xref: /netbsd-src/sys/ufs/lfs/lfs_segment.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: lfs_segment.c,v 1.225 2013/01/22 09:39:17 dholland Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright (c) 1991, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.225 2013/01/22 09:39:17 dholland Exp $");
64 
65 #ifdef DEBUG
66 # define vndebug(vp, str) do {						\
67 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
68 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 		     VTOI(vp)->i_number, (str), op));			\
70 } while(0)
71 #else
72 # define vndebug(vp, str)
73 #endif
74 #define ivndebug(vp, str) \
75 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
76 
77 #if defined(_KERNEL_OPT)
78 #include "opt_ddb.h"
79 #endif
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
86 #include <sys/file.h>
87 #include <sys/stat.h>
88 #include <sys/buf.h>
89 #include <sys/proc.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
94 
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97 
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102 
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
105 
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108 
109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
110 
111 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
112 static void lfs_free_aiodone(struct buf *);
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static void lfs_cluster_callback(struct buf *);
116 
117 /*
118  * Determine if it's OK to start a partial in this segment, or if we need
119  * to go on to a new segment.
120  */
121 #define	LFS_PARTIAL_FITS(fs) \
122 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
123 	(fs)->lfs_frag)
124 
125 /*
126  * Figure out whether we should do a checkpoint write or go ahead with
127  * an ordinary write.
128  */
129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
130         ((flags & SEGM_CLEAN) == 0 &&					\
131 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
132 	    (flags & SEGM_CKP) ||					\
133 	    fs->lfs_nclean < LFS_MAX_ACTIVE)))
134 
135 int	 lfs_match_fake(struct lfs *, struct buf *);
136 void	 lfs_newseg(struct lfs *);
137 /* XXX ondisk32 */
138 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
139 void	 lfs_supercallback(struct buf *);
140 void	 lfs_updatemeta(struct segment *);
141 void	 lfs_writesuper(struct lfs *, daddr_t);
142 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
143 	    struct segment *sp, int dirops);
144 
145 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
146 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
147 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
148 int	lfs_dirvcount = 0;		/* # active dirops */
149 
150 /* Statistics Counters */
151 int lfs_dostats = 1;
152 struct lfs_stats lfs_stats;
153 
154 /* op values to lfs_writevnodes */
155 #define	VN_REG		0
156 #define	VN_DIROP	1
157 #define	VN_EMPTY	2
158 #define VN_CLEAN	3
159 
160 /*
161  * XXX KS - Set modification time on the Ifile, so the cleaner can
162  * read the fs mod time off of it.  We don't set IN_UPDATE here,
163  * since we don't really need this to be flushed to disk (and in any
164  * case that wouldn't happen to the Ifile until we checkpoint).
165  */
166 void
167 lfs_imtime(struct lfs *fs)
168 {
169 	struct timespec ts;
170 	struct inode *ip;
171 
172 	ASSERT_MAYBE_SEGLOCK(fs);
173 	vfs_timestamp(&ts);
174 	ip = VTOI(fs->lfs_ivnode);
175 	ip->i_ffs1_mtime = ts.tv_sec;
176 	ip->i_ffs1_mtimensec = ts.tv_nsec;
177 }
178 
179 /*
180  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
181  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
182  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
183  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
184  */
185 
186 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
187 
188 int
189 lfs_vflush(struct vnode *vp)
190 {
191 	struct inode *ip;
192 	struct lfs *fs;
193 	struct segment *sp;
194 	struct buf *bp, *nbp, *tbp, *tnbp;
195 	int error;
196 	int flushed;
197 	int relock;
198 	int loopcount;
199 
200 	ip = VTOI(vp);
201 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
202 	relock = 0;
203 
204     top:
205 	KASSERT(mutex_owned(vp->v_interlock) == false);
206 	KASSERT(mutex_owned(&lfs_lock) == false);
207 	KASSERT(mutex_owned(&bufcache_lock) == false);
208 	ASSERT_NO_SEGLOCK(fs);
209 	if (ip->i_flag & IN_CLEANING) {
210 		ivndebug(vp,"vflush/in_cleaning");
211 		mutex_enter(&lfs_lock);
212 		LFS_CLR_UINO(ip, IN_CLEANING);
213 		LFS_SET_UINO(ip, IN_MODIFIED);
214 		mutex_exit(&lfs_lock);
215 
216 		/*
217 		 * Toss any cleaning buffers that have real counterparts
218 		 * to avoid losing new data.
219 		 */
220 		mutex_enter(vp->v_interlock);
221 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
222 			nbp = LIST_NEXT(bp, b_vnbufs);
223 			if (!LFS_IS_MALLOC_BUF(bp))
224 				continue;
225 			/*
226 			 * Look for pages matching the range covered
227 			 * by cleaning blocks.  It's okay if more dirty
228 			 * pages appear, so long as none disappear out
229 			 * from under us.
230 			 */
231 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
232 			    vp != fs->lfs_ivnode) {
233 				struct vm_page *pg;
234 				voff_t off;
235 
236 				for (off = lblktosize(fs, bp->b_lblkno);
237 				     off < lblktosize(fs, bp->b_lblkno + 1);
238 				     off += PAGE_SIZE) {
239 					pg = uvm_pagelookup(&vp->v_uobj, off);
240 					if (pg == NULL)
241 						continue;
242 					if ((pg->flags & PG_CLEAN) == 0 ||
243 					    pmap_is_modified(pg)) {
244 						fs->lfs_avail += btofsb(fs,
245 							bp->b_bcount);
246 						wakeup(&fs->lfs_avail);
247 						mutex_exit(vp->v_interlock);
248 						lfs_freebuf(fs, bp);
249 						mutex_enter(vp->v_interlock);
250 						bp = NULL;
251 						break;
252 					}
253 				}
254 			}
255 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
256 			    tbp = tnbp)
257 			{
258 				tnbp = LIST_NEXT(tbp, b_vnbufs);
259 				if (tbp->b_vp == bp->b_vp
260 				   && tbp->b_lblkno == bp->b_lblkno
261 				   && tbp != bp)
262 				{
263 					fs->lfs_avail += btofsb(fs,
264 						bp->b_bcount);
265 					wakeup(&fs->lfs_avail);
266 					mutex_exit(vp->v_interlock);
267 					lfs_freebuf(fs, bp);
268 					mutex_enter(vp->v_interlock);
269 					bp = NULL;
270 					break;
271 				}
272 			}
273 		}
274 	} else {
275 		mutex_enter(vp->v_interlock);
276 	}
277 
278 	/* If the node is being written, wait until that is done */
279 	while (WRITEINPROG(vp)) {
280 		ivndebug(vp,"vflush/writeinprog");
281 		cv_wait(&vp->v_cv, vp->v_interlock);
282 	}
283 	mutex_exit(vp->v_interlock);
284 
285 	/* Protect against VI_XLOCK deadlock in vinvalbuf() */
286 	lfs_seglock(fs, SEGM_SYNC | ((vp->v_iflag & VI_XLOCK) ? SEGM_RECLAIM : 0));
287 	if (vp->v_iflag & VI_XLOCK) {
288 		fs->lfs_reclino = ip->i_number;
289 	}
290 
291 	/* If we're supposed to flush a freed inode, just toss it */
292 	if (ip->i_lfs_iflags & LFSI_DELETED) {
293 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
294 		      ip->i_number));
295 		/* Drain v_numoutput */
296 		mutex_enter(vp->v_interlock);
297 		while (vp->v_numoutput > 0) {
298 			cv_wait(&vp->v_cv, vp->v_interlock);
299 		}
300 		KASSERT(vp->v_numoutput == 0);
301 		mutex_exit(vp->v_interlock);
302 
303 		mutex_enter(&bufcache_lock);
304 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
305 			nbp = LIST_NEXT(bp, b_vnbufs);
306 
307 			KASSERT((bp->b_flags & B_GATHERED) == 0);
308 			if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
309 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
310 				wakeup(&fs->lfs_avail);
311 			}
312 			/* Copied from lfs_writeseg */
313 			if (bp->b_iodone != NULL) {
314 				mutex_exit(&bufcache_lock);
315 				biodone(bp);
316 				mutex_enter(&bufcache_lock);
317 			} else {
318 				bremfree(bp);
319 				LFS_UNLOCK_BUF(bp);
320 				mutex_enter(vp->v_interlock);
321 				bp->b_flags &= ~(B_READ | B_GATHERED);
322 				bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
323 				bp->b_error = 0;
324 				reassignbuf(bp, vp);
325 				mutex_exit(vp->v_interlock);
326 				brelse(bp, 0);
327 			}
328 		}
329 		mutex_exit(&bufcache_lock);
330 		LFS_CLR_UINO(ip, IN_CLEANING);
331 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
332 		ip->i_flag &= ~IN_ALLMOD;
333 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
334 		      ip->i_number));
335 		lfs_segunlock(fs);
336 
337 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
338 
339 		return 0;
340 	}
341 
342 	fs->lfs_flushvp = vp;
343 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
344 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
345 		fs->lfs_flushvp = NULL;
346 		KASSERT(fs->lfs_flushvp_fakevref == 0);
347 		lfs_segunlock(fs);
348 
349 		/* Make sure that any pending buffers get written */
350 		mutex_enter(vp->v_interlock);
351 		while (vp->v_numoutput > 0) {
352 			cv_wait(&vp->v_cv, vp->v_interlock);
353 		}
354 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
355 		KASSERT(vp->v_numoutput == 0);
356 		mutex_exit(vp->v_interlock);
357 
358 		return error;
359 	}
360 	sp = fs->lfs_sp;
361 
362 	flushed = 0;
363 	if (VPISEMPTY(vp)) {
364 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
365 		++flushed;
366 	} else if ((ip->i_flag & IN_CLEANING) &&
367 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
368 		ivndebug(vp,"vflush/clean");
369 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
370 		++flushed;
371 	} else if (lfs_dostats) {
372 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
373 			++lfs_stats.vflush_invoked;
374 		ivndebug(vp,"vflush");
375 	}
376 
377 #ifdef DIAGNOSTIC
378 	if (vp->v_uflag & VU_DIROP) {
379 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
380 		/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
381 	}
382 #endif
383 
384 	do {
385 		loopcount = 0;
386 		do {
387 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
388 				relock = lfs_writefile(fs, sp, vp);
389 				if (relock && vp != fs->lfs_ivnode) {
390 					/*
391 					 * Might have to wait for the
392 					 * cleaner to run; but we're
393 					 * still not done with this vnode.
394 					 * XXX we can do better than this.
395 					 */
396 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
397 					lfs_writeinode(fs, sp, ip);
398 					mutex_enter(&lfs_lock);
399 					LFS_SET_UINO(ip, IN_MODIFIED);
400 					mutex_exit(&lfs_lock);
401 					lfs_writeseg(fs, sp);
402 					lfs_segunlock(fs);
403 					lfs_segunlock_relock(fs);
404 					goto top;
405 				}
406 			}
407 			/*
408 			 * If we begin a new segment in the middle of writing
409 			 * the Ifile, it creates an inconsistent checkpoint,
410 			 * since the Ifile information for the new segment
411 			 * is not up-to-date.  Take care of this here by
412 			 * sending the Ifile through again in case there
413 			 * are newly dirtied blocks.  But wait, there's more!
414 			 * This second Ifile write could *also* cross a segment
415 			 * boundary, if the first one was large.  The second
416 			 * one is guaranteed to be no more than 8 blocks,
417 			 * though (two segment blocks and supporting indirects)
418 			 * so the third write *will not* cross the boundary.
419 			 */
420 			if (vp == fs->lfs_ivnode) {
421 				lfs_writefile(fs, sp, vp);
422 				lfs_writefile(fs, sp, vp);
423 			}
424 #ifdef DEBUG
425 			if (++loopcount > 2)
426 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
427 #endif
428 		} while (lfs_writeinode(fs, sp, ip));
429 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
430 
431 	if (lfs_dostats) {
432 		++lfs_stats.nwrites;
433 		if (sp->seg_flags & SEGM_SYNC)
434 			++lfs_stats.nsync_writes;
435 		if (sp->seg_flags & SEGM_CKP)
436 			++lfs_stats.ncheckpoints;
437 	}
438 	/*
439 	 * If we were called from somewhere that has already held the seglock
440 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
441 	 * the write to complete because we are still locked.
