xref: /netbsd-src/sys/ufs/lfs/lfs_segment.c (revision c0179c282a5968435315a82f4128c61372c68fc3)
1 /*	$NetBSD: lfs_segment.c,v 1.195 2006/11/16 01:33:53 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 /*
39  * Copyright (c) 1991, 1993
40  *	The Regents of the University of California.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.195 2006/11/16 01:33:53 christos Exp $");
71 
72 #ifdef DEBUG
73 # define vndebug(vp, str) do {						\
74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 		     VTOI(vp)->i_number, (str), op));			\
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83 
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101 
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104 
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109 
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112 
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115 
116 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117 
118 extern int count_lock_queue(void);
119 extern struct simplelock vnode_free_list_slock;		/* XXX */
120 extern struct simplelock bqueue_slock;			/* XXX */
121 
122 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
123 static void lfs_free_aiodone(struct buf *);
124 static void lfs_super_aiodone(struct buf *);
125 static void lfs_cluster_aiodone(struct buf *);
126 static void lfs_cluster_callback(struct buf *);
127 
128 /*
129  * Determine if it's OK to start a partial in this segment, or if we need
130  * to go on to a new segment.
131  */
132 #define	LFS_PARTIAL_FITS(fs) \
133 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
134 	fragstofsb((fs), (fs)->lfs_frag))
135 
136 /*
137  * Figure out whether we should do a checkpoint write or go ahead with
138  * an ordinary write.
139  */
140 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
141         ((flags & SEGM_CLEAN) == 0 &&					\
142 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
143 	    (flags & SEGM_CKP) ||					\
144 	    fs->lfs_nclean < LFS_MAX_ACTIVE)))
145 
146 int	 lfs_match_fake(struct lfs *, struct buf *);
147 void	 lfs_newseg(struct lfs *);
148 /* XXX ondisk32 */
149 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
150 void	 lfs_supercallback(struct buf *);
151 void	 lfs_updatemeta(struct segment *);
152 void	 lfs_writesuper(struct lfs *, daddr_t);
153 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
154 	    struct segment *sp, int dirops);
155 
156 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
157 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
158 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
159 int	lfs_dirvcount = 0;		/* # active dirops */
160 
161 /* Statistics Counters */
162 int lfs_dostats = 1;
163 struct lfs_stats lfs_stats;
164 
165 /* op values to lfs_writevnodes */
166 #define	VN_REG		0
167 #define	VN_DIROP	1
168 #define	VN_EMPTY	2
169 #define VN_CLEAN	3
170 
171 /*
172  * XXX KS - Set modification time on the Ifile, so the cleaner can
173  * read the fs mod time off of it.  We don't set IN_UPDATE here,
174  * since we don't really need this to be flushed to disk (and in any
175  * case that wouldn't happen to the Ifile until we checkpoint).
176  */
177 void
178 lfs_imtime(struct lfs *fs)
179 {
180 	struct timespec ts;
181 	struct inode *ip;
182 
183 	ASSERT_MAYBE_SEGLOCK(fs);
184 	vfs_timestamp(&ts);
185 	ip = VTOI(fs->lfs_ivnode);
186 	ip->i_ffs1_mtime = ts.tv_sec;
187 	ip->i_ffs1_mtimensec = ts.tv_nsec;
188 }
189 
190 /*
191  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
192  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
193  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
194  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
195  */
196 
197 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
198 
199 int
200 lfs_vflush(struct vnode *vp)
201 {
202 	struct inode *ip;
203 	struct lfs *fs;
204 	struct segment *sp;
205 	struct buf *bp, *nbp, *tbp, *tnbp;
206 	int error, s;
207 	int flushed;
208 	int relock;
209 	int loopcount;
210 
211 	ip = VTOI(vp);
212 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
213 	relock = 0;
214 
215     top:
216 	ASSERT_NO_SEGLOCK(fs);
217 	if (ip->i_flag & IN_CLEANING) {
218 		ivndebug(vp,"vflush/in_cleaning");
219 		LFS_CLR_UINO(ip, IN_CLEANING);
220 		LFS_SET_UINO(ip, IN_MODIFIED);
221 
222 		/*
223 		 * Toss any cleaning buffers that have real counterparts
224 		 * to avoid losing new data.
225 		 */
226 		s = splbio();
227 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
228 			nbp = LIST_NEXT(bp, b_vnbufs);
229 			if (!LFS_IS_MALLOC_BUF(bp))
230 				continue;
231 			/*
232 			 * Look for pages matching the range covered
233 			 * by cleaning blocks.  It's okay if more dirty
234 			 * pages appear, so long as none disappear out
235 			 * from under us.
236 			 */
237 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
238 			    vp != fs->lfs_ivnode) {
239 				struct vm_page *pg;
240 				voff_t off;
241 
242 				simple_lock(&vp->v_interlock);
243 				for (off = lblktosize(fs, bp->b_lblkno);
244 				     off < lblktosize(fs, bp->b_lblkno + 1);
245 				     off += PAGE_SIZE) {
246 					pg = uvm_pagelookup(&vp->v_uobj, off);
247 					if (pg == NULL)
248 						continue;
249 					if ((pg->flags & PG_CLEAN) == 0 ||
250 					    pmap_is_modified(pg)) {
251 						fs->lfs_avail += btofsb(fs,
252 							bp->b_bcount);
253 						wakeup(&fs->lfs_avail);
254 						lfs_freebuf(fs, bp);
255 						bp = NULL;
256 						simple_unlock(&vp->v_interlock);
257 						goto nextbp;
258 					}
259 				}
260 				simple_unlock(&vp->v_interlock);
261 			}
262 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
263 			    tbp = tnbp)
264 			{
265 				tnbp = LIST_NEXT(tbp, b_vnbufs);
266 				if (tbp->b_vp == bp->b_vp
267 				   && tbp->b_lblkno == bp->b_lblkno
268 				   && tbp != bp)
269 				{
270 					fs->lfs_avail += btofsb(fs,
271 						bp->b_bcount);
272 					wakeup(&fs->lfs_avail);
273 					lfs_freebuf(fs, bp);
274 					bp = NULL;
275 					break;
276 				}
277 			}
278 		    nextbp:
279 			;
280 		}
281 		splx(s);
282 	}
283 
284 	/* If the node is being written, wait until that is done */
285 	simple_lock(&vp->v_interlock);
286 	s = splbio();
287 	if (WRITEINPROG(vp)) {
288 		ivndebug(vp,"vflush/writeinprog");
289 		ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock);
290 	}
291 	splx(s);
292 	simple_unlock(&vp->v_interlock);
293 
294 	/* Protect against VXLOCK deadlock in vinvalbuf() */
295 	lfs_seglock(fs, SEGM_SYNC);
296 
297 	/* If we're supposed to flush a freed inode, just toss it */
298 	if (ip->i_lfs_iflags & LFSI_DELETED) {
299 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
300 		      ip->i_number));
301 		s = splbio();
302 		/* Drain v_numoutput */
303 		simple_lock(&global_v_numoutput_slock);
304 		while (vp->v_numoutput > 0) {
305 			vp->v_flag |= VBWAIT;
306 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf4", 0,
307 				&global_v_numoutput_slock);
308 		}
309 		simple_unlock(&global_v_numoutput_slock);
310 		KASSERT(vp->v_numoutput == 0);
311 
312 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
313 			nbp = LIST_NEXT(bp, b_vnbufs);
314 
315 			KASSERT((bp->b_flags & B_GATHERED) == 0);
316 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
317 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
318 				wakeup(&fs->lfs_avail);
319 			}
320 			/* Copied from lfs_writeseg */
321 			if (bp->b_flags & B_CALL) {
322 				biodone(bp);
323 			} else {
324 				bremfree(bp);
325 				LFS_UNLOCK_BUF(bp);
326 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
327 					 B_GATHERED);
328 				bp->b_flags |= B_DONE;
329 				reassignbuf(bp, vp);
330 				brelse(bp);
331 			}
332 		}
333 		splx(s);
334 		LFS_CLR_UINO(ip, IN_CLEANING);
335 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 		ip->i_flag &= ~IN_ALLMOD;
337 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 		      ip->i_number));
339 		lfs_segunlock(fs);
340 
341 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342 
343 		return 0;
344 	}
345 
346 	fs->lfs_flushvp = vp;
347 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 		fs->lfs_flushvp = NULL;
350 		KASSERT(fs->lfs_flushvp_fakevref == 0);
351 		lfs_segunlock(fs);
352 
353 		/* Make sure that any pending buffers get written */
354 		s = splbio();
355 		simple_lock(&global_v_numoutput_slock);
356 		while (vp->v_numoutput > 0) {
357 			vp->v_flag |= VBWAIT;
358 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf3", 0,
359 				&global_v_numoutput_slock);
360 		}
361 		simple_unlock(&global_v_numoutput_slock);
362 		splx(s);
363 
364 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
365 		KASSERT(vp->v_numoutput == 0);
366 
367 		return error;
368 	}
369 	sp = fs->lfs_sp;
370 
371 	flushed = 0;
372 	if (VPISEMPTY(vp)) {
373 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
374 		++flushed;
375 	} else if ((ip->i_flag & IN_CLEANING) &&
376 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
377 		ivndebug(vp,"vflush/clean");
378 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
379 		++flushed;
380 	} else if (lfs_dostats) {
381 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
382 			++lfs_stats.vflush_invoked;
383 		ivndebug(vp,"vflush");
384 	}
385 
386 #ifdef DIAGNOSTIC
387 	if (vp->v_flag & VDIROP) {
388 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n"));
389 		/* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */
390 	}
391 	if (vp->v_usecount < 0) {
392 		printf("usecount=%ld\n", (long)vp->v_usecount);
393 		panic("lfs_vflush: usecount<0");
394 	}
395 #endif
396 
397 	do {
398 		loopcount = 0;
399 		do {
400 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
401 				relock = lfs_writefile(fs, sp, vp);
402 				if (relock) {
403 					/*
404 					 * Might have to wait for the
405 					 * cleaner to run; but we're
406 					 * still not done with this vnode.
407 					 */
408 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
409 					lfs_writeinode(fs, sp, ip);
410 					LFS_SET_UINO(ip, IN_MODIFIED);
411 					lfs_writeseg(fs, sp);
412 					lfs_segunlock(fs);
413 					lfs_segunlock_relock(fs);
414 					goto top;
415 				}
416 			}
417 			/*
418 			 * If we begin a new segment in the middle of writing
419 			 * the Ifile, it creates an inconsistent checkpoint,
420 			 * since the Ifile information for the new segment
421 			 * is not up-to-date.  Take care of this here by
422 			 * sending the Ifile through again in case there
423 			 * are newly dirtied blocks.  But wait, there's more!
424 			 * This second Ifile write could *also* cross a segment
425 			 * boundary, if the first one was large.  The second
426 			 * one is guaranteed to be no more than 8 blocks,
427 			 * though (two segment blocks and supporting indirects)
428 			 * so the third write *will not* cross the boundary.
429 			 */
430 			if (vp == fs->lfs_ivnode) {
431 				lfs_writefile(fs, sp, vp);
432 				lfs_writefile(fs, sp, vp);
433 			}
434 #ifdef DEBUG
435 			if (++loopcount > 2)
436 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
437 #endif
438 		} while (lfs_writeinode(fs, sp, ip));
439 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
440 
441 	if (lfs_dostats) {
442 		++lfs_stats.nwrites;
443 		if (sp->seg_flags & SEGM_SYNC)
444 			++lfs_stats.nsync_writes;
445 		if (sp->seg_flags & SEGM_CKP)
446 			++lfs_stats.ncheckpoints;
447 	}
448 	/*
449 	 * If we were called from somewhere that has already held the seglock
450 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
451 	 * the write to complete because we are still locked.
