xref: /netbsd-src/sys/ufs/lfs/lfs_segment.c (revision 37b34d511dea595d3ba03a661cf3b775038ea5f8)
1 /*	$NetBSD: lfs_segment.c,v 1.82 2002/09/27 15:38:06 provos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the NetBSD
21  *      Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 /*
39  * Copyright (c) 1991, 1993
40  *	The Regents of the University of California.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
71  */
72 
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.82 2002/09/27 15:38:06 provos Exp $");
75 
76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
77 
78 #if defined(_KERNEL_OPT)
79 #include "opt_ddb.h"
80 #endif
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/namei.h>
85 #include <sys/kernel.h>
86 #include <sys/resourcevar.h>
87 #include <sys/file.h>
88 #include <sys/stat.h>
89 #include <sys/buf.h>
90 #include <sys/proc.h>
91 #include <sys/vnode.h>
92 #include <sys/malloc.h>
93 #include <sys/mount.h>
94 
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
97 
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102 
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
105 
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_extern.h>
108 
109 extern int count_lock_queue(void);
110 extern struct simplelock vnode_free_list_slock;		/* XXX */
111 
112 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
113 static void lfs_super_aiodone(struct buf *);
114 static void lfs_cluster_aiodone(struct buf *);
115 static void lfs_cluster_callback(struct buf *);
116 static struct buf **lookahead_pagemove(struct buf **, int, size_t *);
117 
118 /*
119  * Determine if it's OK to start a partial in this segment, or if we need
120  * to go on to a new segment.
121  */
122 #define	LFS_PARTIAL_FITS(fs) \
123 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
124 	fragstofsb((fs), (fs)->lfs_frag))
125 
126 void	 lfs_callback(struct buf *);
127 int	 lfs_gather(struct lfs *, struct segment *,
128 	     struct vnode *, int (*)(struct lfs *, struct buf *));
129 int	 lfs_gatherblock(struct segment *, struct buf *, int *);
130 void	 lfs_iset(struct inode *, ufs_daddr_t, time_t);
131 int	 lfs_match_fake(struct lfs *, struct buf *);
132 int	 lfs_match_data(struct lfs *, struct buf *);
133 int	 lfs_match_dindir(struct lfs *, struct buf *);
134 int	 lfs_match_indir(struct lfs *, struct buf *);
135 int	 lfs_match_tindir(struct lfs *, struct buf *);
136 void	 lfs_newseg(struct lfs *);
137 void	 lfs_shellsort(struct buf **, ufs_daddr_t *, int);
138 void	 lfs_supercallback(struct buf *);
139 void	 lfs_updatemeta(struct segment *);
140 int	 lfs_vref(struct vnode *);
141 void	 lfs_vunref(struct vnode *);
142 void	 lfs_writefile(struct lfs *, struct segment *, struct vnode *);
143 int	 lfs_writeinode(struct lfs *, struct segment *, struct inode *);
144 int	 lfs_writeseg(struct lfs *, struct segment *);
145 void	 lfs_writesuper(struct lfs *, daddr_t);
146 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
147 	    struct segment *sp, int dirops);
148 
149 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
150 int	lfs_writeindir = 1;             /* whether to flush indir on non-ckp */
151 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
152 int	lfs_dirvcount = 0;		/* # active dirops */
153 
154 /* Statistics Counters */
155 int lfs_dostats = 1;
156 struct lfs_stats lfs_stats;
157 
158 extern int locked_queue_count;
159 extern long locked_queue_bytes;
160 
161 /* op values to lfs_writevnodes */
162 #define	VN_REG	        0
163 #define	VN_DIROP	1
164 #define	VN_EMPTY	2
165 #define VN_CLEAN        3
166 
167 #define LFS_MAX_ACTIVE          10
168 
169 /*
170  * XXX KS - Set modification time on the Ifile, so the cleaner can
171  * read the fs mod time off of it.  We don't set IN_UPDATE here,
172  * since we don't really need this to be flushed to disk (and in any
173  * case that wouldn't happen to the Ifile until we checkpoint).
174  */
175 void
176 lfs_imtime(struct lfs *fs)
177 {
178 	struct timespec ts;
179 	struct inode *ip;
180 
181 	TIMEVAL_TO_TIMESPEC(&time, &ts);
182 	ip = VTOI(fs->lfs_ivnode);
183 	ip->i_ffs_mtime = ts.tv_sec;
184 	ip->i_ffs_mtimensec = ts.tv_nsec;
185 }
186 
187 /*
188  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
189  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
190  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
191  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
192  */
193 
194 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
195 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
196 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
197 
198 int
199 lfs_vflush(struct vnode *vp)
200 {
201 	struct inode *ip;
202 	struct lfs *fs;
203 	struct segment *sp;
204 	struct buf *bp, *nbp, *tbp, *tnbp;
205 	int error, s;
206 
207 	ip = VTOI(vp);
208 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
209 
210 	if (ip->i_flag & IN_CLEANING) {
211 #ifdef DEBUG_LFS
212 		ivndebug(vp,"vflush/in_cleaning");
213 #endif
214 		LFS_CLR_UINO(ip, IN_CLEANING);
215 		LFS_SET_UINO(ip, IN_MODIFIED);
216 
217 		/*
218 		 * Toss any cleaning buffers that have real counterparts
219 		 * to avoid losing new data
220 		 */
221 		s = splbio();
222 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
223 			nbp = LIST_NEXT(bp, b_vnbufs);
224 			if (bp->b_flags & B_CALL) {
225 				for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
226 				    tbp = tnbp)
227 				{
228 					tnbp = LIST_NEXT(tbp, b_vnbufs);
229 					if (tbp->b_vp == bp->b_vp
230 					   && tbp->b_lblkno == bp->b_lblkno
231 					   && tbp != bp)
232 					{
233 						fs->lfs_avail += btofsb(fs, bp->b_bcount);
234 						wakeup(&fs->lfs_avail);
235 						lfs_freebuf(bp);
236 						bp = NULL;
237 						break;
238 					}
239 				}
240 			}
241 		}
242 		splx(s);
243 	}
244 
245 	/* If the node is being written, wait until that is done */
246 	s = splbio();
247 	if (WRITEINPROG(vp)) {
248 #ifdef DEBUG_LFS
249 		ivndebug(vp,"vflush/writeinprog");
250 #endif
251 		tsleep(vp, PRIBIO+1, "lfs_vw", 0);
252 	}
253 	splx(s);
254 
255 	/* Protect against VXLOCK deadlock in vinvalbuf() */
256 	lfs_seglock(fs, SEGM_SYNC);
257 
258 	/* If we're supposed to flush a freed inode, just toss it */
259 	/* XXX - seglock, so these buffers can't be gathered, right? */
260 	if (ip->i_ffs_mode == 0) {
261 		printf("lfs_vflush: ino %d is freed, not flushing\n",
262 			ip->i_number);
263 		s = splbio();
264 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
265 			nbp = LIST_NEXT(bp, b_vnbufs);
266 			if (bp->b_flags & B_DELWRI) { /* XXX always true? */
267 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
268 				wakeup(&fs->lfs_avail);
269 			}
270 			/* Copied from lfs_writeseg */
271 			if (bp->b_flags & B_CALL) {
272 				/* if B_CALL, it was created with newbuf */
273 				lfs_freebuf(bp);
274 				bp = NULL;
275 			} else {
276 				bremfree(bp);
277 				LFS_UNLOCK_BUF(bp);
278 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
279                                          B_GATHERED);
280 				bp->b_flags |= B_DONE;
281 				reassignbuf(bp, vp);
282 				brelse(bp);
283 			}
284 		}
285 		splx(s);
286 		LFS_CLR_UINO(ip, IN_CLEANING);
287 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
288 		ip->i_flag &= ~IN_ALLMOD;
289 		printf("lfs_vflush: done not flushing ino %d\n",
290 			ip->i_number);
291 		lfs_segunlock(fs);
292 		return 0;
293 	}
294 
295 	SET_FLUSHING(fs,vp);
296 	if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
297 	    (fs->lfs_sp->seg_flags & SEGM_CKP)) {
298 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
299 		CLR_FLUSHING(fs,vp);
300 		lfs_segunlock(fs);
301 		return error;
302 	}
303 	sp = fs->lfs_sp;
304 
305 	if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
306 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
307 	} else if ((ip->i_flag & IN_CLEANING) &&
308 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
309 #ifdef DEBUG_LFS
310 		ivndebug(vp,"vflush/clean");
311 #endif
312 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
313 	} else if (lfs_dostats) {
314 		if (LIST_FIRST(&vp->v_dirtyblkhd) || (VTOI(vp)->i_flag & IN_ALLMOD))
315 			++lfs_stats.vflush_invoked;
316 #ifdef DEBUG_LFS
317 		ivndebug(vp,"vflush");
318 #endif
319 	}
320 
321 #ifdef DIAGNOSTIC
322 	/* XXX KS This actually can happen right now, though it shouldn't(?) */
323 	if (vp->v_flag & VDIROP) {
324 		printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
325 		/* panic("VDIROP being flushed...this can\'t happen"); */
326 	}
327 	if (vp->v_usecount < 0) {
328 		printf("usecount=%ld\n", (long)vp->v_usecount);
329 		panic("lfs_vflush: usecount<0");
330 	}
331 #endif
332 
333 	do {
334 		do {
335 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
336 				lfs_writefile(fs, sp, vp);
337 		} while (lfs_writeinode(fs, sp, ip));
338 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
339 
340 	if (lfs_dostats) {
341 		++lfs_stats.nwrites;
342 		if (sp->seg_flags & SEGM_SYNC)
343 			++lfs_stats.nsync_writes;
344 		if (sp->seg_flags & SEGM_CKP)
345 			++lfs_stats.ncheckpoints;
346 	}
347 	/*
348 	 * If we were called from somewhere that has already held the seglock
349 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
350 	 * the write to complete because we are still locked.
351 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
352 	 * we must explicitly wait, if that is the case.
353 	 *
354 	 * We compare the iocount against 1, not 0, because it is
355 	 * artificially incremented by lfs_seglock().
