1 /* $NetBSD: lfs_segment.c,v 1.212 2008/05/16 09:22:00 hannken Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /* 32 * Copyright (c) 1991, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 60 */ 61 62 #include <sys/cdefs.h> 63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.212 2008/05/16 09:22:00 hannken Exp $"); 64 65 #ifdef DEBUG 66 # define vndebug(vp, str) do { \ 67 if (VTOI(vp)->i_flag & IN_CLEANING) \ 68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ 69 VTOI(vp)->i_number, (str), op)); \ 70 } while(0) 71 #else 72 # define vndebug(vp, str) 73 #endif 74 #define ivndebug(vp, str) \ 75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) 76 77 #if defined(_KERNEL_OPT) 78 #include "opt_ddb.h" 79 #endif 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/namei.h> 84 #include <sys/kernel.h> 85 #include <sys/resourcevar.h> 86 #include <sys/file.h> 87 #include <sys/stat.h> 88 #include <sys/buf.h> 89 #include <sys/proc.h> 90 #include <sys/vnode.h> 91 #include <sys/mount.h> 92 #include <sys/kauth.h> 93 #include <sys/syslog.h> 94 95 #include <miscfs/specfs/specdev.h> 96 #include <miscfs/fifofs/fifo.h> 97 98 #include <ufs/ufs/inode.h> 99 #include <ufs/ufs/dir.h> 100 #include <ufs/ufs/ufsmount.h> 101 #include <ufs/ufs/ufs_extern.h> 102 103 #include <ufs/lfs/lfs.h> 104 #include <ufs/lfs/lfs_extern.h> 105 106 #include <uvm/uvm.h> 107 #include <uvm/uvm_extern.h> 108 109 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 110 111 extern int count_lock_queue(void); 112 extern kmutex_t vnode_free_list_lock; /* XXX */ 113 114 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 115 static void lfs_free_aiodone(struct buf *); 116 static void lfs_super_aiodone(struct buf *); 117 static void lfs_cluster_aiodone(struct buf *); 118 static void lfs_cluster_callback(struct buf *); 119 120 /* 121 * Determine if it's OK to start a partial in this segment, or if we need 122 * to go on to a new segment. 123 */ 124 #define LFS_PARTIAL_FITS(fs) \ 125 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 126 fragstofsb((fs), (fs)->lfs_frag)) 127 128 /* 129 * Figure out whether we should do a checkpoint write or go ahead with 130 * an ordinary write. 131 */ 132 #define LFS_SHOULD_CHECKPOINT(fs, flags) \ 133 ((flags & SEGM_CLEAN) == 0 && \ 134 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \ 135 (flags & SEGM_CKP) || \ 136 fs->lfs_nclean < LFS_MAX_ACTIVE))) 137 138 int lfs_match_fake(struct lfs *, struct buf *); 139 void lfs_newseg(struct lfs *); 140 /* XXX ondisk32 */ 141 void lfs_shellsort(struct buf **, int32_t *, int, int); 142 void lfs_supercallback(struct buf *); 143 void lfs_updatemeta(struct segment *); 144 void lfs_writesuper(struct lfs *, daddr_t); 145 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 146 struct segment *sp, int dirops); 147 148 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 149 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 150 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 151 int lfs_dirvcount = 0; /* # active dirops */ 152 153 /* Statistics Counters */ 154 int lfs_dostats = 1; 155 struct lfs_stats lfs_stats; 156 157 /* op values to lfs_writevnodes */ 158 #define VN_REG 0 159 #define VN_DIROP 1 160 #define VN_EMPTY 2 161 #define VN_CLEAN 3 162 163 /* 164 * XXX KS - Set modification time on the Ifile, so the cleaner can 165 * read the fs mod time off of it. We don't set IN_UPDATE here, 166 * since we don't really need this to be flushed to disk (and in any 167 * case that wouldn't happen to the Ifile until we checkpoint). 168 */ 169 void 170 lfs_imtime(struct lfs *fs) 171 { 172 struct timespec ts; 173 struct inode *ip; 174 175 ASSERT_MAYBE_SEGLOCK(fs); 176 vfs_timestamp(&ts); 177 ip = VTOI(fs->lfs_ivnode); 178 ip->i_ffs1_mtime = ts.tv_sec; 179 ip->i_ffs1_mtimensec = ts.tv_nsec; 180 } 181 182 /* 183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 184 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 187 */ 188 189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 190 191 int 192 lfs_vflush(struct vnode *vp) 193 { 194 struct inode *ip; 195 struct lfs *fs; 196 struct segment *sp; 197 struct buf *bp, *nbp, *tbp, *tnbp; 198 int error; 199 int flushed; 200 int relock; 201 int loopcount; 202 203 ip = VTOI(vp); 204 fs = VFSTOUFS(vp->v_mount)->um_lfs; 205 relock = 0; 206 207 top: 208 ASSERT_NO_SEGLOCK(fs); 209 if (ip->i_flag & IN_CLEANING) { 210 ivndebug(vp,"vflush/in_cleaning"); 211 mutex_enter(&lfs_lock); 212 LFS_CLR_UINO(ip, IN_CLEANING); 213 LFS_SET_UINO(ip, IN_MODIFIED); 214 mutex_exit(&lfs_lock); 215 216 /* 217 * Toss any cleaning buffers that have real counterparts 218 * to avoid losing new data. 219 */ 220 mutex_enter(&vp->v_interlock); 221 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 222 nbp = LIST_NEXT(bp, b_vnbufs); 223 if (!LFS_IS_MALLOC_BUF(bp)) 224 continue; 225 /* 226 * Look for pages matching the range covered 227 * by cleaning blocks. It's okay if more dirty 228 * pages appear, so long as none disappear out 229 * from under us. 230 */ 231 if (bp->b_lblkno > 0 && vp->v_type == VREG && 232 vp != fs->lfs_ivnode) { 233 struct vm_page *pg; 234 voff_t off; 235 236 for (off = lblktosize(fs, bp->b_lblkno); 237 off < lblktosize(fs, bp->b_lblkno + 1); 238 off += PAGE_SIZE) { 239 pg = uvm_pagelookup(&vp->v_uobj, off); 240 if (pg == NULL) 241 continue; 242 if ((pg->flags & PG_CLEAN) == 0 || 243 pmap_is_modified(pg)) { 244 fs->lfs_avail += btofsb(fs, 245 bp->b_bcount); 246 wakeup(&fs->lfs_avail); 247 mutex_exit(&vp->v_interlock); 248 lfs_freebuf(fs, bp); 249 mutex_enter(&vp->v_interlock); 250 bp = NULL; 251 break; 252 } 253 } 254 } 255 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 256 tbp = tnbp) 257 { 258 tnbp = LIST_NEXT(tbp, b_vnbufs); 259 if (tbp->b_vp == bp->b_vp 260 && tbp->b_lblkno == bp->b_lblkno 261 && tbp != bp) 262 { 263 fs->lfs_avail += btofsb(fs, 264 bp->b_bcount); 265 wakeup(&fs->lfs_avail); 266 mutex_exit(&vp->v_interlock); 267 lfs_freebuf(fs, bp); 268 mutex_enter(&vp->v_interlock); 269 bp = NULL; 270 break; 271 } 272 } 273 } 274 } else { 275 mutex_enter(&vp->v_interlock); 276 } 277 278 /* If the node is being written, wait until that is done */ 279 while (WRITEINPROG(vp)) { 280 ivndebug(vp,"vflush/writeinprog"); 281 cv_wait(&vp->v_cv, &vp->v_interlock); 282 } 283 mutex_exit(&vp->v_interlock); 284 285 /* Protect against VI_XLOCK deadlock in vinvalbuf() */ 286 lfs_seglock(fs, SEGM_SYNC); 287 288 /* If we're supposed to flush a freed inode, just toss it */ 289 if (ip->i_lfs_iflags & LFSI_DELETED) { 290 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", 291 ip->i_number)); 292 /* Drain v_numoutput */ 293 mutex_enter(&vp->v_interlock); 294 while (vp->v_numoutput > 0) { 295 cv_wait(&vp->v_cv, &vp->v_interlock); 296 } 297 KASSERT(vp->v_numoutput == 0); 298 mutex_exit(&vp->v_interlock); 299 300 mutex_enter(&bufcache_lock); 301 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 302 nbp = LIST_NEXT(bp, b_vnbufs); 303 304 KASSERT((bp->b_flags & B_GATHERED) == 0); 305 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */ 306 fs->lfs_avail += btofsb(fs, bp->b_bcount); 307 wakeup(&fs->lfs_avail); 308 } 309 /* Copied from lfs_writeseg */ 310 if (bp->b_iodone != NULL) { 311 mutex_exit(&bufcache_lock); 312 biodone(bp); 313 mutex_enter(&bufcache_lock); 314 } else { 315 bremfree(bp); 316 LFS_UNLOCK_BUF(bp); 317 mutex_enter(&vp->v_interlock); 318 bp->b_flags &= ~(B_READ | B_GATHERED); 319 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE; 320 bp->b_error = 0; 321 reassignbuf(bp, vp); 322 mutex_exit(&vp->v_interlock); 323 brelse(bp, 0); 324 } 325 } 326 mutex_exit(&bufcache_lock); 327 LFS_CLR_UINO(ip, IN_CLEANING); 328 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 329 ip->i_flag &= ~IN_ALLMOD; 330 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", 331 ip->i_number)); 332 lfs_segunlock(fs); 333 334 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 335 336 return 0; 337 } 338 339 fs->lfs_flushvp = vp; 340 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) { 341 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 342 fs->lfs_flushvp = NULL; 343 KASSERT(fs->lfs_flushvp_fakevref == 0); 344 lfs_segunlock(fs); 345 346 /* Make sure that any pending buffers get written */ 347 mutex_enter(&vp->v_interlock); 348 while (vp->v_numoutput > 0) { 349 cv_wait(&vp->v_cv, &vp->v_interlock); 350 } 351 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 352 KASSERT(vp->v_numoutput == 0); 353 mutex_exit(&vp->v_interlock); 354 355 return error; 356 } 357 sp = fs->lfs_sp; 358 359 flushed = 0; 360 if (VPISEMPTY(vp)) { 361 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 362 ++flushed; 363 } else if ((ip->i_flag & IN_CLEANING) && 364 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 365 ivndebug(vp,"vflush/clean"); 366 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 367 ++flushed; 368 } else if (lfs_dostats) { 369 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 370 ++lfs_stats.vflush_invoked; 371 ivndebug(vp,"vflush"); 372 } 373 374 #ifdef DIAGNOSTIC 375 if (vp->v_uflag & VU_DIROP) { 376 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n")); 377 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */ 378 } 379 if (vp->v_usecount < 0) { 380 printf("usecount=%ld\n", (long)vp->v_usecount); 381 panic("lfs_vflush: usecount<0"); 382 } 383 #endif 384 385 do { 386 loopcount = 0; 387 do { 388 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 389 relock = lfs_writefile(fs, sp, vp); 390 if (relock) { 391 /* 392 * Might have to wait for the 393 * cleaner to run; but we're 394 * still not done with this vnode. 395 */ 396 KDASSERT(ip->i_number != LFS_IFILE_INUM); 397 lfs_writeinode(fs, sp, ip); 398 mutex_enter(&lfs_lock); 399 LFS_SET_UINO(ip, IN_MODIFIED); 400 mutex_exit(&lfs_lock); 401 lfs_writeseg(fs, sp); 402 lfs_segunlock(fs); 403 lfs_segunlock_relock(fs); 404 goto top; 405 } 406 } 407 /* 408 * If we begin a new segment in the middle of writing 409 * the Ifile, it creates an inconsistent checkpoint, 410 * since the Ifile information for the new segment 411 * is not up-to-date. Take care of this here by 412 * sending the Ifile through again in case there 413 * are newly dirtied blocks. But wait, there's more! 414 * This second Ifile write could *also* cross a segment 415 * boundary, if the first one was large. The second 416 * one is guaranteed to be no more than 8 blocks, 417 * though (two segment blocks and supporting indirects) 418 * so the third write *will not* cross the boundary. 