228 * pages appear, so long as none disappear out 229 * from under us. 230 */ 231 if (bp->b_lblkno > 0 && vp->v_type == VREG && 232 vp != fs->lfs_ivnode) { 233 struct vm_page *pg; 234 voff_t off; 235 236 for (off = lblktosize(fs, bp->b_lblkno); 237 off < lblktosize(fs, bp->b_lblkno + 1); 238 off += PAGE_SIZE) { 239 pg = uvm_pagelookup(&vp->v_uobj, off); 240 if (pg == NULL) 241 continue; 242 if ((pg->flags & PG_CLEAN) == 0 || 243 pmap_is_modified(pg)) { 244 fs->lfs_avail += btofsb(fs, 245 bp->b_bcount); 246 wakeup(&fs->lfs_avail); 247 mutex_exit(&vp->v_interlock); 248 lfs_freebuf(fs, bp); 249 mutex_enter(&vp->v_interlock); 250 bp = NULL; 251 break; 252 } 253 } 254 } 255 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 256 tbp = tnbp) 257 { 258 tnbp = LIST_NEXT(tbp, b_vnbufs); 259 if (tbp->b_vp == bp->b_vp 260 && tbp->b_lblkno == bp->b_lblkno 261 && tbp != bp) 262 { 263 fs->lfs_avail += btofsb(fs, 264 bp->b_bcount); 265 wakeup(&fs->lfs_avail); 266 mutex_exit(&vp->v_interlock); 267 lfs_freebuf(fs, bp); 268 mutex_enter(&vp->v_interlock); 269 bp = NULL; 270 break; 271 } 272 } 273 } 274 } else { 275 mutex_enter(&vp->v_interlock); 276 } 277 278 /* If the node is being written, wait until that is done */ 279 while (WRITEINPROG(vp)) { 280 ivndebug(vp,"vflush/writeinprog"); 281 cv_wait(&vp->v_cv, &vp->v_interlock); 282 } 283 mutex_exit(&vp->v_interlock); 284 285 /* Protect against VI_XLOCK deadlock in vinvalbuf() */ 286 lfs_seglock(fs, SEGM_SYNC); 287 288 /* If we're supposed to flush a freed inode, just toss it */ 289 if (ip->i_lfs_iflags & LFSI_DELETED) { 290 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", 291 ip->i_number)); 292 /* Drain v_numoutput */ 293 mutex_enter(&vp->v_interlock); 294 while (vp->v_numoutput > 0) { 295 cv_wait(&vp->v_cv, &vp->v_interlock); 296 } 297 KASSERT(vp->v_numoutput == 0); 298 mutex_exit(&vp->v_interlock); 299 300 mutex_enter(&bufcache_lock); 301 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 302 nbp = LIST_NEXT(bp, b_vnbufs); 303 304 KASSERT((bp->b_flags & B_GATHERED) == 0); 305 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */ 306 fs->lfs_avail += btofsb(fs, bp->b_bcount); 307 wakeup(&fs->lfs_avail); 308 } 309 /* Copied from lfs_writeseg */ 310 if (bp->b_iodone != NULL) { 311 mutex_exit(&bufcache_lock); 312 biodone(bp); 313 mutex_enter(&bufcache_lock); 314 } else { 315 bremfree(bp); 316 LFS_UNLOCK_BUF(bp); 317 mutex_enter(&vp->v_interlock); 318 bp->b_flags &= ~(B_READ | B_GATHERED); 319 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE; 320 bp->b_error = 0; 321 reassignbuf(bp, vp); 322 mutex_exit(&vp->v_interlock); 323 brelse(bp, 0); 324 } 325 } 326 mutex_exit(&bufcache_lock); 327 LFS_CLR_UINO(ip, IN_CLEANING); 328 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 329 ip->i_flag &= ~IN_ALLMOD; 330 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", 331 ip->i_number)); 332 lfs_segunlock(fs); 333 334 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 335 336 return 0; 337 } 338 339 fs->lfs_flushvp = vp; 340 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) { 341 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 342 fs->lfs_flushvp = NULL; 343 KASSERT(fs->lfs_flushvp_fakevref == 0); 344 lfs_segunlock(fs); 345 346 /* Make sure that any pending buffers get written */ 347 mutex_enter(&vp->v_interlock); 348 while (vp->v_numoutput > 0) { 349 cv_wait(&vp->v_cv, &vp->v_interlock); 350 } 351 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 352 KASSERT(vp->v_numoutput == 0); 353 mutex_exit(&vp->v_interlock); 354 355 return error; 356 } 357 sp = fs->lfs_sp; 358 359 flushed = 0; 360 if (VPISEMPTY(vp)) { 361 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 362 ++flushed; 363 } else if ((ip->i_flag & IN_CLEANING) && 364 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 365 ivndebug(vp,"vflush/clean"); 366 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 367 ++flushed; 368 } else if (lfs_dostats) { 369 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 370 ++lfs_stats.vflush_invoked; 371 ivndebug(vp,"vflush"); 372 } 373 374 #ifdef DIAGNOSTIC 375 if (vp->v_uflag & VU_DIROP) { 376 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n")); 377 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */ 378 } 379 if (vp->v_usecount < 0) { 380 printf("usecount=%ld\n", (long)vp->v_usecount); 381 panic("lfs_vflush: usecount<0"); 382 } 383 #endif 384 385 do { 386 loopcount = 0; 387 do { 388 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 389 relock = lfs_writefile(fs, sp, vp); 390 if (relock) { 391 /* 392 * Might have to wait for the 393 * cleaner to run; but we're 394 * still not done with this vnode. 395 */ 396 KDASSERT(ip->i_number != LFS_IFILE_INUM); 397 lfs_writeinode(fs, sp, ip); 398 mutex_enter(&lfs_lock); 399 LFS_SET_UINO(ip, IN_MODIFIED); 400 mutex_exit(&lfs_lock); 401 lfs_writeseg(fs, sp); 402 lfs_segunlock(fs); 403 lfs_segunlock_relock(fs); 404 goto top; 405 } 406 } 407 /* 408 * If we begin a new segment in the middle of writing 409 * the Ifile, it creates an inconsistent checkpoint, 410 * since the Ifile information for the new segment 411 * is not up-to-date. Take care of this here by 412 * sending the Ifile through again in case there 413 * are newly dirtied blocks. But wait, there's more! 414 * This second Ifile write could *also* cross a segment 415 * boundary, if the first one was large. The second 416 * one is guaranteed to be no more than 8 blocks, 417 * though (two segment blocks and supporting indirects) 418 * so the third write *will not* cross the boundary. 419 */ 420 if (vp == fs->lfs_ivnode) { 421 lfs_writefile(fs, sp, vp); 422 lfs_writefile(fs, sp, vp); 423 } 424 #ifdef DEBUG 425 if (++loopcount > 2) 426 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount); 427 #endif 428 } while (lfs_writeinode(fs, sp, ip)); 429 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 430 431 if (lfs_dostats) { 432 ++lfs_stats.nwrites; 433 if (sp->seg_flags & SEGM_SYNC) 434 ++lfs_stats.nsync_writes; 435 if (sp->seg_flags & SEGM_CKP) 436 ++lfs_stats.ncheckpoints; 437 } 438 /* 439 * If we were called from somewhere that has already held the seglock 440 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 441 * the write to complete because we are still locked. 442 * Since lfs_vflush() must return the vnode with no dirty buffers, 443 * we must explicitly wait, if that is the case. 444 * 445 * We compare the iocount against 1, not 0, because it is 446 * artificially incremented by lfs_seglock(). 447 */ 448 mutex_enter(&lfs_lock); 449 if (fs->lfs_seglock > 1) { 450 while (fs->lfs_iocount > 1) 451 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, 452 "lfs_vflush", 0, &lfs_lock); 453 } 454 mutex_exit(&lfs_lock); 455 456 lfs_segunlock(fs); 457 458 /* Wait for these buffers to be recovered by aiodoned */ 459 mutex_enter(&vp->v_interlock); 460 while (vp->v_numoutput > 0) { 461 cv_wait(&vp->v_cv, &vp->v_interlock); 462 } 463 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 464 KASSERT(vp->v_numoutput == 0); 465 mutex_exit(&vp->v_interlock); 466 467 fs->lfs_flushvp = NULL; 468 KASSERT(fs->lfs_flushvp_fakevref == 0); 469 470 return (0); 471 } 472 473 int 474 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 475 { 476 struct inode *ip; 477 struct vnode *vp; 478 int inodes_written = 0, only_cleaning; 479 int error = 0; 480 481 ASSERT_SEGLOCK(fs); 482 loop: 483 /* start at last (newest) vnode. */ 484 mutex_enter(&mntvnode_lock); 485 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) { 486 /* 487 * If the vnode that we are about to sync is no longer 488 * associated with this mount point, start over. 489 */ 490 if (vp->v_mount != mp) { 491 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n")); 492 /* 493 * After this, pages might be busy 494 * due to our own previous putpages. 495 * Start actual segment write here to avoid deadlock. 496 */ 497 mutex_exit(&mntvnode_lock); 498 (void)lfs_writeseg(fs, sp); 499 goto loop; 500 } 501 502 mutex_enter(&vp->v_interlock); 503 if (vp->v_type == VNON || vismarker(vp) || 504 (vp->v_iflag & VI_CLEAN) != 0) { 505 mutex_exit(&vp->v_interlock); 506 continue; 507 } 508 509 ip = VTOI(vp); 510 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) || 511 (op != VN_DIROP && op != VN_CLEAN && 512 (vp->v_uflag & VU_DIROP))) { 513 mutex_exit(&vp->v_interlock); 514 vndebug(vp,"dirop"); 515 continue; 516 } 517 518 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 519 mutex_exit(&vp->v_interlock); 520 vndebug(vp,"empty"); 521 continue; 522 } 523 524 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 525 && vp != fs->lfs_flushvp 526 && !(ip->i_flag & IN_CLEANING)) { 527 mutex_exit(&vp->v_interlock); 528 vndebug(vp,"cleaning"); 529 continue; 530 } 531 532 mutex_exit(&mntvnode_lock); 533 if (lfs_vref(vp)) { 534 vndebug(vp,"vref"); 535 mutex_enter(&mntvnode_lock); 536 continue; 537 } 538 539 only_cleaning = 0; 540 /* 541 * Write the inode/file if dirty and it's not the IFILE. 542 */ 543 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 544 only_cleaning = 545 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 546 547 if (ip->i_number != LFS_IFILE_INUM) { 548 error = lfs_writefile(fs, sp, vp); 549 if (error) { 550 lfs_vunref(vp); 551 if (error == EAGAIN) { 552 /* 553 * This error from lfs_putpages 554 * indicates we need to drop 555 * the segment lock and start 556 * over after the cleaner has 557 * had a chance to run. 558 */ 559 lfs_writeinode(fs, sp, ip); 560 lfs_writeseg(fs, sp); 561 if (!VPISEMPTY(vp) && 562 !WRITEINPROG(vp) && 563 !