356 	 */
357 	if (fs->lfs_seglock > 1) {
358 		while (fs->lfs_iocount > 1)
359 			(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
360 				     "lfs_vflush", 0);
361 	}
362 	lfs_segunlock(fs);
363 
364 	CLR_FLUSHING(fs,vp);
365 	return (0);
366 }
367 
368 #ifdef DEBUG_LFS_VERBOSE
369 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
370 #else
371 # define vndebug(vp,str)
372 #endif
373 
374 int
375 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
376 {
377 	struct inode *ip;
378 	struct vnode *vp, *nvp;
379 	int inodes_written = 0, only_cleaning;
380 	int needs_unlock;
381 
382 #ifndef LFS_NO_BACKVP_HACK
383 	/* BEGIN HACK */
384 #define	VN_OFFSET	(((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
385 #define	BACK_VP(VP)	((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
386 #define	BEG_OF_VLIST	((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
387 
388 	/* Find last vnode. */
389  loop:	for (vp = LIST_FIRST(&mp->mnt_vnodelist);
390 	     vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
391 	     vp = LIST_NEXT(vp, v_mntvnodes));
392 	for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
393 		nvp = BACK_VP(vp);
394 #else
395 	loop:
396 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
397 		nvp = LIST_NEXT(vp, v_mntvnodes);
398 #endif
399 		/*
400 		 * If the vnode that we are about to sync is no longer
401 		 * associated with this mount point, start over.
402 		 */
403 		if (vp->v_mount != mp) {
404 			printf("lfs_writevnodes: starting over\n");
405 			goto loop;
406 		}
407 
408 		ip = VTOI(vp);
409 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
410 		    (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
411 			vndebug(vp,"dirop");
412 			continue;
413 		}
414 
415 		if (op == VN_EMPTY && LIST_FIRST(&vp->v_dirtyblkhd)) {
416 			vndebug(vp,"empty");
417 			continue;
418 		}
419 
420 		if (vp->v_type == VNON) {
421 			continue;
422 		}
423 
424 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
425 		   && vp != fs->lfs_flushvp
426 		   && !(ip->i_flag & IN_CLEANING)) {
427 			vndebug(vp,"cleaning");
428 			continue;
429 		}
430 
431 		if (lfs_vref(vp)) {
432 			vndebug(vp,"vref");
433 			continue;
434 		}
435 
436 		needs_unlock = 0;
437 		if (VOP_ISLOCKED(vp)) {
438 			if (vp != fs->lfs_ivnode &&
439 			    vp->v_lock.lk_lockholder != curproc->p_pid) {
440 #ifdef DEBUG_LFS
441 				printf("lfs_writevnodes: not writing ino %d,"
442 				       " locked by pid %d\n",
443 				       VTOI(vp)->i_number,
444 				       vp->v_lock.lk_lockholder);
445 #endif
446 				lfs_vunref(vp);
447 				continue;
448 			}
449 		} else if (vp != fs->lfs_ivnode) {
450 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
451 			needs_unlock = 1;
452 		}
453 
454 		only_cleaning = 0;
455 		/*
456 		 * Write the inode/file if dirty and it's not the IFILE.
457 		 */
458 		if ((ip->i_flag & IN_ALLMOD) ||
459 		     (LIST_FIRST(&vp->v_dirtyblkhd) != NULL))
460 		{
461 			only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
462 
463 			if (ip->i_number != LFS_IFILE_INUM
464 			   && LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
465 			{
466 				lfs_writefile(fs, sp, vp);
467 			}
468 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
469 				if (WRITEINPROG(vp)) {
470 #ifdef DEBUG_LFS
471 					ivndebug(vp,"writevnodes/write2");
472 #endif
473 				} else if (!(ip->i_flag & IN_ALLMOD)) {
474 #ifdef DEBUG_LFS
475 					printf("<%d>",ip->i_number);
476 #endif
477 					LFS_SET_UINO(ip, IN_MODIFIED);
478 				}
479 			}
480 			(void) lfs_writeinode(fs, sp, ip);
481 			inodes_written++;
482 		}
483 
484 		if (needs_unlock)
485 			VOP_UNLOCK(vp, 0);
486 
487 		if (lfs_clean_vnhead && only_cleaning)
488 			lfs_vunref_head(vp);
489 		else
490 			lfs_vunref(vp);
491 	}
492 	return inodes_written;
493 }
494 
495 /*
496  * Do a checkpoint.
497  */
498 int
499 lfs_segwrite(struct mount *mp, int flags)
500 {
501 	struct buf *bp;
502 	struct inode *ip;
503 	struct lfs *fs;
504 	struct segment *sp;
505 	struct vnode *vp;
506 	SEGUSE *segusep;
507 	ufs_daddr_t ibno;
508 	int do_ckp, did_ckp, error, i;
509 	int writer_set = 0;
510 	int dirty;
511 	int redo;
512 
513 	fs = VFSTOUFS(mp)->um_lfs;
514 
515 	if (fs->lfs_ronly)
516 		return EROFS;
517 
518 	lfs_imtime(fs);
519 
520 	/* printf("lfs_segwrite: ifile flags are 0x%lx\n",
521 	       (long)(VTOI(fs->lfs_ivnode)->i_flag)); */
522 
523 #if 0
524 	/*
525 	 * If we are not the cleaner, and there is no space available,
526 	 * wait until cleaner writes.
527 	 */
528 	if (!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
529 				      (fs->lfs_sp->seg_flags & SEGM_CLEAN)))
530 	{
531 		while (fs->lfs_avail <= 0) {
532 			LFS_CLEANERINFO(cip, fs, bp);
533 			LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
534 
535 			wakeup(&lfs_allclean_wakeup);
536 			wakeup(&fs->lfs_nextseg);
537 			error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
538 				       0);
539 			if (error) {
540 				return (error);
541 			}
542 		}
543 	}
544 #endif
545 	/*
546 	 * Allocate a segment structure and enough space to hold pointers to
547 	 * the maximum possible number of buffers which can be described in a
548 	 * single summary block.
549 	 */
550 	do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
551 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
552 	sp = fs->lfs_sp;
553 
554 	/*
555 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
556 	 * in which case we have to flush *all* buffers off of this vnode.
557 	 * We don't care about other nodes, but write any non-dirop nodes
558 	 * anyway in anticipation of another getnewvnode().
559 	 *
560 	 * If we're cleaning we only write cleaning and ifile blocks, and
561 	 * no dirops, since otherwise we'd risk corruption in a crash.
562 	 */
563 	if (sp->seg_flags & SEGM_CLEAN)
564 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
565 	else {
566 		lfs_writevnodes(fs, mp, sp, VN_REG);
567 		if (!fs->lfs_dirops || !fs->lfs_flushvp) {
568 			while (fs->lfs_dirops)
569 				if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
570 						"lfs writer", 0)))
571 				{
572 					/* XXX why not segunlock? */
573 					free(sp->bpp, M_SEGMENT);
574 					sp->bpp = NULL;
575 					free(sp, M_SEGMENT);
576 					fs->lfs_sp = NULL;
577 					return (error);
578 				}
579 			fs->lfs_writer++;
580 			writer_set = 1;
581 			lfs_writevnodes(fs, mp, sp, VN_DIROP);
582 			((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
583 		}
584 	}
585 
586 	/*
587 	 * If we are doing a checkpoint, mark everything since the
588 	 * last checkpoint as no longer ACTIVE.
589 	 */
590 	if (do_ckp) {
591 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
592 		     --ibno >= fs->lfs_cleansz; ) {
593 			dirty = 0;
594 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
595 
596 				panic("lfs_segwrite: ifile read");
597 			segusep = (SEGUSE *)bp->b_data;
598 			for (i = fs->lfs_sepb; i--;) {
599 				if (segusep->su_flags & SEGUSE_ACTIVE) {
600 					segusep->su_flags &= ~SEGUSE_ACTIVE;
601 					++dirty;
602 				}
603 				if (fs->lfs_version > 1)
604 					++segusep;
605 				else
606 					segusep = (SEGUSE *)
607 						((SEGUSE_V1 *)segusep + 1);
608 			}
609 
610 			/* But the current segment is still ACTIVE */
611 			segusep = (SEGUSE *)bp->b_data;
612 			if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
613 			    (ibno-fs->lfs_cleansz)) {
614 				if (fs->lfs_version > 1)
615 					segusep[dtosn(fs, fs->lfs_curseg) %
616 					     fs->lfs_sepb].su_flags |=
617 						     SEGUSE_ACTIVE;
618 				else
619 					((SEGUSE *)
620 					 ((SEGUSE_V1 *)(bp->b_data) +
621 					  (dtosn(fs, fs->lfs_curseg) %
622 					   fs->lfs_sepb)))->su_flags
623 						   |= SEGUSE_ACTIVE;
624 				--dirty;
625 			}
626 			if (dirty)
627 				error = LFS_BWRITE_LOG(bp); /* Ifile */
628 			else
629 				brelse(bp);
630 		}
631 	}
632 
633 	did_ckp = 0;
634 	if (do_ckp || fs->lfs_doifile) {
635 		do {
636 			vp = fs->lfs_ivnode;
637 
638 			vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
639 #ifdef DEBUG
640 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
641 #endif
642 			fs->lfs_flags &= ~LFS_IFDIRTY;
643 
644 			ip = VTOI(vp);
645 			/* if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) */
646 				lfs_writefile(fs, sp, vp);
647 			if (ip->i_flag & IN_ALLMOD)
648 				++did_ckp;
649 			redo = lfs_writeinode(fs, sp, ip);
650 
651 			vput(vp);
652 			redo += lfs_writeseg(fs, sp);
653 			redo += (fs->lfs_flags & LFS_IFDIRTY);
654 		} while (redo && do_ckp);
655 
656 		/* The ifile should now be all clear */
657 		if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
658 			struct buf *bp;
659 			int s, warned = 0, dopanic = 0;
660 			s = splbio();
661 			for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
662 				if (!(bp->b_flags & B_GATHERED)) {
663 					if (!warned)
664 						printf("lfs_segwrite: ifile still has dirty blocks?!\n");
665 					++dopanic;
666 					++warned;
667 					printf("bp=%p, lbn %d, flags 0x%lx\n",
668 						bp, bp->b_lblkno, bp->b_flags);
669 				}
670 			}
671 			if (dopanic)
672 				panic("dirty blocks");
673 			splx(s);
674 		}
675 		LFS_CLR_UINO(ip, IN_ALLMOD);
676 	} else {
677 		(void) lfs_writeseg(fs, sp);
678 	}
679 
680 	/*
681 	 * If the I/O count is non-zero, sleep until it reaches zero.
682 	 * At the moment, the user's process hangs around so we can
683 	 * sleep.
684 	 */
685 	fs->lfs_doifile = 0;
686 	if (writer_set && --fs->lfs_writer == 0)
687 		wakeup(&fs->lfs_dirops);
688 
689 	/*
690 	 * If we didn't write the Ifile, we didn't really do anything.
691 	 * That means that (1) there is a checkpoint on disk and (2)
692 	 * nothing has changed since it was written.