419 */ 420 if (vp == fs->lfs_ivnode) { 421 lfs_writefile(fs, sp, vp); 422 lfs_writefile(fs, sp, vp); 423 } 424 #ifdef DEBUG 425 if (++loopcount > 2) 426 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount); 427 #endif 428 } while (lfs_writeinode(fs, sp, ip)); 429 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 430 431 if (lfs_dostats) { 432 ++lfs_stats.nwrites; 433 if (sp->seg_flags & SEGM_SYNC) 434 ++lfs_stats.nsync_writes; 435 if (sp->seg_flags & SEGM_CKP) 436 ++lfs_stats.ncheckpoints; 437 } 438 /* 439 * If we were called from somewhere that has already held the seglock 440 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 441 * the write to complete because we are still locked. 442 * Since lfs_vflush() must return the vnode with no dirty buffers, 443 * we must explicitly wait, if that is the case. 444 * 445 * We compare the iocount against 1, not 0, because it is 446 * artificially incremented by lfs_seglock(). 447 */ 448 mutex_enter(&lfs_lock); 449 if (fs->lfs_seglock > 1) { 450 while (fs->lfs_iocount > 1) 451 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, 452 "lfs_vflush", 0, &lfs_lock); 453 } 454 mutex_exit(&lfs_lock); 455 456 lfs_segunlock(fs); 457 458 /* Wait for these buffers to be recovered by aiodoned */ 459 mutex_enter(&vp->v_interlock); 460 while (vp->v_numoutput > 0) { 461 cv_wait(&vp->v_cv, &vp->v_interlock); 462 } 463 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 464 KASSERT(vp->v_numoutput == 0); 465 mutex_exit(&vp->v_interlock); 466 467 fs->lfs_flushvp = NULL; 468 KASSERT(fs->lfs_flushvp_fakevref == 0); 469 470 return (0); 471 } 472 473 int 474 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 475 { 476 struct inode *ip; 477 struct vnode *vp; 478 int inodes_written = 0, only_cleaning; 479 int error = 0; 480 481 ASSERT_SEGLOCK(fs); 482 loop: 483 /* start at last (newest) vnode. */ 484 mutex_enter(&mntvnode_lock); 485 TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) { 486 /* 487 * If the vnode that we are about to sync is no longer 488 * associated with this mount point, start over. 489 */ 490 if (vp->v_mount != mp) { 491 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n")); 492 /* 493 * After this, pages might be busy 494 * due to our own previous putpages. 495 * Start actual segment write here to avoid deadlock. 496 */ 497 mutex_exit(&mntvnode_lock); 498 (void)lfs_writeseg(fs, sp); 499 goto loop; 500 } 501 502 mutex_enter(&vp->v_interlock); 503 if (vp->v_type == VNON || vismarker(vp) || 504 (vp->v_iflag & VI_CLEAN) != 0) { 505 mutex_exit(&vp->v_interlock); 506 continue; 507 } 508 509 ip = VTOI(vp); 510 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) || 511 (op != VN_DIROP && op != VN_CLEAN && 512 (vp->v_uflag & VU_DIROP))) { 513 mutex_exit(&vp->v_interlock); 514 vndebug(vp,"dirop"); 515 continue; 516 } 517 518 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 519 mutex_exit(&vp->v_interlock); 520 vndebug(vp,"empty"); 521 continue; 522 } 523 524 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 525 && vp != fs->lfs_flushvp 526 && !(ip->i_flag & IN_CLEANING)) { 527 mutex_exit(&vp->v_interlock); 528 vndebug(vp,"cleaning"); 529 continue; 530 } 531 532 mutex_exit(&mntvnode_lock); 533 if (lfs_vref(vp)) { 534 vndebug(vp,"vref"); 535 mutex_enter(&mntvnode_lock); 536 continue; 537 } 538 539 only_cleaning = 0; 540 /* 541 * Write the inode/file if dirty and it's not the IFILE. 542 */ 543 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 544 only_cleaning = 545 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 546 547 if (ip->i_number != LFS_IFILE_INUM) { 548 error = lfs_writefile(fs, sp, vp); 549 if (error) { 550 lfs_vunref(vp); 551 if (error == EAGAIN) { 552 /* 553 * This error from lfs_putpages 554 * indicates we need to drop 555 * the segment lock and start 556 * over after the cleaner has 557 * had a chance to run. 558 */ 559 lfs_writeinode(fs, sp, ip); 560 lfs_writeseg(fs, sp); 561 if (!VPISEMPTY(vp) && 562 !WRITEINPROG(vp) && 563 !(ip->i_flag & IN_ALLMOD)) { 564 mutex_enter(&lfs_lock); 565 LFS_SET_UINO(ip, IN_MODIFIED); 566 mutex_exit(&lfs_lock); 567 } 568 mutex_enter(&mntvnode_lock); 569 break; 570 } 571 error = 0; /* XXX not quite right */ 572 mutex_enter(&mntvnode_lock); 573 continue; 574 } 575 576 if (!VPISEMPTY(vp)) { 577 if (WRITEINPROG(vp)) { 578 ivndebug(vp,"writevnodes/write2"); 579 } else if (!(ip->i_flag & IN_ALLMOD)) { 580 mutex_enter(&lfs_lock); 581 LFS_SET_UINO(ip, IN_MODIFIED); 582 mutex_exit(&lfs_lock); 583 } 584 } 585 (void) lfs_writeinode(fs, sp, ip); 586 inodes_written++; 587 } 588 } 589 590 if (lfs_clean_vnhead && only_cleaning) 591 lfs_vunref_head(vp); 592 else 593 lfs_vunref(vp); 594 595 mutex_enter(&mntvnode_lock); 596 } 597 mutex_exit(&mntvnode_lock); 598 return error; 599 } 600 601 /* 602 * Do a checkpoint. 603 */ 604 int 605 lfs_segwrite(struct mount *mp, int flags) 606 { 607 struct buf *bp; 608 struct inode *ip; 609 struct lfs *fs; 610 struct segment *sp; 611 struct vnode *vp; 612 SEGUSE *segusep; 613 int do_ckp, did_ckp, error; 614 unsigned n, segleft, maxseg, sn, i, curseg; 615 int writer_set = 0; 616 int dirty; 617 int redo; 618 int um_error; 619 int loopcount; 620 621 fs = VFSTOUFS(mp)->um_lfs; 622 ASSERT_MAYBE_SEGLOCK(fs); 623 624 if (fs->lfs_ronly) 625 return EROFS; 626 627 lfs_imtime(fs); 628 629 /* 630 * Allocate a segment structure and enough space to hold pointers to 631 * the maximum possible number of buffers which can be described in a 632 * single summary block. 633 */ 634 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags); 635 636 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 637 sp = fs->lfs_sp; 638 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP)) 639 do_ckp = 1; 640 641 /* 642 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 643 * in which case we have to flush *all* buffers off of this vnode. 644 * We don't care about other nodes, but write any non-dirop nodes 645 * anyway in anticipation of another getnewvnode(). 646 * 647 * If we're cleaning we only write cleaning and ifile blocks, and 648 * no dirops, since otherwise we'd risk corruption in a crash. 649 */ 650 if (sp->seg_flags & SEGM_CLEAN) 651 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 652 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 653 do { 654 um_error = lfs_writevnodes(fs, mp, sp, VN_REG); 655 656 if (do_ckp || fs->lfs_dirops == 0) { 657 if (!writer_set) { 658 lfs_writer_enter(fs, "lfs writer"); 659 writer_set = 1; 660 } 661 error = lfs_writevnodes(fs, mp, sp, VN_DIROP); 662 if (um_error == 0) 663 um_error = error; 664 /* In case writevnodes errored out */ 665 lfs_flush_dirops(fs); 666 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 667 lfs_finalize_fs_seguse(fs); 668 } 669 if (do_ckp && um_error) { 670 lfs_segunlock_relock(fs); 671 sp = fs->lfs_sp; 672 } 673 } while (do_ckp && um_error != 0); 674 } 675 676 /* 677 * If we are doing a checkpoint, mark everything since the 678 * last checkpoint as no longer ACTIVE. 679 */ 680 if (do_ckp || fs->lfs_doifile) { 681 segleft = fs->lfs_nseg; 682 curseg = 0; 683 for (n = 0; n < fs->lfs_segtabsz; n++) { 684 dirty = 0; 685 if (bread(fs->lfs_ivnode, fs->lfs_cleansz + n, 686 fs->lfs_bsize, NOCRED, B_MODIFY, &bp)) 687 panic("lfs_segwrite: ifile read"); 688 segusep = (SEGUSE *)bp->b_data; 689 maxseg = min(segleft, fs->lfs_sepb); 690 for (i = 0; i < maxseg; i++) { 691 sn = curseg + i; 692 if (sn != dtosn(fs, fs->lfs_curseg) && 693 segusep->su_flags & SEGUSE_ACTIVE) { 694 segusep->su_flags &= ~SEGUSE_ACTIVE; 695 --fs->lfs_nactive; 696 ++dirty; 697 } 698 fs->lfs_suflags[fs->lfs_activesb][sn] = 699 segusep->su_flags; 700 if (fs->lfs_version > 1) 701 ++segusep; 702 else 703 segusep = (SEGUSE *) 704 ((SEGUSE_V1 *)segusep + 1); 705 } 706 707 if (dirty) 708 error = LFS_BWRITE_LOG(bp); /* Ifile */ 709 else 710 brelse(bp, 0); 711 segleft -= fs->lfs_sepb; 712 curseg += fs->lfs_sepb; 713 } 714 } 715 716 KASSERT(LFS_SEGLOCK_HELD(fs)); 717 718 did_ckp = 0; 719 if (do_ckp || fs->lfs_doifile) { 720 vp = fs->lfs_ivnode; 721 vn_lock(vp, LK_EXCLUSIVE); 722 loopcount = 0; 723 do { 724 #ifdef DEBUG 725 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); 726 #endif 727 mutex_enter(&lfs_lock); 728 fs->lfs_flags &= ~LFS_IFDIRTY; 729 mutex_exit(&lfs_lock); 730 731 ip = VTOI(vp); 732 733 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 734 /* 735 * Ifile has no pages, so we don't need 736 * to check error return here. 737 */ 738 lfs_writefile(fs, sp, vp); 739 /* 740 * Ensure the Ifile takes the current segment 741 * into account. See comment in lfs_vflush. 742 */ 743 lfs_writefile(fs, sp, vp); 744 lfs_writefile(fs, sp, vp); 745 } 746 747 if (ip->i_flag & IN_ALLMOD) 748 ++did_ckp; 749 #if 0 750 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0); 751 #else 752 redo = lfs_writeinode(fs, sp, ip); 753 #endif 754 redo += lfs_writeseg(fs, sp); 755 mutex_enter(&lfs_lock); 756 redo += (fs->lfs_flags & LFS_IFDIRTY); 757 mutex_exit(&lfs_lock); 758 #ifdef DEBUG 759 if (++loopcount > 2) 760 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n", 761 loopcount); 762 #endif 763 } while (redo && do_ckp); 764 765 /* 766 * Unless we are unmounting, the Ifile may continue to have 767 * dirty blocks even after a checkpoint, due to changes to 768 * inodes' atime. If we're checkpointing, it's "impossible" 769 * for other parts of the Ifile to be dirty after the loop 770 * above, since we hold the segment lock. 771 */ 772 mutex_enter(&vp->v_interlock); 773 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 774 LFS_CLR_UINO(ip, IN_ALLMOD); 775 } 776 #ifdef DIAGNOSTIC 777 else if (do_ckp) { 778 int do_panic = 0; 779 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 780 if (bp->b_lblkno < fs->lfs_cleansz + 781 fs->lfs_segtabsz && 782 !