442 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
443 	 * we must explicitly wait, if that is the case.
444 	 *
445 	 * We compare the iocount against 1, not 0, because it is
446 	 * artificially incremented by lfs_seglock().
447 	 */
448 	mutex_enter(&lfs_lock);
449 	if (fs->lfs_seglock > 1) {
450 		while (fs->lfs_iocount > 1)
451 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
452 				     "lfs_vflush", 0, &lfs_lock);
453 	}
454 	mutex_exit(&lfs_lock);
455 
456 	lfs_segunlock(fs);
457 
458 	/* Wait for these buffers to be recovered by aiodoned */
459 	mutex_enter(vp->v_interlock);
460 	while (vp->v_numoutput > 0) {
461 		cv_wait(&vp->v_cv, vp->v_interlock);
462 	}
463 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
464 	KASSERT(vp->v_numoutput == 0);
465 	mutex_exit(vp->v_interlock);
466 
467 	fs->lfs_flushvp = NULL;
468 	KASSERT(fs->lfs_flushvp_fakevref == 0);
469 
470 	return (0);
471 }
472 
473 int
474 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
475 {
476 	struct inode *ip;
477 	struct vnode *vp;
478 	int inodes_written = 0, only_cleaning;
479 	int error = 0;
480 
481 	ASSERT_SEGLOCK(fs);
482  loop:
483 	/* start at last (newest) vnode. */
484 	mutex_enter(&mntvnode_lock);
485 	TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
486 		/*
487 		 * If the vnode that we are about to sync is no longer
488 		 * associated with this mount point, start over.
489 		 */
490 		if (vp->v_mount != mp) {
491 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
492 			/*
493 			 * After this, pages might be busy
494 			 * due to our own previous putpages.
495 			 * Start actual segment write here to avoid deadlock.
496 			 * If we were just writing one segment and we've done
497 			 * that, break out.
498 			 */
499 			mutex_exit(&mntvnode_lock);
500 			if (lfs_writeseg(fs, sp) &&
501 			    (sp->seg_flags & SEGM_SINGLE) &&
502 			    fs->lfs_curseg != fs->lfs_startseg) {
503 				DLOG((DLOG_VNODE, "lfs_writevnodes: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
504 				break;
505 			}
506 			goto loop;
507 		}
508 
509 		mutex_enter(vp->v_interlock);
510 		if (vp->v_type == VNON || vismarker(vp) ||
511 		    (vp->v_iflag & VI_CLEAN) != 0) {
512 			mutex_exit(vp->v_interlock);
513 			continue;
514 		}
515 
516 		ip = VTOI(vp);
517 		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
518 		    (op != VN_DIROP && op != VN_CLEAN &&
519 		    (vp->v_uflag & VU_DIROP))) {
520 			mutex_exit(vp->v_interlock);
521 			vndebug(vp,"dirop");
522 			continue;
523 		}
524 
525 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
526 			mutex_exit(vp->v_interlock);
527 			vndebug(vp,"empty");
528 			continue;
529 		}
530 
531 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
532 		   && vp != fs->lfs_flushvp
533 		   && !(ip->i_flag & IN_CLEANING)) {
534 			mutex_exit(vp->v_interlock);
535 			vndebug(vp,"cleaning");
536 			continue;
537 		}
538 
539 		mutex_exit(&mntvnode_lock);
540 		if (lfs_vref(vp)) {
541 			vndebug(vp,"vref");
542 			mutex_enter(&mntvnode_lock);
543 			continue;
544 		}
545 
546 		only_cleaning = 0;
547 		/*
548 		 * Write the inode/file if dirty and it's not the IFILE.
549 		 */
550 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
551 			only_cleaning =
552 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
553 
554 			if (ip->i_number != LFS_IFILE_INUM) {
555 				error = lfs_writefile(fs, sp, vp);
556 				if (error) {
557 					lfs_vunref(vp);
558 					if (error == EAGAIN) {
559 						/*
560 						 * This error from lfs_putpages
561 						 * indicates we need to drop
562 						 * the segment lock and start
563 						 * over after the cleaner has
564 						 * had a chance to run.
565 						 */
566 						lfs_writeinode(fs, sp, ip);
567 						lfs_writeseg(fs, sp);
568 						if (!VPISEMPTY(vp) &&
569 						    !WRITEINPROG(vp) &&
570 						    !(ip->i_flag & IN_ALLMOD)) {
571 							mutex_enter(&lfs_lock);
572 							LFS_SET_UINO(ip, IN_MODIFIED);
573 							mutex_exit(&lfs_lock);
574 						}
575 						mutex_enter(&mntvnode_lock);
576 						break;
577 					}
578 					error = 0; /* XXX not quite right */
579 					mutex_enter(&mntvnode_lock);
580 					continue;
581 				}
582 
583 				if (!VPISEMPTY(vp)) {
584 					if (WRITEINPROG(vp)) {
585 						ivndebug(vp,"writevnodes/write2");
586 					} else if (!(ip->i_flag & IN_ALLMOD)) {
587 						mutex_enter(&lfs_lock);
588 						LFS_SET_UINO(ip, IN_MODIFIED);
589 						mutex_exit(&lfs_lock);
590 					}
591 				}
592 				(void) lfs_writeinode(fs, sp, ip);
593 				inodes_written++;
594 			}
595 		}
596 
597 		if (lfs_clean_vnhead && only_cleaning)
598 			lfs_vunref_head(vp);
599 		else
600 			lfs_vunref(vp);
601 
602 		mutex_enter(&mntvnode_lock);
603 	}
604 	mutex_exit(&mntvnode_lock);
605 	return error;
606 }
607 
608 /*
609  * Do a checkpoint.
610  */
611 int
612 lfs_segwrite(struct mount *mp, int flags)
613 {
614 	struct buf *bp;
615 	struct inode *ip;
616 	struct lfs *fs;
617 	struct segment *sp;
618 	struct vnode *vp;
619 	SEGUSE *segusep;
620 	int do_ckp, did_ckp, error;
621 	unsigned n, segleft, maxseg, sn, i, curseg;
622 	int writer_set = 0;
623 	int dirty;
624 	int redo;
625 	int um_error;
626 	int loopcount;
627 
628 	fs = VFSTOUFS(mp)->um_lfs;
629 	ASSERT_MAYBE_SEGLOCK(fs);
630 
631 	if (fs->lfs_ronly)
632 		return EROFS;
633 
634 	lfs_imtime(fs);
635 
636 	/*
637 	 * Allocate a segment structure and enough space to hold pointers to
638 	 * the maximum possible number of buffers which can be described in a
639 	 * single summary block.
640 	 */
641 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
642 
643 	/* We can't do a partial write and checkpoint at the same time. */
644 	if (do_ckp)
645 		flags &= ~SEGM_SINGLE;
646 
647 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
648 	sp = fs->lfs_sp;
649 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
650 		do_ckp = 1;
651 
652 	/*
653 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
654 	 * in which case we have to flush *all* buffers off of this vnode.
655 	 * We don't care about other nodes, but write any non-dirop nodes
656 	 * anyway in anticipation of another getnewvnode().
657 	 *
658 	 * If we're cleaning we only write cleaning and ifile blocks, and
659 	 * no dirops, since otherwise we'd risk corruption in a crash.
660 	 */
661 	if (sp->seg_flags & SEGM_CLEAN)
662 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
663 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
664 		do {
665 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
666 			if ((sp->seg_flags & SEGM_SINGLE) &&
667 			    fs->lfs_curseg != fs->lfs_startseg) {
668 				DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%x\n", fs->lfs_offset));
669 				break;
670 			}
671 
672 			if (do_ckp || fs->lfs_dirops == 0) {
673 				if (!writer_set) {
674 					lfs_writer_enter(fs, "lfs writer");
675 					writer_set = 1;
676 				}
677 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
678 				if (um_error == 0)
679 					um_error = error;
680 				/* In case writevnodes errored out */
681 				lfs_flush_dirops(fs);
682 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
683 				lfs_finalize_fs_seguse(fs);
684 			}
685 			if (do_ckp && um_error) {
686 				lfs_segunlock_relock(fs);
687 				sp = fs->lfs_sp;
688 			}
689 		} while (do_ckp && um_error != 0);
690 	}
691 
692 	/*
693 	 * If we are doing a checkpoint, mark everything since the
694 	 * last checkpoint as no longer ACTIVE.
695 	 */
696 	if (do_ckp || fs->lfs_doifile) {
697 		segleft = fs->lfs_nseg;
698 		curseg = 0;
699 		for (n = 0; n < fs->lfs_segtabsz; n++) {
700 			dirty = 0;
701 			if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n,
702 			    fs->lfs_bsize, NOCRED, B_MODIFY, &bp))
703 				panic("lfs_segwrite: ifile read");
704 			segusep = (SEGUSE *)bp->b_data;
705 			maxseg = min(segleft, fs->lfs_sepb);
706 			for (i = 0; i < maxseg; i++) {
707 				sn = curseg + i;
708 				if (sn != dtosn(fs, fs->lfs_curseg) &&
709 				    segusep->su_flags & SEGUSE_ACTIVE) {
710 					segusep->su_flags &= ~SEGUSE_ACTIVE;
711 					--fs->lfs_nactive;
712 					++dirty;
713 				}
714 				fs->lfs_suflags[fs->lfs_activesb][sn] =
715 					segusep->su_flags;
716 				if (fs->lfs_version > 1)
717 					++segusep;
718 				else
719 					segusep = (SEGUSE *)
720 						((SEGUSE_V1 *)segusep + 1);
721 			}
722 
723 			if (dirty)
724 				error = LFS_BWRITE_LOG(bp); /* Ifile */
725 			else
726 				brelse(bp, 0);
727 			segleft -= fs->lfs_sepb;
728 			curseg += fs->lfs_sepb;
729 		}
730 	}
731 
732 	KASSERT(LFS_SEGLOCK_HELD(fs));
733 
734 	did_ckp = 0;
735 	if (do_ckp || fs->lfs_doifile) {
736 		vp = fs->lfs_ivnode;
737 		loopcount = 0;
738 		do {
739 #ifdef DEBUG
740 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
741 #endif
742 			mutex_enter(&lfs_lock);
743 			fs->lfs_flags &= ~LFS_IFDIRTY;
744 			mutex_exit(&lfs_lock);
745 
746 			ip = VTOI(vp);
747 
748 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
749 				/*
750 				 * Ifile has no pages, so we don't need
751 				 * to check error return here.
752 				 */
753 				lfs_writefile(fs, sp, vp);
754 				/*
755 				 * Ensure the Ifile takes the current segment
756 				 * into account.  See comment in lfs_vflush.
757 				 */
758 				lfs_writefile(fs, sp, vp);
759 				lfs_writefile(fs, sp, vp);
760 			}
761 
762 			if (ip->i_flag & IN_ALLMOD)
763 				++did_ckp;
764 #if 0
765 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
766 #else
767 			redo = lfs_writeinode(fs, sp, ip);
768 #endif
769 			redo += lfs_writeseg(fs, sp);
770 			mutex_enter(&lfs_lock);
771 			redo += (fs->lfs_flags & LFS_IFDIRTY);
772 			mutex_exit(&lfs_lock);
773 #ifdef DEBUG
774 			if (++loopcount > 2)
775 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
776 					loopcount);
777 #endif
778 		} while (redo && do_ckp);
779 
780 		/*
781 		 * Unless we are unmounting, the Ifile may continue to have
782 		 * dirty blocks even after a checkpoint, due to changes to
783 		 * inodes' atime.  If we're checkpointing, it's "impossible"
784 		 * for other parts of the Ifile to be dirty after the loop
785 		 * above, since we hold the segment lock.