693 	 *
694 	 * Take the flags off of the segment so that lfs_segunlock
695 	 * doesn't have to write the superblock either.
696 	 */
697 	if (do_ckp && !did_ckp) {
698 		sp->seg_flags &= ~SEGM_CKP;
699 		/* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
700 	}
701 
702 	if (lfs_dostats) {
703 		++lfs_stats.nwrites;
704 		if (sp->seg_flags & SEGM_SYNC)
705 			++lfs_stats.nsync_writes;
706 		if (sp->seg_flags & SEGM_CKP)
707 			++lfs_stats.ncheckpoints;
708 	}
709 	lfs_segunlock(fs);
710 	return (0);
711 }
712 
713 /*
714  * Write the dirty blocks associated with a vnode.
715  */
716 void
717 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
718 {
719 	struct buf *bp;
720 	struct finfo *fip;
721 	struct inode *ip;
722 	IFILE *ifp;
723 	int i, frag;
724 
725 	ip = VTOI(vp);
726 
727 	if (sp->seg_bytes_left < fs->lfs_bsize ||
728 	    sp->sum_bytes_left < sizeof(struct finfo))
729 		(void) lfs_writeseg(fs, sp);
730 
731 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
732 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
733 
734 	if (vp->v_flag & VDIROP)
735 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
736 
737 	fip = sp->fip;
738 	fip->fi_nblocks = 0;
739 	fip->fi_ino = ip->i_number;
740 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
741 	fip->fi_version = ifp->if_version;
742 	brelse(bp);
743 
744 	if (sp->seg_flags & SEGM_CLEAN) {
745 		lfs_gather(fs, sp, vp, lfs_match_fake);
746 		/*
747 		 * For a file being flushed, we need to write *all* blocks.
748 		 * This means writing the cleaning blocks first, and then
749 		 * immediately following with any non-cleaning blocks.
750 		 * The same is true of the Ifile since checkpoints assume
751 		 * that all valid Ifile blocks are written.
752 		 */
753 	   	if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode)
754 			lfs_gather(fs, sp, vp, lfs_match_data);
755 	} else
756 		lfs_gather(fs, sp, vp, lfs_match_data);
757 
758 	/*
759 	 * It may not be necessary to write the meta-data blocks at this point,
760 	 * as the roll-forward recovery code should be able to reconstruct the
761 	 * list.
762 	 *
763 	 * We have to write them anyway, though, under two conditions: (1) the
764 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
765 	 * checkpointing.
766 	 *
767 	 * BUT if we are cleaning, we might have indirect blocks that refer to
768 	 * new blocks not being written yet, in addition to fragments being
769 	 * moved out of a cleaned segment.  If that is the case, don't
770 	 * write the indirect blocks, or the finfo will have a small block
771 	 * in the middle of it!
772 	 * XXX in this case isn't the inode size wrong too?
773 	 */
774 	frag = 0;
775 	if (sp->seg_flags & SEGM_CLEAN) {
776 		for (i = 0; i < NDADDR; i++)
777 			if (ip->i_lfs_fragsize[i] > 0 &&
778 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
779 				++frag;
780 	}
781 #ifdef DIAGNOSTIC
782 	if (frag > 1)
783 		panic("lfs_writefile: more than one fragment!");
784 #endif
785 	if (IS_FLUSHING(fs, vp) ||
786 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
787 		lfs_gather(fs, sp, vp, lfs_match_indir);
788 		lfs_gather(fs, sp, vp, lfs_match_dindir);
789 		lfs_gather(fs, sp, vp, lfs_match_tindir);
790 	}
791 	fip = sp->fip;
792 	if (fip->fi_nblocks != 0) {
793 		sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
794 				   sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
795 		sp->start_lbp = &sp->fip->fi_blocks[0];
796 	} else {
797 		sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
798 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
799 	}
800 }
801 
802 int
803 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
804 {
805 	struct buf *bp, *ibp;
806 	struct dinode *cdp;
807 	IFILE *ifp;
808 	SEGUSE *sup;
809 	ufs_daddr_t daddr;
810 	daddr_t *daddrp;
811 	ino_t ino;
812 	int error, i, ndx, fsb = 0;
813 	int redo_ifile = 0;
814 	struct timespec ts;
815 	int gotblk = 0;
816 
817 	if (!(ip->i_flag & IN_ALLMOD))
818 		return (0);
819 
820 	/* Allocate a new inode block if necessary. */
821 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
822 		/* Allocate a new segment if necessary. */
823 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
824 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
825 			(void) lfs_writeseg(fs, sp);
826 
827 		/* Get next inode block. */
828 		daddr = fs->lfs_offset;
829 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
830 		sp->ibp = *sp->cbpp++ =
831 			getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
832 			       fs->lfs_ibsize, 0, 0);
833 		gotblk++;
834 
835 		/* Zero out inode numbers */
836 		for (i = 0; i < INOPB(fs); ++i)
837 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
838 
839 		++sp->start_bpp;
840 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
841 		/* Set remaining space counters. */
842 		sp->seg_bytes_left -= fs->lfs_ibsize;
843 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
844 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
845 			sp->ninodes / INOPB(fs) - 1;
846 		((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
847 	}
848 
849 	/* Update the inode times and copy the inode onto the inode page. */
850 	TIMEVAL_TO_TIMESPEC(&time, &ts);
851 	/* XXX kludge --- don't redirty the ifile just to put times on it */
852 	if (ip->i_number != LFS_IFILE_INUM)
853 		LFS_ITIMES(ip, &ts, &ts, &ts);
854 
855 	/*
856 	 * If this is the Ifile, and we've already written the Ifile in this
857 	 * partial segment, just overwrite it (it's not on disk yet) and
858 	 * continue.
859 	 *
860 	 * XXX we know that the bp that we get the second time around has
861 	 * already been gathered.
862 	 */
863 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
864 		*(sp->idp) = ip->i_din.ffs_din;
865 		ip->i_lfs_osize = ip->i_ffs_size;
866 		return 0;
867 	}
868 
869 	bp = sp->ibp;
870 	cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
871 	*cdp = ip->i_din.ffs_din;
872 #ifdef LFS_IFILE_FRAG_ADDRESSING
873 	if (fs->lfs_version > 1)
874 		fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
875 #endif
876 
877 	/*
878 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
879 	 * addresses to disk; possibly revert the inode size.
880 	 */
881 	if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
882 		cdp->di_size = ip->i_lfs_osize;
883 #ifdef DEBUG_LFS
884 		printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
885 		       ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
886 #endif
887 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
888 		     daddrp++) {
889 			if (*daddrp == UNWRITTEN) {
890 #ifdef DEBUG_LFS
891 				printf("lfs_writeinode: wiping UNWRITTEN\n");
892 #endif
893 				*daddrp = 0;
894 			}
895 		}
896 	} else {
897 		/* If all blocks are goig to disk, update the "size on disk" */
898 		ip->i_lfs_osize = ip->i_ffs_size;
899 	}
900 
901 	if (ip->i_flag & IN_CLEANING)
902 		LFS_CLR_UINO(ip, IN_CLEANING);
903 	else {
904 		/* XXX IN_ALLMOD */
905 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
906 			     IN_UPDATE);
907 		if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
908 			LFS_CLR_UINO(ip, IN_MODIFIED);
909 #ifdef DEBUG_LFS
910 		else
911 			printf("lfs_writeinode: ino %d: real blks=%d, "
912 			       "eff=%d\n", ip->i_number, ip->i_ffs_blocks,
913 			       ip->i_lfs_effnblks);
914 #endif
915 	}
916 
917 	if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
918 		sp->idp = ((struct dinode *)bp->b_data) +
919 			(sp->ninodes % INOPB(fs));
920 	if (gotblk) {
921 		LFS_LOCK_BUF(bp);
922 		brelse(bp);
923 	}
924 
925 	/* Increment inode count in segment summary block. */
926 	++((SEGSUM *)(sp->segsum))->ss_ninos;
927 
928 	/* If this page is full, set flag to allocate a new page. */
929 	if (++sp->ninodes % INOPB(fs) == 0)
930 		sp->ibp = NULL;
931 
932 	/*
933 	 * If updating the ifile, update the super-block.  Update the disk
934 	 * address and access times for this inode in the ifile.
935 	 */
936 	ino = ip->i_number;
937 	if (ino == LFS_IFILE_INUM) {
938 		daddr = fs->lfs_idaddr;
939 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
940 	} else {
941 		LFS_IENTRY(ifp, fs, ino, ibp);
942 		daddr = ifp->if_daddr;
943 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
944 #ifdef LFS_DEBUG_NEXTFREE
945 		if (ino > 3 && ifp->if_nextfree) {
946 			vprint("lfs_writeinode",ITOV(ip));
947 			printf("lfs_writeinode: updating free ino %d\n",
948 				ip->i_number);
949 		}
950 #endif
951 		error = LFS_BWRITE_LOG(ibp); /* Ifile */
952 	}
953 
954 	/*
955 	 * The inode's last address should not be in the current partial
956 	 * segment, except under exceptional circumstances (lfs_writevnodes
957 	 * had to start over, and in the meantime more blocks were written
958 	 * to a vnode).  Both inodes will be accounted to this segment
959 	 * in lfs_writeseg so we need to subtract the earlier version
960 	 * here anyway.  The segment count can temporarily dip below
961 	 * zero here; keep track of how many duplicates we have in
962 	 * "dupino" so we don't panic below.
963 	 */
964 	if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
965 		++sp->ndupino;
966 		printf("lfs_writeinode: last inode addr in current pseg "
967 		       "(ino %d daddr 0x%x) ndupino=%d\n", ino, daddr,
968 			sp->ndupino);
969 	}
970 	/*
971 	 * Account the inode: it no longer belongs to its former segment,
972 	 * though it will not belong to the new segment until that segment
973 	 * is actually written.
974 	 */
975 	if (daddr != LFS_UNUSED_DADDR) {
976 		LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
977 #ifdef DIAGNOSTIC
978 		if (sup->su_nbytes < DINODE_SIZE * (1 + sp->ndupino)) {
979 			printf("lfs_writeinode: negative bytes "
980 			       "(segment %d short by %d)\n",
981 			       dtosn(fs, daddr),
982 			       (int)DINODE_SIZE - sup->su_nbytes);
983 			panic("lfs_writeinode: negative bytes");
984 			sup->su_nbytes = DINODE_SIZE;
985 		}
986 #endif
987 #ifdef DEBUG_SU_NBYTES
988 		printf("seg %d -= %d for ino %d inode\n",
989 		       dtosn(fs, daddr), DINODE_SIZE, ino);
990 #endif
991 		sup->su_nbytes -= DINODE_SIZE;
992 		redo_ifile =
993 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
994 		if (redo_ifile)
995 			fs->lfs_flags |= LFS_IFDIRTY;
996 		error = LFS_BWRITE_LOG(bp); /* Ifile */
997 	}
998 	return (redo_ifile);
999 }
1000 
1001 int
1002 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
1003 {
1004 	struct lfs *fs;
1005 	int version;
1006 
1007 	/*
1008 	 * If full, finish this segment.  We may be doing I/O, so
1009 	 * release and reacquire the splbio().