452 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
453 	 * we must explicitly wait, if that is the case.
454 	 *
455 	 * We compare the iocount against 1, not 0, because it is
456 	 * artificially incremented by lfs_seglock().
457 	 */
458 	simple_lock(&fs->lfs_interlock);
459 	if (fs->lfs_seglock > 1) {
460 		while (fs->lfs_iocount > 1)
461 			(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
462 				     "lfs_vflush", 0, &fs->lfs_interlock);
463 	}
464 	simple_unlock(&fs->lfs_interlock);
465 
466 	lfs_segunlock(fs);
467 
468 	/* Wait for these buffers to be recovered by aiodoned */
469 	s = splbio();
470 	simple_lock(&global_v_numoutput_slock);
471 	while (vp->v_numoutput > 0) {
472 		vp->v_flag |= VBWAIT;
473 		ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0,
474 			&global_v_numoutput_slock);
475 	}
476 	simple_unlock(&global_v_numoutput_slock);
477 	splx(s);
478 
479 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
480 	KASSERT(vp->v_numoutput == 0);
481 
482 	fs->lfs_flushvp = NULL;
483 	KASSERT(fs->lfs_flushvp_fakevref == 0);
484 
485 	return (0);
486 }
487 
488 int
489 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
490 {
491 	struct inode *ip;
492 	struct vnode *vp;
493 	int inodes_written = 0, only_cleaning;
494 	int error = 0;
495 
496 	ASSERT_SEGLOCK(fs);
497 #if 0
498 	/* start at last (newest) vnode. */
499  loop:
500 	TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
501 #else
502 	/* start at oldest accessed vnode */
503  loop:
504 	TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
505 #endif
506 		/*
507 		 * If the vnode that we are about to sync is no longer
508 		 * associated with this mount point, start over.
509 		 */
510 		if (vp->v_mount != mp) {
511 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
512 			/*
513 			 * After this, pages might be busy
514 			 * due to our own previous putpages.
515 			 * Start actual segment write here to avoid deadlock.
516 			 */
517 			(void)lfs_writeseg(fs, sp);
518 			goto loop;
519 		}
520 
521 		if (vp->v_type == VNON) {
522 			continue;
523 		}
524 
525 		ip = VTOI(vp);
526 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
527 		    (op != VN_DIROP && op != VN_CLEAN &&
528 		    (vp->v_flag & VDIROP))) {
529 			vndebug(vp,"dirop");
530 			continue;
531 		}
532 
533 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
534 			vndebug(vp,"empty");
535 			continue;
536 		}
537 
538 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
539 		   && vp != fs->lfs_flushvp
540 		   && !(ip->i_flag & IN_CLEANING)) {
541 			vndebug(vp,"cleaning");
542 			continue;
543 		}
544 
545 		if (lfs_vref(vp)) {
546 			vndebug(vp,"vref");
547 			continue;
548 		}
549 
550 		only_cleaning = 0;
551 		/*
552 		 * Write the inode/file if dirty and it's not the IFILE.
553 		 */
554 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
555 			only_cleaning =
556 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
557 
558 			if (ip->i_number != LFS_IFILE_INUM) {
559 				error = lfs_writefile(fs, sp, vp);
560 				if (error) {
561 					lfs_vunref(vp);
562 					if (error == EAGAIN) {
563 						/*
564 						 * This error from lfs_putpages
565 						 * indicates we need to drop
566 						 * the segment lock and start
567 						 * over after the cleaner has
568 						 * had a chance to run.
569 						 */
570 						lfs_writeinode(fs, sp, ip);
571 						lfs_writeseg(fs, sp);
572 						if (!VPISEMPTY(vp) &&
573 						    !WRITEINPROG(vp) &&
574 						    !(ip->i_flag & IN_ALLMOD))
575 							LFS_SET_UINO(ip, IN_MODIFIED);
576 						break;
577 					}
578 					error = 0; /* XXX not quite right */
579 					continue;
580 				}
581 
582 				if (!VPISEMPTY(vp)) {
583 					if (WRITEINPROG(vp)) {
584 						ivndebug(vp,"writevnodes/write2");
585 					} else if (!(ip->i_flag & IN_ALLMOD)) {
586 						LFS_SET_UINO(ip, IN_MODIFIED);
587 					}
588 				}
589 				(void) lfs_writeinode(fs, sp, ip);
590 				inodes_written++;
591 			}
592 		}
593 
594 		if (lfs_clean_vnhead && only_cleaning)
595 			lfs_vunref_head(vp);
596 		else
597 			lfs_vunref(vp);
598 	}
599 	return error;
600 }
601 
602 /*
603  * Do a checkpoint.
604  */
605 int
606 lfs_segwrite(struct mount *mp, int flags)
607 {
608 	struct buf *bp;
609 	struct inode *ip;
610 	struct lfs *fs;
611 	struct segment *sp;
612 	struct vnode *vp;
613 	SEGUSE *segusep;
614 	int do_ckp, did_ckp, error, s;
615 	unsigned n, segleft, maxseg, sn, i, curseg;
616 	int writer_set = 0;
617 	int dirty;
618 	int redo;
619 	int um_error;
620 	int loopcount;
621 
622 	fs = VFSTOUFS(mp)->um_lfs;
623 	ASSERT_MAYBE_SEGLOCK(fs);
624 
625 	if (fs->lfs_ronly)
626 		return EROFS;
627 
628 	lfs_imtime(fs);
629 
630 	/*
631 	 * Allocate a segment structure and enough space to hold pointers to
632 	 * the maximum possible number of buffers which can be described in a
633 	 * single summary block.
634 	 */
635 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
636 
637 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
638 	sp = fs->lfs_sp;
639 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
640 		do_ckp = 1;
641 
642 	/*
643 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
644 	 * in which case we have to flush *all* buffers off of this vnode.
645 	 * We don't care about other nodes, but write any non-dirop nodes
646 	 * anyway in anticipation of another getnewvnode().
647 	 *
648 	 * If we're cleaning we only write cleaning and ifile blocks, and
649 	 * no dirops, since otherwise we'd risk corruption in a crash.
650 	 */
651 	if (sp->seg_flags & SEGM_CLEAN)
652 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
653 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
654 		do {
655 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
656 			if (!fs->lfs_dirops || !fs->lfs_flushvp) {
657 				if (!writer_set) {
658 					lfs_writer_enter(fs, "lfs writer");
659 					writer_set = 1;
660 				}
661 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
662 				if (um_error == 0)
663 					um_error = error;
664 				/* In case writevnodes errored out */
665 				lfs_flush_dirops(fs);
666 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
667 				lfs_finalize_fs_seguse(fs);
668 			}
669 			if (do_ckp && um_error) {
670 				lfs_segunlock_relock(fs);
671 				sp = fs->lfs_sp;
672 			}
673 		} while (do_ckp && um_error != 0);
674 	}
675 
676 	/*
677 	 * If we are doing a checkpoint, mark everything since the
678 	 * last checkpoint as no longer ACTIVE.
679 	 */
680 	if (do_ckp || fs->lfs_doifile) {
681 		segleft = fs->lfs_nseg;
682 		curseg = 0;
683 		for (n = 0; n < fs->lfs_segtabsz; n++) {
684 			dirty = 0;
685 			if (bread(fs->lfs_ivnode,
686 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
687 				panic("lfs_segwrite: ifile read");
688 			segusep = (SEGUSE *)bp->b_data;
689 			maxseg = min(segleft, fs->lfs_sepb);
690 			for (i = 0; i < maxseg; i++) {
691 				sn = curseg + i;
692 				if (sn != dtosn(fs, fs->lfs_curseg) &&
693 				    segusep->su_flags & SEGUSE_ACTIVE) {
694 					segusep->su_flags &= ~SEGUSE_ACTIVE;
695 					--fs->lfs_nactive;
696 					++dirty;
697 				}
698 				fs->lfs_suflags[fs->lfs_activesb][sn] =
699 					segusep->su_flags;
700 				if (fs->lfs_version > 1)
701 					++segusep;
702 				else
703 					segusep = (SEGUSE *)
704 						((SEGUSE_V1 *)segusep + 1);
705 			}
706 
707 			if (dirty)
708 				error = LFS_BWRITE_LOG(bp); /* Ifile */
709 			else
710 				brelse(bp);
711 			segleft -= fs->lfs_sepb;
712 			curseg += fs->lfs_sepb;
713 		}
714 	}
715 
716 	LOCK_ASSERT(LFS_SEGLOCK_HELD(fs));
717 
718 	did_ckp = 0;
719 	if (do_ckp || fs->lfs_doifile) {
720 		vp = fs->lfs_ivnode;
721 		vn_lock(vp, LK_EXCLUSIVE);
722 		loopcount = 0;
723 		do {
724 #ifdef DEBUG
725 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
726 #endif
727 			simple_lock(&fs->lfs_interlock);
728 			fs->lfs_flags &= ~LFS_IFDIRTY;
729 			simple_unlock(&fs->lfs_interlock);
730 
731 			ip = VTOI(vp);
732 
733 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
734 				/*
735 				 * Ifile has no pages, so we don't need
736 				 * to check error return here.
737 				 */
738 				lfs_writefile(fs, sp, vp);
739 				/*
740 				 * Ensure the Ifile takes the current segment
741 				 * into account.  See comment in lfs_vflush.
742 				 */
743 				lfs_writefile(fs, sp, vp);
744 				lfs_writefile(fs, sp, vp);
745 			}
746 
747 			if (ip->i_flag & IN_ALLMOD)
748 				++did_ckp;
749 #if 0
750 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
751 #else
752 			redo = lfs_writeinode(fs, sp, ip);
753 #endif
754 			redo += lfs_writeseg(fs, sp);
755 			simple_lock(&fs->lfs_interlock);
756 			redo += (fs->lfs_flags & LFS_IFDIRTY);
757 			simple_unlock(&fs->lfs_interlock);
758 #ifdef DEBUG
759 			if (++loopcount > 2)
760 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
761 					loopcount);
762 #endif
763 		} while (redo && do_ckp);
764 
765 		/*
766 		 * Unless we are unmounting, the Ifile may continue to have
767 		 * dirty blocks even after a checkpoint, due to changes to
768 		 * inodes' atime.  If we're checkpointing, it's "impossible"
769 		 * for other parts of the Ifile to be dirty after the loop
770 		 * above, since we hold the segment lock.
771 		 */
772 		s = splbio();
773 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
774 			LFS_CLR_UINO(ip, IN_ALLMOD);
775 		}
776 #ifdef DIAGNOSTIC
777 		else if (do_ckp) {
778 			int do_panic = 0;
779 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
780 				if (bp->b_lblkno < fs->lfs_cleansz +
781 				    fs->lfs_segtabsz &&
782 				    !(bp->b_flags & B_GATHERED)) {
783 					printf("ifile lbn %ld still dirty (flags %lx)\n",
784 						(long)bp->b_lblkno,
785 						(long)bp->b_flags);
786 					++do_panic;
787 				}
788 			}
789 			if (do_panic)
790 				panic("dirty blocks");
791 		}
792 #endif
793 		splx(s);
794 		VOP_UNLOCK(vp, 0);
795 	} else {
796 		(void) lfs_writeseg(fs, sp);
797 	}
798 
799 	/* Note Ifile no longer needs to be written */
800 	fs->lfs_doifile = 0;
801 	if (writer_set)
802 		lfs_writer_leave(fs);
803 
804 	/*
805 	 * If we didn't write the Ifile, we didn't really do anything.
806 	 * That means that (1) there is a checkpoint on disk and (2)
807 	 * nothing has changed since it was written.