(bp->b_flags & B_GATHERED)) { 783 printf("ifile lbn %ld still dirty (flags %lx)\n", 784 (long)bp->b_lblkno, 785 (long)bp->b_flags); 786 ++do_panic; 787 } 788 } 789 if (do_panic) 790 panic("dirty blocks"); 791 } 792 #endif 793 mutex_exit(&vp->v_interlock); 794 VOP_UNLOCK(vp, 0); 795 } else { 796 (void) lfs_writeseg(fs, sp); 797 } 798 799 /* Note Ifile no longer needs to be written */ 800 fs->lfs_doifile = 0; 801 if (writer_set) 802 lfs_writer_leave(fs); 803 804 /* 805 * If we didn't write the Ifile, we didn't really do anything. 806 * That means that (1) there is a checkpoint on disk and (2) 807 * nothing has changed since it was written. 808 * 809 * Take the flags off of the segment so that lfs_segunlock 810 * doesn't have to write the superblock either. 811 */ 812 if (do_ckp && !did_ckp) { 813 sp->seg_flags &= ~SEGM_CKP; 814 } 815 816 if (lfs_dostats) { 817 ++lfs_stats.nwrites; 818 if (sp->seg_flags & SEGM_SYNC) 819 ++lfs_stats.nsync_writes; 820 if (sp->seg_flags & SEGM_CKP) 821 ++lfs_stats.ncheckpoints; 822 } 823 lfs_segunlock(fs); 824 return (0); 825 } 826 827 /* 828 * Write the dirty blocks associated with a vnode. 829 */ 830 int 831 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 832 { 833 struct finfo *fip; 834 struct inode *ip; 835 int i, frag; 836 int error; 837 838 ASSERT_SEGLOCK(fs); 839 error = 0; 840 ip = VTOI(vp); 841 842 fip = sp->fip; 843 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 844 845 if (vp->v_uflag & VU_DIROP) 846 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 847 848 if (sp->seg_flags & SEGM_CLEAN) { 849 lfs_gather(fs, sp, vp, lfs_match_fake); 850 /* 851 * For a file being flushed, we need to write *all* blocks. 852 * This means writing the cleaning blocks first, and then 853 * immediately following with any non-cleaning blocks. 854 * The same is true of the Ifile since checkpoints assume 855 * that all valid Ifile blocks are written. 856 */ 857 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) { 858 lfs_gather(fs, sp, vp, lfs_match_data); 859 /* 860 * Don't call VOP_PUTPAGES: if we're flushing, 861 * we've already done it, and the Ifile doesn't 862 * use the page cache. 863 */ 864 } 865 } else { 866 lfs_gather(fs, sp, vp, lfs_match_data); 867 /* 868 * If we're flushing, we've already called VOP_PUTPAGES 869 * so don't do it again. Otherwise, we want to write 870 * everything we've got. 871 */ 872 if (!IS_FLUSHING(fs, vp)) { 873 mutex_enter(&vp->v_interlock); 874 error = VOP_PUTPAGES(vp, 0, 0, 875 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 876 } 877 } 878 879 /* 880 * It may not be necessary to write the meta-data blocks at this point, 881 * as the roll-forward recovery code should be able to reconstruct the 882 * list. 883 * 884 * We have to write them anyway, though, under two conditions: (1) the 885 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 886 * checkpointing. 887 * 888 * BUT if we are cleaning, we might have indirect blocks that refer to 889 * new blocks not being written yet, in addition to fragments being 890 * moved out of a cleaned segment. If that is the case, don't 891 * write the indirect blocks, or the finfo will have a small block 892 * in the middle of it! 893 * XXX in this case isn't the inode size wrong too? 894 */ 895 frag = 0; 896 if (sp->seg_flags & SEGM_CLEAN) { 897 for (i = 0; i < NDADDR; i++) 898 if (ip->i_lfs_fragsize[i] > 0 && 899 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 900 ++frag; 901 } 902 #ifdef DIAGNOSTIC 903 if (frag > 1) 904 panic("lfs_writefile: more than one fragment!"); 905 #endif 906 if (IS_FLUSHING(fs, vp) || 907 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 908 lfs_gather(fs, sp, vp, lfs_match_indir); 909 lfs_gather(fs, sp, vp, lfs_match_dindir); 910 lfs_gather(fs, sp, vp, lfs_match_tindir); 911 } 912 fip = sp->fip; 913 lfs_release_finfo(fs); 914 915 return error; 916 } 917 918 /* 919 * Update segment accounting to reflect this inode's change of address. 920 */ 921 static int 922 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr) 923 { 924 struct buf *bp; 925 daddr_t daddr; 926 IFILE *ifp; 927 SEGUSE *sup; 928 ino_t ino; 929 int redo_ifile, error; 930 u_int32_t sn; 931 932 redo_ifile = 0; 933 934 /* 935 * If updating the ifile, update the super-block. Update the disk 936 * address and access times for this inode in the ifile. 937 */ 938 ino = ip->i_number; 939 if (ino == LFS_IFILE_INUM) { 940 daddr = fs->lfs_idaddr; 941 fs->lfs_idaddr = dbtofsb(fs, ndaddr); 942 } else { 943 LFS_IENTRY(ifp, fs, ino, bp); 944 daddr = ifp->if_daddr; 945 ifp->if_daddr = dbtofsb(fs, ndaddr); 946 error = LFS_BWRITE_LOG(bp); /* Ifile */ 947 } 948 949 /* 950 * If this is the Ifile and lfs_offset is set to the first block 951 * in the segment, dirty the new segment's accounting block 952 * (XXX should already be dirty?) and tell the caller to do it again. 953 */ 954 if (ip->i_number == LFS_IFILE_INUM) { 955 sn = dtosn(fs, fs->lfs_offset); 956 if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) == 957 fs->lfs_offset) { 958 LFS_SEGENTRY(sup, fs, sn, bp); 959 KASSERT(bp->b_oflags & BO_DELWRI); 960 LFS_WRITESEGENTRY(sup, fs, sn, bp); 961 /* fs->lfs_flags |= LFS_IFDIRTY; */ 962 redo_ifile |= 1; 963 } 964 } 965 966 /* 967 * The inode's last address should not be in the current partial 968 * segment, except under exceptional circumstances (lfs_writevnodes 969 * had to start over, and in the meantime more blocks were written 970 * to a vnode). Both inodes will be accounted to this segment 971 * in lfs_writeseg so we need to subtract the earlier version 972 * here anyway. The segment count can temporarily dip below 973 * zero here; keep track of how many duplicates we have in 974 * "dupino" so we don't panic below. 975 */ 976 if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) { 977 ++sp->ndupino; 978 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " 979 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 980 (long long)daddr, sp->ndupino)); 981 } 982 /* 983 * Account the inode: it no longer belongs to its former segment, 984 * though it will not belong to the new segment until that segment 985 * is actually written. 986 */ 987 if (daddr != LFS_UNUSED_DADDR) { 988 u_int32_t oldsn = dtosn(fs, daddr); 989 #ifdef DIAGNOSTIC 990 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 991 #endif 992 LFS_SEGENTRY(sup, fs, oldsn, bp); 993 #ifdef DIAGNOSTIC 994 if (sup->su_nbytes + 995 sizeof (struct ufs1_dinode) * ndupino 996 < sizeof (struct ufs1_dinode)) { 997 printf("lfs_writeinode: negative bytes " 998 "(segment %" PRIu32 " short by %d, " 999 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1000 ", daddr=%" PRId64 ", su_nbytes=%u, " 1001 "ndupino=%d)\n", 1002 dtosn(fs, daddr), 1003 (int)sizeof (struct ufs1_dinode) * 1004 (1 - sp->ndupino) - sup->su_nbytes, 1005 oldsn, sp->seg_number, daddr, 1006 (unsigned int)sup->su_nbytes, 1007 sp->ndupino); 1008 panic("lfs_writeinode: negative bytes"); 1009 sup->su_nbytes = sizeof (struct ufs1_dinode); 1010 } 1011 #endif 1012 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", 1013 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino)); 1014 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1015 redo_ifile |= 1016 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1017 if (redo_ifile) { 1018 mutex_enter(&lfs_lock); 1019 fs->lfs_flags |= LFS_IFDIRTY; 1020 mutex_exit(&lfs_lock); 1021 /* Don't double-account */ 1022 fs->lfs_idaddr = 0x0; 1023 } 1024 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1025 } 1026 1027 return redo_ifile; 1028 } 1029 1030 int 1031 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 1032 { 1033 struct buf *bp; 1034 struct ufs1_dinode *cdp; 1035 daddr_t daddr; 1036 int32_t *daddrp; /* XXX ondisk32 */ 1037 int i, ndx; 1038 int redo_ifile = 0; 1039 int gotblk = 0; 1040 int count; 1041 1042 ASSERT_SEGLOCK(fs); 1043 if (!(ip->i_flag & IN_ALLMOD)) 1044 return (0); 1045 1046 /* Can't write ifile when writer is not set */ 1047 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 || 1048 (sp->seg_flags & SEGM_CLEAN)); 1049 1050 /* 1051 * If this is the Ifile, see if writing it here will generate a 1052 * temporary misaccounting. If it will, do the accounting and write 1053 * the blocks, postponing the inode write until the accounting is 1054 * solid. 1055 */ 1056 count = 0; 1057 while (ip->i_number == LFS_IFILE_INUM) { 1058 int redo = 0; 1059 1060 if (sp->idp == NULL && sp->ibp == NULL && 1061 (sp->seg_bytes_left < fs->lfs_ibsize || 1062 sp->sum_bytes_left < sizeof(int32_t))) { 1063 (void) lfs_writeseg(fs, sp); 1064 continue; 1065 } 1066 1067 /* Look for dirty Ifile blocks */ 1068 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) { 1069 if (!(bp->b_flags & B_GATHERED)) { 1070 redo = 1; 1071 break; 1072 } 1073 } 1074 1075 if (redo == 0) 1076 redo = lfs_update_iaddr(fs, sp, ip, 0x0); 1077 if (redo == 0) 1078 break; 1079 1080 if (sp->idp) { 1081 sp->idp->di_inumber = 0; 1082 sp->idp = NULL; 1083 } 1084 ++count; 1085 if (count > 2) 1086 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count); 1087 lfs_writefile(fs, sp, fs->lfs_ivnode); 1088 } 1089 1090 /* Allocate a new inode block if necessary. */ 1091 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 1092 sp->ibp == NULL) { 1093 /* Allocate a new segment if necessary. */ 1094 if (sp->seg_bytes_left < fs->lfs_ibsize || 1095 sp->sum_bytes_left < sizeof(int32_t)) 1096 (void) lfs_writeseg(fs, sp); 1097 1098 /* Get next inode block. */ 1099 daddr = fs->lfs_offset; 1100 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 1101 sp->ibp = *sp->cbpp++ = 1102 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 1103 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); 1104 gotblk++; 1105 1106 /* Zero out inode numbers */ 1107 for (i = 0; i < INOPB(fs); ++i) 1108 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 1109 0; 1110 1111 ++sp->start_bpp; 1112 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 1113 /* Set remaining space counters. */ 1114 sp->seg_bytes_left -= fs->lfs_ibsize; 1115 sp->sum_bytes_left -= sizeof(int32_t); 1116 ndx = fs->lfs_sumsize / sizeof(int32_t) - 1117 sp->ninodes / INOPB(fs) - 1; 1118 ((int32_t *)(sp->segsum))[ndx] = daddr; 1119 } 1120 1121 /* Check VU_DIROP in case there is a new file with no data blocks */ 1122 if (ITOV(ip)->v_uflag & VU_DIROP) 1123 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 1124 1125 /* Update the inode times and copy the inode onto the inode page. */ 1126 /* XXX kludge --- don't redirty the ifile just to put times on it */ 1127 if (ip->i_number != LFS_IFILE_INUM) 1128 LFS_ITIMES(ip, NULL, NULL, NULL); 1129 1130 /* 1131 * If this is the Ifile, and we've already written the Ifile in this 1132 * partial segment, just overwrite it (it's not on disk yet) and 1133 * continue. 