xref: /netbsd-src/sys/ufs/lfs/lfs_segment.c (revision 7c7c171d130af9949261bc7dce2150a03c3d239c)
1 /*	$NetBSD: lfs_segment.c,v 1.10 1998/03/01 02:23:24 fvdl Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/namei.h>
41 #include <sys/kernel.h>
42 #include <sys/resourcevar.h>
43 #include <sys/file.h>
44 #include <sys/stat.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 
52 #include <miscfs/specfs/specdev.h>
53 #include <miscfs/fifofs/fifo.h>
54 
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/dir.h>
58 #include <ufs/ufs/ufsmount.h>
59 #include <ufs/ufs/ufs_extern.h>
60 
61 #include <ufs/lfs/lfs.h>
62 #include <ufs/lfs/lfs_extern.h>
63 
64 extern int count_lock_queue __P((void));
65 extern struct simplelock vnode_free_list_slock;		/* XXX */
66 extern TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* XXX */
67 
68 #define MAX_ACTIVE	10
69 /*
70  * Determine if it's OK to start a partial in this segment, or if we need
71  * to go on to a new segment.
72  */
73 #define	LFS_PARTIAL_FITS(fs) \
74 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
75 	1 << (fs)->lfs_fsbtodb)
76 
77 void	 lfs_callback __P((struct buf *));
78 void	 lfs_gather __P((struct lfs *, struct segment *,
79 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
80 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
81 void	 lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
82 int	 lfs_match_data __P((struct lfs *, struct buf *));
83 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
84 int	 lfs_match_indir __P((struct lfs *, struct buf *));
85 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
86 void	 lfs_newseg __P((struct lfs *));
87 void	 lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
88 void	 lfs_supercallback __P((struct buf *));
89 void	 lfs_updatemeta __P((struct segment *));
90 int	 lfs_vref __P((struct vnode *));
91 void	 lfs_vunref __P((struct vnode *));
92 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
93 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
94 int	 lfs_writeseg __P((struct lfs *, struct segment *));
95 void	 lfs_writesuper __P((struct lfs *));
96 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
97 	    struct segment *sp, int dirops));
98 
99 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
100 
101 /* Statistics Counters */
102 #define DOSTATS
103 struct lfs_stats lfs_stats;
104 
105 /* op values to lfs_writevnodes */
106 #define	VN_REG	0
107 #define	VN_DIROP	1
108 #define	VN_EMPTY	2
109 
110 /*
111  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
112  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
113  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
114  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
115  */
116 
117 int
118 lfs_vflush(vp)
119 	struct vnode *vp;
120 {
121 	struct inode *ip;
122 	struct lfs *fs;
123 	struct segment *sp;
124 
125 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
126 	if (fs->lfs_nactive > MAX_ACTIVE)
127 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
128 	lfs_seglock(fs, SEGM_SYNC);
129 	sp = fs->lfs_sp;
130 
131 
132 	ip = VTOI(vp);
133 	if (vp->v_dirtyblkhd.lh_first == NULL)
134 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
135 
136 	do {
137 		do {
138 			if (vp->v_dirtyblkhd.lh_first != NULL)
139 				lfs_writefile(fs, sp, vp);
140 		} while (lfs_writeinode(fs, sp, ip));
141 
142 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
143 
144 #ifdef DOSTATS
145 	++lfs_stats.nwrites;
146 	if (sp->seg_flags & SEGM_SYNC)
147 		++lfs_stats.nsync_writes;
148 	if (sp->seg_flags & SEGM_CKP)
149 		++lfs_stats.ncheckpoints;
150 #endif
151 	lfs_segunlock(fs);
152 	return (0);
153 }
154 
155 void
156 lfs_writevnodes(fs, mp, sp, op)
157 	struct lfs *fs;
158 	struct mount *mp;
159 	struct segment *sp;
160 	int op;
161 {
162 	struct inode *ip;
163 	struct vnode *vp;
164 
165 /* BEGIN HACK */
166 #define	VN_OFFSET	(((void *)&vp->v_mntvnodes.le_next) - (void *)vp)
167 #define	BACK_VP(VP)	((struct vnode *)(((void *)VP->v_mntvnodes.le_prev) - VN_OFFSET))
168 #define	BEG_OF_VLIST	((struct vnode *)(((void *)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
169 
170 /* Find last vnode. */
171 loop:   for (vp = mp->mnt_vnodelist.lh_first;
172 	     vp && vp->v_mntvnodes.le_next != NULL;
173 	     vp = vp->v_mntvnodes.le_next);
174 	for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
175 /* END HACK */
176 /*
177 loop:
178 	for (vp = mp->mnt_vnodelist.lh_first;
179 	     vp != NULL;
180 	     vp = vp->v_mntvnodes.le_next) {
181 */
182 		/*
183 		 * If the vnode that we are about to sync is no longer
184 		 * associated with this mount point, start over.