786 		 */
787 		mutex_enter(vp->v_interlock);
788 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
789 			LFS_CLR_UINO(ip, IN_ALLMOD);
790 		}
791 #ifdef DIAGNOSTIC
792 		else if (do_ckp) {
793 			int do_panic = 0;
794 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
795 				if (bp->b_lblkno < fs->lfs_cleansz +
796 				    fs->lfs_segtabsz &&
797 				    !(bp->b_flags & B_GATHERED)) {
798 					printf("ifile lbn %ld still dirty (flags %lx)\n",
799 						(long)bp->b_lblkno,
800 						(long)bp->b_flags);
801 					++do_panic;
802 				}
803 			}
804 			if (do_panic)
805 				panic("dirty blocks");
806 		}
807 #endif
808 		mutex_exit(vp->v_interlock);
809 	} else {
810 		(void) lfs_writeseg(fs, sp);
811 	}
812 
813 	/* Note Ifile no longer needs to be written */
814 	fs->lfs_doifile = 0;
815 	if (writer_set)
816 		lfs_writer_leave(fs);
817 
818 	/*
819 	 * If we didn't write the Ifile, we didn't really do anything.
820 	 * That means that (1) there is a checkpoint on disk and (2)
821 	 * nothing has changed since it was written.
822 	 *
823 	 * Take the flags off of the segment so that lfs_segunlock
824 	 * doesn't have to write the superblock either.
825 	 */
826 	if (do_ckp && !did_ckp) {
827 		sp->seg_flags &= ~SEGM_CKP;
828 	}
829 
830 	if (lfs_dostats) {
831 		++lfs_stats.nwrites;
832 		if (sp->seg_flags & SEGM_SYNC)
833 			++lfs_stats.nsync_writes;
834 		if (sp->seg_flags & SEGM_CKP)
835 			++lfs_stats.ncheckpoints;
836 	}
837 	lfs_segunlock(fs);
838 	return (0);
839 }
840 
841 /*
842  * Write the dirty blocks associated with a vnode.
843  */
844 int
845 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
846 {
847 	struct finfo *fip;
848 	struct inode *ip;
849 	int i, frag;
850 	int error;
851 
852 	ASSERT_SEGLOCK(fs);
853 	error = 0;
854 	ip = VTOI(vp);
855 
856 	fip = sp->fip;
857 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
858 
859 	if (vp->v_uflag & VU_DIROP)
860 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
861 
862 	if (sp->seg_flags & SEGM_CLEAN) {
863 		lfs_gather(fs, sp, vp, lfs_match_fake);
864 		/*
865 		 * For a file being flushed, we need to write *all* blocks.
866 		 * This means writing the cleaning blocks first, and then
867 		 * immediately following with any non-cleaning blocks.
868 		 * The same is true of the Ifile since checkpoints assume
869 		 * that all valid Ifile blocks are written.
870 		 */
871 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
872 			lfs_gather(fs, sp, vp, lfs_match_data);
873 			/*
874 			 * Don't call VOP_PUTPAGES: if we're flushing,
875 			 * we've already done it, and the Ifile doesn't
876 			 * use the page cache.
877 			 */
878 		}
879 	} else {
880 		lfs_gather(fs, sp, vp, lfs_match_data);
881 		/*
882 		 * If we're flushing, we've already called VOP_PUTPAGES
883 		 * so don't do it again.  Otherwise, we want to write
884 		 * everything we've got.
885 		 */
886 		if (!IS_FLUSHING(fs, vp)) {
887 			mutex_enter(vp->v_interlock);
888 			error = VOP_PUTPAGES(vp, 0, 0,
889 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
890 		}
891 	}
892 
893 	/*
894 	 * It may not be necessary to write the meta-data blocks at this point,
895 	 * as the roll-forward recovery code should be able to reconstruct the
896 	 * list.
897 	 *
898 	 * We have to write them anyway, though, under two conditions: (1) the
899 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
900 	 * checkpointing.
901 	 *
902 	 * BUT if we are cleaning, we might have indirect blocks that refer to
903 	 * new blocks not being written yet, in addition to fragments being
904 	 * moved out of a cleaned segment.  If that is the case, don't
905 	 * write the indirect blocks, or the finfo will have a small block
906 	 * in the middle of it!
907 	 * XXX in this case isn't the inode size wrong too?
908 	 */
909 	frag = 0;
910 	if (sp->seg_flags & SEGM_CLEAN) {
911 		for (i = 0; i < UFS_NDADDR; i++)
912 			if (ip->i_lfs_fragsize[i] > 0 &&
913 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
914 				++frag;
915 	}
916 #ifdef DIAGNOSTIC
917 	if (frag > 1)
918 		panic("lfs_writefile: more than one fragment!");
919 #endif
920 	if (IS_FLUSHING(fs, vp) ||
921 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
922 		lfs_gather(fs, sp, vp, lfs_match_indir);
923 		lfs_gather(fs, sp, vp, lfs_match_dindir);
924 		lfs_gather(fs, sp, vp, lfs_match_tindir);
925 	}
926 	fip = sp->fip;
927 	lfs_release_finfo(fs);
928 
929 	return error;
930 }
931 
932 /*
933  * Update segment accounting to reflect this inode's change of address.
934  */
935 static int
936 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
937 {
938 	struct buf *bp;
939 	daddr_t daddr;
940 	IFILE *ifp;
941 	SEGUSE *sup;
942 	ino_t ino;
943 	int redo_ifile, error;
944 	u_int32_t sn;
945 
946 	redo_ifile = 0;
947 
948 	/*
949 	 * If updating the ifile, update the super-block.  Update the disk
950 	 * address and access times for this inode in the ifile.
951 	 */
952 	ino = ip->i_number;
953 	if (ino == LFS_IFILE_INUM) {
954 		daddr = fs->lfs_idaddr;
955 		fs->lfs_idaddr = dbtofsb(fs, ndaddr);
956 	} else {
957 		LFS_IENTRY(ifp, fs, ino, bp);
958 		daddr = ifp->if_daddr;
959 		ifp->if_daddr = dbtofsb(fs, ndaddr);
960 		error = LFS_BWRITE_LOG(bp); /* Ifile */
961 	}
962 
963 	/*
964 	 * If this is the Ifile and lfs_offset is set to the first block
965 	 * in the segment, dirty the new segment's accounting block
966 	 * (XXX should already be dirty?) and tell the caller to do it again.
967 	 */
968 	if (ip->i_number == LFS_IFILE_INUM) {
969 		sn = dtosn(fs, fs->lfs_offset);
970 		if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
971 		    fs->lfs_offset) {
972 			LFS_SEGENTRY(sup, fs, sn, bp);
973 			KASSERT(bp->b_oflags & BO_DELWRI);
974 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
975 			/* fs->lfs_flags |= LFS_IFDIRTY; */
976 			redo_ifile |= 1;
977 		}
978 	}
979 
980 	/*
981 	 * The inode's last address should not be in the current partial
982 	 * segment, except under exceptional circumstances (lfs_writevnodes
983 	 * had to start over, and in the meantime more blocks were written
984 	 * to a vnode).	 Both inodes will be accounted to this segment
985 	 * in lfs_writeseg so we need to subtract the earlier version
986 	 * here anyway.	 The segment count can temporarily dip below
987 	 * zero here; keep track of how many duplicates we have in
988 	 * "dupino" so we don't panic below.
989 	 */
990 	if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
991 		++sp->ndupino;
992 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
993 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
994 		      (long long)daddr, sp->ndupino));
995 	}
996 	/*
997 	 * Account the inode: it no longer belongs to its former segment,
998 	 * though it will not belong to the new segment until that segment
999 	 * is actually written.
1000 	 */
1001 	if (daddr != LFS_UNUSED_DADDR) {
1002 		u_int32_t oldsn = dtosn(fs, daddr);
1003 #ifdef DIAGNOSTIC
1004 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
1005 #endif
1006 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1007 #ifdef DIAGNOSTIC
1008 		if (sup->su_nbytes +
1009 		    sizeof (struct ufs1_dinode) * ndupino
1010 		      < sizeof (struct ufs1_dinode)) {
1011 			printf("lfs_writeinode: negative bytes "
1012 			       "(segment %" PRIu32 " short by %d, "
1013 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
1014 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
1015 			       "ndupino=%d)\n",
1016 			       dtosn(fs, daddr),
1017 			       (int)sizeof (struct ufs1_dinode) *
1018 				   (1 - sp->ndupino) - sup->su_nbytes,
1019 			       oldsn, sp->seg_number, daddr,
1020 			       (unsigned int)sup->su_nbytes,
1021 			       sp->ndupino);
1022 			panic("lfs_writeinode: negative bytes");
1023 			sup->su_nbytes = sizeof (struct ufs1_dinode);
1024 		}
1025 #endif
1026 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1027 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1028 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
1029 		redo_ifile |=
1030 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1031 		if (redo_ifile) {
1032 			mutex_enter(&lfs_lock);
1033 			fs->lfs_flags |= LFS_IFDIRTY;
1034 			mutex_exit(&lfs_lock);
1035 			/* Don't double-account */
1036 			fs->lfs_idaddr = 0x0;
1037 		}
1038 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1039 	}
1040 
1041 	return redo_ifile;
1042 }
1043 
1044 int
1045 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1046 {
1047 	struct buf *bp;
1048 	struct ufs1_dinode *cdp;
1049 	struct vnode *vp = ITOV(ip);
1050 	daddr_t daddr;
1051 	int32_t *daddrp;	/* XXX ondisk32 */
1052 	int i, ndx;
1053 	int redo_ifile = 0;
1054 	int gotblk = 0;
1055 	int count;
1056 
1057 	ASSERT_SEGLOCK(fs);
1058 	if (!(ip->i_flag & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP))
1059 		return (0);
1060 
1061 	/* Can't write ifile when writer is not set */
1062 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1063 		(sp->seg_flags & SEGM_CLEAN));
1064 
1065 	/*
1066 	 * If this is the Ifile, see if writing it here will generate a
1067 	 * temporary misaccounting.  If it will, do the accounting and write
1068 	 * the blocks, postponing the inode write until the accounting is
1069 	 * solid.
1070 	 */
1071 	count = 0;
1072 	while (vp == fs->lfs_ivnode) {
1073 		int redo = 0;
1074 
1075 		if (sp->idp == NULL && sp->ibp == NULL &&
1076 		    (sp->seg_bytes_left < fs->lfs_ibsize ||
1077 		     sp->sum_bytes_left < sizeof(int32_t))) {
1078 			(void) lfs_writeseg(fs, sp);
1079 			continue;
1080 		}
1081 
1082 		/* Look for dirty Ifile blocks */
1083 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1084 			if (!(bp->b_flags & B_GATHERED)) {
1085 				redo = 1;
1086 				break;
1087 			}
1088 		}
1089 
1090 		if (redo == 0)
1091 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1092 		if (redo == 0)
1093 			break;
1094 
1095 		if (sp->idp) {
1096 			sp->idp->di_inumber = 0;
1097 			sp->idp = NULL;
1098 		}
1099 		++count;
1100 		if (count > 2)
1101 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1102 		lfs_writefile(fs, sp, fs->lfs_ivnode);
1103 	}
1104 
1105 	/* Allocate a new inode block if necessary. */
1106 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1107 	    sp->ibp == NULL) {
1108 		/* Allocate a new segment if necessary. */
1109 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
1110 		    sp->sum_bytes_left < sizeof(int32_t))
1111 			(void) lfs_writeseg(fs, sp);
1112 
1113 		/* Get next inode block. */
1114 		daddr = fs->lfs_offset;
1115 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1116 		sp->ibp = *sp->cbpp++ =
1117 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1118 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1119 		gotblk++;
1120 
1121 		/* Zero out inode numbers */
1122 		for (i = 0; i < INOPB(fs); ++i)
1123 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1124 			    0;
1125 
1126 		++sp->start_bpp;
1127 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1128 		/* Set remaining space counters. */
1129 		sp->seg_bytes_left -= fs->lfs_ibsize;
1130 		sp->sum_bytes_left -= sizeof(int32_t);
1131 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
1132 			sp->ninodes / INOPB(fs) - 1;
1133 		((int32_t *)(sp->segsum))[ndx] = daddr;
1134 	}
1135 
1136 	/* Check VU_DIROP in case there is a new file with no data blocks */
1137 	if (vp->v_uflag & VU_DIROP)
1138 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1139 
1140 	/* Update the inode times and copy the inode onto the inode page. */
1141 	/* XXX kludge --- don't redirty the ifile just to put times on it */
1142 	if (ip->i_number != LFS_IFILE_INUM)
1143 		LFS_ITIMES(ip, NULL, NULL, NULL);
1144 
1145 	/*
1146 	 * If this is the Ifile, and we've already written the Ifile in this
1147 	 * partial segment, just overwrite it (it's not on disk yet) and
1148 	 * continue.