1134 * 1135 * XXX we know that the bp that we get the second time around has 1136 * already been gathered. 1137 */ 1138 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 1139 *(sp->idp) = *ip->i_din.ffs1_din; 1140 ip->i_lfs_osize = ip->i_size; 1141 return 0; 1142 } 1143 1144 bp = sp->ibp; 1145 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 1146 *cdp = *ip->i_din.ffs1_din; 1147 1148 /* 1149 * If cleaning, link counts and directory file sizes cannot change, 1150 * since those would be directory operations---even if the file 1151 * we are writing is marked VU_DIROP we should write the old values. 1152 * If we're not cleaning, of course, update the values so we get 1153 * current values the next time we clean. 1154 */ 1155 if (sp->seg_flags & SEGM_CLEAN) { 1156 if (ITOV(ip)->v_uflag & VU_DIROP) { 1157 cdp->di_nlink = ip->i_lfs_odnlink; 1158 /* if (ITOV(ip)->v_type == VDIR) */ 1159 cdp->di_size = ip->i_lfs_osize; 1160 } 1161 } else { 1162 ip->i_lfs_odnlink = cdp->di_nlink; 1163 ip->i_lfs_osize = ip->i_size; 1164 } 1165 1166 1167 /* We can finish the segment accounting for truncations now */ 1168 lfs_finalize_ino_seguse(fs, ip); 1169 1170 /* 1171 * If we are cleaning, ensure that we don't write UNWRITTEN disk 1172 * addresses to disk; possibly change the on-disk record of 1173 * the inode size, either by reverting to the previous size 1174 * (in the case of cleaning) or by verifying the inode's block 1175 * holdings (in the case of files being allocated as they are being 1176 * written). 1177 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail 1178 * XXX count on disk wrong by the same amount. We should be 1179 * XXX able to "borrow" from lfs_avail and return it after the 1180 * XXX Ifile is written. See also in lfs_writeseg. 1181 */ 1182 1183 /* Check file size based on highest allocated block */ 1184 if (((ip->i_ffs1_mode & IFMT) == IFREG || 1185 (ip->i_ffs1_mode & IFMT) == IFDIR) && 1186 ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) { 1187 cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift; 1188 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %" 1189 PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size)); 1190 } 1191 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 1192 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)" 1193 " at %x\n", ip->i_number, ip->i_lfs_effnblks, 1194 ip->i_ffs1_blocks, fs->lfs_offset)); 1195 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 1196 daddrp++) { 1197 if (*daddrp == UNWRITTEN) { 1198 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1199 *daddrp = 0; 1200 } 1201 } 1202 } 1203 1204 #ifdef DIAGNOSTIC 1205 /* 1206 * Check dinode held blocks against dinode size. 1207 * This should be identical to the check in lfs_vget(). 1208 */ 1209 for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; 1210 i < NDADDR; i++) { 1211 KASSERT(i >= 0); 1212 if ((cdp->di_mode & IFMT) == IFLNK) 1213 continue; 1214 if (((cdp->di_mode & IFMT) == IFBLK || 1215 (cdp->di_mode & IFMT) == IFCHR) && i == 0) 1216 continue; 1217 if (cdp->di_db[i] != 0) { 1218 # ifdef DEBUG 1219 lfs_dump_dinode(cdp); 1220 # endif 1221 panic("writing inconsistent inode"); 1222 } 1223 } 1224 #endif /* DIAGNOSTIC */ 1225 1226 if (ip->i_flag & IN_CLEANING) 1227 LFS_CLR_UINO(ip, IN_CLEANING); 1228 else { 1229 /* XXX IN_ALLMOD */ 1230 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 1231 IN_UPDATE | IN_MODIFY); 1232 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 1233 LFS_CLR_UINO(ip, IN_MODIFIED); 1234 else { 1235 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real " 1236 "blks=%d, eff=%d\n", ip->i_number, 1237 ip->i_ffs1_blocks, ip->i_lfs_effnblks)); 1238 } 1239 } 1240 1241 if (ip->i_number == LFS_IFILE_INUM) { 1242 /* We know sp->idp == NULL */ 1243 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 1244 (sp->ninodes % INOPB(fs)); 1245 1246 /* Not dirty any more */ 1247 mutex_enter(&lfs_lock); 1248 fs->lfs_flags &= ~LFS_IFDIRTY; 1249 mutex_exit(&lfs_lock); 1250 } 1251 1252 if (gotblk) { 1253 mutex_enter(&bufcache_lock); 1254 LFS_LOCK_BUF(bp); 1255 brelsel(bp, 0); 1256 mutex_exit(&bufcache_lock); 1257 } 1258 1259 /* Increment inode count in segment summary block. */ 1260 ++((SEGSUM *)(sp->segsum))->ss_ninos; 1261 1262 /* If this page is full, set flag to allocate a new page. */ 1263 if (++sp->ninodes % INOPB(fs) == 0) 1264 sp->ibp = NULL; 1265 1266 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno); 1267 1268 KASSERT(redo_ifile == 0); 1269 return (redo_ifile); 1270 } 1271 1272 int 1273 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr) 1274 { 1275 struct lfs *fs; 1276 int vers; 1277 int j, blksinblk; 1278 1279 ASSERT_SEGLOCK(sp->fs); 1280 /* 1281 * If full, finish this segment. We may be doing I/O, so 1282 * release and reacquire the splbio(). 1283 */ 1284 #ifdef DIAGNOSTIC 1285 if (sp->vp == NULL) 1286 panic ("lfs_gatherblock: Null vp in segment"); 1287 #endif 1288 fs = sp->fs; 1289 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1290 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1291 sp->seg_bytes_left < bp->b_bcount) { 1292 if (mptr) 1293 mutex_exit(mptr); 1294 lfs_updatemeta(sp); 1295 1296 vers = sp->fip->fi_version; 1297 (void) lfs_writeseg(fs, sp); 1298 1299 /* Add the current file to the segment summary. */ 1300 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers); 1301 1302 if (mptr) 1303 mutex_enter(mptr); 1304 return (1); 1305 } 1306 1307 if (bp->b_flags & B_GATHERED) { 1308 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d," 1309 " lbn %" PRId64 "\n", 1310 sp->fip->fi_ino, bp->b_lblkno)); 1311 return (0); 1312 } 1313 1314 /* Insert into the buffer list, update the FINFO block. */ 1315 bp->b_flags |= B_GATHERED; 1316 1317 *sp->cbpp++ = bp; 1318 for (j = 0; j < blksinblk; j++) { 1319 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1320 /* This block's accounting moves from lfs_favail to lfs_avail */ 1321 lfs_deregister_block(sp->vp, bp->b_lblkno + j); 1322 } 1323 1324 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1325 sp->seg_bytes_left -= bp->b_bcount; 1326 return (0); 1327 } 1328 1329 int 1330 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1331 int (*match)(struct lfs *, struct buf *)) 1332 { 1333 struct buf *bp, *nbp; 1334 int count = 0; 1335 1336 ASSERT_SEGLOCK(fs); 1337 if (vp->v_type == VBLK) 1338 return 0; 1339 KASSERT(sp->vp == NULL); 1340 sp->vp = vp; 1341 mutex_enter(&bufcache_lock); 1342 1343 #ifndef LFS_NO_BACKBUF_HACK 1344 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1345 # define BUF_OFFSET \ 1346 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp) 1347 # define BACK_BUF(BP) \ 1348 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1349 # define BEG_OF_LIST \ 1350 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1351 1352 loop: 1353 /* Find last buffer. */ 1354 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1355 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1356 bp = LIST_NEXT(bp, b_vnbufs)) 1357 /* nothing */; 1358 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1359 nbp = BACK_BUF(bp); 1360 #else /* LFS_NO_BACKBUF_HACK */ 1361 loop: 1362 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1363 nbp = LIST_NEXT(bp, b_vnbufs); 1364 #endif /* LFS_NO_BACKBUF_HACK */ 1365 if ((bp->b_cflags & BC_BUSY) != 0 || 1366 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) { 1367 #ifdef DEBUG 1368 if (vp == fs->lfs_ivnode && 1369 (bp->b_cflags & BC_BUSY) != 0 && 1370 (bp->b_flags & B_GATHERED) == 0) 1371 log(LOG_NOTICE, "lfs_gather: ifile lbn %" 1372 PRId64 " busy (%x) at 0x%x", 1373 bp->b_lblkno, bp->b_flags, 1374 (unsigned)fs->lfs_offset); 1375 #endif 1376 continue; 1377 } 1378 #ifdef DIAGNOSTIC 1379 # ifdef LFS_USE_B_INVAL 1380 if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) { 1381 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1382 " is BC_INVAL\n", bp->b_lblkno)); 1383 VOP_PRINT(bp->b_vp); 1384 } 1385 # endif /* LFS_USE_B_INVAL */ 1386 if (!(bp->b_oflags & BO_DELWRI)) 1387 panic("lfs_gather: bp not BO_DELWRI"); 1388 if (!(bp->b_flags & B_LOCKED)) { 1389 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1390 " blk %" PRId64 " not B_LOCKED\n", 1391 bp->b_lblkno, 1392 dbtofsb(fs, bp->b_blkno))); 1393 VOP_PRINT(bp->b_vp); 1394 panic("lfs_gather: bp not B_LOCKED"); 1395 } 1396 #endif 1397 if (lfs_gatherblock(sp, bp, &bufcache_lock)) { 1398 goto loop; 1399 } 1400 count++; 1401 } 1402 mutex_exit(&bufcache_lock); 1403 lfs_updatemeta(sp); 1404 KASSERT(sp->vp == vp); 1405 sp->vp = NULL; 1406 return count; 1407 } 1408 1409 #if DEBUG 1410 # define DEBUG_OOFF(n) do { \ 1411 if (ooff == 0) { \ 1412 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ 1413 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1414 ", was 0x0 (or %" PRId64 ")\n", \ 1415 (n), ip->i_number, lbn, ndaddr, daddr)); \ 1416 } \ 1417 } while (0) 1418 #else 1419 # define DEBUG_OOFF(n) 1420 #endif 1421 1422 /* 1423 * Change the given block's address to ndaddr, finding its previous 1424 * location using ufs_bmaparray(). 1425 * 1426 * Account for this change in the segment table. 