(ip->i_flag & IN_ALLMOD)) { 564 mutex_enter(&lfs_lock); 565 LFS_SET_UINO(ip, IN_MODIFIED); 566 mutex_exit(&lfs_lock); 567 } 568 mutex_enter(&mntvnode_lock); 569 break; 570 } 571 error = 0; /* XXX not quite right */ 572 mutex_enter(&mntvnode_lock); 573 continue; 574 } 575 576 if (!VPISEMPTY(vp)) { 577 if (WRITEINPROG(vp)) { 578 ivndebug(vp,"writevnodes/write2"); 579 } else if (!(ip->i_flag & IN_ALLMOD)) { 580 mutex_enter(&lfs_lock); 581 LFS_SET_UINO(ip, IN_MODIFIED); 582 mutex_exit(&lfs_lock); 583 } 584 } 585 (void) lfs_writeinode(fs, sp, ip); 586 inodes_written++; 587 } 588 } 589 590 if (lfs_clean_vnhead && only_cleaning) 591 lfs_vunref_head(vp); 592 else 593 lfs_vunref(vp); 594 595 mutex_enter(&mntvnode_lock); 596 } 597 mutex_exit(&mntvnode_lock); 598 return error; 599 } 600 601 /* 602 * Do a checkpoint. 603 */ 604 int 605 lfs_segwrite(struct mount *mp, int flags) 606 { 607 struct buf *bp; 608 struct inode *ip; 609 struct lfs *fs; 610 struct segment *sp; 611 struct vnode *vp; 612 SEGUSE *segusep; 613 int do_ckp, did_ckp, error; 614 unsigned n, segleft, maxseg, sn, i, curseg; 615 int writer_set = 0; 616 int dirty; 617 int redo; 618 int um_error; 619 int loopcount; 620 621 fs = VFSTOUFS(mp)->um_lfs; 622 ASSERT_MAYBE_SEGLOCK(fs); 623 624 if (fs->lfs_ronly) 625 return EROFS; 626 627 lfs_imtime(fs); 628 629 /* 630 * Allocate a segment structure and enough space to hold pointers to 631 * the maximum possible number of buffers which can be described in a 632 * single summary block. 633 */ 634 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags); 635 636 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 637 sp = fs->lfs_sp; 638 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP)) 639 do_ckp = 1; 640 641 /* 642 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 643 * in which case we have to flush *all* buffers off of this vnode. 644 * We don't care about other nodes, but write any non-dirop nodes 645 * anyway in anticipation of another getnewvnode(). 646 * 647 * If we're cleaning we only write cleaning and ifile blocks, and 648 * no dirops, since otherwise we'd risk corruption in a crash. 649 */ 650 if (sp->seg_flags & SEGM_CLEAN) 651 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 652 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 653 do { 654 um_error = lfs_writevnodes(fs, mp, sp, VN_REG); 655 656 if (do_ckp || fs->lfs_dirops == 0) { 657 if (!writer_set) { 658 lfs_writer_enter(fs, "lfs writer"); 659 writer_set = 1; 660 } 661 error = lfs_writevnodes(fs, mp, sp, VN_DIROP); 662 if (um_error == 0) 663 um_error = error; 664 /* In case writevnodes errored out */ 665 lfs_flush_dirops(fs); 666 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 667 lfs_finalize_fs_seguse(fs); 668 } 669 if (do_ckp && um_error) { 670 lfs_segunlock_relock(fs); 671 sp = fs->lfs_sp; 672 } 673 } while (do_ckp && um_error != 0); 674 } 675 676 /* 677 * If we are doing a checkpoint, mark everything since the 678 * last checkpoint as no longer ACTIVE. 679 */ 680 if (do_ckp || fs->lfs_doifile) { 681 segleft = fs->lfs_nseg; 682 curseg = 0; 683 for (n = 0; n < fs->lfs_segtabsz; n++) { 684 dirty = 0; 685 if (bread(fs->lfs_ivnode, 686 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp)) 687 panic("lfs_segwrite: ifile read"); 688 segusep = (SEGUSE *)bp->b_data; 689 maxseg = min(segleft, fs->lfs_sepb); 690 for (i = 0; i < maxseg; i++) { 691 sn = curseg + i; 692 if (sn != dtosn(fs, fs->lfs_curseg) && 693 segusep->su_flags & SEGUSE_ACTIVE) { 694 segusep->su_flags &= ~SEGUSE_ACTIVE; 695 --fs->lfs_nactive; 696 ++dirty; 697 } 698 fs->lfs_suflags[fs->lfs_activesb][sn] = 699 segusep->su_flags; 700 if (fs->lfs_version > 1) 701 ++segusep; 702 else 703 segusep = (SEGUSE *) 704 ((SEGUSE_V1 *)segusep + 1); 705 } 706 707 if (dirty) 708 error = LFS_BWRITE_LOG(bp); /* Ifile */ 709 else 710 brelse(bp, 0); 711 segleft -= fs->lfs_sepb; 712 curseg += fs->lfs_sepb; 713 } 714 } 715 716 KASSERT(LFS_SEGLOCK_HELD(fs)); 717 718 did_ckp = 0; 719 if (do_ckp || fs->lfs_doifile) { 720 vp = fs->lfs_ivnode; 721 vn_lock(vp, LK_EXCLUSIVE); 722 loopcount = 0; 723 do { 724 #ifdef DEBUG 725 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); 726 #endif 727 mutex_enter(&lfs_lock); 728 fs->lfs_flags &= ~LFS_IFDIRTY; 729 mutex_exit(&lfs_lock); 730 731 ip = VTOI(vp); 732 733 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 734 /* 735 * Ifile has no pages, so we don't need 736 * to check error return here. 737 */ 738 lfs_writefile(fs, sp, vp); 739 /* 740 * Ensure the Ifile takes the current segment 741 * into account. See comment in lfs_vflush. 742 */ 743 lfs_writefile(fs, sp, vp); 744 lfs_writefile(fs, sp, vp); 745 } 746 747 if (ip->i_flag & IN_ALLMOD) 748 ++did_ckp; 749 #if 0 750 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0); 751 #else 752 redo = lfs_writeinode(fs, sp, ip); 753 #endif 754 redo += lfs_writeseg(fs, sp); 755 mutex_enter(&lfs_lock); 756 redo += (fs->lfs_flags & LFS_IFDIRTY); 757 mutex_exit(&lfs_lock); 758 #ifdef DEBUG 759 if (++loopcount > 2) 760 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n", 761 loopcount); 762 #endif 763 } while (redo && do_ckp); 764 765 /* 766 * Unless we are unmounting, the Ifile may continue to have 767 * dirty blocks even after a checkpoint, due to changes to 768 * inodes' atime. If we're checkpointing, it's "impossible" 769 * for other parts of the Ifile to be dirty after the loop 770 * above, since we hold the segment lock. 771 */ 772 mutex_enter(&vp->v_interlock); 773 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 774 LFS_CLR_UINO(ip, IN_ALLMOD); 775 } 776 #ifdef DIAGNOSTIC 777 else if (do_ckp) { 778 int do_panic = 0; 779 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 780 if (bp->b_lblkno < fs->lfs_cleansz + 781 fs->lfs_segtabsz && 782 !(bp->b_flags & B_GATHERED)) { 783 printf("ifile lbn %ld still dirty (flags %lx)\n", 784 (long)bp->b_lblkno, 785 (long)bp->b_flags); 786 ++do_panic; 787 } 788 } 789 if (do_panic) 790 panic("dirty blocks"); 791 } 792 #endif 793 mutex_exit(&vp->v_interlock); 794 VOP_UNLOCK(vp, 0); 795 } else { 796 (void) lfs_writeseg(fs, sp); 797 } 798 799 /* Note Ifile no longer needs to be written */ 800 fs->lfs_doifile = 0; 801 if (writer_set) 802 lfs_writer_leave(fs); 803 804 /* 805 * If we didn't write the Ifile, we didn't really do anything. 806 * That means that (1) there is a checkpoint on disk and (2) 807 * nothing has changed since it was written. 808 * 809 * Take the flags off of the segment so that lfs_segunlock 810 * doesn't have to write the superblock either. 811 */ 812 if (do_ckp && !did_ckp) { 813 sp->seg_flags &= ~SEGM_CKP; 814 } 815 816 if (lfs_dostats) { 817 ++lfs_stats.nwrites; 818 if (sp->seg_flags & SEGM_SYNC) 819 ++lfs_stats.nsync_writes; 820 if (sp->seg_flags & SEGM_CKP) 821 ++lfs_stats.ncheckpoints; 822 } 823 lfs_segunlock(fs); 824 return (0); 825 } 826 827 /* 828 * Write the dirty blocks associated with a vnode. 829 */ 830 int 831 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 832 { 833 struct finfo *fip; 834 struct inode *ip; 835 int i, frag; 836 int error; 837 838 ASSERT_SEGLOCK(fs); 839 error = 0; 840 ip = VTOI(vp); 841 842 fip = sp->fip; 843 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 844 845 if (vp->v_uflag & VU_DIROP) 846 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 847 848 if (sp->seg_flags & SEGM_CLEAN) { 849 lfs_gather(fs, sp, vp, lfs_match_fake); 850 /* 851 * For a file being flushed, we need to write *all* blocks. 852 * This means writing the cleaning blocks first, and then 853 * immediately following with any non-cleaning blocks. 854 * The same is true of the Ifile since checkpoints assume 855 * that all valid Ifile blocks are written. 856 */ 857 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) { 858 lfs_gather(fs, sp, vp, lfs_match_data); 859 /* 860 * Don't call VOP_PUTPAGES: if we're flushing, 861 * we've already done it, and the Ifile doesn't 862 * use the page cache. 863 */ 864 } 865 } else { 866 lfs_gather(fs, sp, vp, lfs_match_data); 867 /* 868 * If we're flushing, we've already called VOP_PUTPAGES 869 * so don't do it again. Otherwise, we want to write 870 * everything we've got. 871 */ 872 if (!IS_FLUSHING(fs, vp)) { 873 mutex_enter(&vp->v_interlock); 874 error = VOP_PUTPAGES(vp, 0, 0, 875 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 876 } 877 } 878 879 /* 880 * It may not be necessary to write the meta-data blocks at this point, 881 * as the roll-forward recovery code should be able to reconstruct the 882 * list. 883 * 884 * We have to write them anyway, though, under two conditions: (1) the 885 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 886 * checkpointing. 887 * 888 * BUT if we are cleaning, we might have indirect blocks that refer to 889 * new blocks not being written yet, in addition to fragments being 890 * moved out of a cleaned segment. If that is the case, don't 891 * write the indirect blocks, or the finfo will have a small block 892 * in the middle of it! 893 * XXX in this case isn't the inode size wrong too? 894 */ 895 frag = 0; 896 if (sp->seg_flags & SEGM_CLEAN) { 897 for (i = 0; i < NDADDR; i++) 898 if (ip->i_lfs_fragsize[i] > 0 && 899 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 900 ++frag; 901 } 902 #ifdef DIAGNOSTIC 903 if (frag > 1) 904 panic("lfs_writefile: more than one fragment!"); 905 #endif 906 if (IS_FLUSHING(fs, vp) || 907 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 908 lfs_gather(fs, sp, vp, lfs_match_indir); 909 lfs_gather(fs, sp, vp, lfs_match_dindir); 910 lfs_gather(fs, sp, vp, lfs_match_tindir); 911 } 912 fip = sp->fip; 913 lfs_release_finfo(fs); 914 915 return error; 916 } 917 918 /* 919 * Update segment accounting to reflect this inode's change of address. 