1149 	 *
1150 	 * XXX we know that the bp that we get the second time around has
1151 	 * already been gathered.
1152 	 */
1153 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1154 		*(sp->idp) = *ip->i_din.ffs1_din;
1155 		ip->i_lfs_osize = ip->i_size;
1156 		return 0;
1157 	}
1158 
1159 	bp = sp->ibp;
1160 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1161 	*cdp = *ip->i_din.ffs1_din;
1162 
1163 	/*
1164 	 * This inode is on its way to disk; clear its VU_DIROP status when
1165 	 * the write is complete.
1166 	 */
1167 	if (vp->v_uflag & VU_DIROP) {
1168 		if (!(sp->seg_flags & SEGM_CLEAN))
1169 			ip->i_flag |= IN_CDIROP;
1170 		else {
1171 			DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number));
1172 		}
1173 	}
1174 
1175 	/*
1176 	 * If cleaning, link counts and directory file sizes cannot change,
1177 	 * since those would be directory operations---even if the file
1178 	 * we are writing is marked VU_DIROP we should write the old values.
1179 	 * If we're not cleaning, of course, update the values so we get
1180 	 * current values the next time we clean.
1181 	 */
1182 	if (sp->seg_flags & SEGM_CLEAN) {
1183 		if (vp->v_uflag & VU_DIROP) {
1184 			cdp->di_nlink = ip->i_lfs_odnlink;
1185 			/* if (vp->v_type == VDIR) */
1186 			cdp->di_size = ip->i_lfs_osize;
1187 		}
1188 	} else {
1189 		ip->i_lfs_odnlink = cdp->di_nlink;
1190 		ip->i_lfs_osize = ip->i_size;
1191 	}
1192 
1193 
1194 	/* We can finish the segment accounting for truncations now */
1195 	lfs_finalize_ino_seguse(fs, ip);
1196 
1197 	/*
1198 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1199 	 * addresses to disk; possibly change the on-disk record of
1200 	 * the inode size, either by reverting to the previous size
1201 	 * (in the case of cleaning) or by verifying the inode's block
1202 	 * holdings (in the case of files being allocated as they are being
1203 	 * written).
1204 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1205 	 * XXX count on disk wrong by the same amount.	We should be
1206 	 * XXX able to "borrow" from lfs_avail and return it after the
1207 	 * XXX Ifile is written.  See also in lfs_writeseg.
1208 	 */
1209 
1210 	/* Check file size based on highest allocated block */
1211 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1212 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1213 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1214 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1215 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1216 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1217 	}
1218 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1219 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1220 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1221 		      ip->i_ffs1_blocks, fs->lfs_offset));
1222 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + UFS_NIADDR;
1223 		     daddrp++) {
1224 			if (*daddrp == UNWRITTEN) {
1225 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1226 				*daddrp = 0;
1227 			}
1228 		}
1229 	}
1230 
1231 #ifdef DIAGNOSTIC
1232 	/*
1233 	 * Check dinode held blocks against dinode size.
1234 	 * This should be identical to the check in lfs_vget().
1235 	 */
1236 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1237 	     i < UFS_NDADDR; i++) {
1238 		KASSERT(i >= 0);
1239 		if ((cdp->di_mode & IFMT) == IFLNK)
1240 			continue;
1241 		if (((cdp->di_mode & IFMT) == IFBLK ||
1242 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1243 			continue;
1244 		if (cdp->di_db[i] != 0) {
1245 # ifdef DEBUG
1246 			lfs_dump_dinode(cdp);
1247 # endif
1248 			panic("writing inconsistent inode");
1249 		}
1250 	}
1251 #endif /* DIAGNOSTIC */
1252 
1253 	if (ip->i_flag & IN_CLEANING)
1254 		LFS_CLR_UINO(ip, IN_CLEANING);
1255 	else {
1256 		/* XXX IN_ALLMOD */
1257 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1258 			     IN_UPDATE | IN_MODIFY);
1259 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1260 			LFS_CLR_UINO(ip, IN_MODIFIED);
1261 		else {
1262 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1263 			    "blks=%d, eff=%d\n", ip->i_number,
1264 			    ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1265 		}
1266 	}
1267 
1268 	if (ip->i_number == LFS_IFILE_INUM) {
1269 		/* We know sp->idp == NULL */
1270 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1271 			(sp->ninodes % INOPB(fs));
1272 
1273 		/* Not dirty any more */
1274 		mutex_enter(&lfs_lock);
1275 		fs->lfs_flags &= ~LFS_IFDIRTY;
1276 		mutex_exit(&lfs_lock);
1277 	}
1278 
1279 	if (gotblk) {
1280 		mutex_enter(&bufcache_lock);
1281 		LFS_LOCK_BUF(bp);
1282 		brelsel(bp, 0);
1283 		mutex_exit(&bufcache_lock);
1284 	}
1285 
1286 	/* Increment inode count in segment summary block. */
1287 	++((SEGSUM *)(sp->segsum))->ss_ninos;
1288 
1289 	/* If this page is full, set flag to allocate a new page. */
1290 	if (++sp->ninodes % INOPB(fs) == 0)
1291 		sp->ibp = NULL;
1292 
1293 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1294 
1295 	KASSERT(redo_ifile == 0);
1296 	return (redo_ifile);
1297 }
1298 
1299 int
1300 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1301 {
1302 	struct lfs *fs;
1303 	int vers;
1304 	int j, blksinblk;
1305 
1306 	ASSERT_SEGLOCK(sp->fs);
1307 	/*
1308 	 * If full, finish this segment.  We may be doing I/O, so
1309 	 * release and reacquire the splbio().
1310 	 */
1311 #ifdef DIAGNOSTIC
1312 	if (sp->vp == NULL)
1313 		panic ("lfs_gatherblock: Null vp in segment");
1314 #endif
1315 	fs = sp->fs;
1316 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1317 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1318 	    sp->seg_bytes_left < bp->b_bcount) {
1319 		if (mptr)
1320 			mutex_exit(mptr);
1321 		lfs_updatemeta(sp);
1322 
1323 		vers = sp->fip->fi_version;
1324 		(void) lfs_writeseg(fs, sp);
1325 
1326 		/* Add the current file to the segment summary. */
1327 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1328 
1329 		if (mptr)
1330 			mutex_enter(mptr);
1331 		return (1);
1332 	}
1333 
1334 	if (bp->b_flags & B_GATHERED) {
1335 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1336 		      " lbn %" PRId64 "\n",
1337 		      sp->fip->fi_ino, bp->b_lblkno));
1338 		return (0);
1339 	}
1340 
1341 	/* Insert into the buffer list, update the FINFO block. */
1342 	bp->b_flags |= B_GATHERED;
1343 
1344 	*sp->cbpp++ = bp;
1345 	for (j = 0; j < blksinblk; j++) {
1346 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1347 		/* This block's accounting moves from lfs_favail to lfs_avail */
1348 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1349 	}
1350 
1351 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1352 	sp->seg_bytes_left -= bp->b_bcount;
1353 	return (0);
1354 }
1355 
1356 int
1357 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1358     int (*match)(struct lfs *, struct buf *))
1359 {
1360 	struct buf *bp, *nbp;
1361 	int count = 0;
1362 
1363 	ASSERT_SEGLOCK(fs);
1364 	if (vp->v_type == VBLK)
1365 		return 0;
1366 	KASSERT(sp->vp == NULL);
1367 	sp->vp = vp;
1368 	mutex_enter(&bufcache_lock);
1369 
1370 #ifndef LFS_NO_BACKBUF_HACK
1371 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1372 # define	BUF_OFFSET	\
1373 	(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1374 # define	BACK_BUF(BP)	\
1375 	((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1376 # define	BEG_OF_LIST	\
1377 	((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1378 
1379 loop:
1380 	/* Find last buffer. */
1381 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1382 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1383 	     bp = LIST_NEXT(bp, b_vnbufs))
1384 		/* nothing */;
1385 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1386 		nbp = BACK_BUF(bp);
1387 #else /* LFS_NO_BACKBUF_HACK */
1388 loop:
1389 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1390 		nbp = LIST_NEXT(bp, b_vnbufs);
1391 #endif /* LFS_NO_BACKBUF_HACK */
1392 		if ((bp->b_cflags & BC_BUSY) != 0 ||
1393 		    (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1394 #ifdef DEBUG
1395 			if (vp == fs->lfs_ivnode &&
1396 			    (bp->b_cflags & BC_BUSY) != 0 &&
1397 			    (bp->b_flags & B_GATHERED) == 0)
1398 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1399 				      PRId64 " busy (%x) at 0x%x",
1400 				      bp->b_lblkno, bp->b_flags,
1401 				      (unsigned)fs->lfs_offset);
1402 #endif
1403 			continue;
1404 		}
1405 #ifdef DIAGNOSTIC
1406 # ifdef LFS_USE_B_INVAL
1407 		if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1408 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1409 			      " is BC_INVAL\n", bp->b_lblkno));
1410 			VOP_PRINT(bp->b_vp);
1411 		}
1412 # endif /* LFS_USE_B_INVAL */
1413 		if (!(bp->b_oflags & BO_DELWRI))
1414 			panic("lfs_gather: bp not BO_DELWRI");
1415 		if (!(bp->b_flags & B_LOCKED)) {
1416 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1417 			      " blk %" PRId64 " not B_LOCKED\n",
1418 			      bp->b_lblkno,
1419 			      dbtofsb(fs, bp->b_blkno)));
1420 			VOP_PRINT(bp->b_vp);
1421 			panic("lfs_gather: bp not B_LOCKED");
1422 		}
1423 #endif
1424 		if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1425 			goto loop;
1426 		}
1427 		count++;
1428 	}
1429 	mutex_exit(&bufcache_lock);
1430 	lfs_updatemeta(sp);
1431 	KASSERT(sp->vp == vp);
1432 	sp->vp = NULL;
1433 	return count;
1434 }
1435 
1436 #if DEBUG
1437 # define DEBUG_OOFF(n) do {						\
1438 	if (ooff == 0) {						\
1439 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1440 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
1441 			", was 0x0 (or %" PRId64 ")\n",			\
1442 			(n), ip->i_number, lbn, ndaddr, daddr));	\
1443 	}								\
1444 } while (0)
1445 #else
1446 # define DEBUG_OOFF(n)
1447 #endif
1448 
1449 /*
1450  * Change the given block's address to ndaddr, finding its previous
1451  * location using ufs_bmaparray().
1452  *
1453  * Account for this change in the segment table.
1454  *
1455  * called with sp == NULL by roll-forwarding code.