1427 * 1428 * called with sp == NULL by roll-forwarding code. 1429 */ 1430 void 1431 lfs_update_single(struct lfs *fs, struct segment *sp, 1432 struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size) 1433 { 1434 SEGUSE *sup; 1435 struct buf *bp; 1436 struct indir a[NIADDR + 2], *ap; 1437 struct inode *ip; 1438 daddr_t daddr, ooff; 1439 int num, error; 1440 int bb, osize, obb; 1441 1442 ASSERT_SEGLOCK(fs); 1443 KASSERT(sp == NULL || sp->vp == vp); 1444 ip = VTOI(vp); 1445 1446 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1447 if (error) 1448 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1449 1450 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */ 1451 KASSERT(daddr <= LFS_MAX_DADDR); 1452 if (daddr > 0) 1453 daddr = dbtofsb(fs, daddr); 1454 1455 bb = fragstofsb(fs, numfrags(fs, size)); 1456 switch (num) { 1457 case 0: 1458 ooff = ip->i_ffs1_db[lbn]; 1459 DEBUG_OOFF(0); 1460 if (ooff == UNWRITTEN) 1461 ip->i_ffs1_blocks += bb; 1462 else { 1463 /* possible fragment truncation or extension */ 1464 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1465 ip->i_ffs1_blocks += (bb - obb); 1466 } 1467 ip->i_ffs1_db[lbn] = ndaddr; 1468 break; 1469 case 1: 1470 ooff = ip->i_ffs1_ib[a[0].in_off]; 1471 DEBUG_OOFF(1); 1472 if (ooff == UNWRITTEN) 1473 ip->i_ffs1_blocks += bb; 1474 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1475 break; 1476 default: 1477 ap = &a[num - 1]; 1478 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, 1479 B_MODIFY, &bp)) 1480 panic("lfs_updatemeta: bread bno %" PRId64, 1481 ap->in_lbn); 1482 1483 /* XXX ondisk32 */ 1484 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1485 DEBUG_OOFF(num); 1486 if (ooff == UNWRITTEN) 1487 ip->i_ffs1_blocks += bb; 1488 /* XXX ondisk32 */ 1489 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1490 (void) VOP_BWRITE(bp); 1491 } 1492 1493 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1494 1495 /* Update hiblk when extending the file */ 1496 if (lbn > ip->i_lfs_hiblk) 1497 ip->i_lfs_hiblk = lbn; 1498 1499 /* 1500 * Though we'd rather it couldn't, this *can* happen right now 1501 * if cleaning blocks and regular blocks coexist. 1502 */ 1503 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1504 1505 /* 1506 * Update segment usage information, based on old size 1507 * and location. 1508 */ 1509 if (daddr > 0) { 1510 u_int32_t oldsn = dtosn(fs, daddr); 1511 #ifdef DIAGNOSTIC 1512 int ndupino; 1513 1514 if (sp && sp->seg_number == oldsn) { 1515 ndupino = sp->ndupino; 1516 } else { 1517 ndupino = 0; 1518 } 1519 #endif 1520 KASSERT(oldsn < fs->lfs_nseg); 1521 if (lbn >= 0 && lbn < NDADDR) 1522 osize = ip->i_lfs_fragsize[lbn]; 1523 else 1524 osize = fs->lfs_bsize; 1525 LFS_SEGENTRY(sup, fs, oldsn, bp); 1526 #ifdef DIAGNOSTIC 1527 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1528 < osize) { 1529 printf("lfs_updatemeta: negative bytes " 1530 "(segment %" PRIu32 " short by %" PRId64 1531 ")\n", dtosn(fs, daddr), 1532 (int64_t)osize - 1533 (sizeof (struct ufs1_dinode) * ndupino + 1534 sup->su_nbytes)); 1535 printf("lfs_updatemeta: ino %llu, lbn %" PRId64 1536 ", addr = 0x%" PRIx64 "\n", 1537 (unsigned long long)ip->i_number, lbn, daddr); 1538 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1539 panic("lfs_updatemeta: negative bytes"); 1540 sup->su_nbytes = osize - 1541 sizeof (struct ufs1_dinode) * ndupino; 1542 } 1543 #endif 1544 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1545 " db 0x%" PRIx64 "\n", 1546 dtosn(fs, daddr), osize, 1547 ip->i_number, lbn, daddr)); 1548 sup->su_nbytes -= osize; 1549 if (!(bp->b_flags & B_GATHERED)) { 1550 mutex_enter(&lfs_lock); 1551 fs->lfs_flags |= LFS_IFDIRTY; 1552 mutex_exit(&lfs_lock); 1553 } 1554 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1555 } 1556 /* 1557 * Now that this block has a new address, and its old 1558 * segment no longer owns it, we can forget about its 1559 * old size. 1560 */ 1561 if (lbn >= 0 && lbn < NDADDR) 1562 ip->i_lfs_fragsize[lbn] = size; 1563 } 1564 1565 /* 1566 * Update the metadata that points to the blocks listed in the FINFO 1567 * array. 1568 */ 1569 void 1570 lfs_updatemeta(struct segment *sp) 1571 { 1572 struct buf *sbp; 1573 struct lfs *fs; 1574 struct vnode *vp; 1575 daddr_t lbn; 1576 int i, nblocks, num; 1577 int bb; 1578 int bytesleft, size; 1579 1580 ASSERT_SEGLOCK(sp->fs); 1581 vp = sp->vp; 1582 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1583 KASSERT(nblocks >= 0); 1584 KASSERT(vp != NULL); 1585 if (nblocks == 0) 1586 return; 1587 1588 /* 1589 * This count may be high due to oversize blocks from lfs_gop_write. 1590 * Correct for this. (XXX we should be able to keep track of these.) 1591 */ 1592 fs = sp->fs; 1593 for (i = 0; i < nblocks; i++) { 1594 if (sp->start_bpp[i] == NULL) { 1595 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); 1596 nblocks = i; 1597 break; 1598 } 1599 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1600 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1601 nblocks -= num - 1; 1602 } 1603 1604 KASSERT(vp->v_type == VREG || 1605 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1606 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1607 1608 /* 1609 * Sort the blocks. 1610 * 1611 * We have to sort even if the blocks come from the 1612 * cleaner, because there might be other pending blocks on the 1613 * same inode...and if we don't sort, and there are fragments 1614 * present, blocks may be written in the wrong place. 1615 */ 1616 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1617 1618 /* 1619 * Record the length of the last block in case it's a fragment. 1620 * If there are indirect blocks present, they sort last. An 1621 * indirect block will be lfs_bsize and its presence indicates 1622 * that you cannot have fragments. 1623 * 1624 * XXX This last is a lie. A cleaned fragment can coexist with 1625 * XXX a later indirect block. This will continue to be 1626 * XXX true until lfs_markv is fixed to do everything with 1627 * XXX fake blocks (including fake inodes and fake indirect blocks). 1628 */ 1629 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1630 fs->lfs_bmask) + 1; 1631 1632 /* 1633 * Assign disk addresses, and update references to the logical 1634 * block and the segment usage information. 1635 */ 1636 for (i = nblocks; i--; ++sp->start_bpp) { 1637 sbp = *sp->start_bpp; 1638 lbn = *sp->start_lbp; 1639 KASSERT(sbp->b_lblkno == lbn); 1640 1641 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1642 1643 /* 1644 * If we write a frag in the wrong place, the cleaner won't 1645 * be able to correctly identify its size later, and the 1646 * segment will be uncleanable. (Even worse, it will assume 1647 * that the indirect block that actually ends the list 1648 * is of a smaller size!) 1649 */ 1650 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1651 panic("lfs_updatemeta: fragment is not last block"); 1652 1653 /* 1654 * For each subblock in this possibly oversized block, 1655 * update its address on disk. 1656 */ 1657 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1658 KASSERT(vp == sbp->b_vp); 1659 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1660 bytesleft -= fs->lfs_bsize) { 1661 size = MIN(bytesleft, fs->lfs_bsize); 1662 bb = fragstofsb(fs, numfrags(fs, size)); 1663 lbn = *sp->start_lbp++; 1664 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset, 1665 size); 1666 fs->lfs_offset += bb; 1667 } 1668 1669 } 1670 1671 /* This inode has been modified */ 1672 LFS_SET_UINO(VTOI(vp), IN_MODIFIED); 1673 } 1674 1675 /* 1676 * Move lfs_offset to a segment earlier than sn. 1677 */ 1678 int 1679 lfs_rewind(struct lfs *fs, int newsn) 1680 { 1681 int sn, osn, isdirty; 1682 struct buf *bp; 1683 SEGUSE *sup; 1684 1685 ASSERT_SEGLOCK(fs); 1686 1687 osn = dtosn(fs, fs->lfs_offset); 1688 if (osn < newsn) 1689 return 0; 1690 1691 /* lfs_avail eats the remaining space in this segment */ 1692 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg); 1693 1694 /* Find a low-numbered segment */ 1695 for (sn = 0; sn < fs->lfs_nseg; ++sn) { 1696 LFS_SEGENTRY(sup, fs, sn, bp); 1697 isdirty = sup->su_flags & SEGUSE_DIRTY; 1698 brelse(bp, 0); 1699 1700 if (!isdirty) 1701 break; 1702 } 1703 if (sn == fs->lfs_nseg) 1704 panic("lfs_rewind: no clean segments"); 1705 if (newsn >= 0 && sn >= newsn) 1706 return ENOENT; 1707 fs->lfs_nextseg = sn; 1708 lfs_newseg(fs); 1709 fs->lfs_offset = fs->lfs_curseg; 1710 1711 return 0; 1712 } 1713 1714 /* 1715 * Start a new partial segment. 1716 * 1717 * Return 1 when we entered to a new segment. 1718 * Otherwise, return 0. 1719 */ 1720 int 1721 lfs_initseg(struct lfs *fs) 1722 { 1723 struct segment *sp = fs->lfs_sp; 1724 SEGSUM *ssp; 1725 struct buf *sbp; /* buffer for SEGSUM */ 1726 int repeat = 0; /* return value */ 1727 1728 ASSERT_SEGLOCK(fs); 1729 /* Advance to the next segment. */ 1730 if (!LFS_PARTIAL_FITS(fs)) { 1731 SEGUSE *sup; 1732 struct buf *bp; 1733 1734 /* lfs_avail eats the remaining space */ 1735 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1736 fs->lfs_curseg); 1737 /* Wake up any cleaning procs waiting on this file system. */ 1738 lfs_wakeup_cleaner(fs); 1739 lfs_newseg(fs); 1740 repeat = 1; 1741 fs->lfs_offset = fs->lfs_curseg; 1742 1743 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1744 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1745 1746 /* 1747 * If the segment contains a superblock, update the offset 1748 * and summary address to skip over it. 1749 */ 1750 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1751 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1752 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1753 sp->seg_bytes_left -= LFS_SBPAD; 1754 } 1755 brelse(bp, 0); 1756 /* Segment zero could also contain the labelpad */ 1757 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1758 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1759 fs->lfs_offset += 1760 btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1761 sp->seg_bytes_left -= 1762 LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1763 } 1764 } else { 1765 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1766 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1767 (fs->lfs_offset - fs->lfs_curseg)); 1768 } 1769 fs->lfs_lastpseg = fs->lfs_offset; 1770 1771 /* Record first address of this partial segment */ 1772 if (sp->seg_flags & SEGM_CLEAN) { 