920 */ 921 static int 922 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr) 923 { 924 struct buf *bp; 925 daddr_t daddr; 926 IFILE *ifp; 927 SEGUSE *sup; 928 ino_t ino; 929 int redo_ifile, error; 930 u_int32_t sn; 931 932 redo_ifile = 0; 933 934 /* 935 * If updating the ifile, update the super-block. Update the disk 936 * address and access times for this inode in the ifile. 937 */ 938 ino = ip->i_number; 939 if (ino == LFS_IFILE_INUM) { 940 daddr = fs->lfs_idaddr; 941 fs->lfs_idaddr = dbtofsb(fs, ndaddr); 942 } else { 943 LFS_IENTRY(ifp, fs, ino, bp); 944 daddr = ifp->if_daddr; 945 ifp->if_daddr = dbtofsb(fs, ndaddr); 946 error = LFS_BWRITE_LOG(bp); /* Ifile */ 947 } 948 949 /* 950 * If this is the Ifile and lfs_offset is set to the first block 951 * in the segment, dirty the new segment's accounting block 952 * (XXX should already be dirty?) and tell the caller to do it again. 953 */ 954 if (ip->i_number == LFS_IFILE_INUM) { 955 sn = dtosn(fs, fs->lfs_offset); 956 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) == 957 fs->lfs_offset) { 958 LFS_SEGENTRY(sup, fs, sn, bp); 959 KASSERT(bp->b_oflags & BO_DELWRI); 960 LFS_WRITESEGENTRY(sup, fs, sn, bp); 961 /* fs->lfs_flags |= LFS_IFDIRTY; */ 962 redo_ifile |= 1; 963 } 964 } 965 966 /* 967 * The inode's last address should not be in the current partial 968 * segment, except under exceptional circumstances (lfs_writevnodes 969 * had to start over, and in the meantime more blocks were written 970 * to a vnode). Both inodes will be accounted to this segment 971 * in lfs_writeseg so we need to subtract the earlier version 972 * here anyway. The segment count can temporarily dip below 973 * zero here; keep track of how many duplicates we have in 974 * "dupino" so we don't panic below. 975 */ 976 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) { 977 ++sp->ndupino; 978 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " 979 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 980 (long long)daddr, sp->ndupino)); 981 } 982 /* 983 * Account the inode: it no longer belongs to its former segment, 984 * though it will not belong to the new segment until that segment 985 * is actually written. 986 */ 987 if (daddr != LFS_UNUSED_DADDR) { 988 u_int32_t oldsn = dtosn(fs, daddr); 989 #ifdef DIAGNOSTIC 990 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 991 #endif 992 LFS_SEGENTRY(sup, fs, oldsn, bp); 993 #ifdef DIAGNOSTIC 994 if (sup->su_nbytes + 995 sizeof (struct ufs1_dinode) * ndupino 996 < sizeof (struct ufs1_dinode)) { 997 printf("lfs_writeinode: negative bytes " 998 "(segment %" PRIu32 " short by %d, " 999 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1000 ", daddr=%" PRId64 ", su_nbytes=%u, " 1001 "ndupino=%d)\n", 1002 dtosn(fs, daddr), 1003 (int)sizeof (struct ufs1_dinode) * 1004 (1 - sp->ndupino) - sup->su_nbytes, 1005 oldsn, sp->seg_number, daddr, 1006 (unsigned int)sup->su_nbytes, 1007 sp->ndupino); 1008 panic("lfs_writeinode: negative bytes"); 1009 sup->su_nbytes = sizeof (struct ufs1_dinode); 1010 } 1011 #endif 1012 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", 1013 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino)); 1014 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1015 redo_ifile |= 1016 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1017 if (redo_ifile) { 1018 mutex_enter(&lfs_lock); 1019 fs->lfs_flags |= LFS_IFDIRTY; 1020 mutex_exit(&lfs_lock); 1021 /* Don't double-account */ 1022 fs->lfs_idaddr = 0x0; 1023 } 1024 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1025 } 1026 1027 return redo_ifile; 1028 } 1029 1030 int 1031 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 1032 { 1033 struct buf *bp; 1034 struct ufs1_dinode *cdp; 1035 daddr_t daddr; 1036 int32_t *daddrp; /* XXX ondisk32 */ 1037 int i, ndx; 1038 int redo_ifile = 0; 1039 int gotblk = 0; 1040 int count; 1041 1042 ASSERT_SEGLOCK(fs); 1043 if (!(ip->i_flag & IN_ALLMOD)) 1044 return (0); 1045 1046 /* Can't write ifile when writer is not set */ 1047 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 || 1048 (sp->seg_flags & SEGM_CLEAN)); 1049 1050 /* 1051 * If this is the Ifile, see if writing it here will generate a 1052 * temporary misaccounting. If it will, do the accounting and write 1053 * the blocks, postponing the inode write until the accounting is 1054 * solid. 1055 */ 1056 count = 0; 1057 while (ip->i_number == LFS_IFILE_INUM) { 1058 int redo = 0; 1059 1060 if (sp->idp == NULL && sp->ibp == NULL && 1061 (sp->seg_bytes_left < fs->lfs_ibsize || 1062 sp->sum_bytes_left < sizeof(int32_t))) { 1063 (void) lfs_writeseg(fs, sp); 1064 continue; 1065 } 1066 1067 /* Look for dirty Ifile blocks */ 1068 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) { 1069 if (!(bp->b_flags & B_GATHERED)) { 1070 redo = 1; 1071 break; 1072 } 1073 } 1074 1075 if (redo == 0) 1076 redo = lfs_update_iaddr(fs, sp, ip, 0x0); 1077 if (redo == 0) 1078 break; 1079 1080 if (sp->idp) { 1081 sp->idp->di_inumber = 0; 1082 sp->idp = NULL; 1083 } 1084 ++count; 1085 if (count > 2) 1086 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count); 1087 lfs_writefile(fs, sp, fs->lfs_ivnode); 1088 } 1089 1090 /* Allocate a new inode block if necessary. */ 1091 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 1092 sp->ibp == NULL) { 1093 /* Allocate a new segment if necessary. */ 1094 if (sp->seg_bytes_left < fs->lfs_ibsize || 1095 sp->sum_bytes_left < sizeof(int32_t)) 1096 (void) lfs_writeseg(fs, sp); 1097 1098 /* Get next inode block. */ 1099 daddr = fs->lfs_offset; 1100 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 1101 sp->ibp = *sp->cbpp++ = 1102 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 1103 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); 1104 gotblk++; 1105 1106 /* Zero out inode numbers */ 1107 for (i = 0; i < INOPB(fs); ++i) 1108 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 1109 0; 1110 1111 ++sp->start_bpp; 1112 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 1113 /* Set remaining space counters. */ 1114 sp->seg_bytes_left -= fs->lfs_ibsize; 1115 sp->sum_bytes_left -= sizeof(int32_t); 1116 ndx = fs->lfs_sumsize / sizeof(int32_t) - 1117 sp->ninodes / INOPB(fs) - 1; 1118 ((int32_t *)(sp->segsum))[ndx] = daddr; 1119 } 1120 1121 /* Check VU_DIROP in case there is a new file with no data blocks */ 1122 if (ITOV(ip)->v_uflag & VU_DIROP) 1123 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 1124 1125 /* Update the inode times and copy the inode onto the inode page. */ 1126 /* XXX kludge --- don't redirty the ifile just to put times on it */ 1127 if (ip->i_number != LFS_IFILE_INUM) 1128 LFS_ITIMES(ip, NULL, NULL, NULL); 1129 1130 /* 1131 * If this is the Ifile, and we've already written the Ifile in this 1132 * partial segment, just overwrite it (it's not on disk yet) and 1133 * continue. 1134 * 1135 * XXX we know that the bp that we get the second time around has 1136 * already been gathered. 1137 */ 1138 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 1139 *(sp->idp) = *ip->i_din.ffs1_din; 1140 ip->i_lfs_osize = ip->i_size; 1141 return 0; 1142 } 1143 1144 bp = sp->ibp; 1145 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 1146 *cdp = *ip->i_din.ffs1_din; 1147 1148 /* 1149 * If cleaning, link counts and directory file sizes cannot change, 1150 * since those would be directory operations---even if the file 1151 * we are writing is marked VU_DIROP we should write the old values. 1152 * If we're not cleaning, of course, update the values so we get 1153 * current values the next time we clean. 1154 */ 1155 if (sp->seg_flags & SEGM_CLEAN) { 1156 if (ITOV(ip)->v_uflag & VU_DIROP) { 1157 cdp->di_nlink = ip->i_lfs_odnlink; 1158 /* if (ITOV(ip)->v_type == VDIR) */ 1159 cdp->di_size = ip->i_lfs_osize; 1160 } 1161 } else { 1162 ip->i_lfs_odnlink = cdp->di_nlink; 1163 ip->i_lfs_osize = ip->i_size; 1164 } 1165 1166 1167 /* We can finish the segment accounting for truncations now */ 1168 lfs_finalize_ino_seguse(fs, ip); 1169 1170 /* 1171 * If we are cleaning, ensure that we don't write UNWRITTEN disk 1172 * addresses to disk; possibly change the on-disk record of 1173 * the inode size, either by reverting to the previous size 1174 * (in the case of cleaning) or by verifying the inode's block 1175 * holdings (in the case of files being allocated as they are being 1176 * written). 1177 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail 1178 * XXX count on disk wrong by the same amount. We should be 1179 * XXX able to "borrow" from lfs_avail and return it after the 1180 * XXX Ifile is written. See also in lfs_writeseg. 1181 */ 1182 1183 /* Check file size based on highest allocated block */ 1184 if (((ip->i_ffs1_mode & IFMT) == IFREG || 1185 (ip->i_ffs1_mode & IFMT) == IFDIR) && 1186 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) { 1187 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift; 1188 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %" 1189 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size)); 1190 } 1191 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 1192 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)" 1193 " at %x\n", ip->i_number, ip->i_lfs_effnblks, 1194 ip->i_ffs1_blocks, fs->lfs_offset)); 1195 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 1196 daddrp++) { 1197 if (*daddrp == UNWRITTEN) { 1198 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1199 *daddrp = 0; 1200 } 1201 } 1202 } 1203 1204 #ifdef DIAGNOSTIC 1205 /* 1206 * Check dinode held blocks against dinode size. 1207 * This should be identical to the check in lfs_vget(). 