808 	 *
809 	 * Take the flags off of the segment so that lfs_segunlock
810 	 * doesn't have to write the superblock either.
811 	 */
812 	if (do_ckp && !did_ckp) {
813 		sp->seg_flags &= ~SEGM_CKP;
814 	}
815 
816 	if (lfs_dostats) {
817 		++lfs_stats.nwrites;
818 		if (sp->seg_flags & SEGM_SYNC)
819 			++lfs_stats.nsync_writes;
820 		if (sp->seg_flags & SEGM_CKP)
821 			++lfs_stats.ncheckpoints;
822 	}
823 	lfs_segunlock(fs);
824 	return (0);
825 }
826 
827 /*
828  * Write the dirty blocks associated with a vnode.
829  */
830 int
831 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
832 {
833 	struct finfo *fip;
834 	struct inode *ip;
835 	int i, frag;
836 	int error;
837 
838 	ASSERT_SEGLOCK(fs);
839 	error = 0;
840 	ip = VTOI(vp);
841 
842 	fip = sp->fip;
843 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
844 
845 	if (vp->v_flag & VDIROP)
846 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
847 
848 	if (sp->seg_flags & SEGM_CLEAN) {
849 		lfs_gather(fs, sp, vp, lfs_match_fake);
850 		/*
851 		 * For a file being flushed, we need to write *all* blocks.
852 		 * This means writing the cleaning blocks first, and then
853 		 * immediately following with any non-cleaning blocks.
854 		 * The same is true of the Ifile since checkpoints assume
855 		 * that all valid Ifile blocks are written.
856 		 */
857 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
858 			lfs_gather(fs, sp, vp, lfs_match_data);
859 			/*
860 			 * Don't call VOP_PUTPAGES: if we're flushing,
861 			 * we've already done it, and the Ifile doesn't
862 			 * use the page cache.
863 			 */
864 		}
865 	} else {
866 		lfs_gather(fs, sp, vp, lfs_match_data);
867 		/*
868 		 * If we're flushing, we've already called VOP_PUTPAGES
869 		 * so don't do it again.  Otherwise, we want to write
870 		 * everything we've got.
871 		 */
872 		if (!IS_FLUSHING(fs, vp)) {
873 			simple_lock(&vp->v_interlock);
874 			error = VOP_PUTPAGES(vp, 0, 0,
875 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
876 		}
877 	}
878 
879 	/*
880 	 * It may not be necessary to write the meta-data blocks at this point,
881 	 * as the roll-forward recovery code should be able to reconstruct the
882 	 * list.
883 	 *
884 	 * We have to write them anyway, though, under two conditions: (1) the
885 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
886 	 * checkpointing.
887 	 *
888 	 * BUT if we are cleaning, we might have indirect blocks that refer to
889 	 * new blocks not being written yet, in addition to fragments being
890 	 * moved out of a cleaned segment.  If that is the case, don't
891 	 * write the indirect blocks, or the finfo will have a small block
892 	 * in the middle of it!
893 	 * XXX in this case isn't the inode size wrong too?
894 	 */
895 	frag = 0;
896 	if (sp->seg_flags & SEGM_CLEAN) {
897 		for (i = 0; i < NDADDR; i++)
898 			if (ip->i_lfs_fragsize[i] > 0 &&
899 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
900 				++frag;
901 	}
902 #ifdef DIAGNOSTIC
903 	if (frag > 1)
904 		panic("lfs_writefile: more than one fragment!");
905 #endif
906 	if (IS_FLUSHING(fs, vp) ||
907 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
908 		lfs_gather(fs, sp, vp, lfs_match_indir);
909 		lfs_gather(fs, sp, vp, lfs_match_dindir);
910 		lfs_gather(fs, sp, vp, lfs_match_tindir);
911 	}
912 	fip = sp->fip;
913 	lfs_release_finfo(fs);
914 
915 	return error;
916 }
917 
918 /*
919  * Update segment accounting to reflect this inode's change of address.
920  */
921 static int
922 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
923 {
924 	struct buf *bp;
925 	daddr_t daddr;
926 	IFILE *ifp;
927 	SEGUSE *sup;
928 	ino_t ino;
929 	int redo_ifile, error;
930 	u_int32_t sn;
931 
932 	redo_ifile = 0;
933 
934 	/*
935 	 * If updating the ifile, update the super-block.  Update the disk
936 	 * address and access times for this inode in the ifile.
937 	 */
938 	ino = ip->i_number;
939 	if (ino == LFS_IFILE_INUM) {
940 		daddr = fs->lfs_idaddr;
941 		fs->lfs_idaddr = dbtofsb(fs, ndaddr);
942 	} else {
943 		LFS_IENTRY(ifp, fs, ino, bp);
944 		daddr = ifp->if_daddr;
945 		ifp->if_daddr = dbtofsb(fs, ndaddr);
946 		error = LFS_BWRITE_LOG(bp); /* Ifile */
947 	}
948 
949 	/*
950 	 * If this is the Ifile and lfs_offset is set to the first block
951 	 * in the segment, dirty the new segment's accounting block
952 	 * (XXX should already be dirty?) and tell the caller to do it again.
953 	 */
954 	if (ip->i_number == LFS_IFILE_INUM) {
955 		sn = dtosn(fs, fs->lfs_offset);
956 		if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
957 		    fs->lfs_offset) {
958 			LFS_SEGENTRY(sup, fs, sn, bp);
959 			KASSERT(bp->b_flags & B_DELWRI);
960 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
961 			/* fs->lfs_flags |= LFS_IFDIRTY; */
962 			redo_ifile |= 1;
963 		}
964 	}
965 
966 	/*
967 	 * The inode's last address should not be in the current partial
968 	 * segment, except under exceptional circumstances (lfs_writevnodes
969 	 * had to start over, and in the meantime more blocks were written
970 	 * to a vnode).	 Both inodes will be accounted to this segment
971 	 * in lfs_writeseg so we need to subtract the earlier version
972 	 * here anyway.	 The segment count can temporarily dip below
973 	 * zero here; keep track of how many duplicates we have in
974 	 * "dupino" so we don't panic below.
975 	 */
976 	if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
977 		++sp->ndupino;
978 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
979 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
980 		      (long long)daddr, sp->ndupino));
981 	}
982 	/*
983 	 * Account the inode: it no longer belongs to its former segment,
984 	 * though it will not belong to the new segment until that segment
985 	 * is actually written.
986 	 */
987 	if (daddr != LFS_UNUSED_DADDR) {
988 		u_int32_t oldsn = dtosn(fs, daddr);
989 #ifdef DIAGNOSTIC
990 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
991 #endif
992 		LFS_SEGENTRY(sup, fs, oldsn, bp);
993 #ifdef DIAGNOSTIC
994 		if (sup->su_nbytes +
995 		    sizeof (struct ufs1_dinode) * ndupino
996 		      < sizeof (struct ufs1_dinode)) {
997 			printf("lfs_writeinode: negative bytes "
998 			       "(segment %" PRIu32 " short by %d, "
999 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
1000 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
1001 			       "ndupino=%d)\n",
1002 			       dtosn(fs, daddr),
1003 			       (int)sizeof (struct ufs1_dinode) *
1004 				   (1 - sp->ndupino) - sup->su_nbytes,
1005 			       oldsn, sp->seg_number, daddr,
1006 			       (unsigned int)sup->su_nbytes,
1007 			       sp->ndupino);
1008 			panic("lfs_writeinode: negative bytes");
1009 			sup->su_nbytes = sizeof (struct ufs1_dinode);
1010 		}
1011 #endif
1012 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1013 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1014 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
1015 		redo_ifile |=
1016 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1017 		if (redo_ifile) {
1018 			simple_lock(&fs->lfs_interlock);
1019 			fs->lfs_flags |= LFS_IFDIRTY;
1020 			simple_unlock(&fs->lfs_interlock);
1021 			/* Don't double-account */
1022 			fs->lfs_idaddr = 0x0;
1023 		}
1024 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1025 	}
1026 
1027 	return redo_ifile;
1028 }
1029 
1030 int
1031 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1032 {
1033 	struct buf *bp;
1034 	struct ufs1_dinode *cdp;
1035 	daddr_t daddr;
1036 	int32_t *daddrp;	/* XXX ondisk32 */
1037 	int i, ndx;
1038 	int redo_ifile = 0;
1039 	int gotblk = 0;
1040 	int count;
1041 
1042 	ASSERT_SEGLOCK(fs);
1043 	if (!(ip->i_flag & IN_ALLMOD))
1044 		return (0);
1045 
1046 	/* Can't write ifile when writer is not set */
1047 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1048 		(sp->seg_flags & SEGM_CLEAN));
1049 
1050 	/*
1051 	 * If this is the Ifile, see if writing it here will generate a
1052 	 * temporary misaccounting.  If it will, do the accounting and write
1053 	 * the blocks, postponing the inode write until the accounting is
1054 	 * solid.
1055 	 */
1056 	count = 0;
1057 	while (ip->i_number == LFS_IFILE_INUM) {
1058 		int redo = 0;
1059 
1060 		if (sp->idp == NULL && sp->ibp == NULL &&
1061 		    (sp->seg_bytes_left < fs->lfs_ibsize ||
1062 		     sp->sum_bytes_left < sizeof(int32_t))) {
1063 			(void) lfs_writeseg(fs, sp);
1064 			continue;
1065 		}
1066 
1067 		/* Look for dirty Ifile blocks */
1068 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1069 			if (!(bp->b_flags & B_GATHERED)) {
1070 				redo = 1;
1071 				break;
1072 			}
1073 		}
1074 
1075 		if (redo == 0)
1076 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1077 		if (redo == 0)
1078 			break;
1079 
1080 		if (sp->idp) {
1081 			sp->idp->di_inumber = 0;
1082 			sp->idp = NULL;
1083 		}
1084 		++count;
1085 		if (count > 2)
1086 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1087 		lfs_writefile(fs, sp, fs->lfs_ivnode);
1088 	}
1089 
1090 	/* Allocate a new inode block if necessary. */
1091 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1092 	    sp->ibp == NULL) {
1093 		/* Allocate a new segment if necessary. */
1094 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
1095 		    sp->sum_bytes_left < sizeof(int32_t))
1096 			(void) lfs_writeseg(fs, sp);
1097 
1098 		/* Get next inode block. */
1099 		daddr = fs->lfs_offset;
1100 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1101 		sp->ibp = *sp->cbpp++ =
1102 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1103 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1104 		gotblk++;
1105 
1106 		/* Zero out inode numbers */
1107 		for (i = 0; i < INOPB(fs); ++i)
1108 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1109 			    0;
1110 
1111 		++sp->start_bpp;
1112 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1113 		/* Set remaining space counters. */
1114 		sp->seg_bytes_left -= fs->lfs_ibsize;
1115 		sp->sum_bytes_left -= sizeof(int32_t);
1116 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
1117 			sp->ninodes / INOPB(fs) - 1;
1118 		((int32_t *)(sp->segsum))[ndx] = daddr;
1119 	}
1120 
1121 	/* Check VDIROP in case there is a new file with no data blocks */
1122 	if (ITOV(ip)->v_flag & VDIROP)
1123 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1124 
1125 	/* Update the inode times and copy the inode onto the inode page. */
1126 	/* XXX kludge --- don't redirty the ifile just to put times on it */
1127 	if (ip->i_number != LFS_IFILE_INUM)
1128 		LFS_ITIMES(ip, NULL, NULL, NULL);
1129 
1130 	/*
1131 	 * If this is the Ifile, and we've already written the Ifile in this
1132 	 * partial segment, just overwrite it (it's not on disk yet) and
1133 	 * continue.
1134 	 *
1135 	 * XXX we know that the bp that we get the second time around has
1136 	 * already been gathered.