1773 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1774 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1775 /* "1" is the artificial inc in lfs_seglock */ 1776 mutex_enter(&lfs_lock); 1777 while (fs->lfs_iocount > 1) { 1778 mtsleep(&fs->lfs_iocount, PRIBIO + 1, 1779 "lfs_initseg", 0, &lfs_lock); 1780 } 1781 mutex_exit(&lfs_lock); 1782 fs->lfs_cleanind = 0; 1783 } 1784 } 1785 1786 sp->fs = fs; 1787 sp->ibp = NULL; 1788 sp->idp = NULL; 1789 sp->ninodes = 0; 1790 sp->ndupino = 0; 1791 1792 sp->cbpp = sp->bpp; 1793 1794 /* Get a new buffer for SEGSUM */ 1795 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1796 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1797 1798 /* ... and enter it into the buffer list. */ 1799 *sp->cbpp = sbp; 1800 sp->cbpp++; 1801 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1802 1803 sp->start_bpp = sp->cbpp; 1804 1805 /* Set point to SEGSUM, initialize it. */ 1806 ssp = sp->segsum = sbp->b_data; 1807 memset(ssp, 0, fs->lfs_sumsize); 1808 ssp->ss_next = fs->lfs_nextseg; 1809 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1810 ssp->ss_magic = SS_MAGIC; 1811 1812 /* Set pointer to first FINFO, initialize it. */ 1813 sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs)); 1814 sp->fip->fi_nblocks = 0; 1815 sp->start_lbp = &sp->fip->fi_blocks[0]; 1816 sp->fip->fi_lastlength = 0; 1817 1818 sp->seg_bytes_left -= fs->lfs_sumsize; 1819 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1820 1821 return (repeat); 1822 } 1823 1824 /* 1825 * Remove SEGUSE_INVAL from all segments. 1826 */ 1827 void 1828 lfs_unset_inval_all(struct lfs *fs) 1829 { 1830 SEGUSE *sup; 1831 struct buf *bp; 1832 int i; 1833 1834 for (i = 0; i < fs->lfs_nseg; i++) { 1835 LFS_SEGENTRY(sup, fs, i, bp); 1836 if (sup->su_flags & SEGUSE_INVAL) { 1837 sup->su_flags &= ~SEGUSE_INVAL; 1838 LFS_WRITESEGENTRY(sup, fs, i, bp); 1839 } else 1840 brelse(bp, 0); 1841 } 1842 } 1843 1844 /* 1845 * Return the next segment to write. 1846 */ 1847 void 1848 lfs_newseg(struct lfs *fs) 1849 { 1850 CLEANERINFO *cip; 1851 SEGUSE *sup; 1852 struct buf *bp; 1853 int curseg, isdirty, sn, skip_inval; 1854 1855 ASSERT_SEGLOCK(fs); 1856 1857 /* Honor LFCNWRAPSTOP */ 1858 mutex_enter(&lfs_lock); 1859 while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) { 1860 if (fs->lfs_wrappass) { 1861 log(LOG_NOTICE, "%s: wrappass=%d\n", 1862 fs->lfs_fsmnt, fs->lfs_wrappass); 1863 fs->lfs_wrappass = 0; 1864 break; 1865 } 1866 fs->lfs_wrapstatus = LFS_WRAP_WAITING; 1867 wakeup(&fs->lfs_nowrap); 1868 log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt); 1869 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz, 1870 &lfs_lock); 1871 } 1872 fs->lfs_wrapstatus = LFS_WRAP_GOING; 1873 mutex_exit(&lfs_lock); 1874 1875 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1876 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", 1877 dtosn(fs, fs->lfs_nextseg))); 1878 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1879 sup->su_nbytes = 0; 1880 sup->su_nsums = 0; 1881 sup->su_ninos = 0; 1882 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1883 1884 LFS_CLEANERINFO(cip, fs, bp); 1885 --cip->clean; 1886 ++cip->dirty; 1887 fs->lfs_nclean = cip->clean; 1888 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1889 1890 fs->lfs_lastseg = fs->lfs_curseg; 1891 fs->lfs_curseg = fs->lfs_nextseg; 1892 skip_inval = 1; 1893 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1894 sn = (sn + 1) % fs->lfs_nseg; 1895 1896 if (sn == curseg) { 1897 if (skip_inval) 1898 skip_inval = 0; 1899 else 1900 panic("lfs_nextseg: no clean segments"); 1901 } 1902 LFS_SEGENTRY(sup, fs, sn, bp); 1903 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0)); 1904 /* Check SEGUSE_EMPTY as we go along */ 1905 if (isdirty && sup->su_nbytes == 0 && 1906 !(sup->su_flags & SEGUSE_EMPTY)) 1907 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1908 else 1909 brelse(bp, 0); 1910 1911 if (!isdirty) 1912 break; 1913 } 1914 if (skip_inval == 0) 1915 lfs_unset_inval_all(fs); 1916 1917 ++fs->lfs_nactive; 1918 fs->lfs_nextseg = sntod(fs, sn); 1919 if (lfs_dostats) { 1920 ++lfs_stats.segsused; 1921 } 1922 } 1923 1924 static struct buf * 1925 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, 1926 int n) 1927 { 1928 struct lfs_cluster *cl; 1929 struct buf **bpp, *bp; 1930 1931 ASSERT_SEGLOCK(fs); 1932 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1933 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1934 memset(cl, 0, sizeof(*cl)); 1935 cl->fs = fs; 1936 cl->bpp = bpp; 1937 cl->bufcount = 0; 1938 cl->bufsize = 0; 1939 1940 /* If this segment is being written synchronously, note that */ 1941 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1942 cl->flags |= LFS_CL_SYNC; 1943 cl->seg = fs->lfs_sp; 1944 ++cl->seg->seg_iocount; 1945 } 1946 1947 /* Get an empty buffer header, or maybe one with something on it */ 1948 bp = getiobuf(vp, true); 1949 bp->b_dev = NODEV; 1950 bp->b_blkno = bp->b_lblkno = addr; 1951 bp->b_iodone = lfs_cluster_callback; 1952 bp->b_private = cl; 1953 1954 return bp; 1955 } 1956 1957 int 1958 lfs_writeseg(struct lfs *fs, struct segment *sp) 1959 { 1960 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp; 1961 SEGUSE *sup; 1962 SEGSUM *ssp; 1963 int i; 1964 int do_again, nblocks, byteoffset; 1965 size_t el_size; 1966 struct lfs_cluster *cl; 1967 u_short ninos; 1968 struct vnode *devvp; 1969 char *p = NULL; 1970 struct vnode *vp; 1971 int32_t *daddrp; /* XXX ondisk32 */ 1972 int changed; 1973 u_int32_t sum; 1974 #ifdef DEBUG 1975 FINFO *fip; 1976 int findex; 1977 #endif 1978 1979 ASSERT_SEGLOCK(fs); 1980 1981 ssp = (SEGSUM *)sp->segsum; 1982 1983 /* 1984 * If there are no buffers other than the segment summary to write, 1985 * don't do anything. If we are the end of a dirop sequence, however, 1986 * write the empty segment summary anyway, to help out the 1987 * roll-forward agent. 1988 */ 1989 if ((nblocks = sp->cbpp - sp->bpp) == 1) { 1990 if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP) 1991 return 0; 1992 } 1993 1994 /* Note if partial segment is being written by the cleaner */ 1995 if (sp->seg_flags & SEGM_CLEAN) 1996 ssp->ss_flags |= SS_CLEAN; 1997 1998 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1999 2000 /* Update the segment usage information. */ 2001 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 2002 2003 /* Loop through all blocks, except the segment summary. */ 2004 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 2005 if ((*bpp)->b_vp != devvp) { 2006 sup->su_nbytes += (*bpp)->b_bcount; 2007 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" 2008 " lbn %" PRId64 " db 0x%" PRIx64 "\n", 2009 sp->seg_number, (*bpp)->b_bcount, 2010 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 2011 (*bpp)->b_blkno)); 2012 } 2013 } 2014 2015 #ifdef DEBUG 2016 /* Check for zero-length and zero-version FINFO entries. */ 2017 fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs)); 2018 for (findex = 0; findex < ssp->ss_nfinfo; findex++) { 2019 KDASSERT(fip->fi_nblocks > 0); 2020 KDASSERT(fip->fi_version > 0); 2021 fip = (FINFO *)((char *)fip + FINFOSIZE + 2022 sizeof(int32_t) * fip->fi_nblocks); 2023 } 2024 #endif /* DEBUG */ 2025 2026 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 2027 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", 2028 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 2029 ssp->ss_ninos)); 2030 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 2031 /* sup->su_nbytes += fs->lfs_sumsize; */ 2032 if (fs->lfs_version == 1) 2033 sup->su_olastmod = time_second; 2034 else 2035 sup->su_lastmod = time_second; 2036 sup->su_ninos += ninos; 2037 ++sup->su_nsums; 2038 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 2039 2040 do_again = !(bp->b_flags & B_GATHERED); 2041 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 2042 2043 /* 2044 * Mark blocks B_BUSY, to prevent then from being changed between 2045 * the checksum computation and the actual write. 2046 * 2047 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 2048 * there are any, replace them with copies that have UNASSIGNED 2049 * instead. 2050 */ 2051 mutex_enter(&bufcache_lock); 2052 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 2053 ++bpp; 2054 bp = *bpp; 2055 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */ 2056 bp->b_cflags |= BC_BUSY; 2057 continue; 2058 } 2059 2060 while (bp->b_cflags & BC_BUSY) { 2061 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" 2062 " data summary corruption for ino %d, lbn %" 2063 PRId64 "\n", 2064 VTOI(bp->b_vp)->i_number, bp->b_lblkno)); 2065 bp->b_cflags |= BC_WANTED; 2066 cv_wait(&bp->b_busy, &bufcache_lock); 2067 } 2068 bp->b_cflags |= BC_BUSY; 2069 mutex_exit(&bufcache_lock); 2070 unbusybp = NULL; 2071 2072 /* 2073 * Check and replace indirect block UNWRITTEN bogosity. 2074 * XXX See comment in lfs_writefile. 2075 */ 2076 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 2077 VTOI(bp->b_vp)->i_ffs1_blocks != 2078 VTOI(bp->b_vp)->i_lfs_effnblks) { 2079 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n", 2080 VTOI(bp->b_vp)->i_number, 2081 VTOI(bp->b_vp)->i_lfs_effnblks, 2082 VTOI(bp->b_vp)->i_ffs1_blocks)); 2083 /* Make a copy we'll make changes to */ 2084 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 2085 bp->b_bcount, LFS_NB_IBLOCK); 2086 newbp->b_blkno = bp->b_blkno; 2087 memcpy(newbp->b_data, bp->b_data, 2088 newbp->b_bcount); 2089 2090 changed = 0; 2091 /* XXX ondisk32 */ 2092 for (daddrp = (int32_t *)(newbp->b_data); 2093 daddrp < (int32_t *)((char *)newbp->b_data + 2094 newbp->b_bcount); daddrp++) { 2095 if (*daddrp == UNWRITTEN) { 2096 ++changed; 2097 *daddrp = 0; 2098 } 2099 } 2100 /* 2101 * Get rid of the old buffer. Don't mark it clean, 2102 * though, if it still has dirty data on it. 2103 */ 2104 if (changed) { 2105 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" 2106 " bp = %p newbp = %p\n", changed, bp, 2107 newbp)); 2108 *bpp = newbp; 2109 bp->b_flags &= ~B_GATHERED; 2110 bp->b_error = 0; 2111 if (bp->b_iodone != NULL) { 2112 DLOG((DLOG_SEG, "lfs_writeseg: " 2113 "indir bp should not be B_CALL\n")); 2114 biodone(bp); 2115 bp = NULL; 2116 } else { 2117 /* Still on free list, leave it there */ 2118 unbusybp = bp; 2119 /* 2120 * We have to re-decrement lfs_avail 2121 * since this block is going to come 2122 * back around to us in the next 2123 * segment. 