1208 */ 1209 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; 1210 i < NDADDR; i++) { 1211 KASSERT(i >= 0); 1212 if ((cdp->di_mode & IFMT) == IFLNK) 1213 continue; 1214 if (((cdp->di_mode & IFMT) == IFBLK || 1215 (cdp->di_mode & IFMT) == IFCHR) && i == 0) 1216 continue; 1217 if (cdp->di_db[i] != 0) { 1218 # ifdef DEBUG 1219 lfs_dump_dinode(cdp); 1220 # endif 1221 panic("writing inconsistent inode"); 1222 } 1223 } 1224 #endif /* DIAGNOSTIC */ 1225 1226 if (ip->i_flag & IN_CLEANING) 1227 LFS_CLR_UINO(ip, IN_CLEANING); 1228 else { 1229 /* XXX IN_ALLMOD */ 1230 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 1231 IN_UPDATE | IN_MODIFY); 1232 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 1233 LFS_CLR_UINO(ip, IN_MODIFIED); 1234 else { 1235 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real " 1236 "blks=%d, eff=%d\n", ip->i_number, 1237 ip->i_ffs1_blocks, ip->i_lfs_effnblks)); 1238 } 1239 } 1240 1241 if (ip->i_number == LFS_IFILE_INUM) { 1242 /* We know sp->idp == NULL */ 1243 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 1244 (sp->ninodes % INOPB(fs)); 1245 1246 /* Not dirty any more */ 1247 mutex_enter(&lfs_lock); 1248 fs->lfs_flags &= ~LFS_IFDIRTY; 1249 mutex_exit(&lfs_lock); 1250 } 1251 1252 if (gotblk) { 1253 mutex_enter(&bufcache_lock); 1254 LFS_LOCK_BUF(bp); 1255 brelsel(bp, 0); 1256 mutex_exit(&bufcache_lock); 1257 } 1258 1259 /* Increment inode count in segment summary block. */ 1260 ++((SEGSUM *)(sp->segsum))->ss_ninos; 1261 1262 /* If this page is full, set flag to allocate a new page. */ 1263 if (++sp->ninodes % INOPB(fs) == 0) 1264 sp->ibp = NULL; 1265 1266 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno); 1267 1268 KASSERT(redo_ifile == 0); 1269 return (redo_ifile); 1270 } 1271 1272 int 1273 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr) 1274 { 1275 struct lfs *fs; 1276 int vers; 1277 int j, blksinblk; 1278 1279 ASSERT_SEGLOCK(sp->fs); 1280 /* 1281 * If full, finish this segment. We may be doing I/O, so 1282 * release and reacquire the splbio(). 1283 */ 1284 #ifdef DIAGNOSTIC 1285 if (sp->vp == NULL) 1286 panic ("lfs_gatherblock: Null vp in segment"); 1287 #endif 1288 fs = sp->fs; 1289 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1290 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1291 sp->seg_bytes_left < bp->b_bcount) { 1292 if (mptr) 1293 mutex_exit(mptr); 1294 lfs_updatemeta(sp); 1295 1296 vers = sp->fip->fi_version; 1297 (void) lfs_writeseg(fs, sp); 1298 1299 /* Add the current file to the segment summary. */ 1300 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers); 1301 1302 if (mptr) 1303 mutex_enter(mptr); 1304 return (1); 1305 } 1306 1307 if (bp->b_flags & B_GATHERED) { 1308 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d," 1309 " lbn %" PRId64 "\n", 1310 sp->fip->fi_ino, bp->b_lblkno)); 1311 return (0); 1312 } 1313 1314 /* Insert into the buffer list, update the FINFO block. */ 1315 bp->b_flags |= B_GATHERED; 1316 1317 *sp->cbpp++ = bp; 1318 for (j = 0; j < blksinblk; j++) { 1319 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1320 /* This block's accounting moves from lfs_favail to lfs_avail */ 1321 lfs_deregister_block(sp->vp, bp->b_lblkno + j); 1322 } 1323 1324 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1325 sp->seg_bytes_left -= bp->b_bcount; 1326 return (0); 1327 } 1328 1329 int 1330 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1331 int (*match)(struct lfs *, struct buf *)) 1332 { 1333 struct buf *bp, *nbp; 1334 int count = 0; 1335 1336 ASSERT_SEGLOCK(fs); 1337 if (vp->v_type == VBLK) 1338 return 0; 1339 KASSERT(sp->vp == NULL); 1340 sp->vp = vp; 1341 mutex_enter(&bufcache_lock); 1342 1343 #ifndef LFS_NO_BACKBUF_HACK 1344 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1345 # define BUF_OFFSET \ 1346 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp) 1347 # define BACK_BUF(BP) \ 1348 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1349 # define BEG_OF_LIST \ 1350 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1351 1352 loop: 1353 /* Find last buffer. */ 1354 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1355 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1356 bp = LIST_NEXT(bp, b_vnbufs)) 1357 /* nothing */; 1358 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1359 nbp = BACK_BUF(bp); 1360 #else /* LFS_NO_BACKBUF_HACK */ 1361 loop: 1362 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1363 nbp = LIST_NEXT(bp, b_vnbufs); 1364 #endif /* LFS_NO_BACKBUF_HACK */ 1365 if ((bp->b_cflags & BC_BUSY) != 0 || 1366 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) { 1367 #ifdef DEBUG 1368 if (vp == fs->lfs_ivnode && 1369 (bp->b_cflags & BC_BUSY) != 0 && 1370 (bp->b_flags & B_GATHERED) == 0) 1371 log(LOG_NOTICE, "lfs_gather: ifile lbn %" 1372 PRId64 " busy (%x) at 0x%x", 1373 bp->b_lblkno, bp->b_flags, 1374 (unsigned)fs->lfs_offset); 1375 #endif 1376 continue; 1377 } 1378 #ifdef DIAGNOSTIC 1379 # ifdef LFS_USE_B_INVAL 1380 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) { 1381 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1382 " is BC_INVAL\n", bp->b_lblkno)); 1383 VOP_PRINT(bp->b_vp); 1384 } 1385 # endif /* LFS_USE_B_INVAL */ 1386 if (!(bp->b_oflags & BO_DELWRI)) 1387 panic("lfs_gather: bp not BO_DELWRI"); 1388 if (!(bp->b_flags & B_LOCKED)) { 1389 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1390 " blk %" PRId64 " not B_LOCKED\n", 1391 bp->b_lblkno, 1392 dbtofsb(fs, bp->b_blkno))); 1393 VOP_PRINT(bp->b_vp); 1394 panic("lfs_gather: bp not B_LOCKED"); 1395 } 1396 #endif 1397 if (lfs_gatherblock(sp, bp, &bufcache_lock)) { 1398 goto loop; 1399 } 1400 count++; 1401 } 1402 mutex_exit(&bufcache_lock); 1403 lfs_updatemeta(sp); 1404 KASSERT(sp->vp == vp); 1405 sp->vp = NULL; 1406 return count; 1407 } 1408 1409 #if DEBUG 1410 # define DEBUG_OOFF(n) do { \ 1411 if (ooff == 0) { \ 1412 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ 1413 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1414 ", was 0x0 (or %" PRId64 ")\n", \ 1415 (n), ip->i_number, lbn, ndaddr, daddr)); \ 1416 } \ 1417 } while (0) 1418 #else 1419 # define DEBUG_OOFF(n) 1420 #endif 1421 1422 /* 1423 * Change the given block's address to ndaddr, finding its previous 1424 * location using ufs_bmaparray(). 1425 * 1426 * Account for this change in the segment table. 1427 * 1428 * called with sp == NULL by roll-forwarding code. 1429 */ 1430 void 1431 lfs_update_single(struct lfs *fs, struct segment *sp, 1432 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size) 1433 { 1434 SEGUSE *sup; 1435 struct buf *bp; 1436 struct indir a[NIADDR + 2], *ap; 1437 struct inode *ip; 1438 daddr_t daddr, ooff; 1439 int num, error; 1440 int bb, osize, obb; 1441 1442 ASSERT_SEGLOCK(fs); 1443 KASSERT(sp == NULL || sp->vp == vp); 1444 ip = VTOI(vp); 1445 1446 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1447 if (error) 1448 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1449 1450 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */ 1451 KASSERT(daddr <= LFS_MAX_DADDR); 1452 if (daddr > 0) 1453 daddr = dbtofsb(fs, daddr); 1454 1455 bb = fragstofsb(fs, numfrags(fs, size)); 1456 switch (num) { 1457 case 0: 1458 ooff = ip->i_ffs1_db[lbn]; 1459 DEBUG_OOFF(0); 1460 if (ooff == UNWRITTEN) 1461 ip->i_ffs1_blocks += bb; 1462 else { 1463 /* possible fragment truncation or extension */ 1464 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1465 ip->i_ffs1_blocks += (bb - obb); 1466 } 1467 ip->i_ffs1_db[lbn] = ndaddr; 1468 break; 1469 case 1: 1470 ooff = ip->i_ffs1_ib[a[0].in_off]; 1471 DEBUG_OOFF(1); 1472 if (ooff == UNWRITTEN) 1473 ip->i_ffs1_blocks += bb; 1474 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1475 break; 1476 default: 1477 ap = &a[num - 1]; 1478 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 1479 panic("lfs_updatemeta: bread bno %" PRId64, 1480 ap->in_lbn); 1481 1482 /* XXX ondisk32 */ 1483 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1484 DEBUG_OOFF(num); 1485 if (ooff == UNWRITTEN) 1486 ip->i_ffs1_blocks += bb; 1487 /* XXX ondisk32 */ 1488 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1489 (void) VOP_BWRITE(bp); 1490 } 1491 1492 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1493 1494 /* Update hiblk when extending the file */ 1495 if (lbn > ip->i_lfs_hiblk) 1496 ip->i_lfs_hiblk = lbn; 1497 1498 /* 1499 * Though we'd rather it couldn't, this *can* happen right now 1500 * if cleaning blocks and regular blocks coexist. 1501 */ 1502 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1503 1504 /* 1505 * Update segment usage information, based on old size 1506 * and location. 