1137 	 */
1138 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1139 		*(sp->idp) = *ip->i_din.ffs1_din;
1140 		ip->i_lfs_osize = ip->i_size;
1141 		return 0;
1142 	}
1143 
1144 	bp = sp->ibp;
1145 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1146 	*cdp = *ip->i_din.ffs1_din;
1147 
1148 	/*
1149 	 * If cleaning, link counts and directory file sizes cannot change,
1150 	 * since those would be directory operations---even if the file
1151 	 * we are writing is marked VDIROP we should write the old values.
1152 	 * If we're not cleaning, of course, update the values so we get
1153 	 * current values the next time we clean.
1154 	 */
1155 	if (sp->seg_flags & SEGM_CLEAN) {
1156 		if (ITOV(ip)->v_flag & VDIROP) {
1157 			cdp->di_nlink = ip->i_lfs_odnlink;
1158 			/* if (ITOV(ip)->v_type == VDIR) */
1159 			cdp->di_size = ip->i_lfs_osize;
1160 		}
1161 	} else {
1162 		ip->i_lfs_odnlink = cdp->di_nlink;
1163 		ip->i_lfs_osize = ip->i_size;
1164 	}
1165 
1166 
1167 	/* We can finish the segment accounting for truncations now */
1168 	lfs_finalize_ino_seguse(fs, ip);
1169 
1170 	/*
1171 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1172 	 * addresses to disk; possibly change the on-disk record of
1173 	 * the inode size, either by reverting to the previous size
1174 	 * (in the case of cleaning) or by verifying the inode's block
1175 	 * holdings (in the case of files being allocated as they are being
1176 	 * written).
1177 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1178 	 * XXX count on disk wrong by the same amount.	We should be
1179 	 * XXX able to "borrow" from lfs_avail and return it after the
1180 	 * XXX Ifile is written.  See also in lfs_writeseg.
1181 	 */
1182 
1183 	/* Check file size based on highest allocated block */
1184 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1185 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1186 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1187 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1188 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1189 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1190 	}
1191 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1192 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1193 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1194 		      ip->i_ffs1_blocks, fs->lfs_offset));
1195 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1196 		     daddrp++) {
1197 			if (*daddrp == UNWRITTEN) {
1198 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1199 				*daddrp = 0;
1200 			}
1201 		}
1202 	}
1203 
1204 #ifdef DIAGNOSTIC
1205 	/*
1206 	 * Check dinode held blocks against dinode size.
1207 	 * This should be identical to the check in lfs_vget().
1208 	 */
1209 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1210 	     i < NDADDR; i++) {
1211 		KASSERT(i >= 0);
1212 		if ((cdp->di_mode & IFMT) == IFLNK)
1213 			continue;
1214 		if (((cdp->di_mode & IFMT) == IFBLK ||
1215 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1216 			continue;
1217 		if (cdp->di_db[i] != 0) {
1218 # ifdef DEBUG
1219 			lfs_dump_dinode(cdp);
1220 # endif
1221 			panic("writing inconsistent inode");
1222 		}
1223 	}
1224 #endif /* DIAGNOSTIC */
1225 
1226 	if (ip->i_flag & IN_CLEANING)
1227 		LFS_CLR_UINO(ip, IN_CLEANING);
1228 	else {
1229 		/* XXX IN_ALLMOD */
1230 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1231 			     IN_UPDATE | IN_MODIFY);
1232 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1233 			LFS_CLR_UINO(ip, IN_MODIFIED);
1234 		else {
1235 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1236 			    "blks=%d, eff=%d\n", ip->i_number,
1237 			    ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1238 		}
1239 	}
1240 
1241 	if (ip->i_number == LFS_IFILE_INUM) {
1242 		/* We know sp->idp == NULL */
1243 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1244 			(sp->ninodes % INOPB(fs));
1245 
1246 		/* Not dirty any more */
1247 		simple_lock(&fs->lfs_interlock);
1248 		fs->lfs_flags &= ~LFS_IFDIRTY;
1249 		simple_unlock(&fs->lfs_interlock);
1250 	}
1251 
1252 	if (gotblk) {
1253 		LFS_LOCK_BUF(bp);
1254 		brelse(bp);
1255 	}
1256 
1257 	/* Increment inode count in segment summary block. */
1258 	++((SEGSUM *)(sp->segsum))->ss_ninos;
1259 
1260 	/* If this page is full, set flag to allocate a new page. */
1261 	if (++sp->ninodes % INOPB(fs) == 0)
1262 		sp->ibp = NULL;
1263 
1264 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1265 
1266 	KASSERT(redo_ifile == 0);
1267 	return (redo_ifile);
1268 }
1269 
1270 int
1271 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1272 {
1273 	struct lfs *fs;
1274 	int vers;
1275 	int j, blksinblk;
1276 
1277 	ASSERT_SEGLOCK(sp->fs);
1278 	/*
1279 	 * If full, finish this segment.  We may be doing I/O, so
1280 	 * release and reacquire the splbio().
1281 	 */
1282 #ifdef DIAGNOSTIC
1283 	if (sp->vp == NULL)
1284 		panic ("lfs_gatherblock: Null vp in segment");
1285 #endif
1286 	fs = sp->fs;
1287 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1288 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1289 	    sp->seg_bytes_left < bp->b_bcount) {
1290 		if (sptr)
1291 			splx(*sptr);
1292 		lfs_updatemeta(sp);
1293 
1294 		vers = sp->fip->fi_version;
1295 		(void) lfs_writeseg(fs, sp);
1296 
1297 		/* Add the current file to the segment summary. */
1298 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1299 
1300 		if (sptr)
1301 			*sptr = splbio();
1302 		return (1);
1303 	}
1304 
1305 	if (bp->b_flags & B_GATHERED) {
1306 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1307 		      " lbn %" PRId64 "\n",
1308 		      sp->fip->fi_ino, bp->b_lblkno));
1309 		return (0);
1310 	}
1311 
1312 	/* Insert into the buffer list, update the FINFO block. */
1313 	bp->b_flags |= B_GATHERED;
1314 
1315 	*sp->cbpp++ = bp;
1316 	for (j = 0; j < blksinblk; j++) {
1317 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1318 		/* This block's accounting moves from lfs_favail to lfs_avail */
1319 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1320 	}
1321 
1322 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1323 	sp->seg_bytes_left -= bp->b_bcount;
1324 	return (0);
1325 }
1326 
1327 int
1328 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1329     int (*match)(struct lfs *, struct buf *))
1330 {
1331 	struct buf *bp, *nbp;
1332 	int s, count = 0;
1333 
1334 	ASSERT_SEGLOCK(fs);
1335 	if (vp->v_type == VBLK)
1336 		return 0;
1337 	KASSERT(sp->vp == NULL);
1338 	sp->vp = vp;
1339 	s = splbio();
1340 
1341 #ifndef LFS_NO_BACKBUF_HACK
1342 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1343 # define	BUF_OFFSET	\
1344 	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1345 # define	BACK_BUF(BP)	\
1346 	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1347 # define	BEG_OF_LIST	\
1348 	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1349 
1350 loop:
1351 	/* Find last buffer. */
1352 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1353 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1354 	     bp = LIST_NEXT(bp, b_vnbufs))
1355 		/* nothing */;
1356 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1357 		nbp = BACK_BUF(bp);
1358 #else /* LFS_NO_BACKBUF_HACK */
1359 loop:
1360 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1361 		nbp = LIST_NEXT(bp, b_vnbufs);
1362 #endif /* LFS_NO_BACKBUF_HACK */
1363 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1364 #ifdef DEBUG
1365 			if (vp == fs->lfs_ivnode &&
1366 			    (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1367 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1368 				      PRId64 " busy (%x) at 0x%x",
1369 				      bp->b_lblkno, bp->b_flags,
1370 				      (unsigned)fs->lfs_offset);
1371 #endif
1372 			continue;
1373 		}
1374 #ifdef DIAGNOSTIC
1375 # ifdef LFS_USE_B_INVAL
1376 		if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1377 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1378 			      " is B_INVAL\n", bp->b_lblkno));
1379 			VOP_PRINT(bp->b_vp);
1380 		}
1381 # endif /* LFS_USE_B_INVAL */
1382 		if (!(bp->b_flags & B_DELWRI))
1383 			panic("lfs_gather: bp not B_DELWRI");
1384 		if (!(bp->b_flags & B_LOCKED)) {
1385 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1386 			      " blk %" PRId64 " not B_LOCKED\n",
1387 			      bp->b_lblkno,
1388 			      dbtofsb(fs, bp->b_blkno)));
1389 			VOP_PRINT(bp->b_vp);
1390 			panic("lfs_gather: bp not B_LOCKED");
1391 		}
1392 #endif
1393 		if (lfs_gatherblock(sp, bp, &s)) {
1394 			goto loop;
1395 		}
1396 		count++;
1397 	}
1398 	splx(s);
1399 	lfs_updatemeta(sp);
1400 	KASSERT(sp->vp == vp);
1401 	sp->vp = NULL;
1402 	return count;
1403 }
1404 
1405 #if DEBUG
1406 # define DEBUG_OOFF(n) do {						\
1407 	if (ooff == 0) {						\
1408 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1409 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
1410 			", was 0x0 (or %" PRId64 ")\n",			\
1411 			(n), ip->i_number, lbn, ndaddr, daddr));	\
1412 	}								\
1413 } while (0)
1414 #else
1415 # define DEBUG_OOFF(n)
1416 #endif
1417 
1418 /*
1419  * Change the given block's address to ndaddr, finding its previous
1420  * location using ufs_bmaparray().
1421  *
1422  * Account for this change in the segment table.
1423  *
1424  * called with sp == NULL by roll-forwarding code.
1425  */
1426 void
1427 lfs_update_single(struct lfs *fs, struct segment *sp,
1428     struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1429 {
1430 	SEGUSE *sup;
1431 	struct buf *bp;
1432 	struct indir a[NIADDR + 2], *ap;
1433 	struct inode *ip;
1434 	daddr_t daddr, ooff;
1435 	int num, error;
1436 	int bb, osize, obb;
1437 
1438 	ASSERT_SEGLOCK(fs);
1439 	KASSERT(sp == NULL || sp->vp == vp);
1440 	ip = VTOI(vp);
1441 
1442 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1443 	if (error)
1444 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1445 
1446 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1447 	KASSERT(daddr <= LFS_MAX_DADDR);
1448 	if (daddr > 0)
1449 		daddr = dbtofsb(fs, daddr);
1450 
1451 	bb = fragstofsb(fs, numfrags(fs, size));
1452 	switch (num) {
1453 	    case 0:
1454 		    ooff = ip->i_ffs1_db[lbn];
1455 		    DEBUG_OOFF(0);
1456 		    if (ooff == UNWRITTEN)
1457 			    ip->i_ffs1_blocks += bb;
1458 		    else {
1459 			    /* possible fragment truncation or extension */
1460 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1461 			    ip->i_ffs1_blocks += (bb - obb);
1462 		    }
1463 		    ip->i_ffs1_db[lbn] = ndaddr;
1464 		    break;
1465 	    case 1:
1466 		    ooff = ip->i_ffs1_ib[a[0].in_off];
1467 		    DEBUG_OOFF(1);
1468 		    if (ooff == UNWRITTEN)
1469 			    ip->i_ffs1_blocks += bb;
1470 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1471 		    break;
1472 	    default:
1473 		    ap = &a[num - 1];
1474 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1475 			    panic("lfs_updatemeta: bread bno %" PRId64,
1476 				  ap->in_lbn);
1477 
1478 		    /* XXX ondisk32 */
1479 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
1480 		    DEBUG_OOFF(num);
1481 		    if (ooff == UNWRITTEN)
1482 			    ip->i_ffs1_blocks += bb;
1483 		    /* XXX ondisk32 */
1484 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1485 		    (void) VOP_BWRITE(bp);
1486 	}
1487 
1488 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1489 
1490 	/* Update hiblk when extending the file */
1491 	if (lbn > ip->i_lfs_hiblk)
1492 		ip->i_lfs_hiblk = lbn;
1493 
1494 	/*
1495 	 * Though we'd rather it couldn't, this *can* happen right now
1496 	 * if cleaning blocks and regular blocks coexist.