185 		 */
186 		if (vp->v_mount != mp)
187 			goto loop;
188 
189 		/* XXX ignore dirops for now
190 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
191 		    op != VN_DIROP && (vp->v_flag & VDIROP))
192 			continue;
193 		*/
194 
195 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
196 			continue;
197 
198 		if (vp->v_type == VNON)
199 			continue;
200 
201 		if (lfs_vref(vp))
202 			continue;
203 
204 		/*
205 		 * Write the inode/file if dirty and it's not the
206 		 * the IFILE.
207 		 */
208 		ip = VTOI(vp);
209 		if ((ip->i_flag &
210 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
211 		    vp->v_dirtyblkhd.lh_first != NULL) &&
212 		    ip->i_number != LFS_IFILE_INUM) {
213 			if (vp->v_dirtyblkhd.lh_first != NULL)
214 				lfs_writefile(fs, sp, vp);
215 			(void) lfs_writeinode(fs, sp, ip);
216 		}
217 		vp->v_flag &= ~VDIROP;
218 		lfs_vunref(vp);
219 	}
220 }
221 
222 int
223 lfs_segwrite(mp, flags)
224 	struct mount *mp;
225 	int flags;			/* Do a checkpoint. */
226 {
227 	struct buf *bp;
228 	struct inode *ip;
229 	struct lfs *fs;
230 	struct segment *sp;
231 	struct vnode *vp;
232 	SEGUSE *segusep;
233 	ufs_daddr_t ibno;
234 	CLEANERINFO *cip;
235 	int clean, do_ckp, error, i;
236 
237 	fs = VFSTOUFS(mp)->um_lfs;
238 
239  	/*
240  	 * If we have fewer than 2 clean segments, wait until cleaner
241 	 * writes.
242  	 */
243 	do {
244 		LFS_CLEANERINFO(cip, fs, bp);
245 		clean = cip->clean;
246 		brelse(bp);
247 		if (clean <= 2 || fs->lfs_avail <= 0) {
248 			/* printf ("segs clean: %d\n", clean); */
249 			wakeup(&lfs_allclean_wakeup);
250 			wakeup(&fs->lfs_nextseg);
251 			error = tsleep(&fs->lfs_avail, PRIBIO + 1,
252 			    "lfs writer", 0);
253 			if (error)
254 				return (error);
255 		}
256 	} while (clean <= 2 || fs->lfs_avail <= 0);
257 
258 	/*
259 	 * Allocate a segment structure and enough space to hold pointers to
260 	 * the maximum possible number of buffers which can be described in a
261 	 * single summary block.
262 	 */
263 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
264 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
265 	sp = fs->lfs_sp;
266 
267 	lfs_writevnodes(fs, mp, sp, VN_REG);
268 
269 	/* XXX ignore ordering of dirops for now */
270 	/* XXX
271 	fs->lfs_writer = 1;
272 	if (fs->lfs_dirops && (error =
273 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
274 		free(sp->bpp, M_SEGMENT);
275 		free(sp, M_SEGMENT);
276 		fs->lfs_writer = 0;
277 		return (error);
278 	}
279 
280 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
281 	*/
282 
283 	/*
284 	 * If we are doing a checkpoint, mark everything since the
285 	 * last checkpoint as no longer ACTIVE.
286 	 */
287 	if (do_ckp)
288 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
289 		     --ibno >= fs->lfs_cleansz; ) {
290 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
291 			    NOCRED, &bp))
292 
293 				panic("lfs: ifile read");
294 			segusep = (SEGUSE *)bp->b_data;
295 			for (i = fs->lfs_sepb; i--; segusep++)
296 				segusep->su_flags &= ~SEGUSE_ACTIVE;
297 
298 			error = VOP_BWRITE(bp);
299 		}
300 
301 	if (do_ckp || fs->lfs_doifile) {
302 redo:
303 		vp = fs->lfs_ivnode;
304 		while (vget(vp, LK_EXCLUSIVE))
305 			continue;
306 		ip = VTOI(vp);
307 		if (vp->v_dirtyblkhd.lh_first != NULL)
308 			lfs_writefile(fs, sp, vp);
309 		(void)lfs_writeinode(fs, sp, ip);
310 		vput(vp);
311 		if (lfs_writeseg(fs, sp) && do_ckp)
312 			goto redo;
313 	} else
314 		(void) lfs_writeseg(fs, sp);
315 
316 	/*
317 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
318 	 * moment, the user's process hangs around so we can sleep.