1010 	 */
1011 #ifdef DIAGNOSTIC
1012 	if (sp->vp == NULL)
1013 		panic ("lfs_gatherblock: Null vp in segment");
1014 #endif
1015 	fs = sp->fs;
1016 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
1017 	    sp->seg_bytes_left < bp->b_bcount) {
1018 		if (sptr)
1019 			splx(*sptr);
1020 		lfs_updatemeta(sp);
1021 
1022 		version = sp->fip->fi_version;
1023 		(void) lfs_writeseg(fs, sp);
1024 
1025 		sp->fip->fi_version = version;
1026 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
1027 		/* Add the current file to the segment summary. */
1028 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1029 		sp->sum_bytes_left -=
1030 			sizeof(struct finfo) - sizeof(ufs_daddr_t);
1031 
1032 		if (sptr)
1033 			*sptr = splbio();
1034 		return (1);
1035 	}
1036 
1037 #ifdef DEBUG
1038 	if (bp->b_flags & B_GATHERED) {
1039 		printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
1040 		       sp->fip->fi_ino, bp->b_lblkno);
1041 		return (0);
1042 	}
1043 #endif
1044 	/* Insert into the buffer list, update the FINFO block. */
1045 	bp->b_flags |= B_GATHERED;
1046 	bp->b_flags &= ~B_DONE;
1047 
1048 	*sp->cbpp++ = bp;
1049 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
1050 
1051 	sp->sum_bytes_left -= sizeof(ufs_daddr_t);
1052 	sp->seg_bytes_left -= bp->b_bcount;
1053 	return (0);
1054 }
1055 
1056 int
1057 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
1058 {
1059 	struct buf *bp, *nbp;
1060 	int s, count = 0;
1061 
1062 	sp->vp = vp;
1063 	s = splbio();
1064 
1065 #ifndef LFS_NO_BACKBUF_HACK
1066 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1067 # define	BUF_OFFSET	(((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
1068 # define	BACK_BUF(BP)	((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1069 # define	BEG_OF_LIST	((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1070 /* Find last buffer. */
1071 loop:	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1072 	    bp = LIST_NEXT(bp, b_vnbufs));
1073 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1074 		nbp = BACK_BUF(bp);
1075 #else /* LFS_NO_BACKBUF_HACK */
1076 loop:	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1077 		nbp = LIST_NEXT(bp, b_vnbufs);
1078 #endif /* LFS_NO_BACKBUF_HACK */
1079 		if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
1080 #ifdef DEBUG_LFS
1081 			if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
1082 				printf("(%d:%lx)", bp->b_lblkno, bp->b_flags);
1083 #endif
1084 			continue;
1085 		}
1086 		if (vp->v_type == VBLK) {
1087 			/* For block devices, just write the blocks. */
1088 			/* XXX Do we really need to even do this? */
1089 #ifdef DEBUG_LFS
1090 			if (count == 0)
1091 				printf("BLK(");
1092 			printf(".");
1093 #endif
1094 			/* Get the block before bwrite, so we don't corrupt the free list */
1095 			bp->b_flags |= B_BUSY;
1096 			bremfree(bp);
1097 			bwrite(bp);
1098 		} else {
1099 #ifdef DIAGNOSTIC
1100 			if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
1101 				printf("lfs_gather: lbn %d is B_INVAL\n",
1102 					bp->b_lblkno);
1103 				VOP_PRINT(bp->b_vp);
1104 			}
1105 			if (!(bp->b_flags & B_DELWRI))
1106 				panic("lfs_gather: bp not B_DELWRI");
1107 			if (!(bp->b_flags & B_LOCKED)) {
1108 				printf("lfs_gather: lbn %d blk %d"
1109 				       " not B_LOCKED\n", bp->b_lblkno,
1110 				       dbtofsb(fs, bp->b_blkno));
1111 				VOP_PRINT(bp->b_vp);
1112 				panic("lfs_gather: bp not B_LOCKED");
1113 			}
1114 #endif
1115 			if (lfs_gatherblock(sp, bp, &s)) {
1116 				goto loop;
1117 			}
1118 		}
1119 		count++;
1120 	}
1121 	splx(s);
1122 #ifdef DEBUG_LFS
1123 	if (vp->v_type == VBLK && count)
1124 		printf(")\n");
1125 #endif
1126 	lfs_updatemeta(sp);
1127 	sp->vp = NULL;
1128 	return count;
1129 }
1130 
1131 /*
1132  * Update the metadata that points to the blocks listed in the FINFO
1133  * array.
1134  */
1135 void
1136 lfs_updatemeta(struct segment *sp)
1137 {
1138 	SEGUSE *sup;
1139 	struct buf *bp, *sbp;
1140 	struct lfs *fs;
1141 	struct vnode *vp;
1142 	struct indir a[NIADDR + 2], *ap;
1143 	struct inode *ip;
1144 	ufs_daddr_t daddr, lbn, off;
1145 	daddr_t ooff;
1146 	int error, i, nblocks, num;
1147 	int bb, osize, obb;
1148 
1149 	vp = sp->vp;
1150 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1151 	if (nblocks < 0)
1152 		panic("This is a bad thing");
1153 	if (vp == NULL || nblocks == 0)
1154 		return;
1155 
1156 	/* Sort the blocks. */
1157 	/*
1158 	 * XXX KS - We have to sort even if the blocks come from the
1159 	 * cleaner, because there might be other pending blocks on the
1160 	 * same inode...and if we don't sort, and there are fragments
1161 	 * present, blocks may be written in the wrong place.
1162 	 */
1163 	/* if (!(sp->seg_flags & SEGM_CLEAN)) */
1164 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
1165 
1166 	/*
1167 	 * Record the length of the last block in case it's a fragment.
1168 	 * If there are indirect blocks present, they sort last.  An
1169 	 * indirect block will be lfs_bsize and its presence indicates
1170 	 * that you cannot have fragments.
1171 	 *
1172 	 * XXX This last is a lie.  A cleaned fragment can coexist with
1173 	 * XXX a later indirect block.  This will continue to be
1174 	 * XXX true until lfs_markv is fixed to do everything with
1175 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
1176 	 */
1177 	sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
1178 
1179 	/*
1180 	 * Assign disk addresses, and update references to the logical
1181 	 * block and the segment usage information.
1182 	 */
1183 	fs = sp->fs;
1184 	for (i = nblocks; i--; ++sp->start_bpp) {
1185 		lbn = *sp->start_lbp++;
1186 		sbp = *sp->start_bpp;
1187 
1188 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1189 		off = fs->lfs_offset;
1190 		if (sbp->b_blkno == sbp->b_lblkno) {
1191 			printf("lfs_updatemeta: ino %d blk %d"
1192 			       " has same lbn and daddr\n",
1193 			       VTOI(vp)->i_number, off);
1194 		}
1195 
1196 		/*
1197 		 * If we write a frag in the wrong place, the cleaner won't
1198 		 * be able to correctly identify its size later, and the
1199 		 * segment will be uncleanable.  (Even worse, it will assume
1200 		 * that the indirect block that actually ends the list
1201 		 * is of a smaller size!)
1202 		 */
1203 		if (sbp->b_bcount < fs->lfs_bsize && i != 0)
1204 			panic("lfs_updatemeta: fragment is not last block");
1205 
1206 		bb = fragstofsb(fs, numfrags(fs, sbp->b_bcount));
1207 		fs->lfs_offset += bb;
1208 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
1209 		if (daddr > 0)
1210 			daddr = dbtofsb(fs, daddr);
1211 		if (error)
1212 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
1213 		ip = VTOI(vp);
1214 		switch (num) {
1215 		case 0:
1216 			ooff = ip->i_ffs_db[lbn];
1217 #ifdef DEBUG
1218 			if (ooff == 0) {
1219 				printf("lfs_updatemeta[1]: warning: writing "
1220 				       "ino %d lbn %d at 0x%x, was 0x0\n",
1221 				       ip->i_number, lbn, off);
1222 			}
1223 #endif
1224 			if (ooff == UNWRITTEN)
1225 				ip->i_ffs_blocks += bb;
1226 			else {
1227 				/* possible fragment truncation or extension */
1228 				obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1229 				ip->i_ffs_blocks += (bb - obb);
1230 			}
1231 			ip->i_ffs_db[lbn] = off;
1232 			break;
1233 		case 1:
1234 			ooff = ip->i_ffs_ib[a[0].in_off];
1235 #ifdef DEBUG
1236 			if (ooff == 0) {
1237 				printf("lfs_updatemeta[2]: warning: writing "
1238 				       "ino %d lbn %d at 0x%x, was 0x0\n",
1239 				       ip->i_number, lbn, off);
1240 			}
1241 #endif
1242 			if (ooff == UNWRITTEN)
1243 				ip->i_ffs_blocks += bb;
1244 			ip->i_ffs_ib[a[0].in_off] = off;
1245 			break;
1246 		default:
1247 			ap = &a[num - 1];
1248 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1249 				panic("lfs_updatemeta: bread bno %d",
1250 				      ap->in_lbn);
1251 
1252 			ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
1253 #if DEBUG
1254 			if (ooff == 0) {
1255 				printf("lfs_updatemeta[3]: warning: writing "
1256 				       "ino %d lbn %d at 0x%x, was 0x0\n",
1257 				       ip->i_number, lbn, off);
1258 			}
1259 #endif
1260 			if (ooff == UNWRITTEN)
1261 				ip->i_ffs_blocks += bb;
1262 			((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
1263 			(void) VOP_BWRITE(bp);
1264 		}
1265 #ifdef DEBUG
1266 		if (daddr >= fs->lfs_lastpseg && daddr <= off) {
1267 			printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
1268 			       "in same pseg\n", VTOI(sp->vp)->i_number,
1269 			       sbp->b_lblkno, daddr);
1270 		}
1271 #endif
1272 		/*
1273 		 * Update segment usage information, based on old size
1274 		 * and location.