1497 	 */
1498 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1499 
1500 	/*
1501 	 * Update segment usage information, based on old size
1502 	 * and location.
1503 	 */
1504 	if (daddr > 0) {
1505 		u_int32_t oldsn = dtosn(fs, daddr);
1506 #ifdef DIAGNOSTIC
1507 		int ndupino;
1508 
1509 		if (sp && sp->seg_number == oldsn) {
1510 			ndupino = sp->ndupino;
1511 		} else {
1512 			ndupino = 0;
1513 		}
1514 #endif
1515 		KASSERT(oldsn < fs->lfs_nseg);
1516 		if (lbn >= 0 && lbn < NDADDR)
1517 			osize = ip->i_lfs_fragsize[lbn];
1518 		else
1519 			osize = fs->lfs_bsize;
1520 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1521 #ifdef DIAGNOSTIC
1522 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1523 		    < osize) {
1524 			printf("lfs_updatemeta: negative bytes "
1525 			       "(segment %" PRIu32 " short by %" PRId64
1526 			       ")\n", dtosn(fs, daddr),
1527 			       (int64_t)osize -
1528 			       (sizeof (struct ufs1_dinode) * ndupino +
1529 				sup->su_nbytes));
1530 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1531 			       ", addr = 0x%" PRIx64 "\n",
1532 			       (unsigned long long)ip->i_number, lbn, daddr);
1533 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1534 			panic("lfs_updatemeta: negative bytes");
1535 			sup->su_nbytes = osize -
1536 			    sizeof (struct ufs1_dinode) * ndupino;
1537 		}
1538 #endif
1539 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1540 		      " db 0x%" PRIx64 "\n",
1541 		      dtosn(fs, daddr), osize,
1542 		      ip->i_number, lbn, daddr));
1543 		sup->su_nbytes -= osize;
1544 		if (!(bp->b_flags & B_GATHERED)) {
1545 			simple_lock(&fs->lfs_interlock);
1546 			fs->lfs_flags |= LFS_IFDIRTY;
1547 			simple_unlock(&fs->lfs_interlock);
1548 		}
1549 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1550 	}
1551 	/*
1552 	 * Now that this block has a new address, and its old
1553 	 * segment no longer owns it, we can forget about its
1554 	 * old size.
1555 	 */
1556 	if (lbn >= 0 && lbn < NDADDR)
1557 		ip->i_lfs_fragsize[lbn] = size;
1558 }
1559 
1560 /*
1561  * Update the metadata that points to the blocks listed in the FINFO
1562  * array.
1563  */
1564 void
1565 lfs_updatemeta(struct segment *sp)
1566 {
1567 	struct buf *sbp;
1568 	struct lfs *fs;
1569 	struct vnode *vp;
1570 	daddr_t lbn;
1571 	int i, nblocks, num;
1572 	int bb;
1573 	int bytesleft, size;
1574 
1575 	ASSERT_SEGLOCK(sp->fs);
1576 	vp = sp->vp;
1577 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1578 	KASSERT(nblocks >= 0);
1579 	KASSERT(vp != NULL);
1580 	if (nblocks == 0)
1581 		return;
1582 
1583 	/*
1584 	 * This count may be high due to oversize blocks from lfs_gop_write.
1585 	 * Correct for this. (XXX we should be able to keep track of these.)
1586 	 */
1587 	fs = sp->fs;
1588 	for (i = 0; i < nblocks; i++) {
1589 		if (sp->start_bpp[i] == NULL) {
1590 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1591 			nblocks = i;
1592 			break;
1593 		}
1594 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1595 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1596 		nblocks -= num - 1;
1597 	}
1598 
1599 	KASSERT(vp->v_type == VREG ||
1600 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1601 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1602 
1603 	/*
1604 	 * Sort the blocks.
1605 	 *
1606 	 * We have to sort even if the blocks come from the
1607 	 * cleaner, because there might be other pending blocks on the
1608 	 * same inode...and if we don't sort, and there are fragments
1609 	 * present, blocks may be written in the wrong place.
1610 	 */
1611 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1612 
1613 	/*
1614 	 * Record the length of the last block in case it's a fragment.
1615 	 * If there are indirect blocks present, they sort last.  An
1616 	 * indirect block will be lfs_bsize and its presence indicates
1617 	 * that you cannot have fragments.
1618 	 *
1619 	 * XXX This last is a lie.  A cleaned fragment can coexist with
1620 	 * XXX a later indirect block.	This will continue to be
1621 	 * XXX true until lfs_markv is fixed to do everything with
1622 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
1623 	 */
1624 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1625 		fs->lfs_bmask) + 1;
1626 
1627 	/*
1628 	 * Assign disk addresses, and update references to the logical
1629 	 * block and the segment usage information.
1630 	 */
1631 	for (i = nblocks; i--; ++sp->start_bpp) {
1632 		sbp = *sp->start_bpp;
1633 		lbn = *sp->start_lbp;
1634 		KASSERT(sbp->b_lblkno == lbn);
1635 
1636 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1637 
1638 		/*
1639 		 * If we write a frag in the wrong place, the cleaner won't
1640 		 * be able to correctly identify its size later, and the
1641 		 * segment will be uncleanable.	 (Even worse, it will assume
1642 		 * that the indirect block that actually ends the list
1643 		 * is of a smaller size!)
1644 		 */
1645 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1646 			panic("lfs_updatemeta: fragment is not last block");
1647 
1648 		/*
1649 		 * For each subblock in this possibly oversized block,
1650 		 * update its address on disk.
1651 		 */
1652 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1653 		KASSERT(vp == sbp->b_vp);
1654 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
1655 		     bytesleft -= fs->lfs_bsize) {
1656 			size = MIN(bytesleft, fs->lfs_bsize);
1657 			bb = fragstofsb(fs, numfrags(fs, size));
1658 			lbn = *sp->start_lbp++;
1659 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1660 			    size);
1661 			fs->lfs_offset += bb;
1662 		}
1663 
1664 	}
1665 }
1666 
1667 /*
1668  * Move lfs_offset to a segment earlier than sn.
1669  */
1670 int
1671 lfs_rewind(struct lfs *fs, int newsn)
1672 {
1673 	int sn, osn, isdirty;
1674 	struct buf *bp;
1675 	SEGUSE *sup;
1676 
1677 	ASSERT_SEGLOCK(fs);
1678 
1679 	osn = dtosn(fs, fs->lfs_offset);
1680 	if (osn < newsn)
1681 		return 0;
1682 
1683 	/* lfs_avail eats the remaining space in this segment */
1684 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1685 
1686 	/* Find a low-numbered segment */
1687 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1688 		LFS_SEGENTRY(sup, fs, sn, bp);
1689 		isdirty = sup->su_flags & SEGUSE_DIRTY;
1690 		brelse(bp);
1691 
1692 		if (!isdirty)
1693 			break;
1694 	}
1695 	if (sn == fs->lfs_nseg)
1696 		panic("lfs_rewind: no clean segments");
1697 	if (newsn >= 0 && sn >= newsn)
1698 		return ENOENT;
1699 	fs->lfs_nextseg = sn;
1700 	lfs_newseg(fs);
1701 	fs->lfs_offset = fs->lfs_curseg;
1702 
1703 	return 0;
1704 }
1705 
1706 /*
1707  * Start a new partial segment.
1708  *
1709  * Return 1 when we entered to a new segment.
1710  * Otherwise, return 0.
1711  */
1712 int
1713 lfs_initseg(struct lfs *fs)
1714 {
1715 	struct segment *sp = fs->lfs_sp;
1716 	SEGSUM *ssp;
1717 	struct buf *sbp;	/* buffer for SEGSUM */
1718 	int repeat = 0;		/* return value */
1719 
1720 	ASSERT_SEGLOCK(fs);
1721 	/* Advance to the next segment. */
1722 	if (!LFS_PARTIAL_FITS(fs)) {
1723 		SEGUSE *sup;
1724 		struct buf *bp;
1725 
1726 		/* lfs_avail eats the remaining space */
1727 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1728 						   fs->lfs_curseg);
1729 		/* Wake up any cleaning procs waiting on this file system. */
1730 		lfs_wakeup_cleaner(fs);
1731 		lfs_newseg(fs);
1732 		repeat = 1;
1733 		fs->lfs_offset = fs->lfs_curseg;
1734 
1735 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1736 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1737 
1738 		/*
1739 		 * If the segment contains a superblock, update the offset
1740 		 * and summary address to skip over it.
1741 		 */
1742 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1743 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1744 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1745 			sp->seg_bytes_left -= LFS_SBPAD;
1746 		}
1747 		brelse(bp);
1748 		/* Segment zero could also contain the labelpad */
1749 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1750 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1751 			fs->lfs_offset +=
1752 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1753 			sp->seg_bytes_left -=
1754 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1755 		}
1756 	} else {
1757 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1758 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1759 				      (fs->lfs_offset - fs->lfs_curseg));
1760 	}
1761 	fs->lfs_lastpseg = fs->lfs_offset;
1762 
1763 	/* Record first address of this partial segment */
1764 	if (sp->seg_flags & SEGM_CLEAN) {
1765 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1766 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1767 			/* "1" is the artificial inc in lfs_seglock */
1768 			simple_lock(&fs->lfs_interlock);
1769 			while (fs->lfs_iocount > 1) {
1770 				ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1771 				    "lfs_initseg", 0, &fs->lfs_interlock);
1772 			}
1773 			simple_unlock(&fs->lfs_interlock);
1774 			fs->lfs_cleanind = 0;
1775 		}
1776 	}
1777 
1778 	sp->fs = fs;
1779 	sp->ibp = NULL;
1780 	sp->idp = NULL;
1781 	sp->ninodes = 0;
1782 	sp->ndupino = 0;
1783 
1784 	sp->cbpp = sp->bpp;
1785 
1786 	/* Get a new buffer for SEGSUM */
1787 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1788 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1789 
1790 	/* ... and enter it into the buffer list. */
1791 	*sp->cbpp = sbp;
1792 	sp->cbpp++;
1793 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1794 
1795 	sp->start_bpp = sp->cbpp;
1796 
1797 	/* Set point to SEGSUM, initialize it. */
1798 	ssp = sp->segsum = sbp->b_data;
1799 	memset(ssp, 0, fs->lfs_sumsize);
1800 	ssp->ss_next = fs->lfs_nextseg;
1801 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
1802 	ssp->ss_magic = SS_MAGIC;
1803 
1804 	/* Set pointer to first FINFO, initialize it. */
1805 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1806 	sp->fip->fi_nblocks = 0;
1807 	sp->start_lbp = &sp->fip->fi_blocks[0];
1808 	sp->fip->fi_lastlength = 0;
1809 
1810 	sp->seg_bytes_left -= fs->lfs_sumsize;
1811 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1812 
1813 	return (repeat);
1814 }
1815 
1816 /*
1817  * Remove SEGUSE_INVAL from all segments.