319 	 */
320 	/* XXX ignore dirops for now
321 	fs->lfs_writer = 0;
322 	fs->lfs_doifile = 0;
323 	wakeup(&fs->lfs_dirops);
324 	*/
325 
326 #ifdef DOSTATS
327 	++lfs_stats.nwrites;
328 	if (sp->seg_flags & SEGM_SYNC)
329 		++lfs_stats.nsync_writes;
330 	if (sp->seg_flags & SEGM_CKP)
331 		++lfs_stats.ncheckpoints;
332 #endif
333 	lfs_segunlock(fs);
334 	return (0);
335 }
336 
337 /*
338  * Write the dirty blocks associated with a vnode.
339  */
340 void
341 lfs_writefile(fs, sp, vp)
342 	struct lfs *fs;
343 	struct segment *sp;
344 	struct vnode *vp;
345 {
346 	struct buf *bp;
347 	struct finfo *fip;
348 	IFILE *ifp;
349 
350 	if (sp->seg_bytes_left < fs->lfs_bsize ||
351 	    sp->sum_bytes_left < sizeof(struct finfo))
352 		(void) lfs_writeseg(fs, sp);
353 
354 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
355 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
356 
357 	fip = sp->fip;
358 	fip->fi_nblocks = 0;
359 	fip->fi_ino = VTOI(vp)->i_number;
360 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
361 	fip->fi_version = ifp->if_version;
362 	brelse(bp);
363 
364 	/*
365 	 * It may not be necessary to write the meta-data blocks at this point,
366 	 * as the roll-forward recovery code should be able to reconstruct the
367 	 * list.
368 	 */
369 	lfs_gather(fs, sp, vp, lfs_match_data);
370 	lfs_gather(fs, sp, vp, lfs_match_indir);
371 	lfs_gather(fs, sp, vp, lfs_match_dindir);
372 #ifdef TRIPLE
373 	lfs_gather(fs, sp, vp, lfs_match_tindir);
374 #endif
375 
376 	fip = sp->fip;
377 	if (fip->fi_nblocks != 0) {
378 		sp->fip =
379 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
380 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks - 1));
381 		sp->start_lbp = &sp->fip->fi_blocks[0];
382 	} else {
383 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(ufs_daddr_t);
384 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
385 	}
386 }
387 
388 int
389 lfs_writeinode(fs, sp, ip)
390 	struct lfs *fs;
391 	struct segment *sp;
392 	struct inode *ip;
393 {
394 	struct buf *bp, *ibp;
395 	IFILE *ifp;
396 	SEGUSE *sup;
397 	ufs_daddr_t daddr;
398 	ino_t ino;
399 	int error, i, ndx;
400 	int redo_ifile = 0;
401 	struct timespec ts;
402 
403 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
404 		return(0);
405 
406 	/* Allocate a new inode block if necessary. */
407 	if (sp->ibp == NULL) {
408 		/* Allocate a new segment if necessary. */
409 		if (sp->seg_bytes_left < fs->lfs_bsize ||
410 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
411 			(void) lfs_writeseg(fs, sp);
412 
413 		/* Get next inode block. */
414 		daddr = fs->lfs_offset;
415 		fs->lfs_offset += fsbtodb(fs, 1);
416 		sp->ibp = *sp->cbpp++ =
417 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
418 		    fs->lfs_bsize);
419 		/* Zero out inode numbers */
420 		for (i = 0; i < INOPB(fs); ++i)
421 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
422 		++sp->start_bpp;
423 		fs->lfs_avail -= fsbtodb(fs, 1);
424 		/* Set remaining space counters. */
425 		sp->seg_bytes_left -= fs->lfs_bsize;
426 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
427 		ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
428 		    sp->ninodes / INOPB(fs) - 1;
429 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
430 	}
431 
432 	/* Update the inode times and copy the inode onto the inode page. */
433 	if (ip->i_flag & IN_MODIFIED)
434 		--fs->lfs_uinodes;
435 	TIMEVAL_TO_TIMESPEC(&time, &ts);
436 	FFS_ITIMES(ip, &ts, &ts, &ts);
437 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
438 	bp = sp->ibp;
439 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din.ffs_din;
440 	/* Increment inode count in segment summary block. */
441 	++((SEGSUM *)(sp->segsum))->ss_ninos;
442 
443 	/* If this page is full, set flag to allocate a new page. */
444 	if (++sp->ninodes % INOPB(fs) == 0)
445 		sp->ibp = NULL;
446 
447 	/*
448 	 * If updating the ifile, update the super-block.  Update the disk
449 	 * address and access times for this inode in the ifile.