1456  */
1457 void
1458 lfs_update_single(struct lfs *fs, struct segment *sp,
1459     struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1460 {
1461 	SEGUSE *sup;
1462 	struct buf *bp;
1463 	struct indir a[UFS_NIADDR + 2], *ap;
1464 	struct inode *ip;
1465 	daddr_t daddr, ooff;
1466 	int num, error;
1467 	int bb, osize, obb;
1468 
1469 	ASSERT_SEGLOCK(fs);
1470 	KASSERT(sp == NULL || sp->vp == vp);
1471 	ip = VTOI(vp);
1472 
1473 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1474 	if (error)
1475 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1476 
1477 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1478 	KASSERT(daddr <= LFS_MAX_DADDR);
1479 	if (daddr > 0)
1480 		daddr = dbtofsb(fs, daddr);
1481 
1482 	bb = numfrags(fs, size);
1483 	switch (num) {
1484 	    case 0:
1485 		    ooff = ip->i_ffs1_db[lbn];
1486 		    DEBUG_OOFF(0);
1487 		    if (ooff == UNWRITTEN)
1488 			    ip->i_ffs1_blocks += bb;
1489 		    else {
1490 			    /* possible fragment truncation or extension */
1491 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1492 			    ip->i_ffs1_blocks += (bb - obb);
1493 		    }
1494 		    ip->i_ffs1_db[lbn] = ndaddr;
1495 		    break;
1496 	    case 1:
1497 		    ooff = ip->i_ffs1_ib[a[0].in_off];
1498 		    DEBUG_OOFF(1);
1499 		    if (ooff == UNWRITTEN)
1500 			    ip->i_ffs1_blocks += bb;
1501 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1502 		    break;
1503 	    default:
1504 		    ap = &a[num - 1];
1505 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED,
1506 			B_MODIFY, &bp))
1507 			    panic("lfs_updatemeta: bread bno %" PRId64,
1508 				  ap->in_lbn);
1509 
1510 		    /* XXX ondisk32 */
1511 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
1512 		    DEBUG_OOFF(num);
1513 		    if (ooff == UNWRITTEN)
1514 			    ip->i_ffs1_blocks += bb;
1515 		    /* XXX ondisk32 */
1516 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1517 		    (void) VOP_BWRITE(bp->b_vp, bp);
1518 	}
1519 
1520 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1521 
1522 	/* Update hiblk when extending the file */
1523 	if (lbn > ip->i_lfs_hiblk)
1524 		ip->i_lfs_hiblk = lbn;
1525 
1526 	/*
1527 	 * Though we'd rather it couldn't, this *can* happen right now
1528 	 * if cleaning blocks and regular blocks coexist.
1529 	 */
1530 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1531 
1532 	/*
1533 	 * Update segment usage information, based on old size
1534 	 * and location.
1535 	 */
1536 	if (daddr > 0) {
1537 		u_int32_t oldsn = dtosn(fs, daddr);
1538 #ifdef DIAGNOSTIC
1539 		int ndupino;
1540 
1541 		if (sp && sp->seg_number == oldsn) {
1542 			ndupino = sp->ndupino;
1543 		} else {
1544 			ndupino = 0;
1545 		}
1546 #endif
1547 		KASSERT(oldsn < fs->lfs_nseg);
1548 		if (lbn >= 0 && lbn < UFS_NDADDR)
1549 			osize = ip->i_lfs_fragsize[lbn];
1550 		else
1551 			osize = fs->lfs_bsize;
1552 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1553 #ifdef DIAGNOSTIC
1554 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1555 		    < osize) {
1556 			printf("lfs_updatemeta: negative bytes "
1557 			       "(segment %" PRIu32 " short by %" PRId64
1558 			       ")\n", dtosn(fs, daddr),
1559 			       (int64_t)osize -
1560 			       (sizeof (struct ufs1_dinode) * ndupino +
1561 				sup->su_nbytes));
1562 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1563 			       ", addr = 0x%" PRIx64 "\n",
1564 			       (unsigned long long)ip->i_number, lbn, daddr);
1565 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1566 			panic("lfs_updatemeta: negative bytes");
1567 			sup->su_nbytes = osize -
1568 			    sizeof (struct ufs1_dinode) * ndupino;
1569 		}
1570 #endif
1571 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1572 		      " db 0x%" PRIx64 "\n",
1573 		      dtosn(fs, daddr), osize,
1574 		      ip->i_number, lbn, daddr));
1575 		sup->su_nbytes -= osize;
1576 		if (!(bp->b_flags & B_GATHERED)) {
1577 			mutex_enter(&lfs_lock);
1578 			fs->lfs_flags |= LFS_IFDIRTY;
1579 			mutex_exit(&lfs_lock);
1580 		}
1581 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1582 	}
1583 	/*
1584 	 * Now that this block has a new address, and its old
1585 	 * segment no longer owns it, we can forget about its
1586 	 * old size.
1587 	 */
1588 	if (lbn >= 0 && lbn < UFS_NDADDR)
1589 		ip->i_lfs_fragsize[lbn] = size;
1590 }
1591 
1592 /*
1593  * Update the metadata that points to the blocks listed in the FINFO
1594  * array.
1595  */
1596 void
1597 lfs_updatemeta(struct segment *sp)
1598 {
1599 	struct buf *sbp;
1600 	struct lfs *fs;
1601 	struct vnode *vp;
1602 	daddr_t lbn;
1603 	int i, nblocks, num;
1604 	int bb;
1605 	int bytesleft, size;
1606 
1607 	ASSERT_SEGLOCK(sp->fs);
1608 	vp = sp->vp;
1609 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1610 	KASSERT(nblocks >= 0);
1611 	KASSERT(vp != NULL);
1612 	if (nblocks == 0)
1613 		return;
1614 
1615 	/*
1616 	 * This count may be high due to oversize blocks from lfs_gop_write.
1617 	 * Correct for this. (XXX we should be able to keep track of these.)
1618 	 */
1619 	fs = sp->fs;
1620 	for (i = 0; i < nblocks; i++) {
1621 		if (sp->start_bpp[i] == NULL) {
1622 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1623 			nblocks = i;
1624 			break;
1625 		}
1626 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1627 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1628 		nblocks -= num - 1;
1629 	}
1630 
1631 	KASSERT(vp->v_type == VREG ||
1632 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1633 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1634 
1635 	/*
1636 	 * Sort the blocks.
1637 	 *
1638 	 * We have to sort even if the blocks come from the
1639 	 * cleaner, because there might be other pending blocks on the
1640 	 * same inode...and if we don't sort, and there are fragments
1641 	 * present, blocks may be written in the wrong place.
1642 	 */
1643 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1644 
1645 	/*
1646 	 * Record the length of the last block in case it's a fragment.
1647 	 * If there are indirect blocks present, they sort last.  An
1648 	 * indirect block will be lfs_bsize and its presence indicates
1649 	 * that you cannot have fragments.
1650 	 *
1651 	 * XXX This last is a lie.  A cleaned fragment can coexist with
1652 	 * XXX a later indirect block.	This will continue to be
1653 	 * XXX true until lfs_markv is fixed to do everything with
1654 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
1655 	 */
1656 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1657 		fs->lfs_bmask) + 1;
1658 
1659 	/*
1660 	 * Assign disk addresses, and update references to the logical
1661 	 * block and the segment usage information.
1662 	 */
1663 	for (i = nblocks; i--; ++sp->start_bpp) {
1664 		sbp = *sp->start_bpp;
1665 		lbn = *sp->start_lbp;
1666 		KASSERT(sbp->b_lblkno == lbn);
1667 
1668 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1669 
1670 		/*
1671 		 * If we write a frag in the wrong place, the cleaner won't
1672 		 * be able to correctly identify its size later, and the
1673 		 * segment will be uncleanable.	 (Even worse, it will assume
1674 		 * that the indirect block that actually ends the list
1675 		 * is of a smaller size!)
1676 		 */
1677 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1678 			panic("lfs_updatemeta: fragment is not last block");
1679 
1680 		/*
1681 		 * For each subblock in this possibly oversized block,
1682 		 * update its address on disk.
1683 		 */
1684 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1685 		KASSERT(vp == sbp->b_vp);
1686 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
1687 		     bytesleft -= fs->lfs_bsize) {
1688 			size = MIN(bytesleft, fs->lfs_bsize);
1689 			bb = numfrags(fs, size);
1690 			lbn = *sp->start_lbp++;
1691 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1692 			    size);
1693 			fs->lfs_offset += bb;
1694 		}
1695 
1696 	}
1697 
1698 	/* This inode has been modified */
1699 	LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1700 }
1701 
1702 /*
1703  * Move lfs_offset to a segment earlier than sn.
1704  */
1705 int
1706 lfs_rewind(struct lfs *fs, int newsn)
1707 {
1708 	int sn, osn, isdirty;
1709 	struct buf *bp;
1710 	SEGUSE *sup;
1711 
1712 	ASSERT_SEGLOCK(fs);
1713 
1714 	osn = dtosn(fs, fs->lfs_offset);
1715 	if (osn < newsn)
1716 		return 0;
1717 
1718 	/* lfs_avail eats the remaining space in this segment */
1719 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1720 
1721 	/* Find a low-numbered segment */
1722 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1723 		LFS_SEGENTRY(sup, fs, sn, bp);
1724 		isdirty = sup->su_flags & SEGUSE_DIRTY;
1725 		brelse(bp, 0);
1726 
1727 		if (!isdirty)
1728 			break;
1729 	}
1730 	if (sn == fs->lfs_nseg)
1731 		panic("lfs_rewind: no clean segments");
1732 	if (newsn >= 0 && sn >= newsn)
1733 		return ENOENT;
1734 	fs->lfs_nextseg = sn;
1735 	lfs_newseg(fs);
1736 	fs->lfs_offset = fs->lfs_curseg;
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * Start a new partial segment.
1743  *
1744  * Return 1 when we entered to a new segment.
1745  * Otherwise, return 0.
1746  */
1747 int
1748 lfs_initseg(struct lfs *fs)
1749 {
1750 	struct segment *sp = fs->lfs_sp;
1751 	SEGSUM *ssp;
1752 	struct buf *sbp;	/* buffer for SEGSUM */
1753 	int repeat = 0;		/* return value */
1754 
1755 	ASSERT_SEGLOCK(fs);
1756 	/* Advance to the next segment. */
1757 	if (!LFS_PARTIAL_FITS(fs)) {
1758 		SEGUSE *sup;
1759 		struct buf *bp;
1760 
1761 		/* lfs_avail eats the remaining space */
1762 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1763 						   fs->lfs_curseg);
1764 		/* Wake up any cleaning procs waiting on this file system. */
1765 		lfs_wakeup_cleaner(fs);
1766 		lfs_newseg(fs);
1767 		repeat = 1;
1768 		fs->lfs_offset = fs->lfs_curseg;
1769 
1770 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1771 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1772 
1773 		/*
1774 		 * If the segment contains a superblock, update the offset
1775 		 * and summary address to skip over it.
1776 		 */
1777 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1778 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1779 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1780 			sp->seg_bytes_left -= LFS_SBPAD;
1781 		}
1782 		brelse(bp, 0);
1783 		/* Segment zero could also contain the labelpad */
1784 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1785 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1786 			fs->lfs_offset +=
1787 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1788 			sp->seg_bytes_left -=
1789 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1790 		}
1791 	} else {
1792 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1793 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1794 				      (fs->lfs_offset - fs->lfs_curseg));
1795 	}
1796 	fs->lfs_lastpseg = fs->lfs_offset;
1797 
1798 	/* Record first address of this partial segment */
1799 	if (sp->seg_flags & SEGM_CLEAN) {
1800 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1801 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1802 			/* "1" is the artificial inc in lfs_seglock */
1803 			mutex_enter(&lfs_lock);
1804 			while (fs->lfs_iocount > 1) {
1805 				mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1806 				    "lfs_initseg", 0, &lfs_lock);
1807 			}
1808 			mutex_exit(&lfs_lock);
1809 			fs->lfs_cleanind = 0;
1810 		}
1811 	}
1812 
1813 	sp->fs = fs;
1814 	sp->ibp = NULL;
1815 	sp->idp = NULL;
1816 	sp->ninodes = 0;
1817 	sp->ndupino = 0;
1818 
1819 	sp->cbpp = sp->bpp;
1820 
1821 	/* Get a new buffer for SEGSUM */
1822 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1823 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1824 
1825 	/* ... and enter it into the buffer list. */
1826 	*sp->cbpp = sbp;
1827 	sp->cbpp++;
1828 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1829 
1830 	sp->start_bpp = sp->cbpp;
1831 
1832 	/* Set point to SEGSUM, initialize it. */
1833 	ssp = sp->segsum = sbp->b_data;
1834 	memset(ssp, 0, fs->lfs_sumsize);
1835 	ssp->ss_next = fs->lfs_nextseg;
1836 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
1837 	ssp->ss_magic = SS_MAGIC;
1838 
1839 	/* Set pointer to first FINFO, initialize it. */
1840 	sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1841 	sp->fip->fi_nblocks = 0;
1842 	sp->start_lbp = &sp->fip->fi_blocks[0];
1843 	sp->fip->fi_lastlength = 0;
1844 
1845 	sp->seg_bytes_left -= fs->lfs_sumsize;
1846 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1847 
1848 	return (repeat);
1849 }
1850 
1851 /*
1852  * Remove SEGUSE_INVAL from all segments.