1818  */
1819 void
1820 lfs_unset_inval_all(struct lfs *fs)
1821 {
1822 	SEGUSE *sup;
1823 	struct buf *bp;
1824 	int i;
1825 
1826 	for (i = 0; i < fs->lfs_nseg; i++) {
1827 		LFS_SEGENTRY(sup, fs, i, bp);
1828 		if (sup->su_flags & SEGUSE_INVAL) {
1829 			sup->su_flags &= ~SEGUSE_INVAL;
1830 			LFS_WRITESEGENTRY(sup, fs, i, bp);
1831 		} else
1832 			brelse(bp);
1833 	}
1834 }
1835 
1836 /*
1837  * Return the next segment to write.
1838  */
1839 void
1840 lfs_newseg(struct lfs *fs)
1841 {
1842 	CLEANERINFO *cip;
1843 	SEGUSE *sup;
1844 	struct buf *bp;
1845 	int curseg, isdirty, sn, skip_inval;
1846 
1847 	ASSERT_SEGLOCK(fs);
1848 
1849 	/* Honor LFCNWRAPSTOP */
1850 	simple_lock(&fs->lfs_interlock);
1851 	while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1852 		if (fs->lfs_wrappass) {
1853 			log(LOG_NOTICE, "%s: wrappass=%d\n",
1854 				fs->lfs_fsmnt, fs->lfs_wrappass);
1855 			fs->lfs_wrappass = 0;
1856 			break;
1857 		}
1858 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1859 		wakeup(&fs->lfs_nowrap);
1860 		log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1861 		ltsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1862 			&fs->lfs_interlock);
1863 	}
1864 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
1865 	simple_unlock(&fs->lfs_interlock);
1866 
1867 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1868 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1869 	      dtosn(fs, fs->lfs_nextseg)));
1870 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1871 	sup->su_nbytes = 0;
1872 	sup->su_nsums = 0;
1873 	sup->su_ninos = 0;
1874 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1875 
1876 	LFS_CLEANERINFO(cip, fs, bp);
1877 	--cip->clean;
1878 	++cip->dirty;
1879 	fs->lfs_nclean = cip->clean;
1880 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1881 
1882 	fs->lfs_lastseg = fs->lfs_curseg;
1883 	fs->lfs_curseg = fs->lfs_nextseg;
1884 	skip_inval = 1;
1885 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1886 		sn = (sn + 1) % fs->lfs_nseg;
1887 
1888 		if (sn == curseg) {
1889 			if (skip_inval)
1890 				skip_inval = 0;
1891 			else
1892 				panic("lfs_nextseg: no clean segments");
1893 		}
1894 		LFS_SEGENTRY(sup, fs, sn, bp);
1895 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1896 		/* Check SEGUSE_EMPTY as we go along */
1897 		if (isdirty && sup->su_nbytes == 0 &&
1898 		    !(sup->su_flags & SEGUSE_EMPTY))
1899 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
1900 		else
1901 			brelse(bp);
1902 
1903 		if (!isdirty)
1904 			break;
1905 	}
1906 	if (skip_inval == 0)
1907 		lfs_unset_inval_all(fs);
1908 
1909 	++fs->lfs_nactive;
1910 	fs->lfs_nextseg = sntod(fs, sn);
1911 	if (lfs_dostats) {
1912 		++lfs_stats.segsused;
1913 	}
1914 }
1915 
1916 static struct buf *
1917 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1918     int n)
1919 {
1920 	struct lfs_cluster *cl;
1921 	struct buf **bpp, *bp;
1922 
1923 	ASSERT_SEGLOCK(fs);
1924 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1925 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1926 	memset(cl, 0, sizeof(*cl));
1927 	cl->fs = fs;
1928 	cl->bpp = bpp;
1929 	cl->bufcount = 0;
1930 	cl->bufsize = 0;
1931 
1932 	/* If this segment is being written synchronously, note that */
1933 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1934 		cl->flags |= LFS_CL_SYNC;
1935 		cl->seg = fs->lfs_sp;
1936 		++cl->seg->seg_iocount;
1937 	}
1938 
1939 	/* Get an empty buffer header, or maybe one with something on it */
1940 	bp = getiobuf();
1941 	bp->b_flags = B_BUSY | B_CALL;
1942 	bp->b_dev = NODEV;
1943 	bp->b_blkno = bp->b_lblkno = addr;
1944 	bp->b_iodone = lfs_cluster_callback;
1945 	bp->b_private = cl;
1946 	bp->b_vp = vp;
1947 
1948 	return bp;
1949 }
1950 
1951 int
1952 lfs_writeseg(struct lfs *fs, struct segment *sp)
1953 {
1954 	struct buf **bpp, *bp, *cbp, *newbp;
1955 	SEGUSE *sup;
1956 	SEGSUM *ssp;
1957 	int i, s;
1958 	int do_again, nblocks, byteoffset;
1959 	size_t el_size;
1960 	struct lfs_cluster *cl;
1961 	u_short ninos;
1962 	struct vnode *devvp;
1963 	char *p = NULL;
1964 	struct vnode *vp;
1965 	int32_t *daddrp;	/* XXX ondisk32 */
1966 	int changed;
1967 	u_int32_t sum;
1968 #ifdef DEBUG
1969 	FINFO *fip;
1970 	int findex;
1971 #endif
1972 
1973 	ASSERT_SEGLOCK(fs);
1974 
1975 	ssp = (SEGSUM *)sp->segsum;
1976 
1977 	/*
1978 	 * If there are no buffers other than the segment summary to write,
1979 	 * don't do anything.  If we are the end of a dirop sequence, however,
1980 	 * write the empty segment summary anyway, to help out the
1981 	 * roll-forward agent.
1982 	 */
1983 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1984 		if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1985 			return 0;
1986 	}
1987 
1988 	/* Note if partial segment is being written by the cleaner */
1989 	if (sp->seg_flags & SEGM_CLEAN)
1990 		ssp->ss_flags |= SS_CLEAN;
1991 
1992 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1993 
1994 	/* Update the segment usage information. */
1995 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1996 
1997 	/* Loop through all blocks, except the segment summary. */
1998 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1999 		if ((*bpp)->b_vp != devvp) {
2000 			sup->su_nbytes += (*bpp)->b_bcount;
2001 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2002 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2003 			      sp->seg_number, (*bpp)->b_bcount,
2004 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2005 			      (*bpp)->b_blkno));
2006 		}
2007 	}
2008 
2009 #ifdef DEBUG
2010 	/* Check for zero-length and zero-version FINFO entries. */
2011 	fip = (struct finfo *)((caddr_t)ssp + SEGSUM_SIZE(fs));
2012 	for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2013 		KDASSERT(fip->fi_nblocks > 0);
2014 		KDASSERT(fip->fi_version > 0);
2015 		fip = (FINFO *)((caddr_t)fip + FINFOSIZE +
2016 			sizeof(int32_t) * fip->fi_nblocks);
2017 	}
2018 #endif /* DEBUG */
2019 
2020 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2021 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2022 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2023 	      ssp->ss_ninos));
2024 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2025 	/* sup->su_nbytes += fs->lfs_sumsize; */
2026 	if (fs->lfs_version == 1)
2027 		sup->su_olastmod = time_second;
2028 	else
2029 		sup->su_lastmod = time_second;
2030 	sup->su_ninos += ninos;
2031 	++sup->su_nsums;
2032 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2033 
2034 	do_again = !(bp->b_flags & B_GATHERED);
2035 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2036 
2037 	/*
2038 	 * Mark blocks B_BUSY, to prevent then from being changed between
2039 	 * the checksum computation and the actual write.
2040 	 *
2041 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2042 	 * there are any, replace them with copies that have UNASSIGNED
2043 	 * instead.
2044 	 */
2045 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2046 		++bpp;
2047 		bp = *bpp;
2048 		if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */
2049 			bp->b_flags |= B_BUSY;
2050 			continue;
2051 		}
2052 
2053 		simple_lock(&bp->b_interlock);
2054 		s = splbio();
2055 		while (bp->b_flags & B_BUSY) {
2056 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2057 			      " data summary corruption for ino %d, lbn %"
2058 			      PRId64 "\n",
2059 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2060 			bp->b_flags |= B_WANTED;
2061 			ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0,
2062 				&bp->b_interlock);
2063 			splx(s);
2064 			s = splbio();
2065 		}
2066 		bp->b_flags |= B_BUSY;
2067 		splx(s);
2068 		simple_unlock(&bp->b_interlock);
2069 
2070 		/*
2071 		 * Check and replace indirect block UNWRITTEN bogosity.
2072 		 * XXX See comment in lfs_writefile.
2073 		 */
2074 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2075 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
2076 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
2077 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2078 			      VTOI(bp->b_vp)->i_number,
2079 			      VTOI(bp->b_vp)->i_lfs_effnblks,
2080 			      VTOI(bp->b_vp)->i_ffs1_blocks));
2081 			/* Make a copy we'll make changes to */
2082 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2083 					   bp->b_bcount, LFS_NB_IBLOCK);
2084 			newbp->b_blkno = bp->b_blkno;
2085 			memcpy(newbp->b_data, bp->b_data,
2086 			       newbp->b_bcount);
2087 
2088 			changed = 0;
2089 			/* XXX ondisk32 */
2090 			for (daddrp = (int32_t *)(newbp->b_data);
2091 			     daddrp < (int32_t *)(newbp->b_data +
2092 						  newbp->b_bcount); daddrp++) {
2093 				if (*daddrp == UNWRITTEN) {
2094 					++changed;
2095 					*daddrp = 0;
2096 				}
2097 			}
2098 			/*
2099 			 * Get rid of the old buffer.  Don't mark it clean,
2100 			 * though, if it still has dirty data on it.
2101 			 */
2102 			if (changed) {
2103 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2104 				      " bp = %p newbp = %p\n", changed, bp,
2105 				      newbp));
2106 				*bpp = newbp;
2107 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
2108 				if (bp->b_flags & B_CALL) {
2109 					DLOG((DLOG_SEG, "lfs_writeseg: "
2110 					      "indir bp should not be B_CALL\n"));
2111 					s = splbio();
2112 					biodone(bp);
2113 					splx(s);
2114 					bp = NULL;
2115 				} else {
2116 					/* Still on free list, leave it there */
2117 					s = splbio();
2118 					bp->b_flags &= ~B_BUSY;
2119 					if (bp->b_flags & B_WANTED)
2120 						wakeup(bp);
2121 					splx(s);
2122 					/*
2123 					 * We have to re-decrement lfs_avail
2124 					 * since this block is going to come
2125 					 * back around to us in the next
2126 					 * segment.
2127 					 */
2128 					fs->lfs_avail -=
2129 					    btofsb(fs, bp->b_bcount);
2130 				}
2131 			} else {
2132 				lfs_freebuf(fs, newbp);
2133 			}
2134 		}
2135 	}
2136 	/*
2137 	 * Compute checksum across data and then across summary; the first
2138 	 * block (the summary block) is skipped.  Set the create time here
2139 	 * so that it's guaranteed to be later than the inode mod times.