450 	 */
451 	ino = ip->i_number;
452 	if (ino == LFS_IFILE_INUM) {
453 		daddr = fs->lfs_idaddr;
454 		fs->lfs_idaddr = bp->b_blkno;
455 	} else {
456 		LFS_IENTRY(ifp, fs, ino, ibp);
457 		daddr = ifp->if_daddr;
458 		ifp->if_daddr = bp->b_blkno;
459 		error = VOP_BWRITE(ibp);
460 	}
461 
462 	/*
463 	 * No need to update segment usage if there was no former inode address
464 	 * or if the last inode address is in the current partial segment.
465 	 */
466 	if (daddr != LFS_UNUSED_DADDR &&
467 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
468 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
469 #ifdef DIAGNOSTIC
470 		if (sup->su_nbytes < sizeof(struct dinode)) {
471 			/* XXX -- Change to a panic. */
472 			printf("lfs: negative bytes (segment %d)\n",
473 			    datosn(fs, daddr));
474 			panic("negative bytes");
475 		}
476 #endif
477 		sup->su_nbytes -= sizeof(struct dinode);
478 		redo_ifile =
479 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
480 		error = VOP_BWRITE(bp);
481 	}
482 	return (redo_ifile);
483 }
484 
485 int
486 lfs_gatherblock(sp, bp, sptr)
487 	struct segment *sp;
488 	struct buf *bp;
489 	int *sptr;
490 {
491 	struct lfs *fs;
492 	int version;
493 
494 	/*
495 	 * If full, finish this segment.  We may be doing I/O, so
496 	 * release and reacquire the splbio().
497 	 */
498 #ifdef DIAGNOSTIC
499 	if (sp->vp == NULL)
500 		panic ("lfs_gatherblock: Null vp in segment");
501 #endif
502 	fs = sp->fs;
503 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
504 	    sp->seg_bytes_left < bp->b_bcount) {
505 		if (sptr)
506 			splx(*sptr);
507 		lfs_updatemeta(sp);
508 
509 		version = sp->fip->fi_version;
510 		(void) lfs_writeseg(fs, sp);
511 
512 		sp->fip->fi_version = version;
513 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
514 		/* Add the current file to the segment summary. */
515 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
516 		sp->sum_bytes_left -=
517 		    sizeof(struct finfo) - sizeof(ufs_daddr_t);
518 
519 		if (sptr)
520 			*sptr = splbio();
521 		return(1);
522 	}
523 
524 	/* Insert into the buffer list, update the FINFO block. */
525 	bp->b_flags |= B_GATHERED;
526 	*sp->cbpp++ = bp;
527 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
528 
529 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
530 	sp->seg_bytes_left -= bp->b_bcount;
531 	return(0);
532 }
533 
534 void
535 lfs_gather(fs, sp, vp, match)
536 	struct lfs *fs;
537 	struct segment *sp;
538 	struct vnode *vp;
539 	int (*match) __P((struct lfs *, struct buf *));
540 {
541 	struct buf *bp;
542 	int s;
543 
544 	sp->vp = vp;
545 	s = splbio();
546 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
547 /* BEGIN HACK */
548 #define	BUF_OFFSET	(((void *)&bp->b_vnbufs.le_next) - (void *)bp)
549 #define	BACK_BUF(BP)	((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
550 #define	BEG_OF_LIST	((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
551 
552 
553 /*loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {*/
554 /* Find last buffer. */
555 loop:   for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
556 	    bp = bp->b_vnbufs.le_next);
557 	for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
558 /* END HACK */
559 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
560 		    bp->b_flags & B_GATHERED)
561 			continue;
562 #ifdef DIAGNOSTIC
563 		if (!(bp->b_flags & B_DELWRI))
564 			panic("lfs_gather: bp not B_DELWRI");
565 		if (!(bp->b_flags & B_LOCKED))
566 			panic("lfs_gather: bp not B_LOCKED");
567 #endif
568 		if (lfs_gatherblock(sp, bp, &s))
569 			goto loop;
570 	}
571 	splx(s);
572 	lfs_updatemeta(sp);
573 	sp->vp = NULL;
574 }
575 
576 
577 /*
578  * Update the metadata that points to the blocks listed in the FINFO
579  * array.
580  */
581 void
582 lfs_updatemeta(sp)
583 	struct segment *sp;
584 {
585 	SEGUSE *sup;
586 	struct buf *bp;
587 	struct lfs *fs;
588 	struct vnode *vp;
589 	struct indir a[NIADDR + 2], *ap;
590 	struct inode *ip;
591 	ufs_daddr_t daddr, lbn, off;
592 	int error, i, nblocks, num;
593 
594 	vp = sp->vp;
595 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
596 	if (nblocks < 0)
597 		panic("This is a bad thing\n");
598 	if (vp == NULL || nblocks == 0)
599 		return;
600 
601 	/* Sort the blocks. */
602 	if (!(sp->seg_flags & SEGM_CLEAN))
603 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
604 
605 	/*
606 	 * Record the length of the last block in case it's a fragment.