1507 */ 1508 if (daddr > 0) { 1509 u_int32_t oldsn = dtosn(fs, daddr); 1510 #ifdef DIAGNOSTIC 1511 int ndupino; 1512 1513 if (sp && sp->seg_number == oldsn) { 1514 ndupino = sp->ndupino; 1515 } else { 1516 ndupino = 0; 1517 } 1518 #endif 1519 KASSERT(oldsn < fs->lfs_nseg); 1520 if (lbn >= 0 && lbn < NDADDR) 1521 osize = ip->i_lfs_fragsize[lbn]; 1522 else 1523 osize = fs->lfs_bsize; 1524 LFS_SEGENTRY(sup, fs, oldsn, bp); 1525 #ifdef DIAGNOSTIC 1526 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1527 < osize) { 1528 printf("lfs_updatemeta: negative bytes " 1529 "(segment %" PRIu32 " short by %" PRId64 1530 ")\n", dtosn(fs, daddr), 1531 (int64_t)osize - 1532 (sizeof (struct ufs1_dinode) * ndupino + 1533 sup->su_nbytes)); 1534 printf("lfs_updatemeta: ino %llu, lbn %" PRId64 1535 ", addr = 0x%" PRIx64 "\n", 1536 (unsigned long long)ip->i_number, lbn, daddr); 1537 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1538 panic("lfs_updatemeta: negative bytes"); 1539 sup->su_nbytes = osize - 1540 sizeof (struct ufs1_dinode) * ndupino; 1541 } 1542 #endif 1543 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1544 " db 0x%" PRIx64 "\n", 1545 dtosn(fs, daddr), osize, 1546 ip->i_number, lbn, daddr)); 1547 sup->su_nbytes -= osize; 1548 if (!(bp->b_flags & B_GATHERED)) { 1549 mutex_enter(&lfs_lock); 1550 fs->lfs_flags |= LFS_IFDIRTY; 1551 mutex_exit(&lfs_lock); 1552 } 1553 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1554 } 1555 /* 1556 * Now that this block has a new address, and its old 1557 * segment no longer owns it, we can forget about its 1558 * old size. 1559 */ 1560 if (lbn >= 0 && lbn < NDADDR) 1561 ip->i_lfs_fragsize[lbn] = size; 1562 } 1563 1564 /* 1565 * Update the metadata that points to the blocks listed in the FINFO 1566 * array. 1567 */ 1568 void 1569 lfs_updatemeta(struct segment *sp) 1570 { 1571 struct buf *sbp; 1572 struct lfs *fs; 1573 struct vnode *vp; 1574 daddr_t lbn; 1575 int i, nblocks, num; 1576 int bb; 1577 int bytesleft, size; 1578 1579 ASSERT_SEGLOCK(sp->fs); 1580 vp = sp->vp; 1581 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1582 KASSERT(nblocks >= 0); 1583 KASSERT(vp != NULL); 1584 if (nblocks == 0) 1585 return; 1586 1587 /* 1588 * This count may be high due to oversize blocks from lfs_gop_write. 1589 * Correct for this. (XXX we should be able to keep track of these.) 1590 */ 1591 fs = sp->fs; 1592 for (i = 0; i < nblocks; i++) { 1593 if (sp->start_bpp[i] == NULL) { 1594 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); 1595 nblocks = i; 1596 break; 1597 } 1598 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1599 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1600 nblocks -= num - 1; 1601 } 1602 1603 KASSERT(vp->v_type == VREG || 1604 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1605 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1606 1607 /* 1608 * Sort the blocks. 1609 * 1610 * We have to sort even if the blocks come from the 1611 * cleaner, because there might be other pending blocks on the 1612 * same inode...and if we don't sort, and there are fragments 1613 * present, blocks may be written in the wrong place. 1614 */ 1615 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1616 1617 /* 1618 * Record the length of the last block in case it's a fragment. 1619 * If there are indirect blocks present, they sort last. An 1620 * indirect block will be lfs_bsize and its presence indicates 1621 * that you cannot have fragments. 1622 * 1623 * XXX This last is a lie. A cleaned fragment can coexist with 1624 * XXX a later indirect block. This will continue to be 1625 * XXX true until lfs_markv is fixed to do everything with 1626 * XXX fake blocks (including fake inodes and fake indirect blocks). 1627 */ 1628 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1629 fs->lfs_bmask) + 1; 1630 1631 /* 1632 * Assign disk addresses, and update references to the logical 1633 * block and the segment usage information. 1634 */ 1635 for (i = nblocks; i--; ++sp->start_bpp) { 1636 sbp = *sp->start_bpp; 1637 lbn = *sp->start_lbp; 1638 KASSERT(sbp->b_lblkno == lbn); 1639 1640 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1641 1642 /* 1643 * If we write a frag in the wrong place, the cleaner won't 1644 * be able to correctly identify its size later, and the 1645 * segment will be uncleanable. (Even worse, it will assume 1646 * that the indirect block that actually ends the list 1647 * is of a smaller size!) 1648 */ 1649 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1650 panic("lfs_updatemeta: fragment is not last block"); 1651 1652 /* 1653 * For each subblock in this possibly oversized block, 1654 * update its address on disk. 1655 */ 1656 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1657 KASSERT(vp == sbp->b_vp); 1658 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1659 bytesleft -= fs->lfs_bsize) { 1660 size = MIN(bytesleft, fs->lfs_bsize); 1661 bb = fragstofsb(fs, numfrags(fs, size)); 1662 lbn = *sp->start_lbp++; 1663 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset, 1664 size); 1665 fs->lfs_offset += bb; 1666 } 1667 1668 } 1669 1670 /* This inode has been modified */ 1671 LFS_SET_UINO(VTOI(vp), IN_MODIFIED); 1672 } 1673 1674 /* 1675 * Move lfs_offset to a segment earlier than sn. 1676 */ 1677 int 1678 lfs_rewind(struct lfs *fs, int newsn) 1679 { 1680 int sn, osn, isdirty; 1681 struct buf *bp; 1682 SEGUSE *sup; 1683 1684 ASSERT_SEGLOCK(fs); 1685 1686 osn = dtosn(fs, fs->lfs_offset); 1687 if (osn < newsn) 1688 return 0; 1689 1690 /* lfs_avail eats the remaining space in this segment */ 1691 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg); 1692 1693 /* Find a low-numbered segment */ 1694 for (sn = 0; sn < fs->lfs_nseg; ++sn) { 1695 LFS_SEGENTRY(sup, fs, sn, bp); 1696 isdirty = sup->su_flags & SEGUSE_DIRTY; 1697 brelse(bp, 0); 1698 1699 if (!isdirty) 1700 break; 1701 } 1702 if (sn == fs->lfs_nseg) 1703 panic("lfs_rewind: no clean segments"); 1704 if (newsn >= 0 && sn >= newsn) 1705 return ENOENT; 1706 fs->lfs_nextseg = sn; 1707 lfs_newseg(fs); 1708 fs->lfs_offset = fs->lfs_curseg; 1709 1710 return 0; 1711 } 1712 1713 /* 1714 * Start a new partial segment. 1715 * 1716 * Return 1 when we entered to a new segment. 1717 * Otherwise, return 0. 1718 */ 1719 int 1720 lfs_initseg(struct lfs *fs) 1721 { 1722 struct segment *sp = fs->lfs_sp; 1723 SEGSUM *ssp; 1724 struct buf *sbp; /* buffer for SEGSUM */ 1725 int repeat = 0; /* return value */ 1726 1727 ASSERT_SEGLOCK(fs); 1728 /* Advance to the next segment. */ 1729 if (!LFS_PARTIAL_FITS(fs)) { 1730 SEGUSE *sup; 1731 struct buf *bp; 1732 1733 /* lfs_avail eats the remaining space */ 1734 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1735 fs->lfs_curseg); 1736 /* Wake up any cleaning procs waiting on this file system. */ 1737 lfs_wakeup_cleaner(fs); 1738 lfs_newseg(fs); 1739 repeat = 1; 1740 fs->lfs_offset = fs->lfs_curseg; 1741 1742 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1743 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1744 1745 /* 1746 * If the segment contains a superblock, update the offset 1747 * and summary address to skip over it. 1748 */ 1749 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1750 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1751 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1752 sp->seg_bytes_left -= LFS_SBPAD; 1753 } 1754 brelse(bp, 0); 1755 /* Segment zero could also contain the labelpad */ 1756 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1757 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1758 fs->lfs_offset += 1759 btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1760 sp->seg_bytes_left -= 1761 LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1762 } 1763 } else { 1764 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1765 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1766 (fs->lfs_offset - fs->lfs_curseg)); 1767 } 1768 fs->lfs_lastpseg = fs->lfs_offset; 1769 1770 /* Record first address of this partial segment */ 1771 if (sp->seg_flags & SEGM_CLEAN) { 1772 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1773 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1774 /* "1" is the artificial inc in lfs_seglock */ 1775 mutex_enter(&lfs_lock); 1776 while (fs->lfs_iocount > 1) { 1777 mtsleep(&fs->lfs_iocount, PRIBIO + 1, 1778 "lfs_initseg", 0, &lfs_lock); 1779 } 1780 mutex_exit(&lfs_lock); 1781 fs->lfs_cleanind = 0; 1782 } 1783 } 1784 1785 sp->fs = fs; 1786 sp->ibp = NULL; 1787 sp->idp = NULL; 1788 sp->ninodes = 0; 1789 sp->ndupino = 0; 1790 1791 sp->cbpp = sp->bpp; 1792 1793 /* Get a new buffer for SEGSUM */ 1794 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1795 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1796 1797 /* ... and enter it into the buffer list. */ 1798 *sp->cbpp = sbp; 1799 sp->cbpp++; 1800 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1801 1802 sp->start_bpp = sp->cbpp; 1803 1804 /* Set point to SEGSUM, initialize it. */ 1805 ssp = sp->segsum = sbp->b_data; 1806 memset(ssp, 0, fs->lfs_sumsize); 1807 ssp->ss_next = fs->lfs_nextseg; 1808 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1809 ssp->ss_magic = SS_MAGIC; 1810 1811 /* Set pointer to first FINFO, initialize it. */ 1812 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs)); 1813 sp->fip->fi_nblocks = 0; 1814 sp->start_lbp = &sp->fip->fi_blocks[0]; 1815 sp->fip->fi_lastlength = 0; 1816 1817 sp->seg_bytes_left -= fs->lfs_sumsize; 1818 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1819 1820 return (repeat); 1821 } 1822 1823 /* 1824 * Remove SEGUSE_INVAL from all segments. 1825 */ 1826 void 1827 lfs_unset_inval_all(struct lfs *fs) 1828 { 1829 SEGUSE *sup; 1830 struct buf *bp; 1831 int i; 1832 1833 for (i = 0; i < fs->lfs_nseg; i++) { 1834 LFS_SEGENTRY(sup, fs, i, bp); 1835 if (sup->su_flags & SEGUSE_INVAL) { 1836 sup->su_flags &= ~SEGUSE_INVAL; 1837 LFS_WRITESEGENTRY(sup, fs, i, bp); 1838 } else 1839 brelse(bp, 0); 1840 } 1841 } 1842 1843 /* 1844 * Return the next segment to write. 