1275 		 */
1276 		if (daddr > 0) {
1277 			if (lbn >= 0 && lbn < NDADDR)
1278 				osize = ip->i_lfs_fragsize[lbn];
1279 			else
1280 				osize = fs->lfs_bsize;
1281 			LFS_SEGENTRY(sup, fs, dtosn(fs, daddr), bp);
1282 #ifdef DIAGNOSTIC
1283 			if (sup->su_nbytes < osize + DINODE_SIZE * sp->ndupino) {
1284 				printf("lfs_updatemeta: negative bytes "
1285 				       "(segment %d short by %d)\n",
1286 				       dtosn(fs, daddr),
1287 				       osize - sup->su_nbytes);
1288 				printf("lfs_updatemeta: ino %d, lbn %d, "
1289 				       "addr = 0x%x\n", VTOI(sp->vp)->i_number,
1290 				       lbn, daddr);
1291 				panic("lfs_updatemeta: negative bytes");
1292 				sup->su_nbytes = osize + DINODE_SIZE * sp->ndupino;
1293 			}
1294 #endif
1295 #ifdef DEBUG_SU_NBYTES
1296 			printf("seg %d -= %ld for ino %d lbn %d db 0x%x\n",
1297 			       dtosn(fs, daddr), osize, VTOI(sp->vp)->i_number,
1298 			       lbn, daddr);
1299 #endif
1300 			sup->su_nbytes -= osize;
1301 			if (!(bp->b_flags & B_GATHERED))
1302 				fs->lfs_flags |= LFS_IFDIRTY;
1303 			error = LFS_BWRITE_LOG(bp); /* Ifile */
1304 		}
1305 		/*
1306 		 * Now that this block has a new address, and its old
1307 		 * segment no longer owns it, we can forget about its
1308 		 * old size.
1309 		 */
1310 		if (lbn >= 0 && lbn < NDADDR)
1311 			ip->i_lfs_fragsize[lbn] = sbp->b_bcount;
1312 	}
1313 }
1314 
1315 /*
1316  * Start a new segment.
1317  */
1318 int
1319 lfs_initseg(struct lfs *fs)
1320 {
1321 	struct segment *sp;
1322 	SEGUSE *sup;
1323 	SEGSUM *ssp;
1324 	struct buf *bp, *sbp;
1325 	int repeat;
1326 
1327 	sp = fs->lfs_sp;
1328 
1329 	repeat = 0;
1330 	/* Advance to the next segment. */
1331 	if (!LFS_PARTIAL_FITS(fs)) {
1332 		/* lfs_avail eats the remaining space */
1333 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1334 						   fs->lfs_curseg);
1335 		/* Wake up any cleaning procs waiting on this file system. */
1336 		wakeup(&lfs_allclean_wakeup);
1337 		wakeup(&fs->lfs_nextseg);
1338 		lfs_newseg(fs);
1339 		repeat = 1;
1340 		fs->lfs_offset = fs->lfs_curseg;
1341 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1342 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1343 		/*
1344 		 * If the segment contains a superblock, update the offset
1345 		 * and summary address to skip over it.
1346 		 */
1347 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1348 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1349 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1350 			sp->seg_bytes_left -= LFS_SBPAD;
1351 		}
1352 		brelse(bp);
1353 		/* Segment zero could also contain the labelpad */
1354 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1355 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1356 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1357 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1358 		}
1359 	} else {
1360 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1361 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1362 				      (fs->lfs_offset - fs->lfs_curseg));
1363 	}
1364 	fs->lfs_lastpseg = fs->lfs_offset;
1365 
1366 	sp->fs = fs;
1367 	sp->ibp = NULL;
1368 	sp->idp = NULL;
1369 	sp->ninodes = 0;
1370 	sp->ndupino = 0;
1371 
1372 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
1373 	sp->cbpp = sp->bpp;
1374 #ifdef LFS_MALLOC_SUMMARY
1375 	sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1376 				     fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
1377   	sp->segsum = (*sp->cbpp)->b_data;
1378 #else
1379 	sbp = *sp->cbpp = getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1380 				 fsbtodb(fs, fs->lfs_offset), NBPG, 0, 0);
1381 	memset(sbp->b_data, 0x5a, NBPG);
1382 	sp->segsum = (*sp->cbpp)->b_data + NBPG - fs->lfs_sumsize;
1383 #endif
1384 	bzero(sp->segsum, fs->lfs_sumsize);
1385 	sp->start_bpp = ++sp->cbpp;
1386 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1387 
1388 	/* Set point to SEGSUM, initialize it. */
1389 	ssp = sp->segsum;
1390 	ssp->ss_next = fs->lfs_nextseg;
1391 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
1392 	ssp->ss_magic = SS_MAGIC;
1393 
1394 	/* Set pointer to first FINFO, initialize it. */
1395 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
1396 	sp->fip->fi_nblocks = 0;
1397 	sp->start_lbp = &sp->fip->fi_blocks[0];
1398 	sp->fip->fi_lastlength = 0;
1399 
1400 	sp->seg_bytes_left -= fs->lfs_sumsize;
1401 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1402 
1403 #ifndef LFS_MALLOC_SUMMARY
1404 	LFS_LOCK_BUF(sbp);
1405 	brelse(sbp);
1406 #endif
1407 	return (repeat);
1408 }
1409 
1410 /*
1411  * Return the next segment to write.
1412  */
1413 void
1414 lfs_newseg(struct lfs *fs)
1415 {
1416 	CLEANERINFO *cip;
1417 	SEGUSE *sup;
1418 	struct buf *bp;
1419 	int curseg, isdirty, sn;
1420 
1421 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1422 #ifdef DEBUG_SU_NBYTES
1423 	printf("lfs_newseg: seg %d := 0 in newseg\n",   /* XXXDEBUG */
1424 	       dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
1425 #endif
1426 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1427 	sup->su_nbytes = 0;
1428 	sup->su_nsums = 0;
1429 	sup->su_ninos = 0;
1430 	(void) LFS_BWRITE_LOG(bp); /* Ifile */
1431 
1432 	LFS_CLEANERINFO(cip, fs, bp);
1433 	--cip->clean;
1434 	++cip->dirty;
1435 	fs->lfs_nclean = cip->clean;
1436 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1437 
1438 	fs->lfs_lastseg = fs->lfs_curseg;
1439 	fs->lfs_curseg = fs->lfs_nextseg;
1440 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1441 		sn = (sn + 1) % fs->lfs_nseg;
1442 		if (sn == curseg)
1443 			panic("lfs_nextseg: no clean segments");
1444 		LFS_SEGENTRY(sup, fs, sn, bp);
1445 		isdirty = sup->su_flags & SEGUSE_DIRTY;
1446 		brelse(bp);
1447 		if (!isdirty)
1448 			break;
1449 	}
1450 
1451 	++fs->lfs_nactive;
1452 	fs->lfs_nextseg = sntod(fs, sn);
1453 	if (lfs_dostats) {
1454 		++lfs_stats.segsused;
1455 	}
1456 }
1457 
1458 static struct buf **
1459 lookahead_pagemove(struct buf **bpp, int nblocks, size_t *size)
1460 {
1461 	size_t maxsize;
1462 #ifndef LFS_NO_PAGEMOVE
1463 	struct buf *bp;
1464 #endif
1465 
1466 	maxsize = *size;
1467 	*size = 0;
1468 #ifdef LFS_NO_PAGEMOVE
1469 	return bpp;
1470 #else
1471 	while((bp = *bpp) != NULL && *size < maxsize && nblocks--) {
1472 		if(bp->b_flags & B_CALL)
1473 			return bpp;
1474 		if(bp->b_bcount % NBPG)
1475 			return bpp;
1476 		*size += bp->b_bcount;
1477 		++bpp;
1478 	}
1479 	return NULL;
1480 #endif
1481 }
1482 
1483 #define BQUEUES 4 /* XXX */
1484 #define BQ_EMPTY 3 /* XXX */
1485 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
1486 
1487 #define	BUFHASH(dvp, lbn)	\
1488 	(&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
1489 extern LIST_HEAD(bufhashhdr, buf) invalhash;
1490 /*
1491  * Insq/Remq for the buffer hash lists.
1492  */
1493 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
1494 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
1495 
1496 static struct buf *
1497 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
1498 {
1499 	struct lfs_cluster *cl;
1500 	struct buf **bpp, *bp;
1501 	int s;
1502 
1503 	cl = (struct lfs_cluster *)malloc(sizeof(*cl), M_SEGMENT, M_WAITOK);
1504 	bpp = (struct buf **)malloc(n*sizeof(*bpp), M_SEGMENT, M_WAITOK);
1505 	memset(cl, 0, sizeof(*cl));
1506 	cl->fs = fs;
1507 	cl->bpp = bpp;
1508 	cl->bufcount = 0;
1509 	cl->bufsize = 0;
1510 
1511 	/* If this segment is being written synchronously, note that */
1512 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1513 		cl->flags |= LFS_CL_SYNC;
1514 		cl->seg = fs->lfs_sp;
1515 		++cl->seg->seg_iocount;
1516 		/* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
1517 	}
1518 
1519 	/* Get an empty buffer header, or maybe one with something on it */
1520 	s = splbio();
1521 	if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
1522 		bremfree(bp);
1523 		/* clear out various other fields */
1524 		bp->b_flags = B_BUSY;
1525 		bp->b_dev = NODEV;
1526 		bp->b_blkno = bp->b_lblkno = 0;
1527 		bp->b_error = 0;
1528 		bp->b_resid = 0;
1529 		bp->b_bcount = 0;
1530 
1531 		/* nuke any credentials we were holding */
1532 		/* XXXXXX */
1533 
1534 		bremhash(bp);
1535 
1536 		/* disassociate us from our vnode, if we had one... */
1537 		if (bp->b_vp)
1538 			brelvp(bp);
1539 	}
1540 	splx(s);
1541 	while (!bp)
1542 		bp = getnewbuf(0, 0);
1543 	s = splbio();
1544 	bgetvp(vp, bp);
1545 	binshash(bp,&invalhash);
1546 	splx(s);
1547 	bp->b_bcount = 0;
1548 	bp->b_blkno = bp->b_lblkno = addr;
1549 
1550 	bp->b_flags |= B_CALL;
1551 	bp->b_iodone = lfs_cluster_callback;
1552 	cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
1553 	bp->b_saveaddr = (caddr_t)cl;
1554 
1555 	return bp;
1556 }
1557 
1558 int
1559 lfs_writeseg(struct lfs *fs, struct segment *sp)
1560 {
1561 	struct buf **bpp, *bp, *cbp, *newbp, **pmlastbpp;
1562 	SEGUSE *sup;
1563 	SEGSUM *ssp;
1564 	dev_t i_dev;
1565 	char *datap, *dp;
1566 	int do_again, i, nblocks, s;
1567 	size_t el_size;
1568  	struct lfs_cluster *cl;
1569 	int (*strategy)(void *);
1570 	struct vop_strategy_args vop_strategy_a;
1571 	u_short ninos;
1572 	struct vnode *devvp;
1573 	char *p;
1574 	struct vnode *vp;
1575 	struct inode *ip;
1576 	size_t pmsize;
1577 	int use_pagemove;
1578 	daddr_t pseg_daddr;
1579 	daddr_t *daddrp;
1580 	int changed;
1581 #if defined(DEBUG) && defined(LFS_PROPELLER)
1582 	static int propeller;
1583 	char propstring[4] = "-\\|/";
1584 
1585 	printf("%c\b",propstring[propeller++]);
1586 	if (propeller == 4)
1587 		propeller = 0;
1588 #endif
1589 	pseg_daddr = (*(sp->bpp))->b_blkno;
1590 
1591 	/*
1592 	 * If there are no buffers other than the segment summary to write
1593 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
1594 	 * even if there aren't any buffers, you need to write the superblock.