607 	 * If there are indirect blocks present, they sort last.  An
608 	 * indirect block will be lfs_bsize and its presence indicates
609 	 * that you cannot have fragments.
610 	 */
611 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
612 
613 	/*
614 	 * Assign disk addresses, and update references to the logical
615 	 * block and the segment usage information.
616 	 */
617 	fs = sp->fs;
618 	for (i = nblocks; i--; ++sp->start_bpp) {
619 		lbn = *sp->start_lbp++;
620 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
621 		fs->lfs_offset +=
622 		    fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
623 
624 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
625 		if (error)
626 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
627 		ip = VTOI(vp);
628 		switch (num) {
629 		case 0:
630 			ip->i_ffs_db[lbn] = off;
631 			break;
632 		case 1:
633 			ip->i_ffs_ib[a[0].in_off] = off;
634 			break;
635 		default:
636 			ap = &a[num - 1];
637 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
638 				panic("lfs_updatemeta: bread bno %d",
639 				    ap->in_lbn);
640 			/*
641 			 * Bread may create a new indirect block which needs
642 			 * to get counted for the inode.
643 			 */
644 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
645 				ip->i_ffs_blocks += fsbtodb(fs, 1);
646 				fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
647 			}
648 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
649 			VOP_BWRITE(bp);
650 		}
651 
652 		/* Update segment usage information. */
653 		if (daddr != UNASSIGNED &&
654 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
655 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
656 #ifdef DIAGNOSTIC
657 			if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
658 				/* XXX -- Change to a panic. */
659 				printf("lfs: negative bytes (segment %d)\n",
660 				    datosn(fs, daddr));
661 				printf("lfs: bp = 0x%p, addr = 0x%p\n",
662 						bp, bp->b_un.b_addr);
663 				panic ("Negative Bytes");
664 			}
665 #endif
666 			sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
667 			error = VOP_BWRITE(bp);
668 		}
669 	}
670 }
671 
672 /*
673  * Start a new segment.
674  */
675 int
676 lfs_initseg(fs)
677 	struct lfs *fs;
678 {
679 	struct segment *sp;
680 	SEGUSE *sup;
681 	SEGSUM *ssp;
682 	struct buf *bp;
683 	int repeat;
684 
685 	sp = fs->lfs_sp;
686 
687 	repeat = 0;
688 	/* Advance to the next segment. */
689 	if (!LFS_PARTIAL_FITS(fs)) {
690 		/* Wake up any cleaning procs waiting on this file system. */
691 		wakeup(&lfs_allclean_wakeup);
692 		wakeup(&fs->lfs_nextseg);
693 
694 		lfs_newseg(fs);
695 		repeat = 1;
696 		fs->lfs_offset = fs->lfs_curseg;
697 		sp->seg_number = datosn(fs, fs->lfs_curseg);
698 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
699 
700 		/*
701 		 * If the segment contains a superblock, update the offset
702 		 * and summary address to skip over it.
703 		 */
704 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
705 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
706 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
707 			sp->seg_bytes_left -= LFS_SBPAD;
708 		}
709 		brelse(bp);
710 	} else {
711 		sp->seg_number = datosn(fs, fs->lfs_curseg);
712 		sp->seg_bytes_left = (fs->lfs_dbpseg -
713 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
714 	}
715 	fs->lfs_lastpseg = fs->lfs_offset;
716 
717 	sp->fs = fs;
718 	sp->ibp = NULL;
719 	sp->ninodes = 0;
720 
721 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
722 	sp->cbpp = sp->bpp;
723 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
724 	     LFS_SUMMARY_SIZE);
725 	sp->segsum = (*sp->cbpp)->b_data;
726 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
727 	sp->start_bpp = ++sp->cbpp;
728 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
729 
730 	/* Set point to SEGSUM, initialize it. */
731 	ssp = sp->segsum;
732 	ssp->ss_next = fs->lfs_nextseg;
733 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
734 	ssp->ss_magic = SS_MAGIC;
735 
736 	/* Set pointer to first FINFO, initialize it. */
737 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
738 	sp->fip->fi_nblocks = 0;
739 	sp->start_lbp = &sp->fip->fi_blocks[0];
740 	sp->fip->fi_lastlength = 0;
741 
742 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
743 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
744 
745 	return(repeat);
746 }
747 
748 /*
749  * Return the next segment to write.