1845 */ 1846 void 1847 lfs_newseg(struct lfs *fs) 1848 { 1849 CLEANERINFO *cip; 1850 SEGUSE *sup; 1851 struct buf *bp; 1852 int curseg, isdirty, sn, skip_inval; 1853 1854 ASSERT_SEGLOCK(fs); 1855 1856 /* Honor LFCNWRAPSTOP */ 1857 mutex_enter(&lfs_lock); 1858 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) { 1859 if (fs->lfs_wrappass) { 1860 log(LOG_NOTICE, "%s: wrappass=%d\n", 1861 fs->lfs_fsmnt, fs->lfs_wrappass); 1862 fs->lfs_wrappass = 0; 1863 break; 1864 } 1865 fs->lfs_wrapstatus = LFS_WRAP_WAITING; 1866 wakeup(&fs->lfs_nowrap); 1867 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt); 1868 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz, 1869 &lfs_lock); 1870 } 1871 fs->lfs_wrapstatus = LFS_WRAP_GOING; 1872 mutex_exit(&lfs_lock); 1873 1874 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1875 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", 1876 dtosn(fs, fs->lfs_nextseg))); 1877 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1878 sup->su_nbytes = 0; 1879 sup->su_nsums = 0; 1880 sup->su_ninos = 0; 1881 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1882 1883 LFS_CLEANERINFO(cip, fs, bp); 1884 --cip->clean; 1885 ++cip->dirty; 1886 fs->lfs_nclean = cip->clean; 1887 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1888 1889 fs->lfs_lastseg = fs->lfs_curseg; 1890 fs->lfs_curseg = fs->lfs_nextseg; 1891 skip_inval = 1; 1892 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1893 sn = (sn + 1) % fs->lfs_nseg; 1894 1895 if (sn == curseg) { 1896 if (skip_inval) 1897 skip_inval = 0; 1898 else 1899 panic("lfs_nextseg: no clean segments"); 1900 } 1901 LFS_SEGENTRY(sup, fs, sn, bp); 1902 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0)); 1903 /* Check SEGUSE_EMPTY as we go along */ 1904 if (isdirty && sup->su_nbytes == 0 && 1905 !(sup->su_flags & SEGUSE_EMPTY)) 1906 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1907 else 1908 brelse(bp, 0); 1909 1910 if (!isdirty) 1911 break; 1912 } 1913 if (skip_inval == 0) 1914 lfs_unset_inval_all(fs); 1915 1916 ++fs->lfs_nactive; 1917 fs->lfs_nextseg = sntod(fs, sn); 1918 if (lfs_dostats) { 1919 ++lfs_stats.segsused; 1920 } 1921 } 1922 1923 static struct buf * 1924 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, 1925 int n) 1926 { 1927 struct lfs_cluster *cl; 1928 struct buf **bpp, *bp; 1929 1930 ASSERT_SEGLOCK(fs); 1931 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1932 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1933 memset(cl, 0, sizeof(*cl)); 1934 cl->fs = fs; 1935 cl->bpp = bpp; 1936 cl->bufcount = 0; 1937 cl->bufsize = 0; 1938 1939 /* If this segment is being written synchronously, note that */ 1940 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1941 cl->flags |= LFS_CL_SYNC; 1942 cl->seg = fs->lfs_sp; 1943 ++cl->seg->seg_iocount; 1944 } 1945 1946 /* Get an empty buffer header, or maybe one with something on it */ 1947 bp = getiobuf(vp, true); 1948 bp->b_dev = NODEV; 1949 bp->b_blkno = bp->b_lblkno = addr; 1950 bp->b_iodone = lfs_cluster_callback; 1951 bp->b_private = cl; 1952 1953 return bp; 1954 } 1955 1956 int 1957 lfs_writeseg(struct lfs *fs, struct segment *sp) 1958 { 1959 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp; 1960 SEGUSE *sup; 1961 SEGSUM *ssp; 1962 int i; 1963 int do_again, nblocks, byteoffset; 1964 size_t el_size; 1965 struct lfs_cluster *cl; 1966 u_short ninos; 1967 struct vnode *devvp; 1968 char *p = NULL; 1969 struct vnode *vp; 1970 int32_t *daddrp; /* XXX ondisk32 */ 1971 int changed; 1972 u_int32_t sum; 1973 #ifdef DEBUG 1974 FINFO *fip; 1975 int findex; 1976 #endif 1977 1978 ASSERT_SEGLOCK(fs); 1979 1980 ssp = (SEGSUM *)sp->segsum; 1981 1982 /* 1983 * If there are no buffers other than the segment summary to write, 1984 * don't do anything. If we are the end of a dirop sequence, however, 1985 * write the empty segment summary anyway, to help out the 1986 * roll-forward agent. 1987 */ 1988 if ((nblocks = sp->cbpp - sp->bpp) == 1) { 1989 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP) 1990 return 0; 1991 } 1992 1993 /* Note if partial segment is being written by the cleaner */ 1994 if (sp->seg_flags & SEGM_CLEAN) 1995 ssp->ss_flags |= SS_CLEAN; 1996 1997 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1998 1999 /* Update the segment usage information. */ 2000 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 2001 2002 /* Loop through all blocks, except the segment summary. */ 2003 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 2004 if ((*bpp)->b_vp != devvp) { 2005 sup->su_nbytes += (*bpp)->b_bcount; 2006 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" 2007 " lbn %" PRId64 " db 0x%" PRIx64 "\n", 2008 sp->seg_number, (*bpp)->b_bcount, 2009 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 2010 (*bpp)->b_blkno)); 2011 } 2012 } 2013 2014 #ifdef DEBUG 2015 /* Check for zero-length and zero-version FINFO entries. */ 2016 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs)); 2017 for (findex = 0; findex < ssp->ss_nfinfo; findex++) { 2018 KDASSERT(fip->fi_nblocks > 0); 2019 KDASSERT(fip->fi_version > 0); 2020 fip = (FINFO *)((char *)fip + FINFOSIZE + 2021 sizeof(int32_t) * fip->fi_nblocks); 2022 } 2023 #endif /* DEBUG */ 2024 2025 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 2026 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", 2027 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 2028 ssp->ss_ninos)); 2029 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 2030 /* sup->su_nbytes += fs->lfs_sumsize; */ 2031 if (fs->lfs_version == 1) 2032 sup->su_olastmod = time_second; 2033 else 2034 sup->su_lastmod = time_second; 2035 sup->su_ninos += ninos; 2036 ++sup->su_nsums; 2037 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 2038 2039 do_again = !(bp->b_flags & B_GATHERED); 2040 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 2041 2042 /* 2043 * Mark blocks B_BUSY, to prevent then from being changed between 2044 * the checksum computation and the actual write. 2045 * 2046 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 2047 * there are any, replace them with copies that have UNASSIGNED 2048 * instead. 2049 */ 2050 mutex_enter(&bufcache_lock); 2051 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 2052 ++bpp; 2053 bp = *bpp; 2054 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */ 2055 bp->b_cflags |= BC_BUSY; 2056 continue; 2057 } 2058 2059 while (bp->b_cflags & BC_BUSY) { 2060 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" 2061 " data summary corruption for ino %d, lbn %" 2062 PRId64 "\n", 2063 VTOI(bp->b_vp)->i_number, bp->b_lblkno)); 2064 bp->b_cflags |= BC_WANTED; 2065 cv_wait(&bp->b_busy, &bufcache_lock); 2066 } 2067 bp->b_cflags |= BC_BUSY; 2068 mutex_exit(&bufcache_lock); 2069 unbusybp = NULL; 2070 2071 /* 2072 * Check and replace indirect block UNWRITTEN bogosity. 2073 * XXX See comment in lfs_writefile. 2074 */ 2075 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 2076 VTOI(bp->b_vp)->i_ffs1_blocks != 2077 VTOI(bp->b_vp)->i_lfs_effnblks) { 2078 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n", 2079 VTOI(bp->b_vp)->i_number, 2080 VTOI(bp->b_vp)->i_lfs_effnblks, 2081 VTOI(bp->b_vp)->i_ffs1_blocks)); 2082 /* Make a copy we'll make changes to */ 2083 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 2084 bp->b_bcount, LFS_NB_IBLOCK); 2085 newbp->b_blkno = bp->b_blkno; 2086 memcpy(newbp->b_data, bp->b_data, 2087 newbp->b_bcount); 2088 2089 changed = 0; 2090 /* XXX ondisk32 */ 2091 for (daddrp = (int32_t *)(newbp->b_data); 2092 daddrp < (int32_t *)((char *)newbp->b_data + 2093 newbp->b_bcount); daddrp++) { 2094 if (*daddrp == UNWRITTEN) { 2095 ++changed; 2096 *daddrp = 0; 2097 } 2098 } 2099 /* 2100 * Get rid of the old buffer. Don't mark it clean, 2101 * though, if it still has dirty data on it. 2102 */ 2103 if (changed) { 2104 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" 2105 " bp = %p newbp = %p\n", changed, bp, 2106 newbp)); 2107 *bpp = newbp; 2108 bp->b_flags &= ~B_GATHERED; 2109 bp->b_error = 0; 2110 if (bp->b_iodone != NULL) { 2111 DLOG((DLOG_SEG, "lfs_writeseg: " 2112 "indir bp should not be B_CALL\n")); 2113 biodone(bp); 2114 bp = NULL; 2115 } else { 2116 /* Still on free list, leave it there */ 2117 unbusybp = bp; 2118 /* 2119 * We have to re-decrement lfs_avail 2120 * since this block is going to come 2121 * back around to us in the next 2122 * segment. 2123 */ 2124 fs->lfs_avail -= 2125 btofsb(fs, bp->b_bcount); 2126 } 2127 } else { 2128 lfs_freebuf(fs, newbp); 2129 } 2130 } 2131 mutex_enter(&bufcache_lock); 2132 if (unbusybp != NULL) { 2133 unbusybp->b_cflags &= ~BC_BUSY; 2134 if (unbusybp->b_cflags & BC_WANTED) 2135 cv_broadcast(&bp->b_busy); 2136 } 2137 } 2138 mutex_exit(&bufcache_lock); 2139 2140 /* 2141 * Compute checksum across data and then across summary; the first 2142 * block (the summary block) is skipped. Set the create time here 2143 * so that it's guaranteed to be later than the inode mod times. 