1595 	 */
1596 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
1597 		return (0);
1598 
1599 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
1600 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
1601 
1602 	/* Update the segment usage information. */
1603 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1604 
1605 	/* Loop through all blocks, except the segment summary. */
1606 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
1607 		if ((*bpp)->b_vp != devvp) {
1608 			sup->su_nbytes += (*bpp)->b_bcount;
1609 #ifdef DEBUG_SU_NBYTES
1610 		printf("seg %d += %ld for ino %d lbn %d db 0x%x\n",
1611 		       sp->seg_number, (*bpp)->b_bcount,
1612 		       VTOI((*bpp)->b_vp)->i_number,
1613 		       (*bpp)->b_lblkno, (*bpp)->b_blkno);
1614 #endif
1615 		}
1616 	}
1617 
1618 	ssp = (SEGSUM *)sp->segsum;
1619 
1620 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
1621 #ifdef DEBUG_SU_NBYTES
1622 	printf("seg %d += %d for %d inodes\n",   /* XXXDEBUG */
1623 	       sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
1624 	       ssp->ss_ninos);
1625 #endif
1626 	sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
1627 	/* sup->su_nbytes += fs->lfs_sumsize; */
1628 	if (fs->lfs_version == 1)
1629 		sup->su_olastmod = time.tv_sec;
1630 	else
1631 		sup->su_lastmod = time.tv_sec;
1632 	sup->su_ninos += ninos;
1633 	++sup->su_nsums;
1634 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
1635 							 fs->lfs_ibsize));
1636 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
1637 
1638 	do_again = !(bp->b_flags & B_GATHERED);
1639 	(void)LFS_BWRITE_LOG(bp); /* Ifile */
1640 	/*
1641 	 * Mark blocks B_BUSY, to prevent then from being changed between
1642 	 * the checksum computation and the actual write.
1643 	 *
1644 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
1645 	 * there are any, replace them with copies that have UNASSIGNED
1646 	 * instead.
1647 	 */
1648 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1649 		++bpp;
1650 		if ((*bpp)->b_flags & B_CALL)
1651 			continue;
1652 		bp = *bpp;
1653 	    again:
1654 		s = splbio();
1655 		if (bp->b_flags & B_BUSY) {
1656 #ifdef DEBUG
1657 			printf("lfs_writeseg: avoiding potential data "
1658 			       "summary corruption for ino %d, lbn %d\n",
1659 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
1660 #endif
1661 			bp->b_flags |= B_WANTED;
1662 			tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
1663 			splx(s);
1664 			goto again;
1665 		}
1666 		bp->b_flags |= B_BUSY;
1667 		splx(s);
1668 		/* Check and replace indirect block UNWRITTEN bogosity */
1669 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
1670 		   VTOI(bp->b_vp)->i_ffs_blocks !=
1671 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
1672 #ifdef DEBUG_LFS
1673 			printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
1674 			       VTOI(bp->b_vp)->i_number,
1675 			       VTOI(bp->b_vp)->i_lfs_effnblks,
1676 			       VTOI(bp->b_vp)->i_ffs_blocks);
1677 #endif
1678 			/* Make a copy we'll make changes to */
1679 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
1680 					   bp->b_bcount);
1681 			newbp->b_blkno = bp->b_blkno;
1682 			memcpy(newbp->b_data, bp->b_data,
1683 			       newbp->b_bcount);
1684 			*bpp = newbp;
1685 
1686 			changed = 0;
1687 			for (daddrp = (daddr_t *)(newbp->b_data);
1688 			     daddrp < (daddr_t *)(newbp->b_data +
1689 						  newbp->b_bcount); daddrp++) {
1690 				if (*daddrp == UNWRITTEN) {
1691 					++changed;
1692 #ifdef DEBUG_LFS
1693 					printf("lfs_writeseg: replacing UNWRITTEN\n");
1694 #endif
1695 					*daddrp = 0;
1696 				}
1697 			}
1698 			/*
1699 			 * Get rid of the old buffer.  Don't mark it clean,
1700 			 * though, if it still has dirty data on it.
1701 			 */
1702 			if (changed) {
1703 				bp->b_flags &= ~(B_ERROR | B_GATHERED);
1704 				if (bp->b_flags & B_CALL) {
1705 					lfs_freebuf(bp);
1706 					bp = NULL;
1707 				} else {
1708 					/* Still on free list, leave it there */
1709 					s = splbio();
1710 					bp->b_flags &= ~B_BUSY;
1711 					if (bp->b_flags & B_WANTED)
1712 						wakeup(bp);
1713 				 	splx(s);
1714 					/*
1715 					 * We have to re-decrement lfs_avail
1716 					 * since this block is going to come
1717 					 * back around to us in the next
1718 					 * segment.
1719 					 */
1720 					fs->lfs_avail -= btofsb(fs, bp->b_bcount);
1721 				}
1722 			} else {
1723 				bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
1724 						 B_GATHERED);
1725 				if (bp->b_flags & B_CALL) {
1726 					lfs_freebuf(bp);
1727 					bp = NULL;
1728 				} else {
1729 					bremfree(bp);
1730 					bp->b_flags |= B_DONE;
1731 					s = splbio();
1732 					reassignbuf(bp, bp->b_vp);
1733 					splx(s);
1734 					LFS_UNLOCK_BUF(bp);
1735 					brelse(bp);
1736 				}
1737 			}
1738 
1739 		}
1740 	}
1741 	/*
1742 	 * Compute checksum across data and then across summary; the first
1743 	 * block (the summary block) is skipped.  Set the create time here
1744 	 * so that it's guaranteed to be later than the inode mod times.
1745 	 *
1746 	 * XXX
1747 	 * Fix this to do it inline, instead of malloc/copy.
1748 	 */
1749 	if (fs->lfs_version == 1)
1750 		el_size = sizeof(u_long);
1751 	else
1752 		el_size = sizeof(u_int32_t);
1753 	datap = dp = malloc(nblocks * el_size, M_SEGMENT, M_WAITOK);
1754 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
1755 		if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1756 			if (copyin((*bpp)->b_saveaddr, dp, el_size))
1757 				panic("lfs_writeseg: copyin failed [1]: "
1758 				      "ino %d blk %d",
1759 				      VTOI((*bpp)->b_vp)->i_number,
1760 				      (*bpp)->b_lblkno);
1761 		} else
1762 			memcpy(dp, (*bpp)->b_data, el_size);
1763 		dp += el_size;
1764 	}
1765 	if (fs->lfs_version == 1)
1766 		ssp->ss_ocreate = time.tv_sec;
1767 	else {
1768 		ssp->ss_create = time.tv_sec;
1769 		ssp->ss_serial = ++fs->lfs_serial;
1770 		ssp->ss_ident  = fs->lfs_ident;
1771 	}
1772 #ifndef LFS_MALLOC_SUMMARY
1773 	/* Set the summary block busy too */
1774 	(*(sp->bpp))->b_flags |= B_BUSY;
1775 #endif
1776 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
1777 	ssp->ss_sumsum =
1778 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
1779 	free(datap, M_SEGMENT);
1780 	datap = dp = NULL;
1781 #ifdef DIAGNOSTIC
1782 	if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
1783 		panic("lfs_writeseg: No diskspace for summary");
1784 #endif
1785 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
1786 			  btofsb(fs, fs->lfs_sumsize));
1787 
1788 	strategy = devvp->v_op[VOFFSET(vop_strategy)];
1789 
1790 	/*
1791   	 * When we simply write the blocks we lose a rotation for every block
1792 	 * written.  To avoid this problem, we use pagemove to cluster
1793 	 * the buffers into a chunk and write the chunk.  CHUNKSIZE is the
1794   	 * largest size I/O devices can handle.
1795   	 *
1796 	 * XXX - right now MAXPHYS is only 64k; could it be larger?
1797 	 */
1798 
1799 #define CHUNKSIZE MAXPHYS
1800 
1801 	if (devvp == NULL)
1802 		panic("devvp is NULL");
1803 	for (bpp = sp->bpp, i = nblocks; i;) {
1804 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
1805 		cl = (struct lfs_cluster *)cbp->b_saveaddr;
1806 
1807 		cbp->b_dev = i_dev;
1808 		cbp->b_flags |= B_ASYNC | B_BUSY;
1809 		cbp->b_bcount = 0;
1810 
1811 		/*
1812 		 * Find out if we can use pagemove to build the cluster,
1813 		 * or if we are stuck using malloc/copy.  If this is the
1814 		 * first cluster, set the shift flag (see below).
1815 		 */
1816 		pmsize = CHUNKSIZE;
1817 		use_pagemove = 0;
1818 		if(bpp == sp->bpp) {
1819 			/* Summary blocks have to get special treatment */
1820 			pmlastbpp = lookahead_pagemove(bpp + 1, i - 1, &pmsize);
1821 			if(pmsize >= CHUNKSIZE - fs->lfs_sumsize ||
1822 			   pmlastbpp == NULL) {
1823 				use_pagemove = 1;
1824 				cl->flags |= LFS_CL_SHIFT;
1825 			} else {
1826 				/*
1827 				 * If we're not using pagemove, we have
1828 				 * to copy the summary down to the bottom
1829 				 * end of the block.