1853  */
1854 void
1855 lfs_unset_inval_all(struct lfs *fs)
1856 {
1857 	SEGUSE *sup;
1858 	struct buf *bp;
1859 	int i;
1860 
1861 	for (i = 0; i < fs->lfs_nseg; i++) {
1862 		LFS_SEGENTRY(sup, fs, i, bp);
1863 		if (sup->su_flags & SEGUSE_INVAL) {
1864 			sup->su_flags &= ~SEGUSE_INVAL;
1865 			LFS_WRITESEGENTRY(sup, fs, i, bp);
1866 		} else
1867 			brelse(bp, 0);
1868 	}
1869 }
1870 
1871 /*
1872  * Return the next segment to write.
1873  */
1874 void
1875 lfs_newseg(struct lfs *fs)
1876 {
1877 	CLEANERINFO *cip;
1878 	SEGUSE *sup;
1879 	struct buf *bp;
1880 	int curseg, isdirty, sn, skip_inval;
1881 
1882 	ASSERT_SEGLOCK(fs);
1883 
1884 	/* Honor LFCNWRAPSTOP */
1885 	mutex_enter(&lfs_lock);
1886 	while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1887 		if (fs->lfs_wrappass) {
1888 			log(LOG_NOTICE, "%s: wrappass=%d\n",
1889 				fs->lfs_fsmnt, fs->lfs_wrappass);
1890 			fs->lfs_wrappass = 0;
1891 			break;
1892 		}
1893 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1894 		wakeup(&fs->lfs_nowrap);
1895 		log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1896 		mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1897 			&lfs_lock);
1898 	}
1899 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
1900 	mutex_exit(&lfs_lock);
1901 
1902 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1903 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1904 	      dtosn(fs, fs->lfs_nextseg)));
1905 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1906 	sup->su_nbytes = 0;
1907 	sup->su_nsums = 0;
1908 	sup->su_ninos = 0;
1909 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1910 
1911 	LFS_CLEANERINFO(cip, fs, bp);
1912 	--cip->clean;
1913 	++cip->dirty;
1914 	fs->lfs_nclean = cip->clean;
1915 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1916 
1917 	fs->lfs_lastseg = fs->lfs_curseg;
1918 	fs->lfs_curseg = fs->lfs_nextseg;
1919 	skip_inval = 1;
1920 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1921 		sn = (sn + 1) % fs->lfs_nseg;
1922 
1923 		if (sn == curseg) {
1924 			if (skip_inval)
1925 				skip_inval = 0;
1926 			else
1927 				panic("lfs_nextseg: no clean segments");
1928 		}
1929 		LFS_SEGENTRY(sup, fs, sn, bp);
1930 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1931 		/* Check SEGUSE_EMPTY as we go along */
1932 		if (isdirty && sup->su_nbytes == 0 &&
1933 		    !(sup->su_flags & SEGUSE_EMPTY))
1934 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
1935 		else
1936 			brelse(bp, 0);
1937 
1938 		if (!isdirty)
1939 			break;
1940 	}
1941 	if (skip_inval == 0)
1942 		lfs_unset_inval_all(fs);
1943 
1944 	++fs->lfs_nactive;
1945 	fs->lfs_nextseg = sntod(fs, sn);
1946 	if (lfs_dostats) {
1947 		++lfs_stats.segsused;
1948 	}
1949 }
1950 
1951 static struct buf *
1952 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1953     int n)
1954 {
1955 	struct lfs_cluster *cl;
1956 	struct buf **bpp, *bp;
1957 
1958 	ASSERT_SEGLOCK(fs);
1959 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1960 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1961 	memset(cl, 0, sizeof(*cl));
1962 	cl->fs = fs;
1963 	cl->bpp = bpp;
1964 	cl->bufcount = 0;
1965 	cl->bufsize = 0;
1966 
1967 	/* If this segment is being written synchronously, note that */
1968 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1969 		cl->flags |= LFS_CL_SYNC;
1970 		cl->seg = fs->lfs_sp;
1971 		++cl->seg->seg_iocount;
1972 	}
1973 
1974 	/* Get an empty buffer header, or maybe one with something on it */
1975 	bp = getiobuf(vp, true);
1976 	bp->b_dev = NODEV;
1977 	bp->b_blkno = bp->b_lblkno = addr;
1978 	bp->b_iodone = lfs_cluster_callback;
1979 	bp->b_private = cl;
1980 
1981 	return bp;
1982 }
1983 
1984 int
1985 lfs_writeseg(struct lfs *fs, struct segment *sp)
1986 {
1987 	struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1988 	SEGUSE *sup;
1989 	SEGSUM *ssp;
1990 	int i;
1991 	int do_again, nblocks, byteoffset;
1992 	size_t el_size;
1993 	struct lfs_cluster *cl;
1994 	u_short ninos;
1995 	struct vnode *devvp;
1996 	char *p = NULL;
1997 	struct vnode *vp;
1998 	int32_t *daddrp;	/* XXX ondisk32 */
1999 	int changed;
2000 	u_int32_t sum;
2001 #ifdef DEBUG
2002 	FINFO *fip;
2003 	int findex;
2004 #endif
2005 
2006 	ASSERT_SEGLOCK(fs);
2007 
2008 	ssp = (SEGSUM *)sp->segsum;
2009 
2010 	/*
2011 	 * If there are no buffers other than the segment summary to write,
2012 	 * don't do anything.  If we are the end of a dirop sequence, however,
2013 	 * write the empty segment summary anyway, to help out the
2014 	 * roll-forward agent.
2015 	 */
2016 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
2017 		if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
2018 			return 0;
2019 	}
2020 
2021 	/* Note if partial segment is being written by the cleaner */
2022 	if (sp->seg_flags & SEGM_CLEAN)
2023 		ssp->ss_flags |= SS_CLEAN;
2024 
2025 	/* Note if we are writing to reclaim */
2026 	if (sp->seg_flags & SEGM_RECLAIM) {
2027 		ssp->ss_flags |= SS_RECLAIM;
2028 		ssp->ss_reclino = fs->lfs_reclino;
2029 	}
2030 
2031 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2032 
2033 	/* Update the segment usage information. */
2034 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2035 
2036 	/* Loop through all blocks, except the segment summary. */
2037 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2038 		if ((*bpp)->b_vp != devvp) {
2039 			sup->su_nbytes += (*bpp)->b_bcount;
2040 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2041 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2042 			      sp->seg_number, (*bpp)->b_bcount,
2043 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2044 			      (*bpp)->b_blkno));
2045 		}
2046 	}
2047 
2048 #ifdef DEBUG
2049 	/* Check for zero-length and zero-version FINFO entries. */
2050 	fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2051 	for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2052 		KDASSERT(fip->fi_nblocks > 0);
2053 		KDASSERT(fip->fi_version > 0);
2054 		fip = (FINFO *)((char *)fip + FINFOSIZE +
2055 			sizeof(int32_t) * fip->fi_nblocks);
2056 	}
2057 #endif /* DEBUG */
2058 
2059 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2060 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2061 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2062 	      ssp->ss_ninos));
2063 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2064 	/* sup->su_nbytes += fs->lfs_sumsize; */
2065 	if (fs->lfs_version == 1)
2066 		sup->su_olastmod = time_second;
2067 	else
2068 		sup->su_lastmod = time_second;
2069 	sup->su_ninos += ninos;
2070 	++sup->su_nsums;
2071 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2072 
2073 	do_again = !(bp->b_flags & B_GATHERED);
2074 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2075 
2076 	/*
2077 	 * Mark blocks B_BUSY, to prevent then from being changed between
2078 	 * the checksum computation and the actual write.
2079 	 *
2080 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2081 	 * there are any, replace them with copies that have UNASSIGNED
2082 	 * instead.
2083 	 */
2084 	mutex_enter(&bufcache_lock);
2085 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2086 		++bpp;
2087 		bp = *bpp;
2088 		if (bp->b_iodone != NULL) {	 /* UBC or malloced buffer */
2089 			bp->b_cflags |= BC_BUSY;
2090 			continue;
2091 		}
2092 
2093 		while (bp->b_cflags & BC_BUSY) {
2094 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2095 			      " data summary corruption for ino %d, lbn %"
2096 			      PRId64 "\n",
2097 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2098 			bp->b_cflags |= BC_WANTED;
2099 			cv_wait(&bp->b_busy, &bufcache_lock);
2100 		}
2101 		bp->b_cflags |= BC_BUSY;
2102 		mutex_exit(&bufcache_lock);
2103 		unbusybp = NULL;
2104 
2105 		/*
2106 		 * Check and replace indirect block UNWRITTEN bogosity.
2107 		 * XXX See comment in lfs_writefile.
2108 		 */
2109 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2110 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
2111 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
2112 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2113 			      VTOI(bp->b_vp)->i_number,
2114 			      VTOI(bp->b_vp)->i_lfs_effnblks,
2115 			      VTOI(bp->b_vp)->i_ffs1_blocks));
2116 			/* Make a copy we'll make changes to */
2117 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2118 					   bp->b_bcount, LFS_NB_IBLOCK);
2119 			newbp->b_blkno = bp->b_blkno;
2120 			memcpy(newbp->b_data, bp->b_data,
2121 			       newbp->b_bcount);
2122 
2123 			changed = 0;
2124 			/* XXX ondisk32 */
2125 			for (daddrp = (int32_t *)(newbp->b_data);
2126 			     daddrp < (int32_t *)((char *)newbp->b_data +
2127 						  newbp->b_bcount); daddrp++) {
2128 				if (*daddrp == UNWRITTEN) {
2129 					++changed;
2130 					*daddrp = 0;
2131 				}
2132 			}
2133 			/*
2134 			 * Get rid of the old buffer.  Don't mark it clean,
2135 			 * though, if it still has dirty data on it.
2136 			 */
2137 			if (changed) {
2138 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2139 				      " bp = %p newbp = %p\n", changed, bp,
2140 				      newbp));
2141 				*bpp = newbp;
2142 				bp->b_flags &= ~B_GATHERED;
2143 				bp->b_error = 0;
2144 				if (bp->b_iodone != NULL) {
2145 					DLOG((DLOG_SEG, "lfs_writeseg: "
2146 					      "indir bp should not be B_CALL\n"));
2147 					biodone(bp);
2148 					bp = NULL;
2149 				} else {
2150 					/* Still on free list, leave it there */
2151 					unbusybp = bp;
2152 					/*
2153 					 * We have to re-decrement lfs_avail
2154 					 * since this block is going to come
2155 					 * back around to us in the next
2156 					 * segment.
2157 					 */
2158 					fs->lfs_avail -=
2159 					    btofsb(fs, bp->b_bcount);
2160 				}
2161 			} else {
2162 				lfs_freebuf(fs, newbp);
2163 			}
2164 		}
2165 		mutex_enter(&bufcache_lock);
2166 		if (unbusybp != NULL) {
2167 			unbusybp->b_cflags &= ~BC_BUSY;
2168 			if (unbusybp->b_cflags & BC_WANTED)
2169 				cv_broadcast(&bp->b_busy);
2170 		}
2171 	}
2172 	mutex_exit(&bufcache_lock);
2173 
2174 	/*
2175 	 * Compute checksum across data and then across summary; the first
2176 	 * block (the summary block) is skipped.  Set the create time here
2177 	 * so that it's guaranteed to be later than the inode mod times.