2124 */ 2125 fs->lfs_avail -= 2126 btofsb(fs, bp->b_bcount); 2127 } 2128 } else { 2129 lfs_freebuf(fs, newbp); 2130 } 2131 } 2132 mutex_enter(&bufcache_lock); 2133 if (unbusybp != NULL) { 2134 unbusybp->b_cflags &= ~BC_BUSY; 2135 if (unbusybp->b_cflags & BC_WANTED) 2136 cv_broadcast(&bp->b_busy); 2137 } 2138 } 2139 mutex_exit(&bufcache_lock); 2140 2141 /* 2142 * Compute checksum across data and then across summary; the first 2143 * block (the summary block) is skipped. Set the create time here 2144 * so that it's guaranteed to be later than the inode mod times. 2145 */ 2146 sum = 0; 2147 if (fs->lfs_version == 1) 2148 el_size = sizeof(u_long); 2149 else 2150 el_size = sizeof(u_int32_t); 2151 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 2152 ++bpp; 2153 /* Loop through gop_write cluster blocks */ 2154 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 2155 byteoffset += fs->lfs_bsize) { 2156 #ifdef LFS_USE_B_INVAL 2157 if ((*bpp)->b_cflags & BC_INVAL) != 0 && 2158 (*bpp)->b_iodone != NULL) { 2159 if (copyin((void *)(*bpp)->b_saveaddr + 2160 byteoffset, dp, el_size)) { 2161 panic("lfs_writeseg: copyin failed [1]:" 2162 " ino %d blk %" PRId64, 2163 VTOI((*bpp)->b_vp)->i_number, 2164 (*bpp)->b_lblkno); 2165 } 2166 } else 2167 #endif /* LFS_USE_B_INVAL */ 2168 { 2169 sum = lfs_cksum_part((char *) 2170 (*bpp)->b_data + byteoffset, el_size, sum); 2171 } 2172 } 2173 } 2174 if (fs->lfs_version == 1) 2175 ssp->ss_ocreate = time_second; 2176 else { 2177 ssp->ss_create = time_second; 2178 ssp->ss_serial = ++fs->lfs_serial; 2179 ssp->ss_ident = fs->lfs_ident; 2180 } 2181 ssp->ss_datasum = lfs_cksum_fold(sum); 2182 ssp->ss_sumsum = cksum(&ssp->ss_datasum, 2183 fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 2184 2185 mutex_enter(&lfs_lock); 2186 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 2187 btofsb(fs, fs->lfs_sumsize)); 2188 fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) + 2189 btofsb(fs, fs->lfs_sumsize)); 2190 mutex_exit(&lfs_lock); 2191 2192 /* 2193 * When we simply write the blocks we lose a rotation for every block 2194 * written. To avoid this problem, we cluster the buffers into a 2195 * chunk and write the chunk. MAXPHYS is the largest size I/O 2196 * devices can handle, use that for the size of the chunks. 2197 * 2198 * Blocks that are already clusters (from GOP_WRITE), however, we 2199 * don't bother to copy into other clusters. 2200 */ 2201 2202 #define CHUNKSIZE MAXPHYS 2203 2204 if (devvp == NULL) 2205 panic("devvp is NULL"); 2206 for (bpp = sp->bpp, i = nblocks; i;) { 2207 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 2208 cl = cbp->b_private; 2209 2210 cbp->b_flags |= B_ASYNC; 2211 cbp->b_cflags |= BC_BUSY; 2212 cbp->b_bcount = 0; 2213 2214 #if defined(DEBUG) && defined(DIAGNOSTIC) 2215 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 2216 / sizeof(int32_t)) { 2217 panic("lfs_writeseg: real bpp overwrite"); 2218 } 2219 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) { 2220 panic("lfs_writeseg: theoretical bpp overwrite"); 2221 } 2222 #endif 2223 2224 /* 2225 * Construct the cluster. 2226 */ 2227 mutex_enter(&lfs_lock); 2228 ++fs->lfs_iocount; 2229 mutex_exit(&lfs_lock); 2230 while (i && cbp->b_bcount < CHUNKSIZE) { 2231 bp = *bpp; 2232 2233 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 2234 break; 2235 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 2236 break; 2237 2238 /* Clusters from GOP_WRITE are expedited */ 2239 if (bp->b_bcount > fs->lfs_bsize) { 2240 if (cbp->b_bcount > 0) 2241 /* Put in its own buffer */ 2242 break; 2243 else { 2244 cbp->b_data = bp->b_data; 2245 } 2246 } else if (cbp->b_bcount == 0) { 2247 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 2248 LFS_NB_CLUSTER); 2249 cl->flags |= LFS_CL_MALLOC; 2250 } 2251 #ifdef DIAGNOSTIC 2252 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 2253 btodb(bp->b_bcount - 1))) != 2254 sp->seg_number) { 2255 printf("blk size %d daddr %" PRIx64 2256 " not in seg %d\n", 2257 bp->b_bcount, bp->b_blkno, 2258 sp->seg_number); 2259 panic("segment overwrite"); 2260 } 2261 #endif 2262 2263 #ifdef LFS_USE_B_INVAL 2264 /* 2265 * Fake buffers from the cleaner are marked as B_INVAL. 2266 * We need to copy the data from user space rather than 2267 * from the buffer indicated. 2268 * XXX == what do I do on an error? 2269 */ 2270 if ((bp->b_cflags & BC_INVAL) != 0 && 2271 bp->b_iodone != NULL) { 2272 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 2273 panic("lfs_writeseg: " 2274 "copyin failed [2]"); 2275 } else 2276 #endif /* LFS_USE_B_INVAL */ 2277 if (cl->flags & LFS_CL_MALLOC) { 2278 /* copy data into our cluster. */ 2279 memcpy(p, bp->b_data, bp->b_bcount); 2280 p += bp->b_bcount; 2281 } 2282 2283 cbp->b_bcount += bp->b_bcount; 2284 cl->bufsize += bp->b_bcount; 2285 2286 bp->b_flags &= ~B_READ; 2287 bp->b_error = 0; 2288 cl->bpp[cl->bufcount++] = bp; 2289 2290 vp = bp->b_vp; 2291 mutex_enter(&bufcache_lock); 2292 mutex_enter(&vp->v_interlock); 2293 bp->b_oflags &= ~(BO_DELWRI | BO_DONE); 2294 reassignbuf(bp, vp); 2295 vp->v_numoutput++; 2296 mutex_exit(&vp->v_interlock); 2297 mutex_exit(&bufcache_lock); 2298 2299 bpp++; 2300 i--; 2301 } 2302 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2303 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 2304 else 2305 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 2306 mutex_enter(&devvp->v_interlock); 2307 devvp->v_numoutput++; 2308 mutex_exit(&devvp->v_interlock); 2309 VOP_STRATEGY(devvp, cbp); 2310 curlwp->l_ru.ru_oublock++; 2311 } 2312 2313 if (lfs_dostats) { 2314 ++lfs_stats.psegwrites; 2315 lfs_stats.blocktot += nblocks - 1; 2316 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2317 ++lfs_stats.psyncwrites; 2318 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2319 ++lfs_stats.pcleanwrites; 2320 lfs_stats.cleanblocks += nblocks - 1; 2321 } 2322 } 2323 2324 return (lfs_initseg(fs) || do_again); 2325 } 2326 2327 void 2328 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2329 { 2330 struct buf *bp; 2331 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2332 int s; 2333 2334 ASSERT_MAYBE_SEGLOCK(fs); 2335 #ifdef DIAGNOSTIC 2336 KASSERT(fs->lfs_magic == LFS_MAGIC); 2337 #endif 2338 /* 2339 * If we can write one superblock while another is in 2340 * progress, we risk not having a complete checkpoint if we crash. 2341 * So, block here if a superblock write is in progress. 2342 */ 2343 mutex_enter(&lfs_lock); 2344 s = splbio(); 2345 while (fs->lfs_sbactive) { 2346 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, 2347 &lfs_lock); 2348 } 2349 fs->lfs_sbactive = daddr; 2350 splx(s); 2351 mutex_exit(&lfs_lock); 2352 2353 /* Set timestamp of this version of the superblock */ 2354 if (fs->lfs_version == 1) 2355 fs->lfs_otstamp = time_second; 2356 fs->lfs_tstamp = time_second; 2357 2358 /* Checksum the superblock and copy it into a buffer. */ 2359 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2360 bp = lfs_newbuf(fs, devvp, 2361 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2362 memset((char *)bp->b_data + sizeof(struct dlfs), 0, 2363 LFS_SBPAD - sizeof(struct dlfs)); 2364 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2365 2366 bp->b_cflags |= BC_BUSY; 2367 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC; 2368 bp->b_oflags &= ~(BO_DONE | BO_DELWRI); 2369 bp->b_error = 0; 2370 bp->b_iodone = lfs_supercallback; 2371 2372 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2373 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2374 else 2375 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2376 curlwp->l_ru.ru_oublock++; 2377 2378 mutex_enter(&devvp->v_interlock); 2379 devvp->v_numoutput++; 2380 mutex_exit(&devvp->v_interlock); 2381 2382 mutex_enter(&lfs_lock); 2383 ++fs->lfs_iocount; 2384 mutex_exit(&lfs_lock); 2385 VOP_STRATEGY(devvp, bp); 2386 } 2387 2388 /* 2389 * Logical block number match routines used when traversing the dirty block 2390 * chain. 2391 */ 2392 int 2393 lfs_match_fake(struct lfs *fs, struct buf *bp) 2394 { 2395 2396 ASSERT_SEGLOCK(fs); 2397 return LFS_IS_MALLOC_BUF(bp); 2398 } 2399 2400 #if 0 2401 int 2402 lfs_match_real(struct lfs *fs, struct buf *bp) 2403 { 2404 2405 ASSERT_SEGLOCK(fs); 2406 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2407 } 2408 #endif 2409 2410 int 2411 lfs_match_data(struct lfs *fs, struct buf *bp) 2412 { 2413 2414 ASSERT_SEGLOCK(fs); 2415 return (bp->b_lblkno >= 0); 2416 } 2417 2418 int 2419 lfs_match_indir(struct lfs *fs, struct buf *bp) 2420 { 2421 daddr_t lbn; 2422 2423 ASSERT_SEGLOCK(fs); 2424 lbn = bp->b_lblkno; 2425 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2426 } 2427 2428 int 2429 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2430 { 2431 daddr_t lbn; 2432 2433 ASSERT_SEGLOCK(fs); 2434 lbn = bp->b_lblkno; 2435 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2436 } 2437 2438 int 2439 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2440 { 2441 daddr_t lbn; 2442 2443 ASSERT_SEGLOCK(fs); 2444 lbn = bp->b_lblkno; 2445 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2446 } 2447 2448 static void 2449 lfs_free_aiodone(struct buf *bp) 2450 { 2451 struct lfs *fs; 2452 2453 KERNEL_LOCK(1, curlwp); 2454 fs = bp->b_private; 2455 ASSERT_NO_SEGLOCK(fs); 2456 lfs_freebuf(fs, bp); 2457 KERNEL_UNLOCK_LAST(curlwp); 2458 } 2459 2460 static void 2461 lfs_super_aiodone(struct buf *bp) 2462 { 2463 struct lfs *fs; 2464 2465 KERNEL_LOCK(1, curlwp); 2466 fs = bp->b_private; 2467 ASSERT_NO_SEGLOCK(fs); 2468 mutex_enter(&lfs_lock); 2469 fs->lfs_sbactive = 0; 2470 if (--fs->lfs_iocount <= 1) 2471 wakeup(&fs->lfs_iocount); 2472 wakeup(&fs->lfs_sbactive); 2473 mutex_exit(&lfs_lock); 2474 lfs_freebuf(fs, bp); 2475 KERNEL_UNLOCK_LAST(curlwp); 2476 } 2477 2478 static void 2479 lfs_cluster_aiodone(struct buf *bp) 2480 { 2481 struct lfs_cluster *cl; 2482 struct lfs *fs; 2483 struct buf *tbp, *fbp; 2484 struct vnode *vp, *devvp, *ovp; 2485 struct inode *ip; 2486 int error; 2487 2488 KERNEL_LOCK(1, curlwp); 2489 2490 error = bp->b_error; 2491 cl = bp->b_private; 2492 fs = cl->fs; 2493 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2494 ASSERT_NO_SEGLOCK(fs); 2495 2496 /* Put the pages back, and release the buffer */ 2497 while (cl->bufcount--) { 2498 tbp = cl->bpp[cl->bufcount]; 2499 KASSERT(tbp->b_cflags & BC_BUSY); 2500 if (error) { 2501 tbp->b_error = error; 2502 } 2503 2504 /* 2505 * We're done with tbp. If it has not been re-dirtied since 2506 * the cluster was written, free it. Otherwise, keep it on 2507 * the locked list to be written again. 