2140 	 */
2141 	sum = 0;
2142 	if (fs->lfs_version == 1)
2143 		el_size = sizeof(u_long);
2144 	else
2145 		el_size = sizeof(u_int32_t);
2146 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2147 		++bpp;
2148 		/* Loop through gop_write cluster blocks */
2149 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2150 		     byteoffset += fs->lfs_bsize) {
2151 #ifdef LFS_USE_B_INVAL
2152 			if (((*bpp)->b_flags & (B_CALL | B_INVAL)) ==
2153 			    (B_CALL | B_INVAL)) {
2154 				if (copyin((caddr_t)(*bpp)->b_saveaddr +
2155 					   byteoffset, dp, el_size)) {
2156 					panic("lfs_writeseg: copyin failed [1]:"
2157 						" ino %d blk %" PRId64,
2158 						VTOI((*bpp)->b_vp)->i_number,
2159 						(*bpp)->b_lblkno);
2160 				}
2161 			} else
2162 #endif /* LFS_USE_B_INVAL */
2163 			{
2164 				sum = lfs_cksum_part(
2165 				    (*bpp)->b_data + byteoffset, el_size, sum);
2166 			}
2167 		}
2168 	}
2169 	if (fs->lfs_version == 1)
2170 		ssp->ss_ocreate = time_second;
2171 	else {
2172 		ssp->ss_create = time_second;
2173 		ssp->ss_serial = ++fs->lfs_serial;
2174 		ssp->ss_ident  = fs->lfs_ident;
2175 	}
2176 	ssp->ss_datasum = lfs_cksum_fold(sum);
2177 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2178 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2179 
2180 	simple_lock(&fs->lfs_interlock);
2181 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2182 			  btofsb(fs, fs->lfs_sumsize));
2183 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2184 			  btofsb(fs, fs->lfs_sumsize));
2185 	simple_unlock(&fs->lfs_interlock);
2186 
2187 	/*
2188 	 * When we simply write the blocks we lose a rotation for every block
2189 	 * written.  To avoid this problem, we cluster the buffers into a
2190 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
2191 	 * devices can handle, use that for the size of the chunks.
2192 	 *
2193 	 * Blocks that are already clusters (from GOP_WRITE), however, we
2194 	 * don't bother to copy into other clusters.
2195 	 */
2196 
2197 #define CHUNKSIZE MAXPHYS
2198 
2199 	if (devvp == NULL)
2200 		panic("devvp is NULL");
2201 	for (bpp = sp->bpp, i = nblocks; i;) {
2202 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2203 		cl = cbp->b_private;
2204 
2205 		cbp->b_flags |= B_ASYNC | B_BUSY;
2206 		cbp->b_bcount = 0;
2207 
2208 #if defined(DEBUG) && defined(DIAGNOSTIC)
2209 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2210 		    / sizeof(int32_t)) {
2211 			panic("lfs_writeseg: real bpp overwrite");
2212 		}
2213 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2214 			panic("lfs_writeseg: theoretical bpp overwrite");
2215 		}
2216 #endif
2217 
2218 		/*
2219 		 * Construct the cluster.
2220 		 */
2221 		simple_lock(&fs->lfs_interlock);
2222 		++fs->lfs_iocount;
2223 		simple_unlock(&fs->lfs_interlock);
2224 		while (i && cbp->b_bcount < CHUNKSIZE) {
2225 			bp = *bpp;
2226 
2227 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2228 				break;
2229 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2230 				break;
2231 
2232 			/* Clusters from GOP_WRITE are expedited */
2233 			if (bp->b_bcount > fs->lfs_bsize) {
2234 				if (cbp->b_bcount > 0)
2235 					/* Put in its own buffer */
2236 					break;
2237 				else {
2238 					cbp->b_data = bp->b_data;
2239 				}
2240 			} else if (cbp->b_bcount == 0) {
2241 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2242 							     LFS_NB_CLUSTER);
2243 				cl->flags |= LFS_CL_MALLOC;
2244 			}
2245 #ifdef DIAGNOSTIC
2246 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2247 					      btodb(bp->b_bcount - 1))) !=
2248 			    sp->seg_number) {
2249 				printf("blk size %d daddr %" PRIx64
2250 				    " not in seg %d\n",
2251 				    bp->b_bcount, bp->b_blkno,
2252 				    sp->seg_number);
2253 				panic("segment overwrite");
2254 			}
2255 #endif
2256 
2257 #ifdef LFS_USE_B_INVAL
2258 			/*
2259 			 * Fake buffers from the cleaner are marked as B_INVAL.
2260 			 * We need to copy the data from user space rather than
2261 			 * from the buffer indicated.
2262 			 * XXX == what do I do on an error?
2263 			 */
2264 			if ((bp->b_flags & (B_CALL|B_INVAL)) ==
2265 			    (B_CALL|B_INVAL)) {
2266 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2267 					panic("lfs_writeseg: "
2268 					    "copyin failed [2]");
2269 			} else
2270 #endif /* LFS_USE_B_INVAL */
2271 			if (cl->flags & LFS_CL_MALLOC) {
2272 				/* copy data into our cluster. */
2273 				memcpy(p, bp->b_data, bp->b_bcount);
2274 				p += bp->b_bcount;
2275 			}
2276 
2277 			cbp->b_bcount += bp->b_bcount;
2278 			cl->bufsize += bp->b_bcount;
2279 
2280 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
2281 			cl->bpp[cl->bufcount++] = bp;
2282 			vp = bp->b_vp;
2283 			s = splbio();
2284 			reassignbuf(bp, vp);
2285 			V_INCR_NUMOUTPUT(vp);
2286 			splx(s);
2287 
2288 			bpp++;
2289 			i--;
2290 		}
2291 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2292 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2293 		else
2294 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2295 		s = splbio();
2296 		V_INCR_NUMOUTPUT(devvp);
2297 		splx(s);
2298 		VOP_STRATEGY(devvp, cbp);
2299 		curproc->p_stats->p_ru.ru_oublock++;
2300 	}
2301 
2302 	if (lfs_dostats) {
2303 		++lfs_stats.psegwrites;
2304 		lfs_stats.blocktot += nblocks - 1;
2305 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2306 			++lfs_stats.psyncwrites;
2307 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2308 			++lfs_stats.pcleanwrites;
2309 			lfs_stats.cleanblocks += nblocks - 1;
2310 		}
2311 	}
2312 	return (lfs_initseg(fs) || do_again);
2313 }
2314 
2315 void
2316 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2317 {
2318 	struct buf *bp;
2319 	int s;
2320 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2321 
2322 	ASSERT_MAYBE_SEGLOCK(fs);
2323 #ifdef DIAGNOSTIC
2324 	KASSERT(fs->lfs_magic == LFS_MAGIC);
2325 #endif
2326 	/*
2327 	 * If we can write one superblock while another is in
2328 	 * progress, we risk not having a complete checkpoint if we crash.
2329 	 * So, block here if a superblock write is in progress.
2330 	 */
2331 	simple_lock(&fs->lfs_interlock);
2332 	s = splbio();
2333 	while (fs->lfs_sbactive) {
2334 		ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2335 			&fs->lfs_interlock);
2336 	}
2337 	fs->lfs_sbactive = daddr;
2338 	splx(s);
2339 	simple_unlock(&fs->lfs_interlock);
2340 
2341 	/* Set timestamp of this version of the superblock */
2342 	if (fs->lfs_version == 1)
2343 		fs->lfs_otstamp = time_second;
2344 	fs->lfs_tstamp = time_second;
2345 
2346 	/* Checksum the superblock and copy it into a buffer. */
2347 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2348 	bp = lfs_newbuf(fs, devvp,
2349 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2350 	memset(bp->b_data + sizeof(struct dlfs), 0,
2351 	    LFS_SBPAD - sizeof(struct dlfs));
2352 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2353 
2354 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2355 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2356 	bp->b_iodone = lfs_supercallback;
2357 
2358 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2359 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2360 	else
2361 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2362 	curproc->p_stats->p_ru.ru_oublock++;
2363 	s = splbio();
2364 	V_INCR_NUMOUTPUT(bp->b_vp);
2365 	splx(s);
2366 	simple_lock(&fs->lfs_interlock);
2367 	++fs->lfs_iocount;
2368 	simple_unlock(&fs->lfs_interlock);
2369 	VOP_STRATEGY(devvp, bp);
2370 }
2371 
2372 /*
2373  * Logical block number match routines used when traversing the dirty block
2374  * chain.
2375  */
2376 int
2377 lfs_match_fake(struct lfs *fs, struct buf *bp)
2378 {
2379 
2380 	ASSERT_SEGLOCK(fs);
2381 	return LFS_IS_MALLOC_BUF(bp);
2382 }
2383 
2384 #if 0
2385 int
2386 lfs_match_real(struct lfs *fs, struct buf *bp)
2387 {
2388 
2389 	ASSERT_SEGLOCK(fs);
2390 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2391 }
2392 #endif
2393 
2394 int
2395 lfs_match_data(struct lfs *fs, struct buf *bp)
2396 {
2397 
2398 	ASSERT_SEGLOCK(fs);
2399 	return (bp->b_lblkno >= 0);
2400 }
2401 
2402 int
2403 lfs_match_indir(struct lfs *fs, struct buf *bp)
2404 {
2405 	daddr_t lbn;
2406 
2407 	ASSERT_SEGLOCK(fs);
2408 	lbn = bp->b_lblkno;
2409 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2410 }
2411 
2412 int
2413 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2414 {
2415 	daddr_t lbn;
2416 
2417 	ASSERT_SEGLOCK(fs);
2418 	lbn = bp->b_lblkno;
2419 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2420 }
2421 
2422 int
2423 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2424 {
2425 	daddr_t lbn;
2426 
2427 	ASSERT_SEGLOCK(fs);
2428 	lbn = bp->b_lblkno;
2429 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2430 }
2431 
2432 static void
2433 lfs_free_aiodone(struct buf *bp)
2434 {
2435 	struct lfs *fs;
2436 
2437 	fs = bp->b_private;
2438 	ASSERT_NO_SEGLOCK(fs);
2439 	lfs_freebuf(fs, bp);
2440 }
2441 
2442 static void
2443 lfs_super_aiodone(struct buf *bp)
2444 {
2445 	struct lfs *fs;
2446 
2447 	fs = bp->b_private;
2448 	ASSERT_NO_SEGLOCK(fs);
2449 	simple_lock(&fs->lfs_interlock);
2450 	fs->lfs_sbactive = 0;
2451 	if (--fs->lfs_iocount <= 1)
2452 		wakeup(&fs->lfs_iocount);
2453 	simple_unlock(&fs->lfs_interlock);
2454 	wakeup(&fs->lfs_sbactive);
2455 	lfs_freebuf(fs, bp);
2456 }
2457 
2458 static void
2459 lfs_cluster_aiodone(struct buf *bp)
2460 {
2461 	struct lfs_cluster *cl;
2462 	struct lfs *fs;
2463 	struct buf *tbp, *fbp;
2464 	struct vnode *vp, *devvp;
2465 	struct inode *ip;
2466 	int s, error=0;
2467 
2468 	if (bp->b_flags & B_ERROR)
2469 		error = bp->b_error;
2470 
2471 	cl = bp->b_private;
2472 	fs = cl->fs;
2473 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2474 	ASSERT_NO_SEGLOCK(fs);
2475 
2476 	/* Put the pages back, and release the buffer */
2477 	while (cl->bufcount--) {
2478 		tbp = cl->bpp[cl->bufcount];
2479 		KASSERT(tbp->b_flags & B_BUSY);
2480 		if (error) {
2481 			tbp->b_flags |= B_ERROR;
2482 			tbp->b_error = error;
2483 		}
2484 
2485 		/*
2486 		 * We're done with tbp.	 If it has not been re-dirtied since
2487 		 * the cluster was written, free it.  Otherwise, keep it on
2488 		 * the locked list to be written again.
2489 		 */
2490 		vp = tbp->b_vp;
2491 
2492 		tbp->b_flags &= ~B_GATHERED;
2493 
2494 		LFS_BCLEAN_LOG(fs, tbp);
2495 
2496 		if (!(tbp->b_flags & B_CALL)) {
2497 			KASSERT(tbp->b_flags & B_LOCKED);
2498 			s = splbio();
2499 			simple_lock(&bqueue_slock);
2500 			bremfree(tbp);
2501 			simple_unlock(&bqueue_slock);
2502 			if (vp)
2503 				reassignbuf(tbp, vp);
2504 			splx(s);
2505 			tbp->b_flags |= B_ASYNC; /* for biodone */
2506 		}
2507 
2508 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2509 			LFS_UNLOCK_BUF(tbp);
2510 
2511 		if (tbp->b_flags & B_DONE) {
2512 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2513 				cl->bufcount, (long)tbp->b_flags));
2514 		}
2515 
2516 		if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) {
2517 			/*
2518 			 * A buffer from the page daemon.