2178 	 */
2179 	sum = 0;
2180 	if (fs->lfs_version == 1)
2181 		el_size = sizeof(u_long);
2182 	else
2183 		el_size = sizeof(u_int32_t);
2184 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2185 		++bpp;
2186 		/* Loop through gop_write cluster blocks */
2187 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2188 		     byteoffset += fs->lfs_bsize) {
2189 #ifdef LFS_USE_B_INVAL
2190 			if (((*bpp)->b_cflags & BC_INVAL) != 0 &&
2191 			    (*bpp)->b_iodone != NULL) {
2192 				if (copyin((void *)(*bpp)->b_saveaddr +
2193 					   byteoffset, dp, el_size)) {
2194 					panic("lfs_writeseg: copyin failed [1]:"
2195 						" ino %d blk %" PRId64,
2196 						VTOI((*bpp)->b_vp)->i_number,
2197 						(*bpp)->b_lblkno);
2198 				}
2199 			} else
2200 #endif /* LFS_USE_B_INVAL */
2201 			{
2202 				sum = lfs_cksum_part((char *)
2203 				    (*bpp)->b_data + byteoffset, el_size, sum);
2204 			}
2205 		}
2206 	}
2207 	if (fs->lfs_version == 1)
2208 		ssp->ss_ocreate = time_second;
2209 	else {
2210 		ssp->ss_create = time_second;
2211 		ssp->ss_serial = ++fs->lfs_serial;
2212 		ssp->ss_ident  = fs->lfs_ident;
2213 	}
2214 	ssp->ss_datasum = lfs_cksum_fold(sum);
2215 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2216 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2217 
2218 	mutex_enter(&lfs_lock);
2219 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2220 			  btofsb(fs, fs->lfs_sumsize));
2221 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2222 			  btofsb(fs, fs->lfs_sumsize));
2223 	mutex_exit(&lfs_lock);
2224 
2225 	/*
2226 	 * When we simply write the blocks we lose a rotation for every block
2227 	 * written.  To avoid this problem, we cluster the buffers into a
2228 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
2229 	 * devices can handle, use that for the size of the chunks.
2230 	 *
2231 	 * Blocks that are already clusters (from GOP_WRITE), however, we
2232 	 * don't bother to copy into other clusters.
2233 	 */
2234 
2235 #define CHUNKSIZE MAXPHYS
2236 
2237 	if (devvp == NULL)
2238 		panic("devvp is NULL");
2239 	for (bpp = sp->bpp, i = nblocks; i;) {
2240 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2241 		cl = cbp->b_private;
2242 
2243 		cbp->b_flags |= B_ASYNC;
2244 		cbp->b_cflags |= BC_BUSY;
2245 		cbp->b_bcount = 0;
2246 
2247 #if defined(DEBUG) && defined(DIAGNOSTIC)
2248 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2249 		    / sizeof(int32_t)) {
2250 			panic("lfs_writeseg: real bpp overwrite");
2251 		}
2252 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2253 			panic("lfs_writeseg: theoretical bpp overwrite");
2254 		}
2255 #endif
2256 
2257 		/*
2258 		 * Construct the cluster.
2259 		 */
2260 		mutex_enter(&lfs_lock);
2261 		++fs->lfs_iocount;
2262 		mutex_exit(&lfs_lock);
2263 		while (i && cbp->b_bcount < CHUNKSIZE) {
2264 			bp = *bpp;
2265 
2266 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2267 				break;
2268 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2269 				break;
2270 
2271 			/* Clusters from GOP_WRITE are expedited */
2272 			if (bp->b_bcount > fs->lfs_bsize) {
2273 				if (cbp->b_bcount > 0)
2274 					/* Put in its own buffer */
2275 					break;
2276 				else {
2277 					cbp->b_data = bp->b_data;
2278 				}
2279 			} else if (cbp->b_bcount == 0) {
2280 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2281 							     LFS_NB_CLUSTER);
2282 				cl->flags |= LFS_CL_MALLOC;
2283 			}
2284 #ifdef DIAGNOSTIC
2285 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2286 					      btodb(bp->b_bcount - 1))) !=
2287 			    sp->seg_number) {
2288 				printf("blk size %d daddr %" PRIx64
2289 				    " not in seg %d\n",
2290 				    bp->b_bcount, bp->b_blkno,
2291 				    sp->seg_number);
2292 				panic("segment overwrite");
2293 			}
2294 #endif
2295 
2296 #ifdef LFS_USE_B_INVAL
2297 			/*
2298 			 * Fake buffers from the cleaner are marked as B_INVAL.
2299 			 * We need to copy the data from user space rather than
2300 			 * from the buffer indicated.
2301 			 * XXX == what do I do on an error?
2302 			 */
2303 			if ((bp->b_cflags & BC_INVAL) != 0 &&
2304 			    bp->b_iodone != NULL) {
2305 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2306 					panic("lfs_writeseg: "
2307 					    "copyin failed [2]");
2308 			} else
2309 #endif /* LFS_USE_B_INVAL */
2310 			if (cl->flags & LFS_CL_MALLOC) {
2311 				/* copy data into our cluster. */
2312 				memcpy(p, bp->b_data, bp->b_bcount);
2313 				p += bp->b_bcount;
2314 			}
2315 
2316 			cbp->b_bcount += bp->b_bcount;
2317 			cl->bufsize += bp->b_bcount;
2318 
2319 			bp->b_flags &= ~B_READ;
2320 			bp->b_error = 0;
2321 			cl->bpp[cl->bufcount++] = bp;
2322 
2323 			vp = bp->b_vp;
2324 			mutex_enter(&bufcache_lock);
2325 			mutex_enter(vp->v_interlock);
2326 			bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2327 			reassignbuf(bp, vp);
2328 			vp->v_numoutput++;
2329 			mutex_exit(vp->v_interlock);
2330 			mutex_exit(&bufcache_lock);
2331 
2332 			bpp++;
2333 			i--;
2334 		}
2335 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2336 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2337 		else
2338 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2339 		mutex_enter(devvp->v_interlock);
2340 		devvp->v_numoutput++;
2341 		mutex_exit(devvp->v_interlock);
2342 		VOP_STRATEGY(devvp, cbp);
2343 		curlwp->l_ru.ru_oublock++;
2344 	}
2345 
2346 	if (lfs_dostats) {
2347 		++lfs_stats.psegwrites;
2348 		lfs_stats.blocktot += nblocks - 1;
2349 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2350 			++lfs_stats.psyncwrites;
2351 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2352 			++lfs_stats.pcleanwrites;
2353 			lfs_stats.cleanblocks += nblocks - 1;
2354 		}
2355 	}
2356 
2357 	return (lfs_initseg(fs) || do_again);
2358 }
2359 
2360 void
2361 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2362 {
2363 	struct buf *bp;
2364 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2365 	int s;
2366 
2367 	ASSERT_MAYBE_SEGLOCK(fs);
2368 #ifdef DIAGNOSTIC
2369 	KASSERT(fs->lfs_magic == LFS_MAGIC);
2370 #endif
2371 	/*
2372 	 * If we can write one superblock while another is in
2373 	 * progress, we risk not having a complete checkpoint if we crash.
2374 	 * So, block here if a superblock write is in progress.
2375 	 */
2376 	mutex_enter(&lfs_lock);
2377 	s = splbio();
2378 	while (fs->lfs_sbactive) {
2379 		mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2380 			&lfs_lock);
2381 	}
2382 	fs->lfs_sbactive = daddr;
2383 	splx(s);
2384 	mutex_exit(&lfs_lock);
2385 
2386 	/* Set timestamp of this version of the superblock */
2387 	if (fs->lfs_version == 1)
2388 		fs->lfs_otstamp = time_second;
2389 	fs->lfs_tstamp = time_second;
2390 
2391 	/* Checksum the superblock and copy it into a buffer. */
2392 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2393 	bp = lfs_newbuf(fs, devvp,
2394 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2395 	memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2396 	    LFS_SBPAD - sizeof(struct dlfs));
2397 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2398 
2399 	bp->b_cflags |= BC_BUSY;
2400 	bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2401 	bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2402 	bp->b_error = 0;
2403 	bp->b_iodone = lfs_supercallback;
2404 
2405 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2406 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2407 	else
2408 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2409 	curlwp->l_ru.ru_oublock++;
2410 
2411 	mutex_enter(devvp->v_interlock);
2412 	devvp->v_numoutput++;
2413 	mutex_exit(devvp->v_interlock);
2414 
2415 	mutex_enter(&lfs_lock);
2416 	++fs->lfs_iocount;
2417 	mutex_exit(&lfs_lock);
2418 	VOP_STRATEGY(devvp, bp);
2419 }
2420 
2421 /*
2422  * Logical block number match routines used when traversing the dirty block
2423  * chain.
2424  */
2425 int
2426 lfs_match_fake(struct lfs *fs, struct buf *bp)
2427 {
2428 
2429 	ASSERT_SEGLOCK(fs);
2430 	return LFS_IS_MALLOC_BUF(bp);
2431 }
2432 
2433 #if 0
2434 int
2435 lfs_match_real(struct lfs *fs, struct buf *bp)
2436 {
2437 
2438 	ASSERT_SEGLOCK(fs);
2439 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2440 }
2441 #endif
2442 
2443 int
2444 lfs_match_data(struct lfs *fs, struct buf *bp)
2445 {
2446 
2447 	ASSERT_SEGLOCK(fs);
2448 	return (bp->b_lblkno >= 0);
2449 }
2450 
2451 int
2452 lfs_match_indir(struct lfs *fs, struct buf *bp)
2453 {
2454 	daddr_t lbn;
2455 
2456 	ASSERT_SEGLOCK(fs);
2457 	lbn = bp->b_lblkno;
2458 	return (lbn < 0 && (-lbn - UFS_NDADDR) % NINDIR(fs) == 0);
2459 }
2460 
2461 int
2462 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2463 {
2464 	daddr_t lbn;
2465 
2466 	ASSERT_SEGLOCK(fs);
2467 	lbn = bp->b_lblkno;
2468 	return (lbn < 0 && (-lbn - UFS_NDADDR) % NINDIR(fs) == 1);
2469 }
2470 
2471 int
2472 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2473 {
2474 	daddr_t lbn;
2475 
2476 	ASSERT_SEGLOCK(fs);
2477 	lbn = bp->b_lblkno;
2478 	return (lbn < 0 && (-lbn - UFS_NDADDR) % NINDIR(fs) == 2);
2479 }
2480 
2481 static void
2482 lfs_free_aiodone(struct buf *bp)
2483 {
2484 	struct lfs *fs;
2485 
2486 	KERNEL_LOCK(1, curlwp);
2487 	fs = bp->b_private;
2488 	ASSERT_NO_SEGLOCK(fs);
2489 	lfs_freebuf(fs, bp);
2490 	KERNEL_UNLOCK_LAST(curlwp);
2491 }
2492 
2493 static void
2494 lfs_super_aiodone(struct buf *bp)
2495 {
2496 	struct lfs *fs;
2497 
2498 	KERNEL_LOCK(1, curlwp);
2499 	fs = bp->b_private;
2500 	ASSERT_NO_SEGLOCK(fs);
2501 	mutex_enter(&lfs_lock);
2502 	fs->lfs_sbactive = 0;
2503 	if (--fs->lfs_iocount <= 1)
2504 		wakeup(&fs->lfs_iocount);
2505 	wakeup(&fs->lfs_sbactive);
2506 	mutex_exit(&lfs_lock);
2507 	lfs_freebuf(fs, bp);
2508 	KERNEL_UNLOCK_LAST(curlwp);
2509 }
2510 
2511 static void
2512 lfs_cluster_aiodone(struct buf *bp)
2513 {
2514 	struct lfs_cluster *cl;
2515 	struct lfs *fs;
2516 	struct buf *tbp, *fbp;
2517 	struct vnode *vp, *devvp, *ovp;
2518 	struct inode *ip;
2519 	int error;
2520 
2521 	KERNEL_LOCK(1, curlwp);
2522 
2523 	error = bp->b_error;
2524 	cl = bp->b_private;
2525 	fs = cl->fs;
2526 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2527 	ASSERT_NO_SEGLOCK(fs);
2528 
2529 	/* Put the pages back, and release the buffer */
2530 	while (cl->bufcount--) {
2531 		tbp = cl->bpp[cl->bufcount];
2532 		KASSERT(tbp->b_cflags & BC_BUSY);
2533 		if (error) {
2534 			tbp->b_error = error;
2535 		}
2536 
2537 		/*
2538 		 * We're done with tbp.	 If it has not been re-dirtied since
2539 		 * the cluster was written, free it.  Otherwise, keep it on
2540 		 * the locked list to be written again.