2508 */ 2509 vp = tbp->b_vp; 2510 2511 tbp->b_flags &= ~B_GATHERED; 2512 2513 LFS_BCLEAN_LOG(fs, tbp); 2514 2515 mutex_enter(&bufcache_lock); 2516 if (tbp->b_iodone == NULL) { 2517 KASSERT(tbp->b_flags & B_LOCKED); 2518 bremfree(tbp); 2519 if (vp) { 2520 mutex_enter(&vp->v_interlock); 2521 reassignbuf(tbp, vp); 2522 mutex_exit(&vp->v_interlock); 2523 } 2524 tbp->b_flags |= B_ASYNC; /* for biodone */ 2525 } 2526 2527 if (((tbp->b_flags | tbp->b_oflags) & 2528 (B_LOCKED | BO_DELWRI)) == B_LOCKED) 2529 LFS_UNLOCK_BUF(tbp); 2530 2531 if (tbp->b_oflags & BO_DONE) { 2532 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", 2533 cl->bufcount, (long)tbp->b_flags)); 2534 } 2535 2536 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) { 2537 /* 2538 * A buffer from the page daemon. 2539 * We use the same iodone as it does, 2540 * so we must manually disassociate its 2541 * buffers from the vp. 2542 */ 2543 if ((ovp = tbp->b_vp) != NULL) { 2544 /* This is just silly */ 2545 mutex_enter(&ovp->v_interlock); 2546 brelvp(tbp); 2547 mutex_exit(&ovp->v_interlock); 2548 tbp->b_vp = vp; 2549 tbp->b_objlock = &vp->v_interlock; 2550 } 2551 /* Put it back the way it was */ 2552 tbp->b_flags |= B_ASYNC; 2553 /* Master buffers have BC_AGE */ 2554 if (tbp->b_private == tbp) 2555 tbp->b_flags |= BC_AGE; 2556 } 2557 mutex_exit(&bufcache_lock); 2558 2559 biodone(tbp); 2560 2561 /* 2562 * If this is the last block for this vnode, but 2563 * there are other blocks on its dirty list, 2564 * set IN_MODIFIED/IN_CLEANING depending on what 2565 * sort of block. Only do this for our mount point, 2566 * not for, e.g., inode blocks that are attached to 2567 * the devvp. 2568 * XXX KS - Shouldn't we set *both* if both types 2569 * of blocks are present (traverse the dirty list?) 2570 */ 2571 mutex_enter(&lfs_lock); 2572 mutex_enter(&vp->v_interlock); 2573 if (vp != devvp && vp->v_numoutput == 0 && 2574 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2575 ip = VTOI(vp); 2576 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", 2577 ip->i_number)); 2578 if (LFS_IS_MALLOC_BUF(fbp)) 2579 LFS_SET_UINO(ip, IN_CLEANING); 2580 else 2581 LFS_SET_UINO(ip, IN_MODIFIED); 2582 } 2583 cv_broadcast(&vp->v_cv); 2584 mutex_exit(&vp->v_interlock); 2585 mutex_exit(&lfs_lock); 2586 } 2587 2588 /* Fix up the cluster buffer, and release it */ 2589 if (cl->flags & LFS_CL_MALLOC) 2590 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2591 putiobuf(bp); 2592 2593 /* Note i/o done */ 2594 if (cl->flags & LFS_CL_SYNC) { 2595 if (--cl->seg->seg_iocount == 0) 2596 wakeup(&cl->seg->seg_iocount); 2597 } 2598 mutex_enter(&lfs_lock); 2599 #ifdef DIAGNOSTIC 2600 if (fs->lfs_iocount == 0) 2601 panic("lfs_cluster_aiodone: zero iocount"); 2602 #endif 2603 if (--fs->lfs_iocount <= 1) 2604 wakeup(&fs->lfs_iocount); 2605 mutex_exit(&lfs_lock); 2606 2607 KERNEL_UNLOCK_LAST(curlwp); 2608 2609 pool_put(&fs->lfs_bpppool, cl->bpp); 2610 cl->bpp = NULL; 2611 pool_put(&fs->lfs_clpool, cl); 2612 } 2613 2614 static void 2615 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2616 { 2617 /* reset b_iodone for when this is a single-buf i/o. */ 2618 bp->b_iodone = aiodone; 2619 2620 workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL); 2621 } 2622 2623 static void 2624 lfs_cluster_callback(struct buf *bp) 2625 { 2626 2627 lfs_generic_callback(bp, lfs_cluster_aiodone); 2628 } 2629 2630 void 2631 lfs_supercallback(struct buf *bp) 2632 { 2633 2634 lfs_generic_callback(bp, lfs_super_aiodone); 2635 } 2636 2637 /* 2638 * The only buffers that are going to hit these functions are the 2639 * segment write blocks, or the segment summaries, or the superblocks. 2640 * 2641 * All of the above are created by lfs_newbuf, and so do not need to be 2642 * released via brelse. 2643 */ 2644 void 2645 lfs_callback(struct buf *bp) 2646 { 2647 2648 lfs_generic_callback(bp, lfs_free_aiodone); 2649 } 2650 2651 /* 2652 * Shellsort (diminishing increment sort) from Data Structures and 2653 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2654 * see also Knuth Vol. 3, page 84. The increments are selected from 2655 * formula (8), page 95. Roughly O(N^3/2). 2656 */ 2657 /* 2658 * This is our own private copy of shellsort because we want to sort 2659 * two parallel arrays (the array of buffer pointers and the array of 2660 * logical block numbers) simultaneously. Note that we cast the array 2661 * of logical block numbers to a unsigned in this routine so that the 2662 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2663 */ 2664 2665 void 2666 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2667 { 2668 static int __rsshell_increments[] = { 4, 1, 0 }; 2669 int incr, *incrp, t1, t2; 2670 struct buf *bp_temp; 2671 2672 #ifdef DEBUG 2673 incr = 0; 2674 for (t1 = 0; t1 < nmemb; t1++) { 2675 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2676 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2677 /* dump before panic */ 2678 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2679 nmemb, size); 2680 incr = 0; 2681 for (t1 = 0; t1 < nmemb; t1++) { 2682 const struct buf *bp = bp_array[t1]; 2683 2684 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2685 PRIu64 "\n", t1, 2686 (uint64_t)bp->b_bcount, 2687 (uint64_t)bp->b_lblkno); 2688 printf("lbns:"); 2689 for (t2 = 0; t2 * size < bp->b_bcount; 2690 t2++) { 2691 printf(" %" PRId32, 2692 lb_array[incr++]); 2693 } 2694 printf("\n"); 2695 } 2696 panic("lfs_shellsort: inconsistent input"); 2697 } 2698 } 2699 } 2700 #endif 2701 2702 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2703 for (t1 = incr; t1 < nmemb; ++t1) 2704 for (t2 = t1 - incr; t2 >= 0;) 2705 if ((u_int32_t)bp_array[t2]->b_lblkno > 2706 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2707 bp_temp = bp_array[t2]; 2708 bp_array[t2] = bp_array[t2 + incr]; 2709 bp_array[t2 + incr] = bp_temp; 2710 t2 -= incr; 2711 } else 2712 break; 2713 2714 /* Reform the list of logical blocks */ 2715 incr = 0; 2716 for (t1 = 0; t1 < nmemb; t1++) { 2717 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2718 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2719 } 2720 } 2721 } 2722 2723 /* 2724 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK, 2725 * however, we must press on. Just fake success in that case. 2726 */ 2727 int 2728 lfs_vref(struct vnode *vp) 2729 { 2730 int error; 2731 struct lfs *fs; 2732 2733 KASSERT(mutex_owned(&vp->v_interlock)); 2734 2735 fs = VTOI(vp)->i_lfs; 2736 2737 ASSERT_MAYBE_SEGLOCK(fs); 2738 2739 /* 2740 * If we return 1 here during a flush, we risk vinvalbuf() not 2741 * being able to flush all of the pages from this vnode, which 2742 * will cause it to panic. So, return 0 if a flush is in progress. 2743 */ 2744 error = vget(vp, LK_NOWAIT | LK_INTERLOCK); 2745 if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { 2746 ++fs->lfs_flushvp_fakevref; 2747 return 0; 2748 } 2749 return error; 2750 } 2751 2752 /* 2753 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2754 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2755 */ 2756 void 2757 lfs_vunref(struct vnode *vp) 2758 { 2759 struct lfs *fs; 2760 2761 fs = VTOI(vp)->i_lfs; 2762 ASSERT_MAYBE_SEGLOCK(fs); 2763 2764 /* 2765 * Analogous to lfs_vref, if the node is flushing, fake it. 2766 */ 2767 if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) { 2768 --fs->lfs_flushvp_fakevref; 2769 return; 2770 } 2771 2772 /* does not call inactive */ 2773 mutex_enter(&vp->v_interlock); 2774 vrelel(vp, VRELEL_NOINACTIVE); 2775 } 2776 2777 /* 2778 * We use this when we have vnodes that were loaded in solely for cleaning. 2779 * There is no reason to believe that these vnodes will be referenced again 2780 * soon, since the cleaning process is unrelated to normal filesystem 2781 * activity. Putting cleaned vnodes at the tail of the list has the effect 2782 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2783 * cleaning at the head of the list, instead. 2784 */ 2785 void 2786 lfs_vunref_head(struct vnode *vp) 2787 { 2788 2789 ASSERT_SEGLOCK(VTOI(vp)->i_lfs); 2790 2791 /* does not call inactive, inserts non-held vnode at head of freelist */ 2792 mutex_enter(&vp->v_interlock); 2793 vrelel(vp, VRELEL_NOINACTIVE | VRELEL_ONHEAD); 2794 } 2795 2796 2797 /* 2798 * Set up an FINFO entry for a new file. The fip pointer is assumed to 2799 * point at uninitialized space. 2800 */ 2801 void 2802 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers) 2803 { 2804 struct segment *sp = fs->lfs_sp; 2805 2806 KASSERT(vers > 0); 2807 2808 if (sp->seg_bytes_left < fs->lfs_bsize || 2809 sp->sum_bytes_left < sizeof(struct finfo)) 2810 (void) lfs_writeseg(fs, fs->lfs_sp); 2811 2812 sp->sum_bytes_left -= FINFOSIZE; 2813 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 2814 sp->fip->fi_nblocks = 0; 2815 sp->fip->fi_ino = ino; 2816 sp->fip->fi_version = vers; 2817 } 2818 2819 /* 2820 * Release the FINFO entry, either clearing out an unused entry or 2821 * advancing us to the next available entry. 2822 */ 2823 void 2824 lfs_release_finfo(struct lfs *fs) 2825 { 2826 struct segment *sp = fs->lfs_sp; 2827 2828 if (sp->fip->fi_nblocks != 0) { 2829 sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE + 2830 sizeof(int32_t) * sp->fip->fi_nblocks); 2831 sp->start_lbp = &sp->fip->fi_blocks[0]; 2832 } else { 2833 sp->sum_bytes_left += FINFOSIZE; 2834 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 2835 } 2836 } 2837