2144 */ 2145 sum = 0; 2146 if (fs->lfs_version == 1) 2147 el_size = sizeof(u_long); 2148 else 2149 el_size = sizeof(u_int32_t); 2150 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 2151 ++bpp; 2152 /* Loop through gop_write cluster blocks */ 2153 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 2154 byteoffset += fs->lfs_bsize) { 2155 #ifdef LFS_USE_B_INVAL 2156 if ((*bpp)->b_cflags & BC_INVAL) != 0 && 2157 (*bpp)->b_iodone != NULL) { 2158 if (copyin((void *)(*bpp)->b_saveaddr + 2159 byteoffset, dp, el_size)) { 2160 panic("lfs_writeseg: copyin failed [1]:" 2161 " ino %d blk %" PRId64, 2162 VTOI((*bpp)->b_vp)->i_number, 2163 (*bpp)->b_lblkno); 2164 } 2165 } else 2166 #endif /* LFS_USE_B_INVAL */ 2167 { 2168 sum = lfs_cksum_part((char *) 2169 (*bpp)->b_data + byteoffset, el_size, sum); 2170 } 2171 } 2172 } 2173 if (fs->lfs_version == 1) 2174 ssp->ss_ocreate = time_second; 2175 else { 2176 ssp->ss_create = time_second; 2177 ssp->ss_serial = ++fs->lfs_serial; 2178 ssp->ss_ident = fs->lfs_ident; 2179 } 2180 ssp->ss_datasum = lfs_cksum_fold(sum); 2181 ssp->ss_sumsum = cksum(&ssp->ss_datasum, 2182 fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 2183 2184 mutex_enter(&lfs_lock); 2185 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 2186 btofsb(fs, fs->lfs_sumsize)); 2187 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) + 2188 btofsb(fs, fs->lfs_sumsize)); 2189 mutex_exit(&lfs_lock); 2190 2191 /* 2192 * When we simply write the blocks we lose a rotation for every block 2193 * written. To avoid this problem, we cluster the buffers into a 2194 * chunk and write the chunk. MAXPHYS is the largest size I/O 2195 * devices can handle, use that for the size of the chunks. 2196 * 2197 * Blocks that are already clusters (from GOP_WRITE), however, we 2198 * don't bother to copy into other clusters. 2199 */ 2200 2201 #define CHUNKSIZE MAXPHYS 2202 2203 if (devvp == NULL) 2204 panic("devvp is NULL"); 2205 for (bpp = sp->bpp, i = nblocks; i;) { 2206 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 2207 cl = cbp->b_private; 2208 2209 cbp->b_flags |= B_ASYNC; 2210 cbp->b_cflags |= BC_BUSY; 2211 cbp->b_bcount = 0; 2212 2213 #if defined(DEBUG) && defined(DIAGNOSTIC) 2214 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 2215 / sizeof(int32_t)) { 2216 panic("lfs_writeseg: real bpp overwrite"); 2217 } 2218 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) { 2219 panic("lfs_writeseg: theoretical bpp overwrite"); 2220 } 2221 #endif 2222 2223 /* 2224 * Construct the cluster. 2225 */ 2226 mutex_enter(&lfs_lock); 2227 ++fs->lfs_iocount; 2228 mutex_exit(&lfs_lock); 2229 while (i && cbp->b_bcount < CHUNKSIZE) { 2230 bp = *bpp; 2231 2232 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 2233 break; 2234 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 2235 break; 2236 2237 /* Clusters from GOP_WRITE are expedited */ 2238 if (bp->b_bcount > fs->lfs_bsize) { 2239 if (cbp->b_bcount > 0) 2240 /* Put in its own buffer */ 2241 break; 2242 else { 2243 cbp->b_data = bp->b_data; 2244 } 2245 } else if (cbp->b_bcount == 0) { 2246 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 2247 LFS_NB_CLUSTER); 2248 cl->flags |= LFS_CL_MALLOC; 2249 } 2250 #ifdef DIAGNOSTIC 2251 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 2252 btodb(bp->b_bcount - 1))) != 2253 sp->seg_number) { 2254 printf("blk size %d daddr %" PRIx64 2255 " not in seg %d\n", 2256 bp->b_bcount, bp->b_blkno, 2257 sp->seg_number); 2258 panic("segment overwrite"); 2259 } 2260 #endif 2261 2262 #ifdef LFS_USE_B_INVAL 2263 /* 2264 * Fake buffers from the cleaner are marked as B_INVAL. 2265 * We need to copy the data from user space rather than 2266 * from the buffer indicated. 2267 * XXX == what do I do on an error? 2268 */ 2269 if ((bp->b_cflags & BC_INVAL) != 0 && 2270 bp->b_iodone != NULL) { 2271 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 2272 panic("lfs_writeseg: " 2273 "copyin failed [2]"); 2274 } else 2275 #endif /* LFS_USE_B_INVAL */ 2276 if (cl->flags & LFS_CL_MALLOC) { 2277 /* copy data into our cluster. */ 2278 memcpy(p, bp->b_data, bp->b_bcount); 2279 p += bp->b_bcount; 2280 } 2281 2282 cbp->b_bcount += bp->b_bcount; 2283 cl->bufsize += bp->b_bcount; 2284 2285 bp->b_flags &= ~B_READ; 2286 bp->b_error = 0; 2287 cl->bpp[cl->bufcount++] = bp; 2288 2289 vp = bp->b_vp; 2290 mutex_enter(&bufcache_lock); 2291 mutex_enter(&vp->v_interlock); 2292 bp->b_oflags &= ~(BO_DELWRI | BO_DONE); 2293 reassignbuf(bp, vp); 2294 vp->v_numoutput++; 2295 mutex_exit(&vp->v_interlock); 2296 mutex_exit(&bufcache_lock); 2297 2298 bpp++; 2299 i--; 2300 } 2301 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2302 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 2303 else 2304 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 2305 mutex_enter(&devvp->v_interlock); 2306 devvp->v_numoutput++; 2307 mutex_exit(&devvp->v_interlock); 2308 VOP_STRATEGY(devvp, cbp); 2309 curlwp->l_ru.ru_oublock++; 2310 } 2311 2312 if (lfs_dostats) { 2313 ++lfs_stats.psegwrites; 2314 lfs_stats.blocktot += nblocks - 1; 2315 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2316 ++lfs_stats.psyncwrites; 2317 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2318 ++lfs_stats.pcleanwrites; 2319 lfs_stats.cleanblocks += nblocks - 1; 2320 } 2321 } 2322 2323 return (lfs_initseg(fs) || do_again); 2324 } 2325 2326 void 2327 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2328 { 2329 struct buf *bp; 2330 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2331 int s; 2332 2333 ASSERT_MAYBE_SEGLOCK(fs); 2334 #ifdef DIAGNOSTIC 2335 KASSERT(fs->lfs_magic == LFS_MAGIC); 2336 #endif 2337 /* 2338 * If we can write one superblock while another is in 2339 * progress, we risk not having a complete checkpoint if we crash. 2340 * So, block here if a superblock write is in progress. 2341 */ 2342 mutex_enter(&lfs_lock); 2343 s = splbio(); 2344 while (fs->lfs_sbactive) { 2345 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, 2346 &lfs_lock); 2347 } 2348 fs->lfs_sbactive = daddr; 2349 splx(s); 2350 mutex_exit(&lfs_lock); 2351 2352 /* Set timestamp of this version of the superblock */ 2353 if (fs->lfs_version == 1) 2354 fs->lfs_otstamp = time_second; 2355 fs->lfs_tstamp = time_second; 2356 2357 /* Checksum the superblock and copy it into a buffer. */ 2358 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2359 bp = lfs_newbuf(fs, devvp, 2360 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2361 memset((char *)bp->b_data + sizeof(struct dlfs), 0, 2362 LFS_SBPAD - sizeof(struct dlfs)); 2363 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2364 2365 bp->b_cflags |= BC_BUSY; 2366 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC; 2367 bp->b_oflags &= ~(BO_DONE | BO_DELWRI); 2368 bp->b_error = 0; 2369 bp->b_iodone = lfs_supercallback; 2370 2371 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2372 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2373 else 2374 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2375 curlwp->l_ru.ru_oublock++; 2376 2377 mutex_enter(&devvp->v_interlock); 2378 devvp->v_numoutput++; 2379 mutex_exit(&devvp->v_interlock); 2380 2381 mutex_enter(&lfs_lock); 2382 ++fs->lfs_iocount; 2383 mutex_exit(&lfs_lock); 2384 VOP_STRATEGY(devvp, bp); 2385 } 2386 2387 /* 2388 * Logical block number match routines used when traversing the dirty block 2389 * chain. 2390 */ 2391 int 2392 lfs_match_fake(struct lfs *fs, struct buf *bp) 2393 { 2394 2395 ASSERT_SEGLOCK(fs); 2396 return LFS_IS_MALLOC_BUF(bp); 2397 } 2398 2399 #if 0 2400 int 2401 lfs_match_real(struct lfs *fs, struct buf *bp) 2402 { 2403 2404 ASSERT_SEGLOCK(fs); 2405 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2406 } 2407 #endif 2408 2409 int 2410 lfs_match_data(struct lfs *fs, struct buf *bp) 2411 { 2412 2413 ASSERT_SEGLOCK(fs); 2414 return (bp->b_lblkno >= 0); 2415 } 2416 2417 int 2418 lfs_match_indir(struct lfs *fs, struct buf *bp) 2419 { 2420 daddr_t lbn; 2421 2422 ASSERT_SEGLOCK(fs); 2423 lbn = bp->b_lblkno; 2424 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2425 } 2426 2427 int 2428 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2429 { 2430 daddr_t lbn; 2431 2432 ASSERT_SEGLOCK(fs); 2433 lbn = bp->b_lblkno; 2434 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2435 } 2436 2437 int 2438 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2439 { 2440 daddr_t lbn; 2441 2442 ASSERT_SEGLOCK(fs); 2443 lbn = bp->b_lblkno; 2444 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2445 } 2446 2447 static void 2448 lfs_free_aiodone(struct buf *bp) 2449 { 2450 struct lfs *fs; 2451 2452 KERNEL_LOCK(1, curlwp); 2453 fs = bp->b_private; 2454 ASSERT_NO_SEGLOCK(fs); 2455 lfs_freebuf(fs, bp); 2456 KERNEL_UNLOCK_LAST(curlwp); 2457 } 2458 2459 static void 2460 lfs_super_aiodone(struct buf *bp) 2461 { 2462 struct lfs *fs; 2463 2464 KERNEL_LOCK(1, curlwp); 2465 fs = bp->b_private; 2466 ASSERT_NO_SEGLOCK(fs); 2467 mutex_enter(&lfs_lock); 2468 fs->lfs_sbactive = 0; 2469 if (--fs->lfs_iocount <= 1) 2470 wakeup(&fs->lfs_iocount); 2471 wakeup(&fs->lfs_sbactive); 2472 mutex_exit(&lfs_lock); 2473 lfs_freebuf(fs, bp); 2474 KERNEL_UNLOCK_LAST(curlwp); 2475 } 2476 2477 static void 2478 lfs_cluster_aiodone(struct buf *bp) 2479 { 2480 struct lfs_cluster *cl; 2481 struct lfs *fs; 2482 struct buf *tbp, *fbp; 2483 struct vnode *vp, *devvp, *ovp; 2484 struct inode *ip; 2485 int error; 2486 2487 KERNEL_LOCK(1, curlwp); 2488 2489 error = bp->b_error; 2490 cl = bp->b_private; 2491 fs = cl->fs; 2492 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2493 ASSERT_NO_SEGLOCK(fs); 2494 2495 /* Put the pages back, and release the buffer */ 2496 while (cl->bufcount--) { 2497 tbp = cl->bpp[cl->bufcount]; 2498 KASSERT(tbp->b_cflags & BC_BUSY); 2499 if (error) { 2500 tbp->b_error = error; 2501 } 2502 2503 /* 2504 * We're done with tbp. If it has not been re-dirtied since 2505 * the cluster was written, free it. Otherwise, keep it on 2506 * the locked list to be written again. 