2519 			 * We use the same iodone as it does,
2520 			 * so we must manually disassociate its
2521 			 * buffers from the vp.
2522 			 */
2523 			if (tbp->b_vp) {
2524 				/* This is just silly */
2525 				s = splbio();
2526 				brelvp(tbp);
2527 				tbp->b_vp = vp;
2528 				splx(s);
2529 			}
2530 			/* Put it back the way it was */
2531 			tbp->b_flags |= B_ASYNC;
2532 			/* Master buffers have B_AGE */
2533 			if (tbp->b_private == tbp)
2534 				tbp->b_flags |= B_AGE;
2535 		}
2536 		s = splbio();
2537 		biodone(tbp);
2538 
2539 		/*
2540 		 * If this is the last block for this vnode, but
2541 		 * there are other blocks on its dirty list,
2542 		 * set IN_MODIFIED/IN_CLEANING depending on what
2543 		 * sort of block.  Only do this for our mount point,
2544 		 * not for, e.g., inode blocks that are attached to
2545 		 * the devvp.
2546 		 * XXX KS - Shouldn't we set *both* if both types
2547 		 * of blocks are present (traverse the dirty list?)
2548 		 */
2549 		simple_lock(&global_v_numoutput_slock);
2550 		if (vp != devvp && vp->v_numoutput == 0 &&
2551 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2552 			ip = VTOI(vp);
2553 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2554 			       ip->i_number));
2555 			if (LFS_IS_MALLOC_BUF(fbp))
2556 				LFS_SET_UINO(ip, IN_CLEANING);
2557 			else
2558 				LFS_SET_UINO(ip, IN_MODIFIED);
2559 		}
2560 		simple_unlock(&global_v_numoutput_slock);
2561 		splx(s);
2562 		wakeup(vp);
2563 	}
2564 
2565 	/* Fix up the cluster buffer, and release it */
2566 	if (cl->flags & LFS_CL_MALLOC)
2567 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2568 	putiobuf(bp);
2569 
2570 	/* Note i/o done */
2571 	if (cl->flags & LFS_CL_SYNC) {
2572 		if (--cl->seg->seg_iocount == 0)
2573 			wakeup(&cl->seg->seg_iocount);
2574 	}
2575 	simple_lock(&fs->lfs_interlock);
2576 #ifdef DIAGNOSTIC
2577 	if (fs->lfs_iocount == 0)
2578 		panic("lfs_cluster_aiodone: zero iocount");
2579 #endif
2580 	if (--fs->lfs_iocount <= 1)
2581 		wakeup(&fs->lfs_iocount);
2582 	simple_unlock(&fs->lfs_interlock);
2583 
2584 	pool_put(&fs->lfs_bpppool, cl->bpp);
2585 	cl->bpp = NULL;
2586 	pool_put(&fs->lfs_clpool, cl);
2587 }
2588 
2589 static void
2590 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2591 {
2592 	/* reset b_iodone for when this is a single-buf i/o. */
2593 	bp->b_iodone = aiodone;
2594 
2595 	simple_lock(&uvm.aiodoned_lock);	/* locks uvm.aio_done */
2596 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2597 	wakeup(&uvm.aiodoned);
2598 	simple_unlock(&uvm.aiodoned_lock);
2599 }
2600 
2601 static void
2602 lfs_cluster_callback(struct buf *bp)
2603 {
2604 
2605 	lfs_generic_callback(bp, lfs_cluster_aiodone);
2606 }
2607 
2608 void
2609 lfs_supercallback(struct buf *bp)
2610 {
2611 
2612 	lfs_generic_callback(bp, lfs_super_aiodone);
2613 }
2614 
2615 /*
2616  * The only buffers that are going to hit these functions are the
2617  * segment write blocks, or the segment summaries, or the superblocks.
2618  *
2619  * All of the above are created by lfs_newbuf, and so do not need to be
2620  * released via brelse.
2621  */
2622 void
2623 lfs_callback(struct buf *bp)
2624 {
2625 
2626 	lfs_generic_callback(bp, lfs_free_aiodone);
2627 }
2628 
2629 /*
2630  * Shellsort (diminishing increment sort) from Data Structures and
2631  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2632  * see also Knuth Vol. 3, page 84.  The increments are selected from
2633  * formula (8), page 95.  Roughly O(N^3/2).
2634  */
2635 /*
2636  * This is our own private copy of shellsort because we want to sort
2637  * two parallel arrays (the array of buffer pointers and the array of
2638  * logical block numbers) simultaneously.  Note that we cast the array
2639  * of logical block numbers to a unsigned in this routine so that the
2640  * negative block numbers (meta data blocks) sort AFTER the data blocks.
2641  */
2642 
2643 void
2644 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2645 {
2646 	static int __rsshell_increments[] = { 4, 1, 0 };
2647 	int incr, *incrp, t1, t2;
2648 	struct buf *bp_temp;
2649 
2650 #ifdef DEBUG
2651 	incr = 0;
2652 	for (t1 = 0; t1 < nmemb; t1++) {
2653 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2654 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2655 				/* dump before panic */
2656 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
2657 				    nmemb, size);
2658 				incr = 0;
2659 				for (t1 = 0; t1 < nmemb; t1++) {
2660 					const struct buf *bp = bp_array[t1];
2661 
2662 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2663 					    PRIu64 "\n", t1,
2664 					    (uint64_t)bp->b_bcount,
2665 					    (uint64_t)bp->b_lblkno);
2666 					printf("lbns:");
2667 					for (t2 = 0; t2 * size < bp->b_bcount;
2668 					    t2++) {
2669 						printf(" %" PRId32,
2670 						    lb_array[incr++]);
2671 					}
2672 					printf("\n");
2673 				}
2674 				panic("lfs_shellsort: inconsistent input");
2675 			}
2676 		}
2677 	}
2678 #endif
2679 
2680 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2681 		for (t1 = incr; t1 < nmemb; ++t1)
2682 			for (t2 = t1 - incr; t2 >= 0;)
2683 				if ((u_int32_t)bp_array[t2]->b_lblkno >
2684 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2685 					bp_temp = bp_array[t2];
2686 					bp_array[t2] = bp_array[t2 + incr];
2687 					bp_array[t2 + incr] = bp_temp;
2688 					t2 -= incr;
2689 				} else
2690 					break;
2691 
2692 	/* Reform the list of logical blocks */
2693 	incr = 0;
2694 	for (t1 = 0; t1 < nmemb; t1++) {
2695 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2696 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2697 		}
2698 	}
2699 }
2700 
2701 /*
2702  * Call vget with LK_NOWAIT.  If we are the one who holds VXLOCK/VFREEING,
2703  * however, we must press on.  Just fake success in that case.
2704  */
2705 int
2706 lfs_vref(struct vnode *vp)
2707 {
2708 	int error;
2709 	struct lfs *fs;
2710 
2711 	fs = VTOI(vp)->i_lfs;
2712 
2713 	ASSERT_MAYBE_SEGLOCK(fs);
2714 
2715 	/*
2716 	 * If we return 1 here during a flush, we risk vinvalbuf() not
2717 	 * being able to flush all of the pages from this vnode, which
2718 	 * will cause it to panic.  So, return 0 if a flush is in progress.
2719 	 */
2720 	error = vget(vp, LK_NOWAIT);
2721 	if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2722 		++fs->lfs_flushvp_fakevref;
2723 		return 0;
2724 	}
2725 	return error;
2726 }
2727 
2728 /*
2729  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2730  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2731  */
2732 void
2733 lfs_vunref(struct vnode *vp)
2734 {
2735 	struct lfs *fs;
2736 
2737 	fs = VTOI(vp)->i_lfs;
2738 	ASSERT_MAYBE_SEGLOCK(fs);
2739 
2740 	/*
2741 	 * Analogous to lfs_vref, if the node is flushing, fake it.
2742 	 */
2743 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2744 		--fs->lfs_flushvp_fakevref;
2745 		return;
2746 	}
2747 
2748 	simple_lock(&vp->v_interlock);
2749 #ifdef DIAGNOSTIC
2750 	if (vp->v_usecount <= 0) {
2751 		printf("lfs_vunref: inum is %llu\n", (unsigned long long)
2752 		    VTOI(vp)->i_number);
2753 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2754 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2755 		panic("lfs_vunref: v_usecount < 0");
2756 	}
2757 #endif
2758 	vp->v_usecount--;
2759 	if (vp->v_usecount > 0) {
2760 		simple_unlock(&vp->v_interlock);
2761 		return;
2762 	}
2763 	/*
2764 	 * insert at tail of LRU list
2765 	 */
2766 	simple_lock(&vnode_free_list_slock);
2767 	if (vp->v_holdcnt > 0)
2768 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2769 	else
2770 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2771 	simple_unlock(&vnode_free_list_slock);
2772 	simple_unlock(&vp->v_interlock);
2773 }
2774 
2775 /*
2776  * We use this when we have vnodes that were loaded in solely for cleaning.
2777  * There is no reason to believe that these vnodes will be referenced again
2778  * soon, since the cleaning process is unrelated to normal filesystem
2779  * activity.  Putting cleaned vnodes at the tail of the list has the effect
2780  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
2781  * cleaning at the head of the list, instead.
2782  */
2783 void
2784 lfs_vunref_head(struct vnode *vp)
2785 {
2786 
2787 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2788 	simple_lock(&vp->v_interlock);
2789 #ifdef DIAGNOSTIC
2790 	if (vp->v_usecount == 0) {
2791 		panic("lfs_vunref: v_usecount<0");
2792 	}
2793 #endif
2794 	vp->v_usecount--;
2795 	if (vp->v_usecount > 0) {
2796 		simple_unlock(&vp->v_interlock);
2797 		return;
2798 	}
2799 	/*
2800 	 * insert at head of LRU list
2801 	 */
2802 	simple_lock(&vnode_free_list_slock);
2803 	if (vp->v_holdcnt > 0)
2804 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2805 	else
2806 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2807 	simple_unlock(&vnode_free_list_slock);
2808 	simple_unlock(&vp->v_interlock);
2809 }
2810 
2811 
2812 /*
2813  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
2814  * point at uninitialized space.
2815  */
2816 void
2817 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2818 {
2819 	struct segment *sp = fs->lfs_sp;
2820 
2821 	KASSERT(vers > 0);
2822 
2823 	if (sp->seg_bytes_left < fs->lfs_bsize ||
2824 	    sp->sum_bytes_left < sizeof(struct finfo))
2825 		(void) lfs_writeseg(fs, fs->lfs_sp);
2826 
2827 	sp->sum_bytes_left -= FINFOSIZE;
2828 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2829 	sp->fip->fi_nblocks = 0;
2830 	sp->fip->fi_ino = ino;
2831 	sp->fip->fi_version = vers;
2832 }
2833 
2834 /*
2835  * Release the FINFO entry, either clearing out an unused entry or
2836  * advancing us to the next available entry.
2837  */
2838 void
2839 lfs_release_finfo(struct lfs *fs)
2840 {
2841 	struct segment *sp = fs->lfs_sp;
2842 
2843 	if (sp->fip->fi_nblocks != 0) {
2844 		sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2845 			sizeof(int32_t) * sp->fip->fi_nblocks);
2846 		sp->start_lbp = &sp->fip->fi_blocks[0];
2847 	} else {
2848 		sp->sum_bytes_left += FINFOSIZE;
2849 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
2850 	}
2851 }
2852