1830 				 */
1831 #ifndef LFS_MALLOC_SUMMARY
1832 				memcpy((*bpp)->b_data, (*bpp)->b_data +
1833 				       NBPG - fs->lfs_sumsize,
1834 				       fs->lfs_sumsize);
1835 #endif /* LFS_MALLOC_SUMMARY */
1836 			}
1837 		} else {
1838 			pmlastbpp = lookahead_pagemove(bpp, i, &pmsize);
1839 			if(pmsize >= CHUNKSIZE || pmlastbpp == NULL) {
1840 				use_pagemove = 1;
1841 			}
1842 		}
1843 		if(use_pagemove == 0) {
1844 			cl->flags |= LFS_CL_MALLOC;
1845 			cl->olddata = cbp->b_data;
1846 			cbp->b_data = malloc(CHUNKSIZE, M_SEGMENT, M_WAITOK);
1847 		}
1848 #if defined(DEBUG) && defined(DIAGNOSTIC)
1849 		if(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount - 1))) !=
1850 		   dtosn(fs, dbtofsb(fs, cbp->b_blkno))) {
1851 			printf("block at %x (%d), cbp at %x (%d)\n",
1852 				(*bpp)->b_blkno, dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)),
1853 			       cbp->b_blkno, dtosn(fs, dbtofsb(fs, cbp->b_blkno)));
1854 			panic("lfs_writeseg: Segment overwrite");
1855 		}
1856 #endif
1857 
1858 		/*
1859 		 * Construct the cluster.
1860 		 */
1861 		while (fs->lfs_iocount >= LFS_THROTTLE) {
1862 #ifdef DEBUG_LFS
1863 			printf("[%d]", fs->lfs_iocount);
1864 #endif
1865 			tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs_throttle", 0);
1866 		}
1867 		++fs->lfs_iocount;
1868 
1869 		for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
1870 			bp = *bpp;
1871 
1872 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
1873 				break;
1874 
1875 			/*
1876 			 * Fake buffers from the cleaner are marked as B_INVAL.
1877 			 * We need to copy the data from user space rather than
1878 			 * from the buffer indicated.
1879 			 * XXX == what do I do on an error?
1880 			 */
1881 			if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
1882 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
1883 					panic("lfs_writeseg: copyin failed [2]");
1884 			} else if (use_pagemove) {
1885 				pagemove(bp->b_data, p, bp->b_bcount);
1886 				cbp->b_bufsize += bp->b_bcount;
1887 				bp->b_bufsize -= bp->b_bcount;
1888   			} else {
1889 				bcopy(bp->b_data, p, bp->b_bcount);
1890 				/* printf("copy in %p\n", bp->b_data); */
1891   			}
1892 
1893 			/*
1894 			 * XXX If we are *not* shifting, the summary
1895 			 * block is only fs->lfs_sumsize.  Otherwise,
1896 			 * it is NBPG but shifted.
1897 			 */
1898 			if(bpp == sp->bpp && !(cl->flags & LFS_CL_SHIFT)) {
1899 				p += fs->lfs_sumsize;
1900 				cbp->b_bcount += fs->lfs_sumsize;
1901 				cl->bufsize += fs->lfs_sumsize;
1902 			} else {
1903 				p += bp->b_bcount;
1904 				cbp->b_bcount += bp->b_bcount;
1905 				cl->bufsize += bp->b_bcount;
1906 			}
1907 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
1908 			cl->bpp[cl->bufcount++] = bp;
1909 			vp = bp->b_vp;
1910 			s = splbio();
1911 			++vp->v_numoutput;
1912 			splx(s);
1913 
1914 			/*
1915 			 * Although it cannot be freed for reuse before the
1916 			 * cluster is written to disk, this buffer does not
1917 			 * need to be held busy.  Therefore we unbusy it,
1918 			 * while leaving it on the locked list.  It will
1919 			 * be freed or requeued by the callback depending
1920 			 * on whether it has had B_DELWRI set again in the
1921 			 * meantime.
1922 			 *
1923 			 * If we are using pagemove, we have to hold the block
1924 			 * busy to prevent its contents from changing before
1925 			 * it hits the disk, and invalidating the checksum.
1926 			 */
1927 			bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
1928 #ifdef LFS_MNOBUSY
1929 			if (cl->flags & LFS_CL_MALLOC) {
1930 				if (!(bp->b_flags & B_CALL))
1931 					brelse(bp); /* Still B_LOCKED */
1932 			}
1933 #endif
1934 			bpp++;
1935 
1936 			/*
1937 			 * If this is the last block for this vnode, but
1938 			 * there are other blocks on its dirty list,
1939 			 * set IN_MODIFIED/IN_CLEANING depending on what
1940 			 * sort of block.  Only do this for our mount point,
1941 			 * not for, e.g., inode blocks that are attached to
1942 			 * the devvp.
1943 			 * XXX KS - Shouldn't we set *both* if both types
1944 			 * of blocks are present (traverse the dirty list?)
1945 			 */
1946 			s = splbio();
1947 			if ((i == 1 ||
1948 			     (i > 1 && vp && *bpp && (*bpp)->b_vp != vp)) &&
1949 			    (bp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL &&
1950 			    vp->v_mount == fs->lfs_ivnode->v_mount)
1951   			{
1952 				ip = VTOI(vp);
1953 #ifdef DEBUG_LFS
1954 				printf("lfs_writeseg: marking ino %d\n",
1955 				       ip->i_number);
1956 #endif
1957 				if (bp->b_flags & B_CALL)
1958 					LFS_SET_UINO(ip, IN_CLEANING);
1959 				else
1960 					LFS_SET_UINO(ip, IN_MODIFIED);
1961 			}
1962 			splx(s);
1963 			wakeup(vp);
1964 		}
1965 		s = splbio();
1966 		++cbp->b_vp->v_numoutput;
1967 		splx(s);
1968 		/*
1969 		 * In order to include the summary in a clustered block,
1970 		 * it may be necessary to shift the block forward (since
1971 		 * summary blocks are in generay smaller than can be
1972 		 * addressed by pagemove().  After the write, the block
1973 		 * will be corrected before disassembly.
1974 		 */
1975 		if(cl->flags & LFS_CL_SHIFT) {
1976 			cbp->b_data += (NBPG - fs->lfs_sumsize);
1977 			cbp->b_bcount -= (NBPG - fs->lfs_sumsize);
1978 		}
1979 		vop_strategy_a.a_desc = VDESC(vop_strategy);
1980 		vop_strategy_a.a_bp = cbp;
1981 		(strategy)(&vop_strategy_a);
1982 	}
1983 
1984 	if (lfs_dostats) {
1985 		++lfs_stats.psegwrites;
1986 		lfs_stats.blocktot += nblocks - 1;
1987 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
1988 			++lfs_stats.psyncwrites;
1989 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
1990 			++lfs_stats.pcleanwrites;
1991 			lfs_stats.cleanblocks += nblocks - 1;
1992 		}
1993 	}
1994 	return (lfs_initseg(fs) || do_again);
1995 }
1996 
1997 void
1998 lfs_writesuper(struct lfs *fs, daddr_t daddr)
1999 {
2000 	struct buf *bp;
2001 	dev_t i_dev;
2002 	int (*strategy)(void *);
2003 	int s;
2004 	struct vop_strategy_args vop_strategy_a;
2005 
2006 	/*
2007 	 * If we can write one superblock while another is in
2008 	 * progress, we risk not having a complete checkpoint if we crash.
2009 	 * So, block here if a superblock write is in progress.
2010 	 */
2011 	s = splbio();
2012 	while (fs->lfs_sbactive) {
2013 		tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
2014 	}
2015 	fs->lfs_sbactive = daddr;
2016 	splx(s);
2017 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
2018 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
2019 
2020 	/* Set timestamp of this version of the superblock */
2021 	if (fs->lfs_version == 1)
2022 		fs->lfs_otstamp = time.tv_sec;
2023 	fs->lfs_tstamp = time.tv_sec;
2024 
2025 	/* Checksum the superblock and copy it into a buffer. */
2026 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2027 	bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
2028 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2029 
2030 	bp->b_dev = i_dev;
2031 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
2032 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
2033 	bp->b_iodone = lfs_supercallback;
2034 	/* XXX KS - same nasty hack as above */
2035 	bp->b_saveaddr = (caddr_t)fs;
2036 
2037 	vop_strategy_a.a_desc = VDESC(vop_strategy);
2038 	vop_strategy_a.a_bp = bp;
2039 	s = splbio();
2040 	++bp->b_vp->v_numoutput;
2041 	splx(s);
2042 	++fs->lfs_iocount;
2043 	(strategy)(&vop_strategy_a);
2044 }
2045 
2046 /*
2047  * Logical block number match routines used when traversing the dirty block
2048  * chain.
2049  */
2050 int
2051 lfs_match_fake(struct lfs *fs, struct buf *bp)
2052 {
2053 	return (bp->b_flags & B_CALL);
2054 }
2055 
2056 int
2057 lfs_match_data(struct lfs *fs, struct buf *bp)
2058 {
2059 	return (bp->b_lblkno >= 0);
2060 }
2061 
2062 int
2063 lfs_match_indir(struct lfs *fs, struct buf *bp)
2064 {
2065 	int lbn;
2066 
2067 	lbn = bp->b_lblkno;
2068 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2069 }
2070 
2071 int
2072 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2073 {
2074 	int lbn;
2075 
2076 	lbn = bp->b_lblkno;
2077 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2078 }
2079 
2080 int
2081 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2082 {
2083 	int lbn;
2084 
2085 	lbn = bp->b_lblkno;
2086 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2087 }
2088 
2089 /*
2090  * XXX - The only buffers that are going to hit these functions are the
2091  * segment write blocks, or the segment summaries, or the superblocks.
2092  *
2093  * All of the above are created by lfs_newbuf, and so do not need to be
2094  * released via brelse.