2507 */ 2508 vp = tbp->b_vp; 2509 2510 tbp->b_flags &= ~B_GATHERED; 2511 2512 LFS_BCLEAN_LOG(fs, tbp); 2513 2514 mutex_enter(&bufcache_lock); 2515 if (tbp->b_iodone == NULL) { 2516 KASSERT(tbp->b_flags & B_LOCKED); 2517 bremfree(tbp); 2518 if (vp) { 2519 mutex_enter(&vp->v_interlock); 2520 reassignbuf(tbp, vp); 2521 mutex_exit(&vp->v_interlock); 2522 } 2523 tbp->b_flags |= B_ASYNC; /* for biodone */ 2524 } 2525 2526 if (((tbp->b_flags | tbp->b_oflags) & 2527 (B_LOCKED | BO_DELWRI)) == B_LOCKED) 2528 LFS_UNLOCK_BUF(tbp); 2529 2530 if (tbp->b_oflags & BO_DONE) { 2531 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", 2532 cl->bufcount, (long)tbp->b_flags)); 2533 } 2534 2535 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) { 2536 /* 2537 * A buffer from the page daemon. 2538 * We use the same iodone as it does, 2539 * so we must manually disassociate its 2540 * buffers from the vp. 2541 */ 2542 if ((ovp = tbp->b_vp) != NULL) { 2543 /* This is just silly */ 2544 mutex_enter(&ovp->v_interlock); 2545 brelvp(tbp); 2546 mutex_exit(&ovp->v_interlock); 2547 tbp->b_vp = vp; 2548 tbp->b_objlock = &vp->v_interlock; 2549 } 2550 /* Put it back the way it was */ 2551 tbp->b_flags |= B_ASYNC; 2552 /* Master buffers have BC_AGE */ 2553 if (tbp->b_private == tbp) 2554 tbp->b_flags |= BC_AGE; 2555 } 2556 mutex_exit(&bufcache_lock); 2557 2558 biodone(tbp); 2559 2560 /* 2561 * If this is the last block for this vnode, but 2562 * there are other blocks on its dirty list, 2563 * set IN_MODIFIED/IN_CLEANING depending on what 2564 * sort of block. Only do this for our mount point, 2565 * not for, e.g., inode blocks that are attached to 2566 * the devvp. 2567 * XXX KS - Shouldn't we set *both* if both types 2568 * of blocks are present (traverse the dirty list?) 2569 */ 2570 mutex_enter(&lfs_lock); 2571 mutex_enter(&vp->v_interlock); 2572 if (vp != devvp && vp->v_numoutput == 0 && 2573 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2574 ip = VTOI(vp); 2575 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", 2576 ip->i_number)); 2577 if (LFS_IS_MALLOC_BUF(fbp)) 2578 LFS_SET_UINO(ip, IN_CLEANING); 2579 else 2580 LFS_SET_UINO(ip, IN_MODIFIED); 2581 } 2582 cv_broadcast(&vp->v_cv); 2583 mutex_exit(&vp->v_interlock); 2584 mutex_exit(&lfs_lock); 2585 } 2586 2587 /* Fix up the cluster buffer, and release it */ 2588 if (cl->flags & LFS_CL_MALLOC) 2589 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2590 putiobuf(bp); 2591 2592 /* Note i/o done */ 2593 if (cl->flags & LFS_CL_SYNC) { 2594 if (--cl->seg->seg_iocount == 0) 2595 wakeup(&cl->seg->seg_iocount); 2596 } 2597 mutex_enter(&lfs_lock); 2598 #ifdef DIAGNOSTIC 2599 if (fs->lfs_iocount == 0) 2600 panic("lfs_cluster_aiodone: zero iocount"); 2601 #endif 2602 if (--fs->lfs_iocount <= 1) 2603 wakeup(&fs->lfs_iocount); 2604 mutex_exit(&lfs_lock); 2605 2606 KERNEL_UNLOCK_LAST(curlwp); 2607 2608 pool_put(&fs->lfs_bpppool, cl->bpp); 2609 cl->bpp = NULL; 2610 pool_put(&fs->lfs_clpool, cl); 2611 } 2612 2613 static void 2614 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2615 { 2616 /* reset b_iodone for when this is a single-buf i/o. */ 2617 bp->b_iodone = aiodone; 2618 2619 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL); 2620 } 2621 2622 static void 2623 lfs_cluster_callback(struct buf *bp) 2624 { 2625 2626 lfs_generic_callback(bp, lfs_cluster_aiodone); 2627 } 2628 2629 void 2630 lfs_supercallback(struct buf *bp) 2631 { 2632 2633 lfs_generic_callback(bp, lfs_super_aiodone); 2634 } 2635 2636 /* 2637 * The only buffers that are going to hit these functions are the 2638 * segment write blocks, or the segment summaries, or the superblocks. 2639 * 2640 * All of the above are created by lfs_newbuf, and so do not need to be 2641 * released via brelse. 2642 */ 2643 void 2644 lfs_callback(struct buf *bp) 2645 { 2646 2647 lfs_generic_callback(bp, lfs_free_aiodone); 2648 } 2649 2650 /* 2651 * Shellsort (diminishing increment sort) from Data Structures and 2652 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2653 * see also Knuth Vol. 3, page 84. The increments are selected from 2654 * formula (8), page 95. Roughly O(N^3/2). 2655 */ 2656 /* 2657 * This is our own private copy of shellsort because we want to sort 2658 * two parallel arrays (the array of buffer pointers and the array of 2659 * logical block numbers) simultaneously. Note that we cast the array 2660 * of logical block numbers to a unsigned in this routine so that the 2661 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2662 */ 2663 2664 void 2665 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2666 { 2667 static int __rsshell_increments[] = { 4, 1, 0 }; 2668 int incr, *incrp, t1, t2; 2669 struct buf *bp_temp; 2670 2671 #ifdef DEBUG 2672 incr = 0; 2673 for (t1 = 0; t1 < nmemb; t1++) { 2674 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2675 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2676 /* dump before panic */ 2677 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2678 nmemb, size); 2679 incr = 0; 2680 for (t1 = 0; t1 < nmemb; t1++) { 2681 const struct buf *bp = bp_array[t1]; 2682 2683 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2684 PRIu64 "\n", t1, 2685 (uint64_t)bp->b_bcount, 2686 (uint64_t)bp->b_lblkno); 2687 printf("lbns:"); 2688 for (t2 = 0; t2 * size < bp->b_bcount; 2689 t2++) { 2690 printf(" %" PRId32, 2691 lb_array[incr++]); 2692 } 2693 printf("\n"); 2694 } 2695 panic("lfs_shellsort: inconsistent input"); 2696 } 2697 } 2698 } 2699 #endif 2700 2701 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2702 for (t1 = incr; t1 < nmemb; ++t1) 2703 for (t2 = t1 - incr; t2 >= 0;) 2704 if ((u_int32_t)bp_array[t2]->b_lblkno > 2705 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2706 bp_temp = bp_array[t2]; 2707 bp_array[t2] = bp_array[t2 + incr]; 2708 bp_array[t2 + incr] = bp_temp; 2709 t2 -= incr; 2710 } else 2711 break; 2712 2713 /* Reform the list of logical blocks */ 2714 incr = 0; 2715 for (t1 = 0; t1 < nmemb; t1++) { 2716 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2717 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2718 } 2719 } 2720 } 2721 2722 /* 2723 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK, 2724 * however, we must press on. Just fake success in that case. 2725 */ 2726 int 2727 lfs_vref(struct vnode *vp) 2728 { 2729 int error; 2730 struct lfs *fs; 2731 2732 KASSERT(mutex_owned(&vp->v_interlock)); 2733 2734 fs = VTOI(vp)->i_lfs; 2735 2736 ASSERT_MAYBE_SEGLOCK(fs); 2737 2738 /* 2739 * If we return 1 here during a flush, we risk vinvalbuf() not 2740 * being able to flush all of the pages from this vnode, which 2741 * will cause it to panic. So, return 0 if a flush is in progress. 2742 */ 2743 error = vget(vp, LK_NOWAIT | LK_INTERLOCK); 2744 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { 2745 ++fs->lfs_flushvp_fakevref; 2746 return 0; 2747 } 2748 return error; 2749 } 2750 2751 /* 2752 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2753 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2754 */ 2755 void 2756 lfs_vunref(struct vnode *vp) 2757 { 2758 struct lfs *fs; 2759 2760 fs = VTOI(vp)->i_lfs; 2761 ASSERT_MAYBE_SEGLOCK(fs); 2762 2763 /* 2764 * Analogous to lfs_vref, if the node is flushing, fake it. 2765 */ 2766 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) { 2767 --fs->lfs_flushvp_fakevref; 2768 return; 2769 } 2770 2771 /* does not call inactive */ 2772 mutex_enter(&vp->v_interlock); 2773 vrelel(vp, VRELEL_NOINACTIVE); 2774 } 2775 2776 /* 2777 * We use this when we have vnodes that were loaded in solely for cleaning. 2778 * There is no reason to believe that these vnodes will be referenced again 2779 * soon, since the cleaning process is unrelated to normal filesystem 2780 * activity. Putting cleaned vnodes at the tail of the list has the effect 2781 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2782 * cleaning at the head of the list, instead. 2783 */ 2784 void 2785 lfs_vunref_head(struct vnode *vp) 2786 { 2787 2788 ASSERT_SEGLOCK(VTOI(vp)->i_lfs); 2789 2790 /* does not call inactive, inserts non-held vnode at head of freelist */ 2791 mutex_enter(&vp->v_interlock); 2792 vrelel(vp, VRELEL_NOINACTIVE | VRELEL_ONHEAD); 2793 } 2794 2795 2796 /* 2797 * Set up an FINFO entry for a new file. The fip pointer is assumed to 2798 * point at uninitialized space. 2799 */ 2800 void 2801 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers) 2802 { 2803 struct segment *sp = fs->lfs_sp; 2804 2805 KASSERT(vers > 0); 2806 2807 if (sp->seg_bytes_left < fs->lfs_bsize || 2808 sp->sum_bytes_left < sizeof(struct finfo)) 2809 (void) lfs_writeseg(fs, fs->lfs_sp); 2810 2811 sp->sum_bytes_left -= FINFOSIZE; 2812 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 2813 sp->fip->fi_nblocks = 0; 2814 sp->fip->fi_ino = ino; 2815 sp->fip->fi_version = vers; 2816 } 2817 2818 /* 2819 * Release the FINFO entry, either clearing out an unused entry or 2820 * advancing us to the next available entry. 2821 */ 2822 void 2823 lfs_release_finfo(struct lfs *fs) 2824 { 2825 struct segment *sp = fs->lfs_sp; 2826 2827 if (sp->fip->fi_nblocks != 0) { 2828 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE + 2829 sizeof(int32_t) * sp->fip->fi_nblocks); 2830 sp->start_lbp = &sp->fip->fi_blocks[0]; 2831 } else { 2832 sp->sum_bytes_left += FINFOSIZE; 2833 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 2834 } 2835 } 2836