2541 		 */
2542 		vp = tbp->b_vp;
2543 
2544 		tbp->b_flags &= ~B_GATHERED;
2545 
2546 		LFS_BCLEAN_LOG(fs, tbp);
2547 
2548 		mutex_enter(&bufcache_lock);
2549 		if (tbp->b_iodone == NULL) {
2550 			KASSERT(tbp->b_flags & B_LOCKED);
2551 			bremfree(tbp);
2552 			if (vp) {
2553 				mutex_enter(vp->v_interlock);
2554 				reassignbuf(tbp, vp);
2555 				mutex_exit(vp->v_interlock);
2556 			}
2557 			tbp->b_flags |= B_ASYNC; /* for biodone */
2558 		}
2559 
2560 		if (((tbp->b_flags | tbp->b_oflags) &
2561 		    (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2562 			LFS_UNLOCK_BUF(tbp);
2563 
2564 		if (tbp->b_oflags & BO_DONE) {
2565 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2566 				cl->bufcount, (long)tbp->b_flags));
2567 		}
2568 
2569 		if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2570 			/*
2571 			 * A buffer from the page daemon.
2572 			 * We use the same iodone as it does,
2573 			 * so we must manually disassociate its
2574 			 * buffers from the vp.
2575 			 */
2576 			if ((ovp = tbp->b_vp) != NULL) {
2577 				/* This is just silly */
2578 				mutex_enter(ovp->v_interlock);
2579 				brelvp(tbp);
2580 				mutex_exit(ovp->v_interlock);
2581 				tbp->b_vp = vp;
2582 				tbp->b_objlock = vp->v_interlock;
2583 			}
2584 			/* Put it back the way it was */
2585 			tbp->b_flags |= B_ASYNC;
2586 			/* Master buffers have BC_AGE */
2587 			if (tbp->b_private == tbp)
2588 				tbp->b_cflags |= BC_AGE;
2589 		}
2590 		mutex_exit(&bufcache_lock);
2591 
2592 		biodone(tbp);
2593 
2594 		/*
2595 		 * If this is the last block for this vnode, but
2596 		 * there are other blocks on its dirty list,
2597 		 * set IN_MODIFIED/IN_CLEANING depending on what
2598 		 * sort of block.  Only do this for our mount point,
2599 		 * not for, e.g., inode blocks that are attached to
2600 		 * the devvp.
2601 		 * XXX KS - Shouldn't we set *both* if both types
2602 		 * of blocks are present (traverse the dirty list?)
2603 		 */
2604 		mutex_enter(vp->v_interlock);
2605 		mutex_enter(&lfs_lock);
2606 		if (vp != devvp && vp->v_numoutput == 0 &&
2607 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2608 			ip = VTOI(vp);
2609 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2610 			       ip->i_number));
2611 			if (LFS_IS_MALLOC_BUF(fbp))
2612 				LFS_SET_UINO(ip, IN_CLEANING);
2613 			else
2614 				LFS_SET_UINO(ip, IN_MODIFIED);
2615 		}
2616 		cv_broadcast(&vp->v_cv);
2617 		mutex_exit(&lfs_lock);
2618 		mutex_exit(vp->v_interlock);
2619 	}
2620 
2621 	/* Fix up the cluster buffer, and release it */
2622 	if (cl->flags & LFS_CL_MALLOC)
2623 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2624 	putiobuf(bp);
2625 
2626 	/* Note i/o done */
2627 	if (cl->flags & LFS_CL_SYNC) {
2628 		if (--cl->seg->seg_iocount == 0)
2629 			wakeup(&cl->seg->seg_iocount);
2630 	}
2631 	mutex_enter(&lfs_lock);
2632 #ifdef DIAGNOSTIC
2633 	if (fs->lfs_iocount == 0)
2634 		panic("lfs_cluster_aiodone: zero iocount");
2635 #endif
2636 	if (--fs->lfs_iocount <= 1)
2637 		wakeup(&fs->lfs_iocount);
2638 	mutex_exit(&lfs_lock);
2639 
2640 	KERNEL_UNLOCK_LAST(curlwp);
2641 
2642 	pool_put(&fs->lfs_bpppool, cl->bpp);
2643 	cl->bpp = NULL;
2644 	pool_put(&fs->lfs_clpool, cl);
2645 }
2646 
2647 static void
2648 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2649 {
2650 	/* reset b_iodone for when this is a single-buf i/o. */
2651 	bp->b_iodone = aiodone;
2652 
2653 	workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2654 }
2655 
2656 static void
2657 lfs_cluster_callback(struct buf *bp)
2658 {
2659 
2660 	lfs_generic_callback(bp, lfs_cluster_aiodone);
2661 }
2662 
2663 void
2664 lfs_supercallback(struct buf *bp)
2665 {
2666 
2667 	lfs_generic_callback(bp, lfs_super_aiodone);
2668 }
2669 
2670 /*
2671  * The only buffers that are going to hit these functions are the
2672  * segment write blocks, or the segment summaries, or the superblocks.
2673  *
2674  * All of the above are created by lfs_newbuf, and so do not need to be
2675  * released via brelse.
2676  */
2677 void
2678 lfs_callback(struct buf *bp)
2679 {
2680 
2681 	lfs_generic_callback(bp, lfs_free_aiodone);
2682 }
2683 
2684 /*
2685  * Shellsort (diminishing increment sort) from Data Structures and
2686  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2687  * see also Knuth Vol. 3, page 84.  The increments are selected from
2688  * formula (8), page 95.  Roughly O(N^3/2).
2689  */
2690 /*
2691  * This is our own private copy of shellsort because we want to sort
2692  * two parallel arrays (the array of buffer pointers and the array of
2693  * logical block numbers) simultaneously.  Note that we cast the array
2694  * of logical block numbers to a unsigned in this routine so that the
2695  * negative block numbers (meta data blocks) sort AFTER the data blocks.
2696  */
2697 
2698 void
2699 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2700 {
2701 	static int __rsshell_increments[] = { 4, 1, 0 };
2702 	int incr, *incrp, t1, t2;
2703 	struct buf *bp_temp;
2704 
2705 #ifdef DEBUG
2706 	incr = 0;
2707 	for (t1 = 0; t1 < nmemb; t1++) {
2708 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2709 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2710 				/* dump before panic */
2711 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
2712 				    nmemb, size);
2713 				incr = 0;
2714 				for (t1 = 0; t1 < nmemb; t1++) {
2715 					const struct buf *bp = bp_array[t1];
2716 
2717 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2718 					    PRIu64 "\n", t1,
2719 					    (uint64_t)bp->b_bcount,
2720 					    (uint64_t)bp->b_lblkno);
2721 					printf("lbns:");
2722 					for (t2 = 0; t2 * size < bp->b_bcount;
2723 					    t2++) {
2724 						printf(" %" PRId32,
2725 						    lb_array[incr++]);
2726 					}
2727 					printf("\n");
2728 				}
2729 				panic("lfs_shellsort: inconsistent input");
2730 			}
2731 		}
2732 	}
2733 #endif
2734 
2735 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2736 		for (t1 = incr; t1 < nmemb; ++t1)
2737 			for (t2 = t1 - incr; t2 >= 0;)
2738 				if ((u_int32_t)bp_array[t2]->b_lblkno >
2739 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2740 					bp_temp = bp_array[t2];
2741 					bp_array[t2] = bp_array[t2 + incr];
2742 					bp_array[t2 + incr] = bp_temp;
2743 					t2 -= incr;
2744 				} else
2745 					break;
2746 
2747 	/* Reform the list of logical blocks */
2748 	incr = 0;
2749 	for (t1 = 0; t1 < nmemb; t1++) {
2750 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2751 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2752 		}
2753 	}
2754 }
2755 
2756 /*
2757  * Call vget with LK_NOWAIT.  If we are the one who holds VI_XLOCK,
2758  * however, we must press on.  Just fake success in that case.
2759  */
2760 int
2761 lfs_vref(struct vnode *vp)
2762 {
2763 	struct lfs *fs;
2764 
2765 	KASSERT(mutex_owned(vp->v_interlock));
2766 
2767 	fs = VTOI(vp)->i_lfs;
2768 
2769 	ASSERT_MAYBE_SEGLOCK(fs);
2770 
2771 	/*
2772 	 * If we return 1 here during a flush, we risk vinvalbuf() not
2773 	 * being able to flush all of the pages from this vnode, which
2774 	 * will cause it to panic.  So, return 0 if a flush is in progress.
2775 	 */
2776 	if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2777  		++fs->lfs_flushvp_fakevref;
2778 		mutex_exit(vp->v_interlock);
2779  		return 0;
2780  	}
2781 
2782 	return vget(vp, LK_NOWAIT);
2783 }
2784 
2785 /*
2786  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2787  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2788  */
2789 void
2790 lfs_vunref(struct vnode *vp)
2791 {
2792 	struct lfs *fs;
2793 
2794 	fs = VTOI(vp)->i_lfs;
2795 	ASSERT_MAYBE_SEGLOCK(fs);
2796 
2797 	/*
2798 	 * Analogous to lfs_vref, if the node is flushing, fake it.
2799 	 */
2800 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2801 		--fs->lfs_flushvp_fakevref;
2802 		return;
2803 	}
2804 
2805 	/* does not call inactive */
2806 	mutex_enter(vp->v_interlock);
2807 	vrelel(vp, 0);
2808 }
2809 
2810 /*
2811  * We use this when we have vnodes that were loaded in solely for cleaning.
2812  * There is no reason to believe that these vnodes will be referenced again
2813  * soon, since the cleaning process is unrelated to normal filesystem
2814  * activity.  Putting cleaned vnodes at the tail of the list has the effect
2815  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
2816  * cleaning at the head of the list, instead.
2817  */
2818 void
2819 lfs_vunref_head(struct vnode *vp)
2820 {
2821 
2822 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2823 
2824 	/* does not call inactive, inserts non-held vnode at head of freelist */
2825 	mutex_enter(vp->v_interlock);
2826 	vrelel(vp, 0);
2827 }
2828 
2829 
2830 /*
2831  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
2832  * point at uninitialized space.
2833  */
2834 void
2835 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2836 {
2837 	struct segment *sp = fs->lfs_sp;
2838 
2839 	KASSERT(vers > 0);
2840 
2841 	if (sp->seg_bytes_left < fs->lfs_bsize ||
2842 	    sp->sum_bytes_left < sizeof(struct finfo))
2843 		(void) lfs_writeseg(fs, fs->lfs_sp);
2844 
2845 	sp->sum_bytes_left -= FINFOSIZE;
2846 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2847 	sp->fip->fi_nblocks = 0;
2848 	sp->fip->fi_ino = ino;
2849 	sp->fip->fi_version = vers;
2850 }
2851 
2852 /*
2853  * Release the FINFO entry, either clearing out an unused entry or
2854  * advancing us to the next available entry.
2855  */
2856 void
2857 lfs_release_finfo(struct lfs *fs)
2858 {
2859 	struct segment *sp = fs->lfs_sp;
2860 
2861 	if (sp->fip->fi_nblocks != 0) {
2862 		sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2863 			sizeof(int32_t) * sp->fip->fi_nblocks);
2864 		sp->start_lbp = &sp->fip->fi_blocks[0];
2865 	} else {
2866 		sp->sum_bytes_left += FINFOSIZE;
2867 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
2868 	}
2869 }
2870