750  */
751 void
752 lfs_newseg(fs)
753 	struct lfs *fs;
754 {
755 	CLEANERINFO *cip;
756 	SEGUSE *sup;
757 	struct buf *bp;
758 	int curseg, isdirty, sn;
759 
760         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
761         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
762 	sup->su_nbytes = 0;
763 	sup->su_nsums = 0;
764 	sup->su_ninos = 0;
765         (void) VOP_BWRITE(bp);
766 
767 	LFS_CLEANERINFO(cip, fs, bp);
768 	--cip->clean;
769 	++cip->dirty;
770 	(void) VOP_BWRITE(bp);
771 
772 	fs->lfs_lastseg = fs->lfs_curseg;
773 	fs->lfs_curseg = fs->lfs_nextseg;
774 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
775 		sn = (sn + 1) % fs->lfs_nseg;
776 		if (sn == curseg)
777 			panic("lfs_nextseg: no clean segments");
778 		LFS_SEGENTRY(sup, fs, sn, bp);
779 		isdirty = sup->su_flags & SEGUSE_DIRTY;
780 		brelse(bp);
781 		if (!isdirty)
782 			break;
783 	}
784 
785 	++fs->lfs_nactive;
786 	fs->lfs_nextseg = sntoda(fs, sn);
787 #ifdef DOSTATS
788 	++lfs_stats.segsused;
789 #endif
790 }
791 
792 int
793 lfs_writeseg(fs, sp)
794 	struct lfs *fs;
795 	struct segment *sp;
796 {
797 	extern int locked_queue_count;
798 	struct buf **bpp, *bp, *cbp;
799 	SEGUSE *sup;
800 	SEGSUM *ssp;
801 	dev_t i_dev;
802 	u_long *datap, *dp;
803 	int do_again, i, nblocks, s;
804 	int (*strategy)__P((void *));
805 	struct vop_strategy_args vop_strategy_a;
806 	u_short ninos;
807 	char *p;
808 
809 	/*
810 	 * If there are no buffers other than the segment summary to write
811 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
812 	 * even if there aren't any buffers, you need to write the superblock.
813 	 */
814 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
815 		return (0);
816 
817 	/* Update the segment usage information. */
818 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
819 
820 	/* Loop through all blocks, except the segment summary. */
821 	for (bpp = sp->bpp; ++bpp < sp->cbpp; )
822 		sup->su_nbytes += (*bpp)->b_bcount;
823 
824 	ssp = (SEGSUM *)sp->segsum;
825 
826 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
827 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
828 	sup->su_nbytes += LFS_SUMMARY_SIZE;
829 	sup->su_lastmod = time.tv_sec;
830 	sup->su_ninos += ninos;
831 	++sup->su_nsums;
832 	do_again = !(bp->b_flags & B_GATHERED);
833 	(void)VOP_BWRITE(bp);
834 	/*
835 	 * Compute checksum across data and then across summary; the first
836 	 * block (the summary block) is skipped.  Set the create time here
837 	 * so that it's guaranteed to be later than the inode mod times.
838 	 *
839 	 * XXX
840 	 * Fix this to do it inline, instead of malloc/copy.
841 	 */
842 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
843 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
844 		if ((*++bpp)->b_flags & B_INVAL) {
845 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
846 				panic("lfs_writeseg: copyin failed");
847 		} else
848 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
849 	}
850 	ssp->ss_create = time.tv_sec;
851 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
852 	ssp->ss_sumsum =
853 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
854 	free(datap, M_SEGMENT);
855 #ifdef DIAGNOSTIC
856 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
857 		panic("lfs_writeseg: No diskspace for summary");
858 #endif
859 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
860 
861 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
862 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
863 
864 	/*
865 	 * When we simply write the blocks we lose a rotation for every block
866 	 * written.  To avoid this problem, we allocate memory in chunks, copy
867 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
868 	 * largest size I/O devices can handle.
869 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
870 	 * and brelse the buffer (which will move them to the LRU list).  Add
871 	 * the B_CALL flag to the buffer header so we can count I/O's for the
872 	 * checkpoints and so we can release the allocated memory.
873 	 *
874 	 * XXX
875 	 * This should be removed if the new virtual memory system allows us to
876 	 * easily make the buffers contiguous in kernel memory and if that's
877 	 * fast enough.
878 	 */
879 	for (bpp = sp->bpp, i = nblocks; i;) {
880 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
881 		    (*bpp)->b_blkno, MAXPHYS);
882 		cbp->b_dev = i_dev;
883 		cbp->b_flags |= B_ASYNC | B_BUSY;
884 		cbp->b_bcount = 0;
885 
886 		s = splbio();
887 		++fs->lfs_iocount;
888 		for (p = cbp->b_data; i && cbp->b_bcount < MAXPHYS; i--) {
889 			bp = *bpp;
890 			if (bp->b_bcount > (MAXPHYS - cbp->b_bcount))
891 				break;
892 			bpp++;
893 
894 			/*
895 			 * Fake buffers from the cleaner are marked as B_INVAL.