2095  */
2096 void
2097 lfs_callback(struct buf *bp)
2098 {
2099 	/* struct lfs *fs; */
2100 	/* fs = (struct lfs *)bp->b_saveaddr; */
2101 	lfs_freebuf(bp);
2102 }
2103 
2104 static void
2105 lfs_super_aiodone(struct buf *bp)
2106 {
2107 	struct lfs *fs;
2108 
2109 	fs = (struct lfs *)bp->b_saveaddr;
2110 	fs->lfs_sbactive = 0;
2111 	wakeup(&fs->lfs_sbactive);
2112 	if (--fs->lfs_iocount < LFS_THROTTLE)
2113 		wakeup(&fs->lfs_iocount);
2114 	lfs_freebuf(bp);
2115 }
2116 
2117 static void
2118 lfs_cluster_aiodone(struct buf *bp)
2119 {
2120 	struct lfs_cluster *cl;
2121 	struct lfs *fs;
2122 	struct buf *tbp;
2123 	struct vnode *vp;
2124 	int s, error=0;
2125 	char *cp;
2126 	extern int locked_queue_count;
2127 	extern long locked_queue_bytes;
2128 
2129 	if(bp->b_flags & B_ERROR)
2130 		error = bp->b_error;
2131 
2132 	cl = (struct lfs_cluster *)bp->b_saveaddr;
2133 	fs = cl->fs;
2134 	bp->b_saveaddr = cl->saveaddr;
2135 
2136 	/* If shifted, shift back now */
2137 	if(cl->flags & LFS_CL_SHIFT) {
2138 		bp->b_data -= (NBPG - fs->lfs_sumsize);
2139 		bp->b_bcount += (NBPG - fs->lfs_sumsize);
2140 	}
2141 
2142 	cp = (char *)bp->b_data + cl->bufsize;
2143 	/* Put the pages back, and release the buffer */
2144 	while(cl->bufcount--) {
2145 		tbp = cl->bpp[cl->bufcount];
2146 		if(!(cl->flags & LFS_CL_MALLOC)) {
2147 			cp -= tbp->b_bcount;
2148 			printf("pm(%p,%p,%lx)",cp,tbp->b_data,tbp->b_bcount);
2149 			pagemove(cp, tbp->b_data, tbp->b_bcount);
2150 			bp->b_bufsize -= tbp->b_bcount;
2151 			tbp->b_bufsize += tbp->b_bcount;
2152 		}
2153 		if(error) {
2154 			tbp->b_flags |= B_ERROR;
2155 			tbp->b_error = error;
2156 		}
2157 
2158 		/*
2159 		 * We're done with tbp.  If it has not been re-dirtied since
2160 		 * the cluster was written, free it.  Otherwise, keep it on
2161 		 * the locked list to be written again.
2162 		 */
2163 		if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
2164 			LFS_UNLOCK_BUF(tbp);
2165 		tbp->b_flags &= ~B_GATHERED;
2166 
2167 		LFS_BCLEAN_LOG(fs, tbp);
2168 
2169 		vp = tbp->b_vp;
2170 		/* Segment summary for a shifted cluster */
2171 		if(!cl->bufcount && (cl->flags & LFS_CL_SHIFT))
2172 			tbp->b_flags |= B_INVAL;
2173 		if(!(tbp->b_flags & B_CALL)) {
2174 			bremfree(tbp);
2175 			s = splbio();
2176 			if(vp)
2177 				reassignbuf(tbp, vp);
2178 			splx(s);
2179 			tbp->b_flags |= B_ASYNC; /* for biodone */
2180 		}
2181 #ifdef DIAGNOSTIC
2182 		if (tbp->b_flags & B_DONE) {
2183 			printf("blk %d biodone already (flags %lx)\n",
2184 				cl->bufcount, (long)tbp->b_flags);
2185 		}
2186 #endif
2187 		if (tbp->b_flags & (B_BUSY | B_CALL)) {
2188 			biodone(tbp);
2189 		}
2190 	}
2191 
2192 	/* Fix up the cluster buffer, and release it */
2193 	if(!(cl->flags & LFS_CL_MALLOC) && bp->b_bufsize) {
2194 		printf("PM(%p,%p,%lx)", (char *)bp->b_data + bp->b_bcount,
2195 			 (char *)bp->b_data, bp->b_bufsize);
2196 		pagemove((char *)bp->b_data + bp->b_bcount,
2197 			 (char *)bp->b_data, bp->b_bufsize);
2198 	}
2199 	if(cl->flags & LFS_CL_MALLOC) {
2200 		free(bp->b_data, M_SEGMENT);
2201 		bp->b_data = cl->olddata;
2202 	}
2203 	bp->b_bcount = 0;
2204 	bp->b_iodone = NULL;
2205 	bp->b_flags &= ~B_DELWRI;
2206 	bp->b_flags |= B_DONE;
2207 	s = splbio();
2208 	reassignbuf(bp, bp->b_vp);
2209 	splx(s);
2210 	brelse(bp);
2211 
2212 	/* Note i/o done */
2213 	if (cl->flags & LFS_CL_SYNC) {
2214 		if (--cl->seg->seg_iocount == 0)
2215 			wakeup(&cl->seg->seg_iocount);
2216 		/* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
2217 	}
2218 #ifdef DIAGNOSTIC
2219 	if (fs->lfs_iocount == 0)
2220 		panic("lfs_cluster_aiodone: zero iocount");
2221 #endif
2222 	if (--fs->lfs_iocount < LFS_THROTTLE)
2223 		wakeup(&fs->lfs_iocount);
2224 #if 0
2225 	if (fs->lfs_iocount == 0) {
2226 		/*
2227 		 * Vinvalbuf can move locked buffers off the locked queue
2228 		 * and we have no way of knowing about this.  So, after
2229 		 * doing a big write, we recalculate how many buffers are
2230 		 * really still left on the locked queue.
2231 		 */
2232 		lfs_countlocked(&locked_queue_count, &locked_queue_bytes, "lfs_cluster_callback");
2233 		wakeup(&locked_queue_count);
2234 	}
2235 #endif
2236 
2237 	free(cl->bpp, M_SEGMENT);
2238 	free(cl, M_SEGMENT);
2239 }
2240 
2241 static void
2242 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2243 {
2244 	/* reset b_iodone for when this is a single-buf i/o. */
2245 	bp->b_iodone = aiodone;
2246 
2247 	simple_lock(&uvm.aiodoned_lock);        /* locks uvm.aio_done */
2248 	TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
2249 	wakeup(&uvm.aiodoned);
2250 	simple_unlock(&uvm.aiodoned_lock);
2251 }
2252 
2253 static void
2254 lfs_cluster_callback(struct buf *bp)
2255 {
2256 	lfs_generic_callback(bp, lfs_cluster_aiodone);
2257 }
2258 
2259 void
2260 lfs_supercallback(struct buf *bp)
2261 {
2262 	lfs_generic_callback(bp, lfs_super_aiodone);
2263 }
2264 
2265 /*
2266  * Shellsort (diminishing increment sort) from Data Structures and
2267  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2268  * see also Knuth Vol. 3, page 84.  The increments are selected from
2269  * formula (8), page 95.  Roughly O(N^3/2).
2270  */
2271 /*
2272  * This is our own private copy of shellsort because we want to sort
2273  * two parallel arrays (the array of buffer pointers and the array of
2274  * logical block numbers) simultaneously.  Note that we cast the array
2275  * of logical block numbers to a unsigned in this routine so that the
2276  * negative block numbers (meta data blocks) sort AFTER the data blocks.
2277  */
2278 
2279 void
2280 lfs_shellsort(struct buf **bp_array, ufs_daddr_t *lb_array, int nmemb)
2281 {
2282 	static int __rsshell_increments[] = { 4, 1, 0 };
2283 	int incr, *incrp, t1, t2;
2284 	struct buf *bp_temp;
2285 	u_long lb_temp;
2286 
2287 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2288 		for (t1 = incr; t1 < nmemb; ++t1)
2289 			for (t2 = t1 - incr; t2 >= 0;)
2290 				if (lb_array[t2] > lb_array[t2 + incr]) {
2291 					lb_temp = lb_array[t2];
2292 					lb_array[t2] = lb_array[t2 + incr];
2293 					lb_array[t2 + incr] = lb_temp;
2294 					bp_temp = bp_array[t2];
2295 					bp_array[t2] = bp_array[t2 + incr];
2296 					bp_array[t2 + incr] = bp_temp;
2297 					t2 -= incr;
2298 				} else
2299 					break;
2300 }
2301 
2302 /*
2303  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
2304  */
2305 int
2306 lfs_vref(struct vnode *vp)
2307 {
2308 	/*
2309 	 * If we return 1 here during a flush, we risk vinvalbuf() not
2310 	 * being able to flush all of the pages from this vnode, which
2311 	 * will cause it to panic.  So, return 0 if a flush is in progress.
2312 	 */
2313 	if (vp->v_flag & VXLOCK) {
2314 		if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2315 			return 0;
2316 		}
2317 		return (1);
2318 	}
2319 	return (vget(vp, 0));
2320 }
2321 
2322 /*
2323  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2324  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2325  */
2326 void
2327 lfs_vunref(struct vnode *vp)
2328 {
2329 	/*
2330 	 * Analogous to lfs_vref, if the node is flushing, fake it.
2331 	 */
2332 	if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
2333 		return;
2334 	}
2335 
2336 	simple_lock(&vp->v_interlock);
2337 #ifdef DIAGNOSTIC
2338 	if (vp->v_usecount <= 0) {
2339 		printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
2340 		printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
2341 		printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
2342 		panic("lfs_vunref: v_usecount<0");
2343 	}
2344 #endif
2345 	vp->v_usecount--;
2346 	if (vp->v_usecount > 0) {
2347 		simple_unlock(&vp->v_interlock);
2348 		return;
2349 	}
2350 	/*
2351 	 * insert at tail of LRU list
2352 	 */
2353 	simple_lock(&vnode_free_list_slock);
2354 	if (vp->v_holdcnt > 0)
2355 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2356 	else
2357 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2358 	simple_unlock(&vnode_free_list_slock);
2359 	simple_unlock(&vp->v_interlock);
2360 }
2361 
2362 /*
2363  * We use this when we have vnodes that were loaded in solely for cleaning.
2364  * There is no reason to believe that these vnodes will be referenced again
2365  * soon, since the cleaning process is unrelated to normal filesystem
2366  * activity.  Putting cleaned vnodes at the tail of the list has the effect
2367  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
2368  * cleaning at the head of the list, instead.
2369  */
2370 void
2371 lfs_vunref_head(struct vnode *vp)
2372 {
2373 	simple_lock(&vp->v_interlock);
2374 #ifdef DIAGNOSTIC
2375 	if (vp->v_usecount == 0) {
2376 		panic("lfs_vunref: v_usecount<0");
2377 	}
2378 #endif
2379 	vp->v_usecount--;
2380 	if (vp->v_usecount > 0) {
2381 		simple_unlock(&vp->v_interlock);
2382 		return;
2383 	}
2384 	/*
2385 	 * insert at head of LRU list
2386 	 */
2387 	simple_lock(&vnode_free_list_slock);
2388 	if (vp->v_holdcnt > 0)
2389 		TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
2390 	else
2391 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2392 	simple_unlock(&vnode_free_list_slock);
2393 	simple_unlock(&vp->v_interlock);
2394 }
2395 
2396