896 			 * We need to copy the data from user space rather than
897 			 * from the buffer indicated.
898 			 * XXX == what do I do on an error?
899 			 */
900 			if (bp->b_flags & B_INVAL) {
901 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
902 					panic("lfs_writeseg: copyin failed");
903 			} else
904 				bcopy(bp->b_data, p, bp->b_bcount);
905 			p += bp->b_bcount;
906 			cbp->b_bcount += bp->b_bcount;
907 			if (bp->b_flags & B_LOCKED)
908 				--locked_queue_count;
909 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
910 			     B_LOCKED | B_GATHERED);
911 			if (bp->b_flags & B_CALL) {
912 				/* if B_CALL, it was created with newbuf */
913 				brelvp(bp);
914 				if (!(bp->b_flags & B_INVAL))
915 					free(bp->b_data, M_SEGMENT);
916 				free(bp, M_SEGMENT);
917 			} else {
918 				bremfree(bp);
919 				bp->b_flags |= B_DONE;
920 				reassignbuf(bp, bp->b_vp);
921 				brelse(bp);
922 			}
923 		}
924 		++cbp->b_vp->v_numoutput;
925 		splx(s);
926 		/*
927 		 * XXXX This is a gross and disgusting hack.  Since these
928 		 * buffers are physically addressed, they hang off the
929 		 * device vnode (devvp).  As a result, they have no way
930 		 * of getting to the LFS superblock or lfs structure to
931 		 * keep track of the number of I/O's pending.  So, I am
932 		 * going to stuff the fs into the saveaddr field of
933 		 * the buffer (yuk).
934 		 */
935 		cbp->b_saveaddr = (caddr_t)fs;
936 		vop_strategy_a.a_desc = VDESC(vop_strategy);
937 		vop_strategy_a.a_bp = cbp;
938 		(strategy)(&vop_strategy_a);
939 	}
940 	/*
941 	 * XXX
942 	 * Vinvalbuf can move locked buffers off the locked queue
943 	 * and we have no way of knowing about this.  So, after
944 	 * doing a big write, we recalculate how many bufers are
945 	 * really still left on the locked queue.
946 	 */
947 	locked_queue_count = count_lock_queue();
948 	wakeup(&locked_queue_count);
949 #ifdef DOSTATS
950 	++lfs_stats.psegwrites;
951 	lfs_stats.blocktot += nblocks - 1;
952 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
953 		++lfs_stats.psyncwrites;
954 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
955 		++lfs_stats.pcleanwrites;
956 		lfs_stats.cleanblocks += nblocks - 1;
957 	}
958 #endif
959 	return (lfs_initseg(fs) || do_again);
960 }
961 
962 void
963 lfs_writesuper(fs)
964 	struct lfs *fs;
965 {
966 	struct buf *bp;
967 	dev_t i_dev;
968 	int (*strategy) __P((void *));
969 	int s;
970 	struct vop_strategy_args vop_strategy_a;
971 
972 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
973 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
974 
975 	/* Checksum the superblock and copy it into a buffer. */
976 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
977 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
978 	    LFS_SBPAD);
979 	*(struct lfs *)bp->b_data = *fs;
980 
981 	/* XXX Toggle between first two superblocks; for now just write first */
982 	bp->b_dev = i_dev;
983 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
984 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
985 	bp->b_iodone = lfs_supercallback;
986 	vop_strategy_a.a_desc = VDESC(vop_strategy);
987 	vop_strategy_a.a_bp = bp;
988 	s = splbio();
989 	++bp->b_vp->v_numoutput;
990 	splx(s);
991 	(strategy)(&vop_strategy_a);
992 }
993 
994 /*
995  * Logical block number match routines used when traversing the dirty block
996  * chain.
997  */
998 int
999 lfs_match_data(fs, bp)
1000 	struct lfs *fs;
1001 	struct buf *bp;
1002 {
1003 	return (bp->b_lblkno >= 0);
1004 }
1005 
1006 int
1007 lfs_match_indir(fs, bp)
1008 	struct lfs *fs;
1009 	struct buf *bp;
1010 {
1011 	int lbn;
1012 
1013 	lbn = bp->b_lblkno;
1014 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
1015 }
1016 
1017 int
1018 lfs_match_dindir(fs, bp)
1019 	struct lfs *fs;
1020 	struct buf *bp;
1021 {
1022 	int lbn;
1023 
1024 	lbn = bp->b_lblkno;
1025 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
1026 }
1027 
1028 int
1029 lfs_match_tindir(fs, bp)
1030 	struct lfs *fs;
1031 	struct buf *bp;
1032 {
1033 	int lbn;
1034 
1035 	lbn = bp->b_lblkno;
1036 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
1037 }
1038 
1039 /*
1040  * Allocate a new buffer header.
1041  */
1042 struct buf *
1043 lfs_newbuf(vp, daddr, size)
1044 	struct vnode *vp;
1045 	ufs_daddr_t daddr;
1046 	size_t size;
1047 {
1048 	struct buf *bp;
1049 	size_t nbytes;
1050 
1051 	nbytes = roundup(size, DEV_BSIZE);
1052 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
1053 	bzero(bp, sizeof(struct buf));
1054 	if (nbytes)
1055 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
1056 	bgetvp(vp, bp);
1057 	bp->b_bufsize = size;
1058 	bp->b_bcount = size;
1059 	bp->b_lblkno = daddr;
1060 	bp->b_blkno = daddr;
1061 	bp->b_error = 0;
1062 	bp->b_resid = 0;
1063 	bp->b_iodone = lfs_callback;
1064 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
1065 	return (bp);
1066 }
1067 
1068 void
1069 lfs_callback(bp)
1070 	struct buf *bp;
1071 {
1072 	struct lfs *fs;
1073 
1074 	fs = (struct lfs *)bp->b_saveaddr;
1075 #ifdef DIAGNOSTIC
1076 	if (fs->lfs_iocount == 0)
1077 		panic("lfs_callback: zero iocount\n");
1078 #endif
1079 	if (--fs->lfs_iocount == 0)
1080 		wakeup(&fs->lfs_iocount);
1081 
1082 	brelvp(bp);
1083 	free(bp->b_data, M_SEGMENT);
1084 	free(bp, M_SEGMENT);
1085 }
1086 
1087 void
1088 lfs_supercallback(bp)
1089 	struct buf *bp;
1090 {
1091 	brelvp(bp);
1092 	free(bp->b_data, M_SEGMENT);
1093 	free(bp, M_SEGMENT);
1094 }
1095 
1096 /*
1097  * Shellsort (diminishing increment sort) from Data Structures and
1098  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1099  * see also Knuth Vol. 3, page 84.  The increments are selected from
1100  * formula (8), page 95.  Roughly O(N^3/2).
1101  */
1102 /*
1103  * This is our own private copy of shellsort because we want to sort
1104  * two parallel arrays (the array of buffer pointers and the array of
1105  * logical block numbers) simultaneously.  Note that we cast the array
1106  * of logical block numbers to a unsigned in this routine so that the
1107  * negative block numbers (meta data blocks) sort AFTER the data blocks.
1108  */
1109 void
1110 lfs_shellsort(bp_array, lb_array, nmemb)
1111 	struct buf **bp_array;
1112 	ufs_daddr_t *lb_array;
1113 	register int nmemb;
1114 {
1115 	static int __rsshell_increments[] = { 4, 1, 0 };
1116 	register int incr, *incrp, t1, t2;
1117 	struct buf *bp_temp;
1118 	u_long lb_temp;
1119 
1120 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1121 		for (t1 = incr; t1 < nmemb; ++t1)
1122 			for (t2 = t1 - incr; t2 >= 0;)
1123 				if (lb_array[t2] > lb_array[t2 + incr]) {
1124 					lb_temp = lb_array[t2];
1125 					lb_array[t2] = lb_array[t2 + incr];
1126 					lb_array[t2 + incr] = lb_temp;
1127 					bp_temp = bp_array[t2];
1128 					bp_array[t2] = bp_array[t2 + incr];
1129 					bp_array[t2 + incr] = bp_temp;
1130 					t2 -= incr;
1131 				} else
1132 					break;
1133 }
1134 
1135 /*
1136  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
1137  */
1138 int
1139 lfs_vref(vp)
1140 	register struct vnode *vp;
1141 {
1142 	if (vp->v_flag & VXLOCK)	/* XXX */
1143 		return(1);
1144 	return (vget(vp, 0));
1145 }
1146 
1147 /*
1148  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
1149  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
1150  */
1151 void
1152 lfs_vunref(vp)
1153 	register struct vnode *vp;
1154 {
1155 	simple_lock(&vp->v_interlock);
1156 	vp->v_usecount--;
1157 	if (vp->v_usecount > 0) {
1158 		simple_unlock(&vp->v_interlock);
1159 		return;
1160 	}
1161 	/*
1162 	 * insert at tail of LRU list
1163 	 */
1164 	simple_lock(&vnode_free_list_slock);
1165 	TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1166 	simple_unlock(&vnode_free_list_slock);
1167 	simple_unlock(&vp->v_interlock);
1168 }
1169